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New analytical solutions for the one-dimensional (1-D) steady-state compressible viscous
diabatic flow of an ideal gas through a constant cross-section pipe have been obtained.
A constant and a variable heat flux with the walls, the latter being the more relevant
for engineering applications, have been considered. To be able to analytically solve the
problem, it is essential to determine the correct transformations of the variables and to
identify the kinetic energy per unit of mass as the physical variable that appears in the final
ordinary differential equation. A dimensionless representation of the analytical solutions,
which points out the fundamental role exerted by a few dimensionless groups in problems
where viscous power dissipation and heat transfer power are present simultaneously,
is also presented. The obtained analytical solutions have successfully been validated
for both subsonic and supersonic flows through a comparison with the corresponding
numerical time asymptotic solutions of the generalised Euler equations for 1-D gas
dynamics problems. The thus validated analytical solutions, which have also been
physically discussed, extend Fanno’s (1904) and Rayleigh’s (1910) models that refer to
1-D steady-state viscous adiabatic and inviscid diabatic flows, respectively.
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1. Introduction

Ducts play an important role in engineering simulations: their models can be applied to
many thermodynamic systems, such as heat exchangers and refrigeration systems, gas
transport systems, gas turbines, wind tunnels, internal combustion engines and aerospace
propulsion systems (Maicke & Majdalani 2012; Rodriguez Lastra et al. 2013; Cavazzuti &
Corticelli 2017).

In general, only numerical solutions can be provided for unsteady or multidimensional
steady-state thermofluid dynamics problems involving pipes, once the appropriate initial
and boundary conditions have been assigned. However, if the motion is laminar and is

+ Email address for correspondence: alessandro.ferrari @polito.it

© The Author(s), 2021. Published by Cambridge University Press 918 A32-1

@ CrossMark


mailto:alessandro.ferrari@polito.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.278&domain=pdf
https://doi.org/10.1017/jfm.2021.278

https://doi.org/10.1017/jfm.2021.278 Published online by Cambridge University Press

A. Ferrari

characterised by lower Mach numbers than 0.3, the fluid can be treated as incompressible
(Emmons 1958), and exact solutions can be obtained for two-dimensional steady-state
flows in ducts. In fact, in such a case, provided the dynamic viscosity of the fluid can
be treated as being independent of the temperature (a feasible hypothesis for gases),
Navier—Stokes continuity and momentum balance equations can be solved separately from
the energy equation (Batchelor 2000).

If a duct features regular and symmetrical cross-section shapes, negligible curvature
of the axis and a sufficiently high aspect ratio, a one-dimensional (1-D) approach can
be adopted for the space distribution of the flow properties over the pipe, and generalised
Euler equations can be applied to both laminar and turbulent regimes (Douglas et al. 2005;
White 2015). One-dimensional steady-state models of ducts are popular in the engineering
communities that deal with aerospace propulsion (Sutton 1992; Yu et al. 2020), power
generation equipment (Maicke & Majdalani 2012) and computational fluid dynamics (Toro
2009). Although 1-D approaches are simplified, because no boundary layer is simulated
and the turbulent viscous effects can only be modelled roughly using the wall friction
approach and the Moody diagram (Douglas er al. 2005; White 2015), their surprising
simplicity has them to be widely accepted in both academic and industrial circles.

When the kinetic energy of a flow is significant and cannot be disregarded, as typically
occurs in the gas dynamics field, there are only a few known cases for which a 1-D
steady-state flow along a duct can admit an exact solution.

If the heat transfer flux is negligible and the flow occurs along a constant cross-section
pipe with wall friction, the exact solution can be expressed using Fanno’s analytical model
(1904), which was originally used for subsonic flows and then extended to supersonic
flows (Kirkland 2019). Instead, if the heat transfer is significant (the heat flux can be either
a constant value or a function of the fluid temperature, according to a convective model),
friction is negligible and the flow occurs along a constant cross-section pipe, the Rayleigh
model (1910) can be used to determine the exact solution (Anderson 2003).

The above-mentioned exact models only take into account a single flow variation
effect, that is, friction or heat transfer, and, for this reason, they fall within the class
of simple flows (Shapiro 1953). Because of their importance, these two models have
also been extended to include the simulation of elements, such as orifices, elbows and
bends (Morimune, Hirayama & Maeda 1980a), or sudden cross-section enlargements
(Morimune, Hirayama & Maeda 19800). This is obtained by including semi-empirical
factors or relations, determined with the support of experimental tests, in the 1-D
theoretical models used for a constant cross-section pipe.

Shapiro, going beyond simple flows, determined an exact solution for the 1-D
steady-state modelling of both friction and heat transfer effects along a constant
cross-section pipe, but assuming an isothermal flow (Shapiro 1953). The more general case
of a viscous diabatic flow, without the assumption of barotropic evolution (Prud’homme
2010), is not solved in closed form, but only numerically (Cavazzuti, Corticelli &
Karayiannis 2020). On a broader spectrum, no analytical solutions exist, in the gas
dynamics field, for flows with more than one single factor driving the fluid property
changes (the third factor, in addition to friction or heat transfer, may be a gradual variation
of the cross-section pipe), except for a recent exact solution that was determined for the
case of a conical nozzle with wall friction (Ferrari 2021).

The objective of the present paper is to physically analyse and analytically solve
compressible flows that include both wall friction and heat transfer effects in the
presence of significant kinetic energy. The provided steady-state solutions to the Euler
equations extend the collection of analytical solutions of gas dynamics and may be
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valuable for the validation of numerical models or for providing feasible initial data
for transient flow simulations. Furthermore, they can be used for design and control
purposes in many technological applications, such as micro- and mini-scale flows (Rosa,
Karayiannis & Collins 2009), heat exchangers and refrigeration circuits (Kumar & Ooi
2014), bioengineering and nuclear industry systems (Mignot, Anderson & Corradini
2009). The interest in micro- and mini-scale flows has constantly been increasing in recent
years, thanks to the resort to miniaturisation in many technological fields (Rosa et al.
2009). Because of their large specific surfaces, mini- and micro-channels are dominated
by surface friction (Cioncolini ef al. 2016) and can require high heat fluxes (Kandlikar
et al. 2013). When the involved fluid is a gas, this translates into abrupt accelerations
and high velocities, therefore fluid compressibility and kinetic energy cannot be neglected
(Cavazzuti et al. 2020).

2. One-dimensional approach for diabatic flows with friction

Generalised Euler partial differential equations (PDEs) for a 1-D unsteady viscous diabatic

gaseous flow along a pipe with constant circular cross-section are given by (Bermudez,
Lopez & Vasquez-Cendon 2017)

dp  3(pw —0
Jat 0x
Ipu)  op+pur)  4r,
= —— ¢, 21
ot + dx D @D
3(pe”) N d(puh®)y  4qy
Jt 0x )

where ¢ is the time, x is the space coordinate, p, u and p are the cross-section averaged
1-D density, velocity and pressure, respectively, D is the pipe diameter (A = 7/4D? is the
cross-section), e is the stagnation internal energy (¢ = e + u?/2, where e is the internal
energy), h° is the stagnation enthalpy (h° = h + u?/2, where h is the enthalpy), t,, is the
wall friction shear stress and gy is the heat flux exchanged by the fluid with the walls (gr
is positive when the heat is supplied to the fluid).

