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We use the method of upper and lower solutions combined with degree-theoretic
techniques to prove the existence of multiple positive solutions to some superlinear
elliptic systems of the form

−∆u = g1(x, u, v), −∆v = g2(x, u, v),

on a smooth, bounded domain Ω ⊂ R
n with Dirichlet boundary conditions, under

suitable conditions on g1 and g2. Our techniques apply generally to subcritical,
superlinear problems with a certain concave–convex shape to their nonlinearity.

1. Introduction

In this paper we study the multiplicity of solutions to an elliptic system of the form

−∆u = g1(x, u, v) for all x ∈ Ω,

−∆v = g2(x, u, v) for all x ∈ Ω,

u, v > 0 for all x ∈ Ω,

u = v = 0 for all x ∈ ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where Ω is a smooth bounded domain in R
n, n � 2, and gi(x, u, v) : Ω̄×R×R → R,

i = 1, 2, are differentiable functions subject to further restrictions to be named
below. We assume that gi(x, u, v), i = 1, 2, satisfy suitable conditions on a bounded
rectangle so that a positive strict lower solution pair and a positive strict upper
solution pair can be constructed. These assumptions suffice to prove the existence
of at least one positive solution, provided the lower solution pair and upper solution
pair are ordered componentwise. For example, in [4], Chhetri and Robinson prove
the existence of a positive solution for a single equation analogous to (1.1) by
constructing an ordered pair of lower and upper solutions. There, the nonlinearity is
negative at the origin and satisfies additional conditions. (Further related references
may be found therein.)
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To obtain the second solution, we assume that for i, j = 1, 2 there exist constants
qij with 0 � qij < 2∗ − 1 = (n + 2)/(n − 2) for n > 2 or 0 � qij for n = 2 so that
the following holds: there exist continuous functions hij(x) on Ω̄ which are strictly
positive in Ω such that

(H1) gi(x, u, v) = hi1(x)uqi1 + hi2(x)vqi2 + ri(x, u, v)

with |ri(x, u, v)| � C(1 + |u|βi1 + |v|βi2) and βij < qij for i, j = 1, 2. (If qij = 0, βij

may also be 0.)
The purpose of this subcriticality condition is to enable us to obtain a priori

bounds for our problem. Using a blow-up technique as first introduced in [13], in
the scalar equation case, we can reduce the question of finding a priori bounds to the
question of an appropriate Liouville theorem. If the a priori bound holds, then we
can do a degree calculation to obtain a second solution with a larger L∞ norm than
the first solution obtained via upper and lower solutions. Such Liouville theorems
depend on the form of the interaction between u and v in the nonlinearities. If
the system is weakly coupled, as defined in § 2, then the Liouville theorem follows
from the scalar case as in the work of Gidas and Spruck [13]. In the present paper,
we use the method introduced in [8] to apply the blow-up procedure to weakly
coupled systems. On the other hand, if the system is strongly coupled, then we
obtain a Hamiltonian system after applying the blow-up procedure. Although a
complete Liouville theory does not yet exist in this case, a great deal of work has
been done. For example, in [9] de Figueiredo and Felmer obtain a Liouville theorem
for some subcritical exponents; in [10] these authors prove a Liouville theorem in
which they actually allow for interaction terms in the blown-up system; in [16] Guo
and Liu prove a generalized result which unifies the above cases and includes some
non-pure-power nonlinearities. Additionally, some work has been done to obtain a
priori bounds for strongly coupled systems via non-blow-up methods [19]. In this
paper, we will not attempt to prove a Liouville theorem, but will instead assume,
as a condition on the system (if strongly coupled), that either it admits a Liouville
theorem or an a priori bound holds for positive solutions via some other technique.

Sun et al . [22] obtained multiple positive solutions for the single equation case
when the nonlinearity is of the form λuβ + p(x)u−α with 0 < α < 1 < β < 2∗ − 1.
The interesting feature about such a nonlinearity is that it exhibits concave–convex
type behaviour, thus making it possible to obtain the Ambrosetti–Brézis–Cerami-
type result initiated by by Ambrosetti et al . [2]. Our nonlinearities roughly exhibit
this concave–convex behaviour in the sense that there is a finite rectangle on which
they are bounded above by an upper shelf, whereas for large values of u and v
they are superlinear. Hence, the two-solution conclusion that we obtain, with one
solution in the concave region and one solution reaching into the convex region, is
not unexpected.

The novelty of this paper lies in the fact that we are able to get not just one
positive solution to a superlinear problem, but also a second positive solution. Our
motivation in this work was to study the semi-positone case, where the nonlinearity
is negative at origin; however, our results do not depend on the sign of the non-
linearity at the origin and can be applied in great generality. To the best of our
knowledge, this paper is the first to deal with multiple positive solutions of general
superlinear systems. In the scalar case, Crandall and Rabinowitz proved the exis-
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tence of two positive solutions by combining the variational method and bifurcation
theory for λ > 0 small, in [6, theorem 2.1]. In [11, corollary 2.2], de Figueiredo et al .
proved the existence of two positive solutions for λ small using degree theory and an
a priori bound on positive solutions. In fact, the proof shows that the pair of posi-
tive solutions lies on a continuum of positive solutions. In [17, theorem 2.1(iii)], the
existence of two positive solutions was also established by combining degree theory
with an upper–lower solution method. Thus, the abstract result in our paper can
be considered as an extension of those established in these three papers: specif-
ically [17] because the approach is similar. We note that in these three papers,
the nonlinearity f was assumed to be positive at the origin (the so-called positone
case) and the parameter λ was considered as part of the nonlinearity. However,
in this paper we do not assume any sign condition of the nonlinearities gi at the
origin, and gi are parameter free. The only multiplicity result we know for the
corresponding semi-positone case (when the nonlinearity is negative at the origin)
is [7, theorem 1.1(C)]. Castro and Shivaji prove that, for n = 1, there is a finite
range of λ > 0 for which the problem has two positive solutions. Thus, our result for
the general bounded domain is new even for a scalar equation in the semi-positone
case. It is also important to note that our methods allow a large class of differ-
ential operators and nonlinear forcing terms. In particular, our proofs find both
positive solutions using degree-theoretic arguments, rather than a mountain-pass
argument. Thus, our results generalize to non-variational elliptic operators. They
also generalize easily to larger systems.

This paper is organized as follows: in § 2, we state and prove a general theorem
about the existence of two solutions. In § 3, we prove the existence of positive solu-
tions to an auxiliary problem. These solutions will become the lower solutions for
our main theorem. In § 4, we state and prove an existence theorem in the weakly
coupled quasi-monotone non-decreasing case, and provide two examples of nonlin-
earities that satisfy the hypotheses of the theorem. In § 5, we state and prove a
theorem that deals with a quasi-monotone non-decreasing Hamiltonian (and thus
strongly coupled) system and provide an example satisfying the hypotheses of the
theorem.

