Powder diffraction data of the Ho₂AlGe₃ ternary compound

Liuqing Liang,¹ Ming Qin,^{1,a)} Zhao Lu,¹ Degui Li,¹ Bing He,¹ and Lingmin Zeng² ¹Department of Physics and Communication Engineering, Baise University, Baise, Guangxi 533000, China ²Institute of Materials Science, Guangxi University, Nanning, Guangxi 530004, China

(Received 8 August 2013; accepted 19 August 2013)

A new ternary compound Ho₂AlGe₃ was synthesized and studied by means of X-ray powder diffraction technique. The powder pattern of Ho₂AlGe₃ was indexed and refined, giving an orthorhombic structure, space group *Pnma* (No. 62) with the Y₂AlGe₃ structure type: a = 6.743 98(8) Å, b = 4.163 73(5) Å, c = 17.5834(2) Å, V = 493.74 Å³, Z = 4, $\rho_x = 7.73$ g cm⁻³, $F_{30} = 202.7$ (0.004, 37), and RIR = 1.21. © 2013 International Centre for Diffraction Data. [doi:10.1017/S088571561300078X]

Key words: Ho₂AlGe₃, powder X-ray diffraction data, Y₂AlGe₃

I. INTRODUCTION

It is of both academic interest and industrial necessity to study the properties of the Al-Ge-RE ternary compounds. However, up until now, a few researches about these ternary compounds have been reported (Wang et al., 2011). The interesting structural chemistry and the rich magnetic properties make such materials worthy candidates for the investigation of the structural evolution and structure-properties relationships in rare-earth metal compounds (Zhang and Bobev, 2013). The crystal structure of the RE₂AlGe₃ (RE = Y, Dy, Ho, Er, and Tm) compounds was studied for the first time by Johrendt et al. (1996). These compounds are orthorhombic, space group *Pnma* (No. 62), with the Y_2AlGe_3 structure type. Later, the crystal structures of Sm₂AlGe₃ and Tb₂AlGe₃ were reported to have the same structure type (Mel'nyk et al., 2005). So far, only two powder diffraction patterns of HoAl_{2.784}Ge_{0.214} (Zhuravleva et al., 2001) and HoAl_{0.34}Ge₂ (Zeng et al., 2008) of the Ho-Al-Ge ternary system were included in the PDF (ICDD, 2011). Therefore, in this paper, we present high-quality experimental powder X-ray diffraction (XRD) data for Ho₂AlGe₃.

II. EXPERIMENTAL

A. Synthesis

The sample of Ho₂AlGe₃ with a total mass of 2 g was prepared by arc melting using a non-consumable tungsten electrode and a water-cooled copper tray under argon atmosphere. Holmium (purity of 99.9%), aluminum (purity of 99.9%), and germanium (purity of 99.999%) were used as the starting materials. Titanium was used as an oxygen getter during the melting process. The sample was remelted three times in order to ensure the complete fusion and homogeneity. Weight losses were less than 1 wt%. After melting, the sample was enclosed in an evacuated quartz tube and annealed at 1073 K for 720 h, then cooled down at a rate of 10 K h⁻¹ to room temperature. The sample was ground in an agate mortar and pestled to particle sizes no larger than $20 \,\mu$ m.

B. Data collection

XRD patterns of Ho₂AlGe₃ compound were collected at room temperature using a Rigaku Smart Lab 2006 powder diffractometer using $CuK\alpha$ radiation and a diffracted-beam graphite monochromator. The diffractometer was operated at 40 kV and 180 mA, the 2θ scan range was from 5° to 100° with a step size of 0.02° , and a count time of 6 s per step. Two sets of XRD data were collected, one with SRM 640 Si added as an internal standard to correct for possible systematic errors in the observed peak positions and the other without SRM 640 Si. The XRD pattern recorded from the specimen added with Si internal standard was used for indexing and for determining space group and unit-cell information, whereas the XRD pattern without Si internal standard was used for determining diffraction intensities. The $2\theta_{obs}$ values of the peaks were determined by the Savitzky-Golay second derivative using JADE 6.0 (Materials Data Inc., 2002) XRD Pattern Processing software of Materials Data, Inc. after

Figure 1. The powder X-ray diffraction pattern of Ho₂AlGe₃.