Equation (2.1) differs from the standard set of Euler equations for an isentropic flow
because the friction and heat exchange are added and evaluated as volume source terms
(Hirsch 2007; Maeda & Colonius 2017), using the Darcy—Weisbach wall friction and
convective heat transfer models. The wall friction stress is expressed by (White 2015)

T ngulul, 2.2
where the friction coefficient f can be expressed as a function of the Reynolds number
(Re = puD/u, with 1 being the dynamical viscosity of the fluid) for a laminar flow and as
a function of both Re and the relative roughness (¢/D, with € being the average roughness
of the wall) for a turbulent flow (Douglas et al. 2005; Cheng 2008; White 2015). The heat
flux can be expressed as (Bejan 2013)

gr = ATy, — T, 2.3)

where the film coefficient A [W (m? K)~'] is a function of the Reynolds and Prandtl (Pr)
numbers, 7 is the cross-section averaged 1-D temperature of the fluid and T, is the uniform
wall temperature.
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Equations (2.1)—(2.3) are completed with the following state equations of the gas:
-1
p="""ph h=c,T
v 2.4)
h=e+ E, e=c,T
P

where y = ¢,/c, is the ratio of the constant pressure specific heat (c,) to the constant
volume specific heat (cy).

When steady-state flows are considered, the partial derivatives with respect to time
vanish in (2.1), which can be reduced to the following system of nonlinear ordinary
differential equations (ODEs) with respect to the independent variable x (Emmons 1958):

i,
Ad—p + md—u = —nDrt, (2.5)
dx dx ’
dn® :
ma = nDq,

where 71 = pAu is the mass flow rate through the pipe.

3. Exact 1-D solution for steady-state compressible viscous flows with constant g

Let us consider a steady-state compressible viscous diabatic flow with constant g¢ along a
constant circular cross-section pipe. The mass conservation law in (2.5) can be rewritten
as

m
pu = 1 = const (3.1

Furthermore, the momentum balance and total energy laws in (2.5) can be rearranged
as follows (the momentum balance and total energy equations are divided by Ap and A,
respectively, and (2.2) is used with u > 0):

af [ u? Adp d [u?

(YL 2,2 2 (Yo 3.2

D(2>+m”dx+dx(2 , (3.2)
mdh  md [u? 44
mah  md (umy _ T (3.3)
Ady  Adx\2 D

where f is a constant term, because Re = puD/u = 4m/(ntDp) = const (the dependence
of the dynamic viscosity of the fluid on T is neglected). The pressure can be expressed
according to the following formula, which was obtained using the state equations of ideal
gases, i.e. (2.4), in conjunction with (3.1):

p="—ph=""""h (3.4)

Therefore, the pressure gradient can be calculated by applying the chain rule:
d ny—1dh ; —-1.d
dp_ry—ldh it y—1.du 3.5)

dx Au y dx Au? y dx
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By substituting (3.5) in (3.2) and taking (3.3) into account, we obtain

4 2 -1 d 2 1 dh 77T
l u _)/_h_ In u ___:—qf, . (3.6)
D\ 2 2y  dx 2 y dx m

Equation (3.3) can be divided by m/A and, because gy is supposed to be a constant term
(gr can be either positive or negative), it can easily be integrated with respect to x to obtain

7-7tD 2
h=nd+ L (3.7)
m 2

where h(l) is the stagnation enthalpy at x; = 0 (h(l) =¢p T?). Equation (3.7) can then be used
to eliminate 4 from (3.6) and, after some analytical steps, the following equation can be
achieved:

af [ u? -1 7,mDx\ d 2 1d [u? 1 —y gD
V(e v =L (o a2 (o) prald ey 1oy
D\ 2 2y m dx 2 2y dx \ 2 y m

(3.8)

Equation (3.8) is a nonlinear ODE with a single unknown function, that is, the kinetic

energy per unit of mass (1>/2). By changing the variable (let us use the letter ‘#” for the
new variable because there is no time in the rest of the current section)

r:=1 u_2 3.9
._n<2), (3.9)

and performing some algebraic manipulation, (3.8) can finally be converted into the
following heterogeneous linear ODE:

dx
— 4 a()x = b(1), (3.10)
dr
where
y —1gmD y—1lo v+l,
2y m 2y L 2y
a(t) = — - b(t) = : . 3.11
® af y — 1gymD ® 4 V_quTED GID
—+—T— —+—1—
D y m D y m

It is known that any linear first-order ODE with variable coefficients can be solved using
Lagrange’s method of variation of the constants (Hairer, Norsett & Wanner 1993). The
general solution to (3.10) takes the form

x(f) = e 40 [ / b(1) O + c] , (3.12)

where A(f) = f a(t) dt is a primitive function of a(f) and C is a constant value that can be
calculated by assigning a boundary condition to the Cauchy problem.
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By using the above expression for a(?), one obtains (the integral f a(t) dt is of the form
—1/2 [ B/(e' + B)dt = 1/21n(le' + B|/e'), where B is a general constant term)

.12
y — 1gmD Aty
A®) f 2y m dr =1 v (3.13)
N ¥, y—1gmD |77 e!/? ’ '
—e +——
D % m

and consequently (3.12), after some algebraic manipulation and recalling that ¢ =
In(u?/2), becomes

y—1D , y+1Du?
2 — 1 d,mD? T T T e 2
(st (| e
2 Y 4fm u? 3/2 u? y—IQfJTDz 2
2 2 y  Afm

u2 1/2
2
2 y 4fm

(3.14)

X

172’

where sgn represents the signum function, which extracts the sign of the quantity to which
itis applied. The indefinite integral should be resolved to obtain an effective solution to the

fluid dynamics problem in closed form. As a result of the change in variable w = \/u?/2,
one obtains

y=1D, y+1Du ) y=1D,, v+1D 5
f v 8 vy 82 d(u_>=/ y 4 v 4|
. 1/2 . 1/2 .
w oy —1 qfl'tD2 / 2\ 2 5 y —1 qu'ED2 /

— — — W —
2 y 4fm 2 y 4fm

The indefinite integral on the right-hand side of (3.15) can be interpreted as

w2 +

y=1D, vy+1D 5 )
[ F—G
/ r Y r Y dw:>/|:—w :|dw
L,y = 1gmD? w2y/|w? + E]|

2
y  4fm

we w= 4

—/ F — G dw, (3.16)
S wE R JwrrE] T

where E = (y — )grmD?/(4yfi), F = (y — DD/(@yf) and G = (y + DD/(4yf)
are constant terms in the considered problem, that is, they are independent of w.
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Let us suppose that w? + E > 0Vx ( qr can still be either positive or negative with this
hypothesis). The initial integral in (3.16) is split into two indefinite integrals that can be
expressed in terms of the following elementary functions (Dwight 1961):

/ L dw = Gln wtvw e Vw2 + E
w4+ E JIE]

(3.17)
/ F FNwW2+E

——dw=——
wiv/w? + E E w
By considering (3.14)—(3.17), the general analytical solution to (3.8) is provided
explicitly as x = x(u?/2):

V \/ Ll i /uz
mh?+ c y+1D y  Afm

_771

quED 14 y— 1 |qf|TIZD u” y— quTED
4fm y 4fm
(3.18)

Once the value of integration constant C has been determined (cf. § 3.1), (3.18) becomes
well defined. The 1-D T versus x distribution can then be expressed in parametric form
using (3.7) and (3.18), where the kinetic energy per unit of mass of the fluid is the

parameter:
2 2
ror ()
mcy 2 2c,

()

Furthermore, the density and pressure distributions, with respect to x, can be expressed
as parametric equations: p(x) is obtained by coupling (3.18) with (3.1) and p(x) is achieved
by linking (3.18) with both (3.4) and (3.7).