2. A general two-solution existence theorem

Using the method of upper and lower solutions, an a priori bound and some degree
theory, we formulate very general conditions under which two solutions will be
guaranteed to exist for an elliptic superlinear problem. This is phrased in terms
of a 2 × 2 system of equations for simplicity of exposition, but the technique also
applies to single equations or larger systems. Throughout this paper we will use the
vector notation u = (u, v) to indicate a pair of functions being considered in the
first and second equations of the system, respectively.

First, we must define some terms for the general types of systems that we may
encounter. The following are taken from [18, § 8.4, p. 402].

Definition 2.1. The nonlinearities gi(x, u, v) are called quasi-monotone non-de-
creasing if, for all x, u, v,

∂g1

∂v
� 0 and

∂g2

∂u
� 0.
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In this case, two pairs of functions (u
¯
, v
¯
) and (ū, v̄) are called an ordered lower–

upper solution pair of (1.1) if u
¯
(x) � ū(x) and v

¯
(x) � v̄(x) for all x ∈ Ω̄, u

¯
(x) = 0

and v
¯
(x) = 0 on ∂Ω, ū(x) � 0 and v̄(x) � 0 on ∂Ω and

−∆u
¯

� g1(x, u
¯
, v
¯
) for all x ∈ Ω,

−∆v
¯

� g2(x, u
¯
, v
¯
) for all x ∈ Ω,

−∆ū � g1(x, ū, v̄) for all x ∈ Ω,

−∆v̄ � g2(x, ū, v̄) for all x ∈ Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

Definition 2.2. The nonlinearities gi(x, u, v) are called quasi-monotone non-in-
creasing if, for all x, u, v,

∂g1

∂v
� 0 and

∂g2

∂u
� 0.

In this case, two pairs of functions (u
¯
, v
¯
) and (ū, v̄) are called an ordered lower–

upper solution pair of (1.1) if u
¯
(x) � ū(x) and v

¯
(x) � v̄(x) for all x ∈ Ω̄, u

¯
(x) = 0

and v
¯
(x) = 0 on ∂Ω, ū(x) � 0 and v̄(x) � 0 on ∂Ω and

−∆u
¯

� g1(x, u
¯
, v̄) for all x ∈ Ω,

−∆v
¯

� g2(x, ū, v
¯
) for all x ∈ Ω,

−∆ū � g1(x, ū, v
¯
) for all x ∈ Ω,

−∆v̄ � g2(x, u
¯
, v̄) for all x ∈ Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

Definition 2.3. The nonlinearities gi(x, u, v) are called quasi-monotone mixed if,
for all x, u, v,

∂g1

∂v
� 0 and

∂g2

∂u
� 0.

(If the opposite holds, we switch u and v.) In this case, two pairs of functions (u
¯
, v
¯
)

and (ū, v̄) are called an ordered lower–upper solution pair of (1.1) if u
¯
(x) � ū(x)

and v
¯
(x) � v̄(x) for all x ∈ Ω̄, u

¯
(x) = 0 and v

¯
(x) = 0 on ∂Ω, ū(x) � 0 and v̄(x) � 0

on ∂Ω and
−∆u

¯
� g1(x, u

¯
, v̄) for all x ∈ Ω,

−∆v
¯

� g2(x, u
¯
, v
¯
) for all x ∈ Ω,

−∆ū � g1(x, ū, v
¯
) for all x ∈ Ω,

−∆v̄ � g2(x, ū, v̄) for all x ∈ Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

We say that the nonlinearities are quasi-monotone if they are either quasi-
monotone non-decreasing, non-increasing or mixed. In each case, an upper–lower
solution pair is called strict if each of the differential inequalities is strict for all
x ∈ Ω.

The following definitions are taken from [8].

Definition 2.4. The system (1.1) under condition (H1) is weakly coupled if there
are positive numbers c1 and c2 such that

c1 + 2 − c1q11 = 0, c1 + 2 − c2q12 > 0,

c2 + 2 − c1q21 > 0, c2 + 2 − c2q22 = 0.
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Definition 2.5. The system (1.1) under condition (H1) is strongly coupled if there
are positive numbers c1 and c2 such that

c1 + 2 − c1q11 > 0, c1 + 2 − c2q12 = 0,

c2 + 2 − c1q21 = 0, c2 + 2 − c2q22 > 0.

Definition 2.6. Suppose the system (1.1) is strongly coupled as in definition 2.5.
Then we say that the system satisfies the Liouville condition if there are no non-
trivial non-negative solutions to the system

−∆u = h12(x0)vq12 for all x ∈ R
n,

−∆v = h21(x0)uq21 for all x ∈ R
n,

}
(2.4)

for some x0 ∈ Ω̄, and the same holds on the half-space R
n
+.

If the system (1.1) is strongly coupled, as defined above, then there exists some
R0 > 0 such that, for all x ∈ Ω̄,

g1(x, u, v) > µ1v + 1 for all u � 0 and v > R0,

g2(x, u, v) > µ1u + 1 for all v � 0 and u > R0,

where µ1 is the first eigenvalue of (−∆) on Ω. Let

m1(x, u, v) =

{
g1(x, u, v) for all u � 0 and v � R0,

max{µ1v + 1, g1(x, u, v)} for all u � 0 and 0 � v < R0,

and similarly

m2(x, u, v) =

{
g2(x, u, v) for all v � 0 and u � R0,

max{µ1u + 1, g2(x, u, v)} for all u � 0 and 0 � u < R0,

and m(x,u) = (m1(x,u), m2(x,u)). Let

pt(x,u) = (1 − t)g(x,u) + tm(x,u),

where g = (g1, g2). Then we have the following definition.

Definition 2.7. Suppose the system (1.1) is strongly coupled as in definition 2.5.
Then we say that the system satisfies the a priori bound condition if there is a T > 0
such that the estimate ‖u‖L∞ + ‖v‖L∞ < T holds for any solution triple (t, u, v) of

−∆u = pt(x,u) for all x ∈ Ω,

u = 0 for all x ∈ ∂Ω.

with 0 � t � 1.

Note that the Liouville condition implies the a priori bound for positive solutions
through a blow-up procedure, but there are other techniques which can also yield
appropriate a priori bounds in some cases. See [19] for some of the techniques used
in the literature.
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Now we state our general two-solution theorem.

