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In this paper, we propose a new algebraic method to construct non-autonomous discrete

integrable systems. The method starts from constructing generalizations of convergence

acceleration algorithms related to discrete integrable systems. Then the non-autonomous

version of the corresponding integrable systems are derived. The molecule solutions of the

systems are also obtained. As an example of the application of the method, we propose a

generalization of the multistep ε-algorithm, and then derive a non-autonomous discrete exten-

ded Lotka–Volterra equation. Since the convergence acceleration algorithm from the lattice

Boussinesq equation is just a particular case of the multistep ε-algorithm, we have therefore

arrived at a generalization of this algorithm. Finally, numerical experiments on the new

algorithm are presented.

Key words: multistep ε-algorithm, G-transformation, Lotka–Volterra equation, Lattice
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1 Introduction

Let {Sn} be a sequence converging to some limit S . Sometimes the convergence is slow,

then one can turn to sequence transformation which transforms the original sequence

into a new one with hopefully better numerical properties. It is commonly said that the

transformation T : {Sn} → {Tn} accelerates the convergence of the sequence {Sn} if

lim
n→∞

Tn − S

Sn − S
= 0.

In the literature, many sequence transformations have been studied for the acceleration

of different kinds of sequences [5, 30, 34, 36, 37]. For most sequence transformations, the

terms of the new sequences can be expressed as ratios of determinants. Computationally, it

is possible to implement recursive algorithms to avoid actually evaluating the determinants.

Recently it has found that integrable systems have close connections with numerical

algorithms [21–24, 26, 32, 33, 38]. Some integrable equations have been applied to design
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new numerical algorithms. For example, the continuous-time Toda equation can be

used to design a new algorithm for computing the Laplace transform of a given analytic

function [24]. The discrete Lotka–Volterra system has applications in numerical algorithms

for computing singular values [18, 19, 33]. (Consult [3, 10, 11, 20] and references therein.)

Reciprocally, one can naturally expect to derive new integrable systems from some

numerical algorithms. Observe that some celebrated convergence acceleration algorithms

are found to be fully discrete integrable systems [21,26]. These facts motivate us to think

of constructing new integrable systems from the view point of convergence acceleration

algorithms.

Before discussing more details about sequence transformations and integrable systems,

it is helpful to recall some facts about the two subjects and the connection between them.

Discrete integrable systems can be considered as a specific class of discrete systems which

possesses an important property usually called integrability. In particular, the existence

of a Lax pair and a τ-function are two of the most important features of integrability

shared by some famous numerical algorithms, such as Rutishauser’s qd-algorithm [27] and

Wynn’s ε-algorithm [38]. We remark that corresponding to different boundary conditions

different versions of discrete integrable systems are available. An example is the famous

Toda equation

d2xk

dt2
= exk−1−xk − exk−xk+1 . (1.1)

In the infinite chain case with k = 0, ±1, ±2, . . . , we call (1.1) the infinite Toda lattice

equation. Under the periodic boundary condition xk+K0
= xk with k = 0, ±1, ±2, . . .

and fixed K0 > 0, equation (1.1) is referred to as the periodic Toda lattice equation. If

k = 0, 1, 2, . . . with the boundary condition x0(t) = −∞, we call (1.1) the semi-infinite Toda

equation or infinite Toda molecule equation. If x0(t) = −∞ and xN+1 = +∞, we call (1.1)

the finite non-periodic Toda equation or finite molecule Toda equation.

In connection with convergence acceleration algorithms, we are only interested in the

semi-infinite or infinite molecule case of (1.1), corresponding to the semi-infinite or infinite

Toda molecule equation. The solutions obtained in this way are called molecule solutions.

As it turns out, our molecule solutions are closely related to sequence transformations.