Finally, the Mach number distributions with respect to x can also be determined in
parametric form by using (3.18) and (3.19) as well as the formula Ma = /u?/(yRT).

The exact solutions and the corresponding analytical variants for the w? +E=0
and w? +E <0 cases are discussed in the appendix of the paper to avoid excessive
fragmentation of the theoretical development with the introduction of too many details.
Although these cases are essential to complete the exact solution, the main objective
of the present paper is to highlight a methodology that can be used for the analytical
treatment and physical interpretation of compressible viscous diabatic flows. It therefore
appeared more efficient to present the procedure by only making preliminarily reference
to the w? + E > 0Vx condition and then extending the method to the other cases in the
appendix.

(3.19)

3.1. Input data for the physical problem and determination of constant C

The constant heat flux is regarded as a given value in the present approach. In fact, the
heat transfer power Q (either positive or negative), exchanged entirely through the walls
of the circular pipe of assigned length L and diameter D, should be provided as an input
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value for the physical problem, and the heat flux per unit of area can thus be defined using
the formula gy = Q/ (ntDL).

Furthermore, three independent boundary conditions are required to determine the
values of the constant terms h(l), m and C in (3.18). These three boundary conditions, for the
numerical solution of the unsteady PDE problem given by (2.1)—(2.3), should be provided
following precise rules, according to the characteristic theory of systems of hyperbolic
partial differential equations (Toro 2009).

It is not necessary to pursue this theory in the present case because a steady-state
problem is being analysed. In fact, the three input data values can be assigned at the x; =0
and xp = L boundaries, without any constraints (Urata 2013), although the easiest choice is
to provide the mass flow rate and total temperature as well as the fluid velocity at the inlet
of the pipe (x; =0). However, we here follow the characteristic line approach because it is
exhaustive in illustrating how the available data at the boundaries can be used to determine
the analytical solution.

According to the characteristic line theory, when the flow through the pipe is subsonic,
two boundary conditions should be assigned at the pipe inlet, namely TO and total pressure
( pl) while one boundary datum should be provided at the pipe exit (x2 = L), namely the
static pressure (py) of the pipe downstream environment.

A shooting procedure can therefore be arranged: a tentative value of Ma; can be
selected, and u% /2 and m can then be determined using the following equations, which
refer to an isentropic evolution from the stagnation conditions to state 1 (Zucker & Biblarz
2002):

2 -1
uy o2 2 2
? = CPT] Mal (ﬁ —I—Mal)

0 (3.20)

1 (y+D/2(y—1
m= A\/_Mal(l—i— 5 Ma1>
JRTY

The constant C value can then be calculated by solving (3.18) under the condition u?/2 =
u%/2 atx=x;=0:

ﬂ y—1 1 qan u% y —1 qan2
c_ mh) \ 2 Yy 4fm LY +1D Af
= In
grmD ) v 4 y—1 qu|nD2
2 y 4fm
(3.21)

Equation (3.18), with C given by (3.21), can be employed to determine the u% /2atxo =L
value. Furthermore, density p, can be evaluated from (3.1), which is applied for x, =L,
and (3.7) can be used to calculate hy at x, = L.

Finally, pressure p, can be calculated as a function of p» and &, using (3.4). If the thus
determined p; value is equal to the provided boundary datum py, the guessed value of
Ma; is suitable, otherwise the shooting procedure should be repeated selecting new values
of Ma; until consistency with downstream boundary pressure py is achieved. At the end
of the procedure, C has been evaluated accurately and (3.18) is therefore ready for use.
When the flow through the pipe is supersonic, the hyperbolic PDE theory requires that all
three boundary conditions are given at the pipe inlet, namely 79, p(l) and Ma; at x; =0.
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In this case, both 2 and u% /2 can be evaluated directly using (3.20), and C can then be
determined using (3.21); hence, (3.18) is completely defined.

3.2. Dimensionless representation of the exact solution

Equations (3.18) and (3.21), the physical domain and the required boundary conditions of
the problem (for the sake of simplicity, let us here suppose that such boundary conditions
are provided by the ho, m and u% /2 values) involve eight dimensional sizes, that is, x, 71,
h(l), D, u?/2, u% /2, L, g, and two dimensionless parameters, that is, y and f. Because both
mechanical and thermal quantities are involved in the problem, the rank of the dimensional
problem is equal to four, i.e. m, s, kg and K are required as measurement units to express
all the quantities that appear in the problem.

According to Buckingham’s theorem (Yarin 2012), it is possible to express the
solution and boundary conditions in terms of (8 +2) —4 =6 dimensionless groups. The
dimensionless representation of the solution can be useful to clearly identify the physical
factors that drive the analysed phenomenon.

If (3.18) is multiplied by f7Dj,, where Dy, is the ratio of cross-sectional area to wetted
perimeter (Dj, = D/4 for circular sections), and gy is replaced by the total heat transfer
power per unit of mass flow rate, namely ¢, which is defined as ¢ = grnDL/m, the
following dimensionless equation can be obtained after some algebraic manipulation
(C* := Cf/Dy):

+ () th
son _—
A P 2|q| 2|| T
c* — In
14
u

o1
T [y =TDy
y JL
2lql

Dy, q Dy,
X (3.22)

u2 —th

2| | sgn (Qf)—ﬁ

Let us now define the following dimensionless number

2

DL g _hy—h T
Tl TR T T

-1, (3.23)

which expresses the ratio of the total heat transfer power (over length L of the duct) to the
flux of the total enthalpy at the pipe inlet, namely rhh(l). When the heat transfer is null, the
total enthalpy is conserved along the pipe, hence [1; =0 and Fanno’s model is obtained.
In general, a higher modulus of Iy, (¢ can be either positive or negative) leads to a greater
impact of the heat transfer on the flow evolution.

The term u?/2|g| on the right-hand side of (3.22) can be developed by taking (3.7) and
(3.23) into account:

—=— =Cr
2lgl  2¢,|TY — T} T9/T0 — 1] 1ML

u? u? 9 TO/T0 Ccr? X
- ( +1‘1L—) (3.24)

918 A32-9


https://doi.org/10.1017/jfm.2021.278

https://doi.org/10.1017/jfm.2021.278 Published online by Cambridge University Press

A. Ferrari

where Cr = u/,/2c,T? is the Crocco number and 70 is the stagnation temperature at

section x.
By substituting (3.24) and (3.23) in (3.22), and after some algebraic steps, one can obtain
the following implicit dimensionless representation of the solution:

Dy
| Cr T ¥ TF/Dy + \/cr2(1 + T'fe/Dy) + T2
fx/Dp=——+3C*—1n
r Jirist
14
CrJT¥ /Dy
i+ LA/ D (3.25)

X b
\/Crz(l + I'fi/Dy) + I

where

v+D/y
| Jer+rt Cri+,/cr+ ¥t
% 1 Y 1 Y

g
L —Y Y i

I' = , Cr =
D r C / —1
(fL/ h) r1 |[‘|VT

A practical way of obtaining an explicit dependence of fx/Dj, on Cr would be to define

(3.26)

the Crocco number as = u/,/ 2cpT?, as is done in some fluid machinery textbooks when

the stagnation temperature is variable along the component. However, this is not the
preferred choice for theoretical gas dynamics and, above all, the definition of Cr that adopts
T? would not allow fx/Dj, to explicitly depend on the Mach number.

Six dimensionless factors appear in (3.25): fx/Dy,, Cr, fL/Dy, 1y, y and Cryq (only fx/Dy,
and Cr are variable with x, whereas the other factors are fixed parameters of the solution).
The IT; group takes thermal effects into account and is also relevant for a Rayleigh flow,
while the f1/Dy, and fx/Dy, terms, which include the friction coefficient and the aspect ratio
of either the pipe or a portion of the pipe, account for the friction effect and are noteworthy
groups for Fanno’s flow (Shapiro 1953).