Theorem 2.8. Suppose that gi(x, u, v), i = 1, 2, satisfy (H1) and the following:

(C1) gi(x, u, v) are quasi-monotone;

(C2) there exists a strictly positive ordered upper–lower solution pair (u
¯

, v
¯

) and
(ū, v̄) according to the definition corresponding to the nonlinearities’ quasi-
monotone type, and either

(a) the system is weakly coupled or

(b) the system is strongly coupled, and satisfies either the Liouville condition
(definition 2.6) or the a priori bound condition (definition 2.7).

Then (1.1) has at least two solutions.

Remark 2.9. In the strongly coupled case, an a priori bound for the problem is
not known in general. We will use the blow-up method first developed by Gidas
and Spruck [13] to prove an a priori bound in the weakly coupled case. We will also
use the same method in the strongly coupled case, but we can only conclude the a
priori bound if an appropriate Liouville theorem holds in R

n and R
n
+. This will be

discussed further in the proof of the theorem for the strongly coupled case below.

We will prove this theorem via several lemmata. Using the method of upper and
lower solutions we will find a first solution and show that the degree of an operator
corresponding to the system (1.1) is 1 on an appropriate set. We will then prove
(or assume) that positive solutions of the system satisfies an a priori bound. This
will allow us to show that the degree on a larger set is 0 and conclude that there is
a second solution using the excision property of Leray–Schauder degree.

In order to establish the existence of solutions, we shall need to represent the
boundary-value problem (1.1) as an operator equation in the proper form and
then perform a Leray–Schauder degree computation. Similar arguments for single
equations can be found in many references (see [1, 21] for details).

In order to work in the appropriate function space setting, we consider the aux-
iliary problem

−∆z = 1 for all x ∈ Ω,

z = 0 for all x ∈ ∂Ω.

}
(2.5)

By the Hopf maximum principle we know that z is strictly positive in Ω and that∣∣∣∣∂z

∂ν

∣∣∣∣ > 0 on ∂Ω,

where ν represents the unit outward normal on the boundary. Let

Cz(Ω̄) := {u ∈ C(Ω̄) : − tz � u � tz in Ω̄ for some t > 0},

and let ‖u‖z := inf{t > 0: − tz � u � tz}. Define X := Cz(Ω̄) × Cz(Ω̄). Notice
that the rectangle W := {u ∈ X : u

¯
(x) < u(x) < ū(x), v

¯
(x) < v(x) < v̄(x)} =

(u
¯
, v
¯
) × (ū, v̄) is open in the X topology.
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Now let Fu := Iu − L−1N(u) for u ∈ X, where I is the identity, L−1 is the
inverse of L := (−∆,−∆) and N(u) := (g1(x,u), g2(x,u)). The standard argu-
ments applied to elliptic operators and substitution operators show that F is a
compact perturbation of the identity, and so it is valid to discuss Leray–Schauder
degree computations for F .

Lemma 2.10. If g1 and g2 are quasi-monotone, then the system (1.1) has a solution
in the set W . Moreover, deg(F,0, W ) = 1.

Proof. For simplicity, we provide full details only for the case when the nonlineari-
ties are quasi-monotone non-decreasing. We indicate below how to modify the proof
in the other two cases.

The first goal is to transform the problem (1.1) to one with helpful monotonicity
properties. Choose t > 0 such that

∂g1

∂u
(x,u) � −t and

∂g2

∂v
(x,u) � −t

for u
¯
(x) � u(x) � ū(x) and v

¯
(x) � v(x) � v̄(x). Let at(x,u) := g1(x,u) + tu and

bt(x,u) := g2(x,u)+ tv. Let Lt := −∆+ t. The problem (1.1) can now be rewritten
as

Ltu = at(x,u) for all x ∈ Ω,

Ltv = bt(x,u) for all x ∈ Ω,

u = 0 for all x ∈ ∂Ω,

v = 0 for all x ∈ ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

where Lt satisfies the standard maximum principle for linear elliptic operators and
at, bt are monotone in both variables. Moreover, it is easy to check that (u

¯
, v
¯
) and

(ū, v̄) are lower–upper solution pairs for (2.6).
The second goal is to modify the problem to ensure that solutions cannot occur

outside of the rectangle W . For a given function u(x), let

ũ(x) :=

⎧⎪⎨
⎪⎩

u
¯
(x) if u(x) � u

¯
(x),

u(x) if u
¯
(x) < u(x) < ū(x),

ū(x) if ū(x) � u(x).

Define ṽ(x) similarly. Define the substitution operators

ãt(u(x), v(x)) := at(x, ũ(x), ṽ(x)) and b̃t(u(x), v(x)) := bt(x, ũ(x), ṽ(x)).

We can now state a modified boundary-value problem (BVP) that has useful prop-
erties of monotonicity and boundedness:

Ltu = ãt(u) for all x ∈ Ω,

Ltv = b̃t(u) for all x ∈ Ω,

u = 0 for all x ∈ ∂Ω,

v = 0 for all x ∈ ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

The third goal is to do a degree computation for (2.7), and then relate that
computation back to the original BVP. The modified BVP can be represented as
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an operator equation of the form

F̃t(u) := Iu − L−1
t Ñt(u) = 0

on the space X, where L−1
t is the inverse of Lt := (Lt, Lt), and

Ñt(u) := (ãt(u), b̃t(u)).

Since Ñt is bounded, and every solution of F̃t(u) = 0 satisfies

‖u‖ = ‖L−1
t Ñt(u)‖ � ‖L−1

t ‖‖Ñt(u)‖,

it is straightforward to obtain an a priori bound on solutions. If we then select
any R > 0 larger than the a priori bound and consider the homotopy h(λ, u) :=
Iu−λL−1

t Ñ t(u) for λ ∈ [0, 1], we see that deg(F̃t,0, BR(0)) = deg(I,0, BR(0)) = 1.
It follows from the previous argument that (2.7) has at least one solution u ∈

BR(0). Observe that

Ltu(x) = ãt(u(x), v(x)) � ãt(ū(x), v̄(x)) < Ltū(x). (2.8)

By the maximum principle this implies that u(x) < ū(x) in Ω. Similar arguments
show that u

¯
(x) < u(x) and v

¯
(x) < v(x) < v̄(x). It follows that all solutions of (2.7)

are also solutions of (2.6) and thus of (1.1). Moreover, these solutions must lie
strictly between the upper and lower solution pairs, and hence in W . We can now
say that

deg(F̃t,0, BR(0)) = deg(F̃t,0, W ) = deg(Ft,0, W ) = 1,

where Nt(u) := (at(u), bt(u)) and Ft := I − L−1
t Nt.

Finally, we consider t to be a homotopy parameter and let t → 0 so that Ft → F .
It is clear that the solutions to (2.6) in W̄ do not change as t changes, so there are
no solutions on ∂W for any t. Hence, degree is preserved along the homotopy and
we get deg(F,0, W ) = 1.