^{a)} Author to whom correspondence should be addressed. Electronic mail: qm6327@sohu.com

smoothing the patterns, fitting and removing the background, and stripping the $CuK\alpha_2$ peaks. Values of unit-cell parameters were then obtained by the least-squares method using JADE 6.0.

III. RESULTS

The experimental XRD pattern of compound Ho₂AlGe₃ is shown in Figure 1. All of the lines were successfully indexed using the Jade6.0 program in an orthorhombic system. By comparing the XRD data of Ho₂AlGe₃ with those of Y_2 AlGe₃, it was found that Ho₂AlGe₃ and Y_2 AlGe₃ (Johrendt *et al.*, 1996) have the same structure type *Pnma* (No. 62). Using the corrected diffraction data of Ho₂AlGe₃, the accurate unit-cell parameters were obtained with a = 6.743 98(8) Å, b = 4.163 73(5) Å, c = 17.5834(2) Å, V = 493.74 Å³, Z = 4, and $\rho_x = 7.73$ g cm⁻³. The figure of merit for indexing F_N (Smith and Snyder, 1979) is $F_{30} = 202.7$ (0.004, 37) and the value of RIR (RIR = 1.21) was obtained from the value of the ratio of the strongest line in the pattern to the strongest line of corundum in a 50–50 wt.% mixture of the two compounds. The observed and the calculated XRD data for Ho₂AlGe₃ are listed in Table I.

TABLE I. Powder diffraction data for Ho₂AlGe₃ (Cu $K\alpha_1$, with $\lambda = 1.540$ 60 Å).

No.	$2\theta_{\rm obs}$	h	k	l	$2\theta_{\rm cal}$	$\Delta 2\theta^{\mathrm{a}}$	I _{obs}	$d_{\rm obs}$	$d_{ m cal}$
1	10.058	0	0	2	10.053	0.005	16.3	8.7869	8.7917
2	14.058	1	0	1	14.053	0.005	5.5	6.2945	6.2967
3	16.559	1	0	2	16.553	0.006	4.0	5.3492	5.3510
4	21.920	0	1	1	21.919	0.001	4.1	4.0514	4.0517
5	24.155	1	0	4	24.147	0.008	17.2	3.6814	3.6826
6	25.632	1	1	1	25.628	0.004	1.0	3.4725	3.4731
7	26.238	0	1	3	26.232	0.006	20.2	3.3937	3.3944
8	26.417	2	0	0	26.410	0.007	20.5	3.3711	3.3720
9	26.900	2	0	1	26.900	0.000	10.9	3.3117	3.3116
10	27.112	1	1	2	27.113	-0.001	0.4	3.2863	3.2861
11	28.324	2	0	2	28.324	0.000	5.4	3.1483	3.1484