Another notable implicit dimensionless representation, which is an alternative to (3.25),
is given by

(r+D/y

CryT+T0, + \/Crz(l + 10 + Mt

/|F|V—_1
%

InN,=—1+1C"—1In

Crl" 1+ 11,

x , (3.27)
Jera+my +ret

where 1, = qanx/Mh(l), and constant C* has the same expression as that which is valid
for (3.25).

The six dimensionless factors in (3.27) are I, Cr, fL/Dy, 17, y and Cry. Therefore,
variable fx/Dj,, which appears in (3.25), has been substituted with variable I, in (3.27),
on the basis of the [T, = I'fx/Dj, relation.
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Finally, the Crocco number can be expressed in both (3.25) and (3.27) as a function of
y and the Mach number, according to the formula

_ Ma
VMa +2/(y — 1)

Once (3.28) has been substituted in either (3.25) or (3.27), new implicit dimensionless
solutions, which link either fx/Dy or Il,, respectively, to Ma, can be determined for
compressible viscous diabatic flows (fL/Dy, [1r, Ma; and y will be the fixed parameters
of the solutions). The advantage of these new dimensionless representations is that they
include Ma, which is also a fundamental dimensionless variable in the Fanno and Rayleigh
models. This facilitates any comparison between the newly developed analytical model and
simple flow analytical models that lead to dimensionless explicit relations between Ma and
either fx/Dy (Fanno’s model) or I, (Rayleigh’s model).

The dimensionless representation obtained by coupling (3.25) and (3.28) is suitable for a
comparison with the Fanno flow and can therefore be referred to as Fanno’s dimensionless
mode representation of the compressible viscous diabatic flow.

Instead, the dimensionless representation obtained by coupling (3.27) and (3.28) is
suitable for comparison with the Rayleigh flow and can be referred to as Rayleigh’s
dimensionless mode representation of the compressible viscous diabatic flow. A
fundamental role is played by quantity I in both of these representations, which accounts
for the relative importance of the heat transfer and friction groups of the whole pipe during
the evolution of the viscous diabatic flow.

Cr (3.28)

4. Validation of the exact solutions with constant gy

The previously developed analytical solutions were validated through a comparison with
the corresponding time asymptotic distributions, which resulted from the numerical
solution of (2.1), (2.2) and (2.4). The expression of g in the PDE numerical model was
regarded as a constant value.

The PDEs were discretised using a finite volume method, according to a flux vector
splitting technique (Laney 1998; Toro 2009) that applies a high-resolution upwind
discretisation scheme with a Van Leer flux limiter (Le Veque 1990). The spatial mesh
size, namely Ax, was selected to guarantee a grid independent numerical solution. The
time step, namely At, was set to obtain ¢ = 0.9, where 0 = |u + /Y RT |jpax At/ Ax is the
instantaneous Courant number (Tannehill, Anderson & Pletcher 1997) and |u + /v RT | nax
is the maximum modulus of the u(x, #) + +/y RT (x, t) numerical space distribution at each
fixed time instant.

The boundary conditions of the PDEs were provided according to the characteristic
theory for hyperbolic problems. Therefore, the stagnation temperature and stagnation
pressure were assigned to the pipe inlet section for subsonic flows, whereas static
pressure was assigned to the pipe downstream environment. Three boundary data, namely
stagnation temperature, stagnation pressure and Mach number, were instead assigned to
the pipe inlet for supersonic flows, and no boundary data were provided for the pipe exit.

Figures 1 and 2 refer to a steady-state (or time asymptotic for the numerical solution)
viscous diabatic flow with a positive constant heat flux (g; = const > 0): figure 1 reports
the results of a validation test for a subsonic flow, whereas figure 2 reports the results of a
validation test for a supersonic flow.

The analytical solutions are plotted with either a continuous line (velocity) or a
dashed line (temperature): the unidimensional diagrams of the velocity were calculated
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Figure 1. Validation test for the exact solution with a positive constant heat flux for a subsonic
flow. Test conditions: L=50 cm, D=0.98 cm, p{ = Sbar, T = 570K, py=2.5 bar, f=4 x 1073,
Gr=6x100Wm 2 y=14R=287J(kgK)"!, Ax=1mm (h =41.28 gs71).
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L& O Numerical solution (u) 2
640 4 ——Exact solution () 400
A A Numerical solution (77)
& = = Exact solution (7")
560 320
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x/L ()

Figure 2. Validation test for the exact solution with a positive constant heat flux for a supersonic flow. Test
conditions: L=67.16 cm, D=2.5 cm, p{ = 3 bar, TV = 800 K, Ma; =2.5,f =3 x 1073, gy = 100 Wm 2,
y=14,R=287J(kgK)~!, Ax=1mm (n = 79.81 g s~ ).

by applying (3.18), whereas the temperature versus x distributions were determined using
the parametric relations in (3.19). The numerical solutions are reported with symbols. The
constant C in (3.18) was calculated with the shooting procedure illustrated in § 3.1 for the
subsonic flow case, whereas C was determined directly, using (3.20) and (3.21), for the
supersonic flow case.

Furthermore, figure 3 reports a validation test for a subsonic flow for the case of
a negative constant heat flux (gr = const < 0, w? + E > 0Vx) and according to the
boundary conditions specified in the caption.

As can be inferred, each graph in figures 1-3 shows an excellent agreement between the
corresponding curves, and this is clear proof of the physical consistency of the determined
exact solutions for the gy = const case.
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Figure 3. Validation test for the analytical solution with a negative constant heat flux for a subsonic flow. Test
conditions: L= 51 cm, D=0.7 cm, p{ = 6 bar, T) = 600 K, py =2.44 bar, f =5 x 1073, gr = —10° W m~2,

y=14,R=287T (kg K)~!, Ax=1mm (h =27.6 gs7 ).

5. Physical discussion of the exact solutions with constant gy
5.1. Results in the enthalpy—entropy diagram and identification of choking conditions

A physical interpretation of the developed exact solutions for compressible viscous
diabatic flows in the g = const case can be provided by analysing the enthalpy—entropy
diagrams, as is usually done when presenting Fanno’s and Rayleigh’s models.

The h—s curves can be calculated by applying (3.18), (3.19), (3.7) and (3.4), together
with the state equation for entropy, that is, s = ¢, In(T'/ T?) — RIn(p/ p(l)), where s(p7, T?)
is taken as null.

Figure 4 reports h—s curves that refer to initially subsonic flows for the gr > 0 case. All
the curves, except that plotted with a dash—dotted line without symbols, are characterised
by the same conditions at the pipe inlet (point at s = 0), namely T?, p(l), D and May, and
thus by the same mass flow rate, which are specified in the caption.

The differences between the curves with the same flow rate arise because different
couples of f and gy values have been applied (these values are quoted in the legend). In
particular, the continuous solid line without symbols refers to the same T?, p(l), m, f, D and
g conditions as those in the validation test shown in figure 1. The dash—dotted curved line
without symbols refers to the same 79, p?, D conditions as those of the other curves and
to the same f, gy values as the continuous line without symbols, but features an increased
specific flow rate, i.e. a larger value of 72/A and thus a higher Ma;.