The cases where g1 and g2 satisfy either definition 2.2 or definition 2.3 can be
handled in a similar way. For example, if g1 and g2 are quasi-monotone nonin-
creasing, and if (u

¯
, v
¯
) and (ū, v̄) are lower and upper solution pairs as described in

definition 2.2, then we can modify g1 exactly as before, and at(x, u, v) will then be
non-decreasing in u and nonincreasing in v. It is then straightforward to apply this
monotonicity and the assumptions in definition 2.2 to get the analogue to (2.8), i.e.

Ltu(x) = ãt(u(x), v(x)) � ãt(ū(x), v
¯
(x)) < Ltū(x).

Other comparisons follow similarly.

In order to obtain a second solution, we will do a second degree computation on
a similar set, (u

¯
, T )× (v

¯
, T ), where T is an a priori bound on the solutions of (1.1).

For 0 � t � 1, define

pt(x,u) = (1 − t)g(x,u) + tm(x,u),

where g = (g1, g2) and pt = (p1,t, p2,t). Here m(x,u) := (m1(x,u), m2(x,u)) is
defined below for a weakly coupled system and was defined in definition 2.7 for a
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strongly coupled system. We proceed to study the homotopy class of problems

−∆u = pt(x,u) for all x ∈ Ω,

u = 0 for all x ∈ ∂Ω.

}
(2.9)

Observe that p1,t increases as t increases, so

−∆u
¯

� g1(x, u
¯
, v
¯
) � p1,t(x, u

¯
, v
¯
)

for each t. Thus, combining the facts that (u
¯
, v
¯
) is a strict lower solution to (2.9) for

any t ∈ [0, 1] and that T is a strict a priori bound, it is clear that (u
¯
, T )×(v

¯
, T ) ⊂ X

is an open set and that (2.9) has no solutions on its boundary. If we let F ′ :=
Iu − L−1m(x,u) = 0, then it follows from homotopy invariance that

deg(F,0, (u
¯
, T ) × (v

¯
, T )) = deg(F ′,0, (u

¯
, T ) × (v

¯
, T )).

We show below that deg(F ′,0, (u
¯
, T ) × (v

¯
, T )) = 0 using lemma 2.12 for the

weakly coupled system and using lemma 2.14 for the strongly coupled system.
Hence, using homotopy invariance, we have that deg(F,0, (u

¯
, T ) × (v

¯
, T )) = 0. By

the excision property of Leray–Schauder degree it follows that

deg(F,0, (u
¯
, T ) × (v

¯
, T ) \ (u

¯
, ū) × (v

¯
, v̄)) = −1,

and thus (1.1) has a second solution, (u2, v2) ∈ (u
¯
, T ) × (v

¯
, T ), satisfying

(u2(x0), v2(x0)) > (ū(x0), v̄(x0))

at some point x0 ∈ Ω. This completes the proof of theorem 1.1.

2.1. Weakly coupled system

Let µ1 be the first eigenvalue of −∆ on Ω. Since the system is weakly coupled
there exists some R0 > 0 such that, for all x ∈ Ω̄,

g1(x, u, v) > µ1u + 1 for all v � 0 and u > R0,

g2(x, u, v) > µ1v + 1 for all u � 0 and v > R0.

Let

m1(x, u, v) :=

{
g1(x, u, v) for all v � 0 and u � R0,

max{µ1u + 1, g1(x, u, v)} for all v � 0 and 0 � u < R0,

and, similarly,

m2(x, u, v) :=

{
g2(x, u, v) for all u � 0 and v � R0,

max{µv + 1, g2(x, u, v)} for all u � 0 and 0 � v < R0,

and m(x,u) := (m1(x,u), m2(x,u)).
The argument below is adapted from [13] (for the single equation case) and [8].

Lemma 2.11. If the system is weakly coupled, then there is a T > 0 such that any
solution triple (t, u, v) of (2.9) satisfies ‖u‖L∞ + ‖v‖L∞ < T .
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Proof. Suppose to the contrary that there exists a sequence of solutions (tj , uj , vj)
of (2.9) with nonlinearity ptj such that ‖(uj , vj)‖L∞ → ∞. Let c1 and c2 be the
weak-coupling constants from definition 2.4. Without loss of generality, we may
assume that ‖uj‖L∞ → ∞ and, possibly after passing to a subsequence, that

‖uj‖1/c1
L∞ � ‖vj‖1/c2

L∞ for all j.

Define Mj := ‖uj‖L∞ and choose xj such that u(xj) = Mj (which exists because
Ω is a compact domain and uj is subject to Dirichlet boundary conditions). Without
loss of generality, we may assume that the xj converge to some x0 in Ω̄. There are
two cases, depending on whether x0 ∈ Ω or x0 ∈ ∂Ω.

In the first case, define d := 1
2d(x0, ∂Ω). Define the sequence λj so that

λc1
j ‖uj‖L∞ = 1 for each j.

Note that λj → 0 as j → ∞. Define

ũj(y) := λc1
j uj(λjy + xj) and ṽj(y) := λc2

j vj(λjy + xj).

Clearly, we have
‖ũj‖L∞ = 1 and ‖ṽj‖L∞ � 1.

Also note that ũj and ṽj are well defined on Ω̃j = {y : λjy + xj ∈ Ω}. Note that
Ω̃j ⊇ BRj

(0), where Rj = d/λj , for j sufficiently large.
We have

−∆yuj(y) = λc1
j ∆y(uj(λjy + xj))

= λ2+c1
j (∆xuj(λjy + xj))

= λ2+c1
j p1,tj

(x, uj(λjy + xj), vj(λjy + xj))

as j → ∞, where pt := (p1,t, p2,t). Note here that all of the nonlinearities p1,tj are
identical for large values of u. Hence, by condition (H1),

p1,tj
(x, uj , vj) = h11(x)uq11

j + h12(x)vq12
j + r1(x, uj , vj),

so, for j sufficiently large,

λ2+c1
j p1,tj (x, uj(λjy + xj), vj(λjy + xj))

= λ2+c1
j (h11(x)uq11

j + h12(x)vq12
j + r1(x, uj , vj))

= λ2+c1−q11c1
j h11(xj + λjy)ũq11

j + λ2+c1−q12c2
j h22(xj + λjy)ṽj + λ2+c1

j r1(x, u, v),

which approaches h11(x0)ũ
q11
j according to the weak coupling condition. That is, the

difference between −∆yuj(y) and h11(x0)ũ
q11
j approaches 0 uniformly as j → ∞.