12	28.600	1	0	5	28.603	-0.003	15.6	3.1185	3.1182
13	29.437	1	1	3	29.435	0.002	7.4	3.0317	3.0320
14	30.559	2	0	3	30.561	-0.002	10.2	2.9229	2.9228
15	32.436	1	1	4	32,430	0.006	38.8	2.7580	2,7585
16	33.318	0	1	5	33.322	-0.004	52.3	2.6870	2.6866
17	34.197	2	1	0	34.189	0.008	95.4	2.6199	2.6204
18	34.579	2	1	1	34 579	0.000	45.2	2.5918	2.5918
19	35.723	2	1	2	35 724	-0.001	29.5	2.5114	2.5113
20	35.957	-	1	5	35.952	0.005	100.0	2.4956	2.4959
21	36,900	2	0	5	36,900	0.000	12.5	2.4339	2,4339
22	37,563	2	1	3	37,567	-0.004	9.4	2.3925	2.3922
23	38.201	- 1	0	7	38 202	-0.001	3.0	2.3539	2,3539
23	39.883	1	1	6	39.889	-0.006	0.9	2.3535	2 2582
25	40.036	2	1	4	40.024	0.012	1.2	2.2502	2 2509
26	40.417	2	0	1	40.417	0.000	0.3	2.2302	2.2309
20	40.762	2	Ő	6	40 759	0.003	3.4	2.2255	2 2119
28	41.037	0	0	8	41.031	0.005	29.8	2.2110	2 1979
20	41 976	0 0	1	7	41 971	0.005	3.0	2.1576	2 1508
30	43.058	3	0	3	43.060	-0.002	15.7	2.1500	2.1900
31	43.030	0	2	0	43.000	0.002	10.8	2.0990	2.0909
32	44 171	1	1	7	44 160	0.001	0.1	2.0010	2.0017
32	44.171	0	2	2	44.696	0.007	0.1	2.0407	2.0451
34	44.703	2	0	2	44.050	-0.001	4.0	2.0233	2.0258
35	45 273	2	0	1	45 270	0.003	4.0	2.0144	2.0144
36	45.860	1	2		45.871	0.003	0.0	1.0767	1 0766
30	45.809	1	1	1	45.871	-0.002	0.8	1.9707	1.9700
38	46.783	1	2	1	46 783	-0.002	0.3	1.9058	1.9057
30	40.785	1	2	2	40.783	0.000	8.2	1.9402	1.9402
39 40	47.033	3	1	2	47.049	0.000	0.2 34.8	1.9290	1.9299
40	47.550	1	0	9	47.333	0.005	1.0	1.0753	1.0741
41	40.477	1	1	9	48.409	0.008	1.0	1.0703	1.8700
42	40.723	1	1	8 7	40.714	0.011	1.7	1.0075	1.00//
43	50.280	2	1	1	50.556	0.000	7.2	1.0131	1.0133
44	51.177	2	1	4	50.550	-0.004	2.2	1.0040	1.6039
45	51.177	5	0	0	51.170	0.007	0.0	1.7655	1.7657
40	51.547	2	2	0	51.549	-0.002	1.0	1.7/13	1.//14
4/ 10	51.034	0	1	9	51.030	-0.002	2.5	1./08/	1.708/
4ð 40	51.825	2	2	1	51.829	-0.006	2.0	1.7594	1.7523
49 50	51.960	0	0	10	51.962	-0.002	5.1	1.7584	1.7583
50	52.665	2	2	2	52.664	0.001	1.0	1./365	1.7365
51	52.837	1	2	5	52.831	0.006	2.1	1.7313	1.7314