Figure 5 plots a similar graph to that shown in figure 4, but for supersonic viscous
diabatic flows: the curve plotted with a continuous line without any symbols refers to the
same T?, p(l), m, f, D and gy conditions as in the validation test of figure 2. The f and
positive g values pertaining to the other curves plotted with symbols, which refer to the
same T?, p(l), D and m conditions as those for the continuous curve without symbols, are
also reported in the legend. Furthermore, a portion of the curve that refers to a larger
value of m1/A has been reported with a dash—dotted line to show the effect of an increased
specific flow rate on the A-s curves, as in figure 4.
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Figure 4. Entropy—enthalpy curves for an initially subsonic flow. The conditions for the tests in the legend:

D=0.98 cm, pY = 5 bar, TV = 570 K, Ma; =0.41, y = 1.4, R=287J (kg K) 7!, th = 41.28 g s71).
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Figure 5. Entropy—enthalpy curves for an initially supersonic flow. The conditions for the tests in the legend:
D=2.5cm, p? = 3 bar, T? =800K, Ma; =25,y =14, R=287J (kg K)~!, h = 79.81 g s~ ).

While the Fanno and Rayleigh 4—s curves are unique, once the stagnation point at the
pipe inlet and 71/A have been assigned, infinite 4—s curves for the viscous diabatic flow,
which depend on the f and gy values, as shown in figures 4 and 5, can exist.

Because a positive heat flux is considered in both figures 4 and 5, s can only increase
when the flow goes through the pipe (dx > 0). This is confirmed by the following entropy
equation:

Tds=3q+51W:$dx+%u2dx (5.1)
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Therefore, the increasing entropy gives the direction of the flow evolution along any /i—s
curve in figures 4 and 5. Any point to the right of an initial point at s =0 along a curve, in
either figure 4 or 5, corresponds to the state at the end of a pipe of a certain length L.

For example, the point at #2700 kJ kg~! along the continuous-line curve in figure 4
corresponds to the subsonic flow condition at the end of the pipe considered in figure 1
(L =50 cm, py = 2.5 bar), whereas the point at /1 700 kJ kg~ ! along the continuous-line
curve in figure 5 corresponds to the supersonic flow condition at the end of the pipe
considered in figure 2 (L = 67.16 cm, py = 0.56 bar).

In figure 4, as the flow proceeds along the h—s curve, both the velocity and the
Mach number increase, while the pressure decreases. Instead, in figure 5, as the entropy
increases, both the velocity and the Mach number reduce, while the pressure increases.
These outcomes are in line with those concerning Fanno’s flow and Rayleigh’s flow for
qgr > 0.

fA local maximum point in the entropy can be identified for each curve in both

figures 4 and 5 (cf. for example point M). This confirms the presence of a choked flow
condition (May = 1) for compressible viscous diabatic flows. If the length of the pipe
were increased beyond the L., value that corresponds to having a critical state like M
at the end of the duct, the h—s curves, predicted using the exact solution for f =0.004
and gr = 6 x 10° W m~2 in figure 4 and for f =0.003 and gy = 10> W m~2 in figure 5,
would continue with the dashed lines, but such evolutions would be without any physical
meaning because they lead to a reduction in entropy. All this is consistent with the choked
flow theory developed for Fanno’s flow and for Rayleigh’s flow for g; > 0 (Shapiro 1953).
The unphysical part of the 4—s evolution for decreasing entropies has only been reported
in one case per figure for explanation (it has been removed for the other curves).

When the final point of the 4—s evolution predicted by the exact solution belongs to an
unphysical dashed line, it means that the considered problem for the provided boundary
conditions does not globally admit any continuous 1-D steady-state solution.

If the flow is initially supersonic and L becomes longer than L., the real solution of
the compressible viscous diabatic flow will be characterised by the presence of shocks.

Instead, if the flow is initially subsonic and L becomes longer than Lcjock, N0 stable
solution can be found for the assigned T?, p(l), m, D, f and gy values for the viscous diabatic
flow and, after a time transient, the final steady-state solution will feature a lower mass flow
rate.

Pipe length L.j,ck, which produces a state like that in M (characterised by a sonic flow)
at the final section of the pipe under the assigned T?, p(l), m, D, f and gy values, can be
determined for subsonic and supersonic flows by solving the following nonlinear system
of algebraic equations, which consists of (3.19), calculated at the final section, x>, of the
pipe, and of relation May; =1 (the unknown variables are uys, Ty and x»):

7.1tD Lt2 Lt2

mcy 2 2¢p

uy = yRTy (5.2)

iy
X2 = Lepock = x 7

The maximum entropy of each curve in figures 4 and 5, namely sj;, augments for
increasing ¢y and decreasing f. Because the Rayleigh curve has a higher sy, than the
corresponding Fanno curve for fixed y and the thermodynamic flow state at the pipe inlet,
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Figure 6. Entropy—enthalpy curves for an initially subsonic flow (g < 0). Test conditions: D =0.7 cm,
pY = 6bar, T) = 600 K, Ma; =0.48,f =5 x 1073, y = 1.4, R=287J (kg K) !, th = 27.6 g s ).

a larger value of I", which is here proportional to the ratio of g to f* (i, D, p(l) and T? are
fixed), leads to a higher value of sy,.

The h—s curves for the subsonic flow in figure 4 also show a local maximum point in
the enthalpy (cf. for example point O) and thus in the temperature, in line with Rayleigh’s
flow.

The abscissa at which the local maximum point in the fluid temperature is reached along
the subsonic pipe can be calculated by rewriting (3.3) under the hypothesis d7/dx =0, by
taking the derivative of function x(1*/2), as given by (3.18) with respect to u2/2 and, finally,
by posing a consistent condition on this derivative with (3.3):

a7 d W d (u*\  gmD
P T\ 2 ) T \2) T T

dx  m
dw?/2) gD

(5.3)

The value of u?/2 at point O can be determined from (5.3). Then, by substituting this value
in (3.18), the value of xp can be determined as a function of f, gr and of the provided
boundary conditions of the problem.

No local maximum or minimum points are found for the enthalpy in the supersonic tests
in figure 5, irrespective of the values of f and gy > 0.

The cases with gr < 0 are discussed in the s—s diagrams reported in figures 6 and 7 for
subsonic and supersonic flows, respectively. The plotted curves in each graph all start from
the same point, that is, at s =0, which corresponds to the initial condition specified in the
caption.

The gr > —3 x 10° W m~2 cases in figure 6 all refer to the exact solution reported in
(3.18), under the hypothesis that w?> + E > 0 Vx, whereas the qr=-3x 10° W m~2 case
refers to the exact solution reported in (A2) of the appendix (under the hypothesis that

w2 + E < 0Vx).
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Figure 7. Entropy-enthalpy curves for an initially supersonic flow (g < 0). Test conditions: D =3.5 cm,
pY = 15bar, T = 850 K, Ma; = 1.7,f =2 x 1073, y = 1.4, R=287J (kg K)~!, (i = 149.60 g s ).

Furthermore, the gr > —2.5 x 105 W m~2 cases in figure 7 all refer to (3.18), whereas
the gr = —5 x 105 W m~2 case refers to (A2).

In both figures 6 and 7, when g5 < —2frmu* /mD?, that is, when 8¢ < 0 prevails over 8/,
in (5.1), the entropy locally reduces, whereas the opposite occurs for gr > —2fru® /D>,

The entropy can also initially reduce and then increase, as is shown in the diagrams
referring to the gr = —1.3 x 10° W m~2 and gr =—2Xx 10> W m~2 cases in figure 6.

When w? + E < 0Vx, the entropy monotonically reduces (in fact, the negative heat
flux in (5.1) clearly prevails over the friction work) along the pipe for both subsonic (cf.
figure 6) and supersonic (cf. figure 7) flows, in line with what happens for Rayleigh’s flows
with a negative heat flux.