This holds because the exponent of λj in the first term is 0, and in the second term is
strictly positive. For the third term, recall that |r1(x, u, v)| � C(1 + |u|βi1 + |v|βi2)
and βij < qij for i, j = 1, 2. Thus,

r1(x, u, v) = o(h11(x)uq11 + h12(x)vq12)

uniformly in x and λ2+c1
j r1(x, u, v) must go to 0 uniformly.
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Note that

−∆ũj = λ2+c1−q11c1
j h11(xj + λjy)ũq11

j

+ λ2+c1−q12c2
j h12(xj + λjy)ṽj + λ2+c1

j r1(x, uj , vj)

is uniformly bounded (by the maximum of h11 or h12, whichever is larger, because
all the other terms are less than or equal to 1). Hence, for any fixed R > 0
with R < d/λj0 , there exist uniform bounds on ‖ũj‖W 2,γ(BR(0)) for j � j0, for
all γ > 1 (see [15, lemma 9.17]; without loss of generality, we may assume that
the λj are monotone decreasing). It follows that there also exist uniform bounds
on ‖ũj‖C1,β(BR(0)) for some 0 < β < 1 by choosing γ sufficiently large. Hence, a
subsequence of the ũj converges to some function ũ in C1,β ∩ W 2,p on BR(0), with
−∆ũ = h11(x0)ũq11 and ũ(0) = 1 due to uniform convergence. By a standard argu-
ment, ũ is well defined (and bounded) on all of R

n, which contradicts the Liouville
theorem proved in [14].

Note that the second equation is not needed here because u is known to be the
larger function. Once the system decouples, we need obtain a contradiction from
only one of the equations.

In the second case, when x0 ∈ ∂Ω, we must first check that there exists c > 0 such
that d(xj , ∂Ω)/λj � c for all j sufficiently large. Consider the set where ũj � 1

2 . As
above, ∆ũj is uniformly bounded in this set and hence ‖∇ũj‖ is uniformly bounded
on {y : ũj(y) � 1

2}, and it immediately follows that the distance from the origin to
the boundary of this set is bounded below. Hence, the distance from the origin to
∂Ω̃j , being even larger, is uniformly bounded below as well.

We therefore have two final cases to consider. d(xj , ∂Ω)/λj is either bounded or
unbounded. In the latter situation, we find that as j → ∞, ũj is defined on BR(0)
for any R > 0, and we are back in the situation of case 1. In the former case, without
loss of generality we may suppose that d(xj , ∂Ω)/λj → δ > 0. Moreover, we may
suppose (possibly after making a smooth transformation of the domain that will
not affect the character of the equations) that ∂Ω ⊂ {y : yn = −d(xj , ∂Ω)} near 0,
and, without loss of generality, that d(xj , ∂Ω)/λj is increasing monotonically to δ.
For R > 0, define

DR = BR(0) ∩
{

y : yn > −δ

(
1 − 1

R

)}
.

Then for any R, ũj is well defined on DR for all j sufficiently large. But then,
exactly as above, we can conclude that there exists ũ so that ũj → ũ uniformly
in DR and thus, since R was arbitrary, on {y : yn > −δ}. Since ũ satisfies the
same elliptic equation and non-triviality condition as above, this contradicts the
half-space Liouville theorem proved in [13] and concludes the result.

Lemma 2.12. In the weakly coupled case, the BVP

−∆u = m1(x,u) for all x ∈ Ω,

−∆v = m2(x,u) for all x ∈ Ω,

u = v = 0 for all x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (2.10)

has no non-negative solution.
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Proof. The proof is by contradiction. Suppose (u, v) is a non-negative solution
of (2.10). We only need to consider one of the two equations, say the equation
for −∆u. Since, for all x, u, v, m1(x, u, v) � µ1u+1, we have −∆u = m1(x, u, v) �
µ1u + 1. Multiplying both sides by the positive eigenfunction, φ1, of (−∆) corre-
sponding to µ1 and integrating by parts, we get

µ1

∫
Ω

uφ1 dx =
∫

Ω

u(−∆φ1) dx = −
∫

Ω

(∆u)φ1 dx

�
∫

Ω

(µ1u + 1)φ1 dx

= µ1

∫
Ω

uφ1 dx +
∫

Ω

φ1 dx.

Hence,

0 �
∫

Ω

φ1 > 0,

which is a contradiction.

2.2. Strongly coupled system

In the strongly coupled case, if an appropriate a priori bound holds, then we are
done. Alternatively, if the system (1.1) satisfies the Liouville condition as stated in
definition 2.7, we may follow the blow-up method as in the weakly coupled case to
obtain the a priori bound.

Lemma 2.13. Suppose that (1.1) satisfies (H1) and is strongly coupled, and suppose
that the system (1.1) satisfies the Liouville condition as stated in definition 2.7.
Then there is a T > 0 such that any solution triple (t, u, v) of (2.9) satisfies ‖u‖L∞ +
‖v‖L∞ < T .

Proof. We follow the proof of lemma 2.11. Suppose to the contrary that there
exists a sequence of solutions (tj , uj , vj) of (1.1) with nonlinearity ptj such that
‖(uj , vj)‖L∞ → ∞. Let c1 and c2 be the strong-coupling constants from defini-
tion 2.5. Without loss of generality, we may assume that ‖uj‖L∞ → ∞, and, pos-
sibly after passing to a subsequence, that

‖uj‖1/c1
L∞ � ‖vj‖1/c2

L∞ for all j.

Define Mj , xj , x0, λj , Ω̃j , ũj and ṽj as in the weakly coupled case.
We compute as before, that

−∆ũj(y) = λc1
j ∆y(uj(λjy + xj))

= λ2+c1
j ∆xuj(λjy + xj)

= λ2+c1
j p1,tj (λjy + xj , uj(λjy + xj), vj(λjy + xj))

as j → ∞. At any given point y, either p1,tj � µ1R0 + 1 or

p1,tj = g1(λjy + xj , uj(λjy + xj), vj(λjy + xj))
= h11(λjy + xj)u

q11
j + h12(λjy + xj)v

q12
j + r1(λjy + xj , uj , vj).
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(The latter case always occurs whenever vj(λjy + xj) > R0.) We find that

−∆ũj = λ2+c1
j p1,tj (λjy + xj , uj(λjy + xj), vj(λjy + xj)).

As the power of λj is positive, if p1,tj � µ1R0 + 1, then the right-hand side will go
to 0 as j → ∞, uniformly for all such y. On the other hand, if p1,tj

= g1, then

λ2+c1
j p1,tj (λjy + xj , uj(λjy + xj), vj(λjy + xj))

= λ2+c1−q11c1
j h11(xj + λjy)ũq11

j + λ2+c1−q12c2
j h22(xj + λjy)ṽj

+ λ2+c1
j r1(λjy + xj , u, v),

which is uniformly bounded for all such y. Hence, we conclude that −∆ũj is uni-
formly bounded for all y and as before it follows that a subsequence of the ũj

converges to some function ũ in C1,β ∩ W 2,p on BR(0), with ũ(0) = 1 due to
uniform convergence.