On the other hand, integrable systems have become a hot topic since the discovery

of solitons, and the search for new integrable equations is an important subject in

this field. Up to now, there have been several approaches to generate new extended

integrable systems. In this regard, we would like to mention two algebraic approaches to

generate new extended integrable systems: the pfaffianization method to construct coupled

integrable systems [7–9, 13, 14, 17, 25, 40] and the source generation method to generate

soliton equations with self-consistent sources [15, 16, 35]. Recall that the pfaffianization

method and the source generation method are similar in some points. They both start

from determinant or pfaffian soliton solutions of the original integrable equations. Then

the new solutions are constructed by pfaffianizing the dispersion relation of the elements

given in the determinant solutions (for pfaffianization method) or by replacing arbitrary

constants with arbitrary functions of some variables in the determinant or pfaffian (for

source generation method). Finally new coupled bilinear equations satisfied by the new

solutions are sought. While non-autonomous integrable systems form an important class

of integrable equations, yet a systematic algebraic way to construct non-autonomous
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integrable systems has not been found. In this paper, we present such a new algebraic

method to generate non-autonomous discrete integrable systems by generalizing the

molecule solutions of some discrete autonomous integrable systems that are related to

sequence transformations.

In Section 2, we review the ε-algorithm and a generalization of this algorithm pro-

posed by Brezinski, which inspires the main procedure of our method to generate

non-autonomous integrable systems from some convergence acceleration methods. In

Section 3, we present a generalization of the multistep ε-algorithm, and then derive a

non-autonomous discrete extended Lotka–Volterra equation. Section 4 is devoted to a gen-

eralization of the convergence acceleration method obtained from the lattice Boussinesq

equation, which is a particular case of the generalized multistep ε-algorithm given in

Section 3. Lastly, we apply the new algorithm to some numerical examples.

2 Introduction of the new method

In this section, we recall the ε-algorithm and one of its generalizations, together with the

corresponding sequence transformations. We then show the details of the procedure to

construct non-autonomous discrete integrable systems. Finally we review a generalization

of the G-transformation to exemplify this method.

The Shanks transformation [28, 29] is a generalization of Aitken’s Δ2 process which

transforms a given sequence {Sn} into the set of sequences {(ek(Sn))}, whose terms are

defined by

ek(Sn) =

∣∣∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+k

ΔSn ΔSn+1 · · · ΔSn+k

...
...

...

ΔkSn ΔkSn+1 · · · ΔkSn+k

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

ΔSn ΔSn+1 · · · ΔSn+k

...
...

...

ΔkSn ΔkSn+1 · · · ΔkSn+k

∣∣∣∣∣∣∣∣∣∣∣

, (2.1)

where Δ is the usual forward difference operator satisfying

Δi+1Sn = ΔiSn+1 − ΔiSn

with Δ0Sn = Sn.

The ε-algorithm is a well-known convergence acceleration algorithm proposed by Wynn

[38] to implement the Shanks transformation

ε
(n)
−1 = 0, ε

(n)
0 = Sn, n = 0, 1, . . . , (2.2)

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k, n = 0, 1, . . . (2.3)
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The connection between the Shanks transformation and the ε-algorithm is given by

ε
(n)
2k = ek(Sn),

whereas the elements with odd subscripts are only auxiliary quantities satisfying

ε
(n)
2k+1 =

1

ek(ΔSn)
.

In [2], the author proposed two generalizations of the ε-algorithm. The first generaliz-

ation is

ε
(n)
−1 = 0, ε

(n)
0 = Sn, n = 0, 1, . . . , (2.4)

ε
(n)
k+1 = ε

(n+1)
k−1 +

xn

ε
(n+1)
k − ε

(n)
k

, k, n = 0, 1, . . . (2.5)

Here noted that the variable xn is just dependent on n and has no dependence on k, which

is different from Wynn’s ρ- algorithm [39] as discussed in [2].

The corresponding sequence transformation can be expressed by [2, 5]

ek(Sn) =

∣∣∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k

Run Run+1 · · · Run+k

...
...

...