A remarkable phenomenon is that choking can be experienced for negative values of gy,
as shown in both figures 6 and 7 (this does not occur in Rayleigh’s flow), even when the
negative heat generally prevails over the positive friction work, and most of the evolution,
or all the evolution, in the 4—s plot occurs for decreasing entropy.

A choked flow is reached along all the curves reported in figure 6, except for gy =
—3 x 10° W m~2, and it is reached for the qr =—6x 10* W m~2 and qr = —10° W m—2
cases in figure 7.

When choking occurs, the hA—s curve is interrupted at the choked flow, where Ma =1,
and the h—s curve shows a vertical tangent line.

5.2. Comparisons with the Fanno flow and Rayleigh flow in a dimensionless
representation

According to (3.25) and (3.28), the Mach number versus fx/Dy, distribution, pertaining to
a compressible viscous diabatic flow, depends on the value of I", once Ma; and y have
been fixed.

Instead, for the Fanno flow, it is only possible to express Ma as a function of fx/Dy, once
Ma; and y have been selected.
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Figure 8. Dimensionless representation in Fanno’s mode. (a) Subsonic test: Ma; = 0.4 and (b) Supersonic
test: Ma; =2.5.

Figure 8 compares the Mach versus fx/D, distributions of the Fanno flow with those
referring to compressible viscous diabatic flows for fixed values of Ma; and y.

Figure 8(a) is related to a subsonic test, whereas figure 8(b) refers to a supersonic test.
Different curves, which were obtained by solving (3.25) and (3.28) for different positive
values of the Iy, to (fL/Dj,) ratio, have been plotted for the compressible viscous diabatic
flow.

In general, a lower value of I" leads to a less important heat transfer effect, compared
with the friction effect, and a smaller difference between the Mach versus fx/Dj,
distributions pertaining to Fanno’s and viscous diabatic flows.

When Iy is sufficiently smaller than (fL/Dy), the compressible viscous diabatic flow
distribution virtually coincides with the Fanno flow distribution: this is observed at
I' ~0.02 in the case of the supersonic flow, whereas it still does not occur at I" ~ (.01
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Figure 9. Dimensionless representation in Rayleigh’s mode. (a) Subsonic test: Maj = 0.342 and (b)
Supersonic test: Ma; = 4.

in the case of the subsonic flow. There is no general threshold value of I" below which the
Fanno solution can be considered coincident with that of the viscous diabatic flow. In fact,
as can be inferred from (3.25) and (3.28), the influence that term I can exert on the Ma
versus fx/Dj, distributions also depends on the value of Ma; (y is fixed in figure 8).

The variation rate of Ma in figure 8 is generally more reduced for the Fanno flow than
for viscous diabatic flows.

In the former case, only friction drives the flow changes, whereas, in the latter case, both
heat transfer (g > 0) and friction affect Ma in the same way, and this synergy makes Ma
grow with fx/Dy, at an increased rate.

Therefore, the Ma =1 level is reached at a lower value of fx/D; when the heat transfer
incidence, and thus the value of I", augment, as shown in figure 8.
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Figure 9 compares the Mach versus II, distributions of the compressible viscous
diabatic flows obtained from (3.27) and (3.28) with that pertaining to a Rayleigh’s flow
for fixed values of Ma; and y (g and thus IT, take on positive values).

As in the case of figure 8, both subsonic (figure 9a) and supersonic (figure 9b) tests
were performed. The parametric analysis was again made with respect to the value of
I': a higher value of I1;/(fL/Dj) led to a smaller difference from a Rayleigh’s flow.
The conclusions are consistent with those shown in figure 8 and when parameter Iy, is
sufficiently larger than (fL/Dj,), the viscous diabatic flow distribution coincides with the
Rayleigh’s flow distribution.

Furthermore, the rate of variation of Ma with respect to Il,, which is generally
experienced by the viscous diabatic flow, is larger than that corresponding to a Rayleigh’s
flow (the Ma =1 level is reached at a lower value of IT, as I decreases).

In short, the analysis presented in figures 8 and 9 proves the physical consistency of
(3.25)—(3.28), because the obtained Ma distributions for sufficiently high (I"—o00) and
low (I"—0) values of I match those of the Rayleigh and Fanno models, respectively,
which represent the two borderline cases of compressible viscous diabatic flows.

6. Analytical solution for steady-state compressible viscous flows with variable gy

The constant heat flux model requires the total heat transfer power with the walls as an
input datum of the problem; in fact, as already mentioned in § 3.1, the constant gy is
calculated by dividing such a heat power by the inner surface of the pipe. However, Q
is often an unknown datum of the problem and should be determined a posteriori on the
basis of the steady-state ODE solution.

Therefore, although the exact solution for the case of constant heat flux represents an
important result from the theoretical gas dynamics point of view, it cannot be applied to
those engineering problems for which Q is not known a priori, but represents an outcome
of the ODE solution. In fact, the most relevant case for the heat transfer phenomena is that
in which ¢y is expressed as a function of the temperature.

Let us now suppose that the heat flux is variable along the pipe and is expressed
according to (2.3). It does not seem possible that an exact solution of the steady-state
compressible viscous diabatic flow can be achieved directly in this case, because the

resulting ODE of the problem (a second-order ODE with dependent variable 4° and
independent variable x) is markedly nonlinear and cannot be led back to any known
typology for which an exact solution exists or can be attempted.

An iterative method is therefore proposed hereafter to determine an approximate
analytical solution with the required accuracy. The method is based on the exact solution
calculated for the problem with a constant heat flux (cf. § 3): in fact, the pipe is subdivided
into different parts of finite length L; =x; + 1 —x; (i is a counter that starts from 1, for
which x; =0, and arrives at N, for which xy41 = Zi L;) and the heat flux is regarded as
constant and equal to the space average of effective g (x) over each part.

Let us preliminarily suppose that the global heat transfer Q (either positive or negative),
mass flow rates 71, h(1) and u% /2 are known data of the problem; this simplifies the
illustration of the iterative procedure, but is not a necessary requirement (cf. § 6.1 for
further details when Q is unknown). The w2+ E > 0Vx hypothesis (cf. § 3) is introduced
in the following treatment, and the significant mathematical variants, which refer to the
w? + E < 0Vx case, are given in the appendix.

As a first step of the iterative procedure, an exact solution to the problem with constant
qr» which is equal to the space-averaged value of gr(x) over L, namely ¢, 1 = Q/(nDL),
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is calculated according to the approach presented in § 3. This solution represents the first
attempt to solve the problem with variable g;.

The second step involves the pipe of total length L being divided into N portions (a
higher N leads to a more accurate solution), and the following space-averaged value of gy

over L;, i.e. éf 1;» 1s introduced and defined for each portion as follows:
_ 1 Xi+1 A Xi+1
qf.L; ::—/ /l(Tw—T)dx:/lTW——/ Tdx i=1,2,...,N, (6.1)
Ll Xi Ll Xi

where A = A(Re, Pr) can be assumed constant along the pipe. In fact, the Reynolds number
and the Prandtl number (Pr = u/c,k, where « is the thermal conductivity of the fluid) can
be assumed constant, provided the dependences of c,, k and p on the fluid temperature
are neglected (a normally adopted hypothesis for a gas).

The space average of T over L;, which appears on the right-hand side of (6.1),
is estimated using the exact solution pertaining to the g = ij, 1 = const case for the
considered length of pipe.