In addition, we compute that

−∆ṽj(y) = λc2
j ∆y(vj(λjy + xj))

= λ2+c2
j ∆xvj(λjy + xj)

= λ2+c2
j p2,tj (λjy + xj , uj(λjy + xj), vj(λjy + xj)).

Since u(xj) is eventually greater than R0, for j sufficiently large, by condition (H1),

p2,tj
(x, u, v) = h21(x)uq21 + h22(x)vq22 + r2(x, u, v).

Thus,

−∆ṽj = λ2+c2
j p2,tj (λjy + xj , uj(λjy + xj), vj(λjy + xj))

= λ2+c2
j h21(λjy + xj)uq21 + h22(λjy + xj)vq22 + r2(λjy + xj , u, v)

= λ2+c2−q21c1
j h21(xj + λjy)ũq21

j + λ2+c2−q22c2
j h22(xj + λjy)ṽj

+ λ2+c2
j r2(λjy + xj , u, v),

which approaches h21(x0)ũq21 according to the strong coupling condition. As above,
we may conclude that the ṽj converges to some ṽ in C1,β ∩ W 2,γ , and ṽ is well
defined on all of R

n or an appropriate half-space. Moreover, ṽ(y) � 0 for all y, and
−∆ṽ = h22(x0)ũq21 , which is a non-trivial, non-negative function. Hence, by the
strong maximum principle, ṽ > 0 everywhere. Thus, for j sufficiently large, vj(y) >
R0 for all y. We may conclude that, for j sufficiently large p1,tj

(x, u, v) = g1(x, u, v).
Hence,

−∆uj = λ2+c1
j p1,tj (x, uj(λjy + xj), vj(λjy + xj))

= λ2+c1−q11c1
j h11(xj + λjy)ũq11

j + λ2+c1−q12c2
j h22(xj + λjy)ṽj

+ λ2+c1
j r1(x, u, v),

which converges uniformly to h12(x0)ṽq12 by the strong coupling condition.
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Thus, we conclude that ũ and ṽ satisfy

−∆ũ = h11(x0)ṽq12 ,

−∆ṽ = h22(x0)ũq21 ,

on either R
n or R

n
+ depending on the location of x0 as discussed in the proof of

lemma 2.11. Additionally, we know that ũ(0) = 1. This contradicts the assumed
Liouville theorem.

We also have the following.

Lemma 2.14. In the strongly coupled case, the BVP

−∆u = m1(x, u, v) for all x ∈ Ω,

−∆v = m2(x, u, v) for all x ∈ Ω,

u = v = 0 for all x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (2.11)

has no non-negative solution, where mi(x,u) are as defined in definition 2.7.

Proof. Suppose (u, v) is a non-negative solution of (2.11). Since m1(x, u, v) � µ1v+
1, we have −∆u = m1(x, u, v) � µ1v + 1. Similarly, since m2(x, u, v) � µ1u + 1,
we have −∆v = m2(x, u, v) � µ1u + 1. Multiplying both sides by the positive
eigenfunction, φ1, of (−∆) corresponding to µ1 and integrating, we get

µ2
1

∫
Ω

uφ1 dx = µ1

∫
Ω

u(−∆φ1) dx = µ1

∫
Ω

(−∆u)φ1 dx

� µ1

∫
Ω

(µ1v + 1)φ1 dx >

∫
Ω

(µ1v)(µ1φ1) dx

=
∫

Ω

(µ1v)(−∆φ1) dx = µ1

∫
Ω

(−∆v)φ1 dx

� µ1

∫
Ω

(µ1u + 1)φ1 dx = µ2
1

∫
Ω

uφ1 dx + µ1

∫
Ω

φ1 dx,

after integrating by parts repeatedly. (Notice that our boundary conditions are
exactly correct to prevent boundary terms in the integrations by parts.) Subtracting

µ2
1

∫
Ω

uφ1 dx

from both sides of the resulting inequality, we conclude that

0 > µ1

∫
Ω

φ1 > 0,

which is a contradiction.

3. An auxiliary problem

Our next goal is to discuss some explicit situations in which we know that the con-
ditions of theorem 2.8 are satisfied. In this section we study an important auxiliary
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problem that has a simplified structure. We prove an existence result that general-
izes the positone result in [12] and the radially symmetric positone result in [20].
In the next section we will use the solution of this problem to construct a positive
lower solution for (1.1).

Henceforth, we shall denote by z the positive solution of (2.5) and let M := ‖z‖∞.
Additionally, ν will always represent the outward unit normal to the boundary of Ω.

Consider the auxiliary problem

−∆ψ = −kχ{ψ<1} + Kχ{ψ�1} for all x ∈ Ω,

ψ = 0 for all x ∈ ∂Ω,

}
(3.1)

where χ{ψ<1} represents the standard characteristic function on the set {x ∈
Ω : ψ(x) < 1}, and χ{ψ�1} is defined similarly.

Lemma 3.1. For each fixed k > 0 there exists K > 0 such that (3.1) has a positive
solution.

Proof. Let k > 0 be fixed and let B := Br(x0) ⊂⊂ Ω. Consider the sub-auxiliary
problem

−∆w = −kχB̄c + KχB̄ for all x ∈ Ω,

w = 0 for all x ∈ ∂Ω.

}
(3.2)

Let wK represent the unique solution to this problem. Then vK := wK/K satisfies

−∆vK = − k

K
χB̄c + χB̄ for all x ∈ Ω,

vK = 0 for all x ∈ ∂Ω.

Since the right-hand side of (3.2) satisfies a uniform L∞(Ω) bound, we have, without
loss of generality, that vK → v in C1(Ω̄) as K → ∞, where v solves

−∆v = χB̄ for all x ∈ Ω,

v = 0 for all x ∈ ∂Ω.

By the maximum principle, v > 0 in Ω and ∂v/∂ν < 0 on ∂Ω. This implies that
wK > 0 in Ω for large K. Moreover, it is clear that for all K large enough we have
wK > 1 on B̄ and ∂wK/∂ν < 0 on ∂Ω.