Rkun Rkun+1 · · · Rkun+k

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k

Run Run+1 · · · Run+k

...
...

...

Rkun Rkun+1 · · · Rkun+k

∣∣∣∣∣∣∣∣∣∣∣

, (2.6)

where un = xnSn. The operator R is defined by

Rk+1un = Δ

(
Rkun

xn

)
= Rk

(
Δ

(
un

xn

))
, (2.7)

with R0un = un. For example,

R2un = Δ

(
Run

xn

)
= Δ

⎛
⎝Δ

(
un
xn

)
xn

⎞
⎠ =

un+2

xn+1xn+2
− un+1

xnxn+1
− un+1

x2
n+1

+
un

x2
n

.

Obviously, the condition xn � 0 for all n has to be enforced. Note that Rkun can be

expressed by the forward difference operator Δ with the sequence {xn} according the

recursion formula (2.7). Since the expression Rkun seems to be much simpler compared

with the latter one, so the author [2] introduce the operator R to get the compact formula

(2.6) for the algorithm (2.4)–(2.5).
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Similarly, the connection between the generalized ε-algorithm (2.4)–(2.5) and the trans-

formation (2.6) is given by

ε
(n)
2k = ek(Sn), ε

(n)
2k+1 =

1

ek(ΔSn)
.

Obviously, if xn = 1 for all n, the following relation holds for any sequence {un}:

Rkun = Δkun, k = 0, 1, . . .

Then transformation (2.6) reduces to the Shanks transformation (2.1) and equation (2.5)

reduces to the recursive relation (2.3) of the ε-algorithm. We know that equation (2.3)

is equivalent to the discrete potential KdV equation [26]. Hence equation (2.5) can be

considered as the non-autonomous discrete potential KdV equation.

As mentioned in [5], the generalization of the ε-algorithm (2.4)–(2.5) can be obtained by

modifying directly the rule of the ε-algorithm (2.3), and the new sequence transformation

(2.6) can be derived by studying the properties of the algorithm. Here we consider the

ε-algorithm and its first generalization from another point of view. Note that the Shanks

transformation (2.1) has a special determinantal structure. The transformation (2.6) can

be derived from (2.1) by substituting the operator R for Δ, replacing the sequence

{Sn} with {un}, and making some modifications on the first row of the denominator

using an auxiliary sequence {xn}. Then the recursive rule (2.5) can be constructed by

determinantal identities to compute the transformation (2.6). Thus the non-autonomous

form of equation (2.3) is achieved. We refer to this approach as the new method to

generate non-autonomous integrable systems via convergence acceleration algorithms. We

now review a generalization of the G-transformation that we present in [4] by applying

this method.

First, we observe that the original G-transformation can be written in the form

G
(n)
k =

∣∣∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+k

xn xn+1 · · · xn+k

...
...

...

Δk−1xn Δk−1xn+1 · · · Δk−1xn+k

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

xn xn+1 · · · xn+k

...
...

...

Δk−1xn Δk−1xn+1 · · · Δk−1xn+k

∣∣∣∣∣∣∣∣∣∣∣

. (2.8)

where {xn} is a given auxiliary sequence which can depend on some terms of the sequence

{Sn}. If we introduce another auxiliary sequences {zn}, define un = Snzn, vn = xnzn, replace

Sn and xn by un and vn, respectively, substitute the operator R for Δ, and change the first

row in the determinant of the denominator to some consecutive terms of the sequence
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{zn} in the above formula, we can obtain the generalized G-transformation in [4]:

G
(n)
k =

∣∣∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k

vn vn+1 · · · vn+k

...
...

...

Rk−1vn Rk−1vn+1 · · · Rk−1vn+k

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

zn zn+1 · · · zn+k

vn vn+1 · · · vn+k

...
...

...

Rk−1vn Rk−1vn+1 · · · Rk−1vn+k

∣∣∣∣∣∣∣∣∣∣∣

.

Note that when zn = 1 for all n, the general G-transformation reduces to the original one.