Hence, rewriting (3.7) for the pipe segment that starts at point x;, and the length of which
is L;, and dividing this equation by c,, one obtains

Ggr 7D 2
DL = =12, N (6.2)
mey 2¢p

T=T+
where Ti0 = h? /cp is the value of the total temperature at x;. Such a value is calculated
directly from the boundary datum h(l) for i=1 (x; = 0) and it can be calculated from (3.18)
and (3.19), with g = 5f, 1 = const, for all the other i values.

By substituting the expression of 7, given by (6.2), in the integral in (6.1), the following
formula can be obtained for a first attempt at evaluating gy, 1,

C‘IJ()L ~ AT, — To(x,')] — —dx i=1,2,...,N. (6.3)

2

Agp mDL; A /ﬂﬂuz
’ +

2mcy, Licy Jy,

On the basis of (3.10), and taking both (3.9) and its differentiation dr = 2/ u? d(u? /2) into
account, one obtains (y := u?/2 for conciseness of notation)

vy =140 vl v+l
Xitl Vit 2 n Yitl 2 i 2
f ydx=/ r = x(y)dy+f Y i dy.
X i 4f y —1q; D i 4f y —1q; 7D
D y m D y m

(6.4)

The left-hand side member of this equation is the same as the space integral in (6.3).
The two space integrals on the right-hand side of (6.4) can be further decomposed into
other integrals that can then be solved analytically (Dwight 1961), according to what is
reported in table 1. As a result, it is possible to determine an analytical expression for
5}%(1’ =1,2,...,N) by substituting the analytical expression of | ;f #1442 /2 dx, which is
reported as the final result in table 1 (cf. step IV), in (6.3).

The third step of the procedure consists in calculating a new analytical solution, which

refers to the g = T](clzi = const case, for each piece of pipe that extends from x; to x; 4+ 1.
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Table 1. Analytical calculus steps of the [ y dx integral in (6.4).
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On the basis of (3.18) and (3.21), the following x = x(u? /2) distribution can be achieved

(i <x=<xiy1):
(1
\/> y_lq}(canz
rih e y+1D 4fm
14

X — X;

e ! 1
9.1, ™D y—1 |61;2 |nD?
Y 4fm
u2
x 2 i=1,2 ..N, (6.5)

=M _ 2

/ Lr=t q5.1,7D
2 v 4fm

where C; is given by

-a 1
_+y—161}ZTtD2 \/ V_]unDz
o k) 4 y+1D 4fim

! "(1) 1
L uw 2 y—1 |%(f,2,-|“D2
2 y 4fm

The second and third steps of the described procedure should be repeated replacing éj L

with qf(li in (6.2)—=(6.4) as well as in table 1: a second-attempt approximation of gy z,,

namely q}Z , can be determined from (6.3) and it can be used to obtain a new solution

(6.6)

from (6.5) (that is, 21}221 replaces Z]}lzl in (6.3) and (6.5)). When the iteration process

arrives at the final round, (6.5) gives the correct distribution x =x(u?/2) along each L;
(i=12...,N), (6.2) and (6.5) provide the corresponding 7'(x) distribution, and (2.3), (6.2)
and (6.5) provide the final g7(x) distribution.

In short, the presented analytical solution to the compressible viscous diabatic flow with
variable g given by (2.3) is a piecewise approximate solution. Each of the N analytical
pieces coincides with the exact solution of a problem that refers to a constant heat flux,
which is virtually equal to the exact value of the average g (x) over L;, namely g, 1,(i =
1,2,...,N). Assoon as N is increased by one, and the patterns of the piecewise analytical
solution do not change appreciably, compared with those pertaining to the preceding N
value, a piecewise analytical solution is reached that is almost equivalent to the exact
solution of the problem.

6.1. Validation of the developed solution

Figures 10 and 11 plot the validation tests for the steady-state analytical solutions of

viscous diabatic flows with a positive variable heat flux in the cases of subsonic and
supersonic motion, respectively. In both cases, the analytical solution was determined by
applying (6.1)—(6.6) iteratively, together with the relations reported in table 1.
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Figure 10. Validation test for the analytical solution with a variable heat flux for a subsonic flow.
Test conditions: L=200 cm, D=196 cm, p! =1bar, 79 =400K, py=0.6 bar, f=4 x 1073,
A1=364 W (m?K)~!, 7, =500K, y =14, R=287T (kg K)~', N=5, Ax=1 mm (rh = 35.47 g s~ ).

1000 G - 780
_A
950 = 720
900 660
7, 850 600 o
g -4
< 800 540 &
750 s ©  Numerical solution () 480
% A Analytical solution ()
700 | A 4 Numerical solution (7') 420
A.f = = Analytical solution (7)
650 ! — 4 360
0 0.2 0.4 0.6 0.8 1.0
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Figure 11. Validation test for the analytical solution with a variable heat flux for a supersonic flow. Test
conditions: L =45 cm, D=1.96 cm, p(l) = 2.51 bar, T? =900 K, Ma; =249, f=3 x 1073, A=423 W (m2
K", T, =880K,y =14, R=287J (kg K)~', N=6, Ax=0.l mm (iiz = 39.28 g s~ ).

Finally, the convective heat transfer power with the walls was evaluated using the
formula

N
: T (J+1
Q~nDY i1 L 6.7)
i=1
where the value J corresponds to the final iteration for the velocity distribution and E]}JZ D

comes from (6.3) after approximating éf, 1; with 5](01)@’ and introducing the velocity and
temperature distributions obtained at the end of iteration J.
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The PDE numerical solution used for validation in figures 10 and 11 was obtained as
described in § 4. It is based on the discretisation of (2.1), (2.2) and (2.4), and g is expressed
using (2.3).

As can be observed, the agreement between the numerical and analytical solutions in
figures 10 and 11 is satisfactory (the percentage differences between these solutions are
lower than 1 %) and the corresponding predictions of the total heat transfer are virtually the
same (the differences between the numerical and analytical Q predictions result to be lower
than or equal to 1 %). The accuracy obtained for the Q prediction via (6.7) is important
because it proves that each Z]}JZD (i=1,2,...,N) is virtually coincident with the space
average of the effective gy (x) over L;. This further confirms the physical consistency of the
procedure.

The pipe was subdivided into N =35 and N =6 pieces for the validation tests shown
in figures 10 and 11, respectively. In both cases, convergence to the exact solution was
reached for each piece L; of the pipe after few iterations.

The initial value of g used in the first-attempt solution with a constant heat flux
over the pipe (cf. §6) could not be equal to Q/(mwDL), because Q was unknown in

the tests: therefore, 21va ~ A(T,, — T1) was assumed in the first step of the iterative
procedure.

Furthermore, the mass flow rate of the supersonic flow in figure 11 was calculated easily
using (3.20), because the T?, p(l) and Ma; boundary conditions were assigned at the pipe
inlet.

Instead, the mass flow rate for the subsonic test in figure 10 was evaluated with the

shooting iterative procedure explained in § 3.1, because py was assigned in addition to T?
and p(l). Hence, a tentative value of Ma; was used for the subsonic flow to evaluate tentative
u% /2 and T values at the pipe inlet as well as a tentative mass flow rate m through the

whole pipe (the value of m is shared between the N lengths of the pipe). The pressure
value, p», at the end section of the whole pipe (xp = L), predicted using the piecewise

analytical solution after the iterations on Z]f, 1; Vi, was then compared with the py value,
and a final cycle of iterations was performed on Ma; until the difference between p; and
pv was within a prescribed tolerance. When the mass flow rate is provided as an input
datum to the steady-state subsonic problem (in addition to p(l) and T?), the iterations on
Ma are not performed and the whole procedure is simplified.