Continued

TABLE I.	Continued

No.	$2\theta_{\rm obs}$	h	k	l	$2\theta_{\rm cal}$	$\Delta 2\theta^{\mathrm{a}}$	I _{obs}	$d_{\rm obs}$	$d_{ m cal}$
52	53.079	3	1	5	53.074	0.005	0.3	1.7239	1.7241
53	53.519	1	1	9	53.518	0.001	0.2	1.7108	1.7108
54	53.840	1	0	10	53.836	0.004	7.0	1.7013	1.7015
55	53.981	0	2	6	53.982	-0.001	5.3	1.6972	1.6972
56	54.032	2	2	3	54.034	-0.002	3.1	1.6958	1.6957
57	54.222	2	0	9	54.215	0.007	4.1	1.6903	1.6905
58	54.441	2	1	8	54.441	0.000	11.7	1.6840	1.6840
59	54.640	4	0	1	54.641	-0.001	3.5	1.6783	1.6783
60	55.457	4	0	2	55.446	0.011	2.1	1.6555	1.6558
61 62	55.820	1	2	0	55.810	0.010	4.0	1.0430	1.0459
63	55.918	23	2	4	56.044	0.004	4.0	1.0429	1.0430
64	58 270	2	2	5	58 272	-0.003	3.1	1.5324	1.5320
65	58,700	3	0	8	58 699	0.002	2.5	1.5715	1.5716
66	58.908	2	1	9	58.916	-0.008	3.5	1.5665	1.5663
67	59.062	4	1	0	59.063	-0.001	5.8	1.5628	1.5627
68	59.197	1	2	7	59.200	-0.003	5.4	1.5595	1.5595
69	59.325	4	1	1	59.319	0.006	2.7	1.5565	1.5566
70	61.081	2	2	6	61.075	0.006	1.3	1.5159	1.5160
71	61.278	0	2	8	61.278	0.000	5.6	1.5115	1.5115
72	61.580	3	2	2	61.573	0.007	0.7	1.5048	1.5049
73	62.140	0	1	11	62.151	-0.011	2.0	1.4925	1.4923
74	62.820	3	2	3	62.816	0.004	6.3	1.4780	1.4781
75	62.984	3	0	9	62.981	0.003	5.0	1.4746	1.4746
/0 77	63.680	2	1	10	63.681	-0.001	8.2	1.4601	1.4601
71 78	64 280	1	1	11	64 203	-0.002	5.8 1.3	1.4571	1.4571
70	66 702	2	2	5	66 707	-0.005	9.7	1.4479	1.4477
80	67 301	3	1	9	67 304	-0.003	1.1	1 3901	1 3900
81	67.583	3	0	10	67.582	0.001	0.7	1.3850	1.3850
82	67.918	4	1	6	67.919	-0.001	2.7	1.3789	1.3789
83	69.315	3	2	6	69.316	-0.001	0.4	1.3545	1.3545
84	69.897	5	0	1	69.886	0.011	1.6	1.3447	1.3448
85	69.978	0	2	10	69.977	0.001	0.7	1.3433	1.3433
86	70.597	5	0	2	70.587	0.010	1.7	1.3330	1.3332
87	70.984	4	1	7	70.972	0.012	1.2	1.3267	1.3269
88	71.560	1	2	10	71.561	-0.001	2.6	1.3174	1.3174
89	71.768	3	1	10	71.765	0.003	5.4	1.3141	1.3142
90	72.254	4	2	1	72.247	0.007	2.2	1.3065	1.3066
91	72.745	1	3	4	72.755	-0.010	0.6	1.2989	1.2987
92	72.932	4	2	2	72.939	-0.007	0.9	1.2960	1.2959
95	73.339	2	0	4	73.303	-0.004	0.2	1.2095	1.2095
94	73.001	2	3	1	73.004	-0.004	1.1	1.2855	1.2854
96	74.068	2	1	12	74.068	0.002	0.2	1.2789	1.2300
97	74.235	4	0	9	74.237	-0.002	0.4	1.2765	1.2764
98	74.426	4	1	8	74.428	-0.002	2.0	1.2736	1.2736
99	74.680	2	3	2	74.678	0.002	1.9	1.2700	1.2700
100	74.800	1	3	5	74.816	-0.016	2.2	1.2682	1.2680
101	75.120	1	1	13	75.119	0.001	6.1	1.2636	1.2636
102	75.834	5	1	3	75.834	0.000	5.9	1.2535	1.2535
103	76.367	1	2	11	76.367	0.000	0.2	1.2460	1.2460
104	76.560	3	1	11	76.567	-0.007	0.2	1.2434	1.2433
105	77.205	1	0	14	77.195	0.010	0.1	1.2346	1.2347
106	77.415	5	1	4	77.417	-0.002	1.4	1.2318	1.2317
107	78.283	4	1	9	78.276	0.007	1.3	1.2203	1.2204
108	/8.539 70.422	4	0	10	/8.538 70.427	0.001	0.8	1.2109	1.21/0
109	19.433 70.719	3 2	1	5 13	19.431 70 715	-0.004	3.8 0.6	1.2055	1.2034
110	79.718 80.102	2 1	1	15	79.715 80.170	0.003	0.0	1.2019	1.2019
112	81 710	4	2 1	12	81 718	0.013	0.1	1 1774	1.1701
113	82.304	3	3	2	82.311	-0.007	0.8	1.1705	1.1704
114	82.519	4	1	10	82.514	0.005	2.0	1.1680	1.1681
115	83.304	3	0	13	83.308	-0.004	1.4	1.1590	1.1590
116	83.660	1	0	15	83.666	-0.006	1.2	1.1550	1.1549
117	86.035	2	2	12	86.035	0.000	2.3	1.1291	1.1291