Since B̄c ⊃ {x ∈ Ω : wK < 1}, for large K, wK satisfies

−∆wK = −kχB̄c + KχB̄ � −kχ{wK<1} + Kχ{wK�1}

in Ω. Thus, wK is a lower solution of (3.1).
Let K > 0 be chosen so that wK is a lower solution of (3.1). Then Kz is an upper

solution of (3.1), because −∆(Kz) = K � −kχ{Kz<1} + Kχ{Kz�1}. By the same
calculation, −∆(Kz) � −∆wK . Hence, by the maximum principle, Kz � wK , so
Kz and wK are well ordered. Note that the function h(t) := −kχ{t<1} + Kχ{t�1}
is non-decreasing and continuous from the right. It follows that, given well-ordered
lower and upper solutions, (3.1) has a solution obtained via monotone iteration
from the upper solution.
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In the arguments that follow we will refer to a solution, u, of (3.1) as maximal,
if every other solution, v, of (3.1) for the same values of k and K satisfies v � u
in Ω̄. The solution found in the previous lemma will be maximal relative to other
solutions lying between the given lower and upper solutions because it was found
by monotone iteration from the given upper solution.

Lemma 3.2. If (k, K) is a pair such that (3.1) has a positive solution, then (3.1)
has a maximal solution.

Proof. By the maximum principle, ū = Kz provides an upper bound on any solu-
tion, u, to (3.1), because −∆ū = K � −kχ{u<1} + Kχ{u�1} = −∆u. Hence, the
solution obtained by monotone iteration from ū is maximal relative to all solu-
tions.

The following lemma characterizes the set

Sk := {K > 0: (3.1) has a positive solution}.

Lemma 3.3. The set Sk is a closed ray. That is, for k > 0 fixed, let Kk := inf{K >
0 : K ∈ Sk}. Then Sk = [Kk,∞).

Proof. First, we already know that every sufficiently large K ∈ R is in Sk. We next
need to show that Sk is a ray, i.e. if K0 ∈ Sk and K > K0, then K ∈ Sk. But this
follows immediately because ψK0 satisfies

−∆ψK0 = −kχ{ψK0<1} + K0χ{ψK0�1} < −kχ{ψK0<1} + Kχ{ψK0�1},

so ψK0 is a lower solution for (3.1) with respect to K. Moreover, Kz is a strictly
larger upper solution to the problem, as above. Therefore, a solution to (3.1) for K
must exist, and K ∈ Sk.

Finally, we must show that this is a closed ray, i.e. Kk ∈ Sk. Let K1, K2 ∈ Sk with
K1 > K2, and let ψ1, ψ2 represent the corresponding maximal solutions of (3.1).
Then

−∆ψ2 = −kχ{ψ2<1} + K2χ{ψ2�1} � −kχ{ψ2<1} + K1χ{ψ2�1},

so ψ2 is a positive lower solution for (3.1) with K = K1. Using the maximal property
of solutions we get ψ1 � ψ2.

Now let Kn ↘ Kk and let ψn be the corresponding maximal solutions. Then
{ψn} is monotonically decreasing, by the above argument, and thus the pointwise
limit ψk(x) := limn→∞ ψn(x) exists. Moreover,

−kχ{ψn<1} + Knχ{ψn�1} ↘ −kχ{ψk<1} + Kkχ{ψk�1}

pointwise, where we have used the fact that h(t), as defined above, is continuous
from the right. Since the right-hand side of (3.1) is uniformly L∞-bounded, we can
apply standard regularity and imbedding theorems (see, for example, [15, theorems
7.22, 9.11 and 9.15]), to derive a subsequence such that ψn → ψk in C1,γ(Ω̄) for
some γ ∈ (0, 1) and ψk is a solution of (3.1) with K = Kk.
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4. The quasi-monotone non-decreasing case: weakly coupled system

In this section we consider problem (1.1) with the assumption that definition 2.1 is
satisfied. We will give explicit conditions for the existence of the required ordered,
strictly positive upper and lower solution pair. Our result is complementary to the
existence and non-existence results of Chhetri and Girg [3]. Our theorem here also
complements the single equation positone results in [12] and generalizes the single
equation radially symmetric results in [20].

Theorem 4.1. Fix k1, k2 > 0 and choose Ki > Kki for i = 1, 2. Let

mki
:= ‖ψki

‖∞ > 1,

where ψki
is a solution of (3.1) with K = Kki

. Suppose that gi(x, s, t) are such
that (H1) holds. Suppose there exist C1 > mk1/M and C2 > mk2/M such that the
following hold uniformly for x ∈ Ω̄:

(H2a) we have

g1(x, s, t) > −k1 for 0 � s � 1 and t � mk2 ,

g2(x, s, t) > −k2 for 0 � t � 1 and s � mk1 ;

(H2b) we have

g1(x, s, t) > K1 for 1 � s � mk1 and t � mk2 ,

g2(x, s, t) > K2 for 1 � t � mk2 and s � mk1 ;

(H2c) gi(x, s, t) < Ci for 0 � s � C1M and 0 � t � C2M .

Then (1.1) has at least two solutions.

The proof of this theorem follows from the series of lemmata established below.

Lemma 4.2. (u
¯

, v
¯

) := (ψk1 , ψk2) is a strict lower solution.

Proof. This lemma follows from the strict inequalities in (H2a) and (H2b). Indeed,
since 0 < ψk2(x) � mk2 for all x ∈ Ω, we have

−∆u
¯

= −∆ψk1

= −k1χ{ψk1<1} + K1χ{ψk1�1}

= −k1χ{0�ψk1<1} + K1χ{1�ψk1�mk1}

< g1(x, ψk1 , ψk2) = g1(x, u
¯
, v
¯
).

The calculation for the v
¯

equation is similar.

Lemma 4.3. (ū, v̄) := (C1z, C2z) is a strict upper solution.

Proof. The proof follows from the fact that 0 � Ciz � CiM for all x ∈ Ω̄ and so
from (H2c) we have the strict inequality

−∆(Ciz) = Ci > gi(x, C1z, C2z)

for i = 1, 2.

https://doi.org/10.1017/S0308210510000582 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000582


56 M. Chhetri, S. Raynor and S. Robinson

Observe that Ci > gi(x, u
¯
, v
¯
) because 0 � u

¯
� mk1 < C1M and similarly for

v
¯
. It follows that −∆ū = C1 > g1(x, u

¯
, v
¯
) > −∆u

¯
, and so an application of the

maximum principle shows that u
¯

< ū, i.e. the lower and upper solutions are well
ordered. An identical calculation can be done to show that v

¯
< v̄. By theorem 2.8,

theorem 4.1 immediately follows.
Finally, we provide two examples of reaction terms gi(x, s, t) that satisfy the

conditions of theorem 4.1.

Example 4.4 (positone). For n = 2 or n = 3, let

g1(x, s, t) = εs4 + A exp
(

at

1 + t

)
,

g2(x, s, t) = εt4 + A exp
(

as

1 + s

)
.

Condition (H1) is satisfied with qii = 4, which is subcritical for our choice of space
dimension, qij = 0 for i �= j, hij ≡ 0 for i �= j; hii ≡ ε; r1(x, s, t) = A exp(at/(1+t))
and r2(x, s, t) = A exp(as/(1 + s)).