It is worth pointing out that the difficulty in determining the unknown flow-rate is not
a drawback of the proposed analytical solutions for compressible viscous diabatic flows,
and is also typical of the Fanno and Rayleigh models, which require iterative procedures
for the calculus of m when py, T? and p(l) are the input data to the problem.

Analogous tests to those presented in figures 10 and 11 have been carried out
successfully with a negative variable heat flux under the w?> + E > 0Vx condition, but
they have not been reported here for the sake of conciseness.

7. Conclusions

New analytical solutions have been obtained for the 1-D steady-state compressible viscous
diabatic flow of an ideal gas through a constant cross-section pipe. Such solutions are
valid for both subsonic and supersonic flows and extend the set of gas dynamics analytical
solutions.

As a first result, an exact solution was obtained for the case of either a positive or
negative constant heat flux with the walls.
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The original set of nonlinear Euler generalised ODEs for the steady-state 1-D flow was
reduced to a single, linear, first-order ODE with variable coefficients. To obtain a linear
ODE that can be solved analytically, it is essential to determine the right transformations
of the variables and to identify the kinetic energy per unit of mass as the physical variable
that should appear in the final ODE of the problem.

Moreover, as a second result, the obtained exact solution has been represented in
dimensionless form by reducing the number of parameters and variables with respect to
the dimensional ODE.

Two dimensionless representations have been proposed: in the Fanno mode
representation, the Mach number can be plotted as a function of the fx/D;, group, whereas,
in the Rayleigh mode representation, the Mach number can be plotted as a function of the
dimensionless group IT, = qanx/mh?. In both cases, different curves can be obtained
on a graph for different values of the I” parameter, which is defined by the ratio of I,
to (fL/Dp). When I' is sufficiently large (I"— 00), the developed analytical solution for
the compressible viscous diabatic flow tends to Rayleigh’s model, whereas, when I is
sufficiently small (I"—0), it tends to Fanno’s model.

As a third result, an iterative method has been developed to determine an approximate
analytical solution for the case of the 1-D viscous compressible flow along a constant
cross-section pipe in the presence of a variable convective heat flux with the walls. This is
a more relevant and general case for engineering applications than that with g; = const,
because it is not necessary to know the total heat transfer power exchanged with the walls
a priori to calculate the solution.

Because the problem with variable gy is affected by strong nonlinearity, it is not possible
to find a direct exact solution for this case. The duct was subdivided into N lengths L;
(i=12,...,N) and the heat flux with the walls was assumed constant in each portion:
the exact solution to the gy ;, = const problem was therefore applied to each piece of the
pipe. After a few iterations, the value of the constant heat flux in each piece converges to
the space average of the effective heat flux gr(x) over length L;. The developed iterative
methodology converges rapidly to an analytical solution and the accuracy of this solution
can be improved by increasing the value of N.

As a fourth result, the developed exact and approximate analytical solutions for constant
(both positive and negative) and variable g have been validated successfully through a
comparison with the corresponding numerical time asymptotic solutions of the generalised
Euler equations.

Finally, the compressible viscous diabatic flows have been discussed in enthalpy—entropy
diagrams, on the basis of the curves obtained from the exact solutions for the gr = const
case. Although the Fanno and Rayleigh curves in an A—s diagram are unique, once the
stagnation point at the pipe inlet (79, p(l)) and the value of n1/A have been assigned,
the corresponding h—s curves for the viscous diabatic flows are infinite, and depend on
the f and gy values (the synthetic dependence is on gr/f). Choking can occur for both
the g > 0 and gy < 0 conditions for compressible viscous diabatic flows. In the case of a
negative heat flux, choking can also be observed when the negative heat prevails over the
positive friction work and most of the evolution or all the evolution occurs with decreasing
entropy.
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Appendix

When condition w? + E < 0Vx holds (cf. § 3 for the expressions of w and E), the integrals
in (3.17) are replaced by the following integrals

w
dw = G arcsin (—)
VIE]
_FvV—w?—E

F
——dw
/wzv—w2—E E w

/ G
 —w2 —
ws—E (AD)

and the analytical solution given in (3.18) is modified as follows (g must be negative in
this case):

H/tz H/tz
gslnD y 4 y — 1 1gy|nD? y —11g;mD* 12
y 4fm y 4fm 2
(A2)

The constant C can be calculated by solving (A2) under the condition u?/2 = u% /2 at
x=x1=0:

y = 11glmD* 4
mh y  A4fm 2 y+1lD . 2 A3)
= — — — arcsin .
lgs|lD 2 y 4 1 g, mD?
uy y — gy
2 y  4fm

Equation (A3) replaces (3.21). Equations (A2) and (A3) provide the exact solution
under the hypothesis w? + E < 0Vx. This new solution has been validated successfully
in figure 12, where a comparison has been performed with the results of a numerical
simulation for the case of a supersonic flow.

Unlike figure 2, which refers to the w? + E > 0Vx case, the velocity increases and the
temperature reduces along the supersonic pipe. These trends of u and 7, with respect to x,
in figure 12 are of the same type as those experienced in Rayleigh’s supersonic flows with
a negative heat flux.

The procedure used to obtain a dimensionless representation for (A2) is similar to that
described for (3.18) in § 3.2. The outcome is analogous: either the Mach number or the
Crocco number can be expressed as functions of either fx/Dj, or I1,, according to Fanno’s
or Rayleigh’s mode representations, respectively, and I” is a parameter of the solution (the
other parameters are Ma; and y).
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Figure 12. Validation test for the analytical solution under the hypothesis of w? + E < 0 Vx for a supersonic
flow. Test conditions: L=65.5 cm, D=3.5 cm, 17(1) = 1.5 bar, T? =850K, Ma;=17, f=2 x 1073,
gr=-5%x100Wm=2,y=14,R=287J (kg K)~', Ax=1mm (r = 14.96 g s7')

Finally, let us suppose that w? + E = 0 at a certain x value. Without losing any generality,
we can assume that this happens at point x; = O (the following condition leads to a decrease
in entropy):

w oy —1gmD? 2y friw?
2 Yy  4fm y —1 nD?’

Neither (3.18) nor (A2) can be used because the denominators in the expressions go to
zero. By taking (A4) and (3.7) into account, (3.8) simplifies to

1 2 d 2
o YEIEN (M) (A5)
y—12)dx\ 2
If u?> + 2cpT0(y — 1)/(y + 1) (the equality corresponds to a choked flow with Ma = 1),
a general solution to (AS5) is given by u=const. This means that, for (3.1), the

thermodynamic evolution is isochoric (p = const). The temperature distribution can easily
be calculated from (3.7):

=0=q =~ (A4)

q nD u2
T() =T+ L —x— S (A6)
me Cp

where the value of g is obviously given by (A4). As can be inferred, the temperature
decreases linearly with x and the same occurs for the pressure, which can be calculated
from (3.4).

As far as the iterative solution to the case of the variable gr is concerned, the
methodology described in § 6 remains the same when the exact solution for the gy =
const case is given by (A2) and (A3). Obviously, (6.5) should be substituted with a
corresponding expression, based on (A2), and the solution to (6.4) involves different
integrals from those indicated in table 1.

The integrals corresponding to those in table 1 are reported in table 2 for the w? + E < 0
case. The essential point is that all the integrals in table 2 can be solved analytically.
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Table 2. Analytical calculus steps of the [ ydx integral in the w? +E <0 case.
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The last integral at point III, which involves the arcsine function as the integrand, has been
treated by applying the integration by parts formula.
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