Continued

TABLE I.	Continued

No.	$2\theta_{\rm obs}$	h	k	l	$2\theta_{\rm cal}$	$\Delta 2 \theta^{\mathrm{a}}$	Iobs	$d_{\rm obs}$	$d_{ m cal}$
118	86.100	0	1	15	86.103	-0.003	1.3	1.1284	1.1284
119	86.641	5	2	2	86.642	-0.001	1.4	1.1227	1.1227
120	87.138	4	1	11	87.153	-0.015	0.1	1.1176	1.1174
121	87.307	1	3	9	87.307	0.000	0.3	1.1159	1.1159
122	88.164	2	0	15	88.163	0.001	1.1	1.1072	1.1072
123	89.263	3	0	14	89.261	0.002	0.7	1.0964	1.0964
124	90.041	6	0	4	90.040	0.001	0.5	1.0890	1.0890
125	90.140	4	2	9	90.123	0.017	0.7	1.0880	1.0882
126	91.916	4	3	0	91.919	-0.003	0.8	1.0716	1.0715
127	92.144	4	3	1	92.140	0.004	0.7	1.0695	1.0696
128	93.181	3	1	14	93.184	-0.003	0.9	1.0603	1.0603
129	94.300	4	2	10	94.305	-0.005	0.8	1.0507	1.0506
130	95.467	0	4	0	95.461	0.006	0.5	1.0409	1.0409
131	95.947	6	1	5	95.951	-0.004	1.3	1.0369	1.0369
132	95.978	2	3	10	95.982	-0.004	0.9	1.0367	1.0367
133	98.965	1	4	3	98.964	0.001	0.8	1.0132	1.0133
134	99.051	3	2	13	99.048	0.003	1.1	1.0126	1.0126
135	99.401	1	2	15	99.408	-0.007	1.2	1.0100	1.0099
136	99.881	4	3	6	99.885	-0.004	0.4	1.0064	1.0064

 $^{a}\Delta 2\theta = 2\theta_{obs} - 2\theta_{cal}$.

ACKNOWLEDGEMENTS

This work was supported by the Natural Science Foundation of Guangxi (Grant No. 2011GXNSFA018034) and the Scientific Foundation of Guangxi High Education (Grant No. 2013ZD070).

- ICDD (2011). "PDF-2 2011 (Database)", edited by Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).
- JADE Version 6.0 (2002). XRD Pattern Processing (Materials Data Inc., Livermore, CA).
- Johrendt, D., Mewis, A., Drescher, K., Wasser, S., and Michels, G. (1996). "Y2AlGe3 – eine supraleitende metallische Zintl-Verbindung," J. Z. Anorg. Allg. Chem. 622, 589–592.
- Mel'nyk, I., Kuprysyuk, V., Gladyshevskii, R., Pikus, S., and Staszczuk, P. (2005). "Crystal structures of the compounds Sm₂AlGe₃ and Tb₂AlGe₃," J. Alloys Compd. 397, 74–78.

- Smith, G. S. and Snyder, R. L. (**1979**). " $F_{N:}$ a criterion for rating powder diffracton patterns and evaluating the reliability of powder pattern indexing," J. Appl. Cryst. **12**, 60.
- Wang, H., Zhan, Y., Pang, M., and Du, Y. (2011). "Properties of hexagonal Al₂Ge₂RE (RE = Y, La, Ce, Nd, Eu, Gd, Tb, Yb and Lu): a first-principles study," Solid State Commun. 151, 1814–1819.
- Zeng, L., Qin, P., Chen, Y., Liu, H., He, W., and Nong, L. (2008). "Crystal structure, thermal expansion and electrical properties of a new compound HoAl_{0.34}Ge₂," Mater. Chem. Phys. **112**, 934–937.
- Zhang, J. and Bobev, S. (2013). "Correlations between chemical bonding and magnetic exchange interactions: synthesis, crystal structures, and magnetic properties of the new family RE2AIGe (RE=Tb – Tm, Lu)," Inorg. Chem. 52, 5307–5315.
- Zhuravleva, M. A., Rangan, K. K., Lane, M., Brazis, P., Kannewurf, C. R., and Kanatzidis, M. G. (2001). "Flux synthesis, structure and physical properties of new pseudo-binary REAl3-x Gex compounds," J. Alloys Compd. 316, 137–145.