(H2a) Clearly, g1(x, s, t) = εs4 + A exp(at/(1 + t)) is a non-decreasing function for
0 � s, t � 1. Therefore, to satisfy (H2a), it is enough to notice that −k < 0 < A =
g1(x,0).

(H2b) Since g1(x, s, t) = εs4 + A exp(at/(1 + t)) is a non-decreasing function for
1 � s, t � mk, to satisfy (H2b), we need to show that g1(x, 1, 0) = ε + A > K. This
holds if A is chosen sufficiently large.

(H2c) Using the fact that g1(x, s, t) is non-decreasing for 0 � s, t � CM , it suffices
to show Aea + ε(CM)4 < C. This condition holds for C large enough relative to
Aea and ε is sufficiently small.

Example 4.5 (semi-positone). For n = 2, 3, let

g1(x, s, t) = εs4 + Bsη + Atθ − γ,

g2(x, s, t) = εt4 + Btη + Asθ − γ,

where ε, A, B are positive parameters and 0 < θ, η < 1. Due to the symmetry of this
system, we may assume that k1 = k2 and C1 = C2 when checking the conditions.

Condition (H1) is satisfied with qii = 4, which is subcritical in 2 or 3 space
dimensions, qij = θ for i �= j; hij ≡ A for i �= j; hii ≡ ε for i = j; r1(x, s, t) = Bsη−γ
and r2(x, s, t) = Btη − γ.

(H2) We show below that (H2a)–(H2b) are satisfied for g1(x, s, t). (The same argu-
ments work for g2.)

(H2a) Notice that g1(x, s, t) = εs4 + Atθ + Bsη − γ is a non-decreasing function
for 0 � s, t � 1. Therefore, to satisfy (H2a), we need to show g1(x,0) = −γ > −k.
Thus, (H2a) is satisfied if γ < k.

(H2b) Since g1(x, s, t) = εs4+Atθ−γ is a non-decreasing function for 1 � s, t � mk,
to satisfy (H2b) it is enough to show g1(x, 1, 0) = ε + B − γ > K. This holds by
choosing B sufficiently large.
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(H2c) Using the fact that g1(x, s, t) is non-decreasing for 0 � s, t � CM , it suf-
fices to show A(CM)θ + B(CM)η + ε(CM)4 − γ < C. This condition holds if C is
sufficiently large and ε is sufficiently small.

Remark 4.6. Both of these examples could easily be modified for higher dimen-
sions by appropriate choice of subcritical power in place of the exponent 4 used
here.

Remark 4.7. Other examples could easily be constructed. Here we have chosen
to use the types of nonlinearities that are typically seen as model problems in the
literature. The defining quality necessary to satisfy our conditions is a ‘two-shelf’
shape and superlinearity.

5. The quasi-monotone non-decreasing case: Hamiltonian systems

In this section, we consider the purely Hamiltonian case. Namely, we prove the
following theorem.

Theorem 5.1. Consider a system of the form

−∆u = g1(v) for all x ∈ Ω,

−∆v = g2(u) for all x ∈ Ω,

u, v > 0 for all x ∈ Ω,

u = v = 0 for all x ∈ ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.1)

where Ω ⊂ R
n, n � 3, is convex with C3 boundary. Here g1, g2 : [0,∞) → R are

C1 monotone non-decreasing functions satisfying the following conditions:

(A1) there exist positive numbers η1, η2 such that

lim
s→∞

g1(s)
sp

= η1 and lim
s→∞

g2(s)
sq

= η2,

where p, q > 1 and are subcritical in the sense that

1
p + 1

+
1

q + 1
>

n − 2
n

, n � 3;

(A2) further assume that there exist k > 0 and C > mk/M such that

(a) gi(s) > −k for 0 � s � 1,

(b) gi(s) > K for 1 � s � mk,

(c) gi(s) < C for 0 � s � CM ,

where K and mk are as defined in theorem 4.1. Then (5.1) has at least two solutions.

Remark 5.2. Observe that we do not assume (H1) here which states that the
nonlinearities are subcritical. The condition (A1) represents subcritical behaviour
in the Hamiltonian setting, and is used here to apply the result of Clement et al . [5].
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Remark 5.3. Recall that we wish to apply theorem 2.8 to establish the existence
of two solutions to (5.1). Clement et al . [5, theorem 2.1] proved that there exists
an a priori bound for positive solutions to (5.1) when g1 and g2 are monotone
non-decreasing and satisfy (A1). In fact, the result was proved in order to establish
the existence of a positive solution to a certain Hamiltonian system using degree
theory. Therefore, the conditions on the nonlinearities presented here can depend
uniformly on a homotopy parameter t. To maintain the uniformity with the previous
sections, we omit the explicit dependence on t in the statement of the theorem
above; however, the proof here proceeds exactly as for theorem 4.1 because the a
priori bound holds for the homotopy class of problems as required in definition 2.7.

Proof. As in § 4, (u
¯
, v
¯
) := (ψk, ψk) is a strict lower solution and (ū, v̄) := (Cz, Cz) is

a strict upper solution, and this pair is ordered. Hypothesis (A1) combined with the
Hamiltonian structure and strong coupling ensures that every non-negative solution
of (5.1) is a priori bounded [5, theorem 2.1]. This in turn implies that the condition
(C2b) of theorem 2.8 is satisfied. Therefore, by theorem 2.8, there are two positive
solutions to (5.1).

Finally, we provide an example satisfying the hypotheses of theorem 5.1.

Example 5.4. Let

g1(v) = ηvp + Avθ − γ,

g2(u) = ηuq + Auθ − γ,

where η, γ and A are positive parameters and 0 < θ < 1, and p, q > 1 satisfy the
subcriticality condition.

(A1) Obviously,

lim
v→∞

g1(v)
vp

= η and lim
s→∞

g2(u)
uq

= η

since 0 < θ < 1.

(A2) We will show below that the conditions (A2a)–(A2c) are satisfied for g1(v)
(The same arguments work g2.)

(a) Since g1(v) = ηvp + Avθ − γ is a non-decreasing function for 0 � v � 1,
to satisfy (A2a), it is enough to satisfy g1(0) = −γ > −k. Thus, (A2a)
is satisfied if γ < k.

(b) Since g1 is a non-decreasing function for 1 � v � mk, to satisfy (A2b),
it is enough to show g1(1) = η + A − γ > K. This holds for g1 if A is
chosen large enough to satisfy A > γ + K − η.

(c) Similarly, to satisfy (A2c) it suffices to show A(CM)θ+η(CM)p−γ < C.
This condition holds true if η is sufficiently small and hence (A2c) holds.
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