A generalization of the G-algorithm has been proposed in [4], together with the

corresponding auxiliary rs-algorithm for implementing the generalized G-transformation.

A generalized qd-algorithm equivalent to the auxiliary rs-algorithm is also obtained in

the form

e
(n)
0 = 0, q

(n)
1 = xn+1/xn,

e
(n)
k +

1

zn+k
q

(n)
k − 1

zn
= e

(n+1)
k−1 +

1

zn+k+1
q

(n+1)
k − 1

zn+1
, (2.9)

q
(n)
k e

(n)
k = e

(n−1)
k q

(n−1)
k+1 . (2.10)

In particular, when zn = 1 for all n, this algorithm reduces to the usual qd-algorithm [27],

which has been shown to be simply a discrete Toda system [12] from the integrable systems’

point of view. Therefore equations (2.9)–(2.10) can be considered as a non-autonomous

discrete Toda system.

3 A generalization of the multistep ε-algorithm

We move on to apply the approach in Section 2 to the multistep ε-algorithm proposed

in [3], which is related to an extended discrete Lotka–Volterra system.

3.1 The multistep ε-algorithm

We start with some facts on the multistep ε-algorithm [3]

ε
(n)
k+1,m = ε

(n+1)
k−m,m +

1∏m
i=1(ε

(n+1)
k−m+i,m − ε

(n)
k−m+i,m)

, k, n = 0, 1, . . . , (3.1)

with initial values

ε
(n)
−m,m = 0, ε(n)−m+1,m = ε

(n)
−m+2,m = · · · = ε

(n)
−1,m = n, ε

(n)
0,m = Sn, n = 0, 1, . . . , (3.2)

where m is a fixed positive integer.
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As shown in [3], the molecule solution of equation (3.1) can be obtained by Hirota’s

bilinear method. By setting

ε
(n)
k,m =

Gnk,m

Fnk,m
,

equation (3.1) is transformed into the bilinear form (for simplicity, from now on we omit

the subscripts that indicate the dependence on the fixed integer m in Gnk,m and Fnk,m).

Fnk(m+1)+1G
n+1
k(m+1)+1 − Fn+1

k(m+1)+1G
n
k(m+1)+1 = −Fnk(m+1)+2F

n+1
k(m+1), (3.3)

Fnk(m+1)+1G
n+1
(k−1)(m+1)+1 − Fn+1

(k−1)(m+1)+1G
n
k(m+1)+1 = −Fn(k−1)(m+1)+2F

n+1
k(m+1), (3.4)

and, for i = 2, . . . , m+ 1,

Fnk(m+1)+iG
n+1
k(m+1)+i − Fn+1

k(m+1)+iG
n
k(m+1)+i = Fnk(m+1)+i+1F

n+1
k(m+1)+i−1, (3.5)

Fnk(m+1)+iG
n+1
(k−1)(m+1)+i − Fn+1

(k−1)(m+1)+iG
n
k(m+1)+i = Fn(k−1)(m+1)+i+1F

n+1
k(m+1)+i−1. (3.6)

We set

Hk(un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k−1

Δmun Δmun+1 · · · Δmun+k−1

Δ2mun Δ2mun+1 · · · Δ2mun+k−1

...
...

...

Δ(k−1)mun Δ(k−1)mun+1 · · · Δ(k−1)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k = 1, 2, . . . , n = 0, 1, . . . ,

with H−1(un) = 0 and H0(un) = 1. We also let

ψk(un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n n+ 1 · · · n+ k − 1

un un+1 · · · un+k−1

Δmun Δmun+1 · · · Δmun+k−1

Δ2mun Δ2mun+1 · · · Δ2mun+k−1

...
...

...

Δ(k−2)mun Δ(k−2)mun+1 · · · Δ(k−2)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k = 1, 2, . . . , n = 0, 1, . . . ,

with ψ−1(un) = 0 and ψ0(un) = 1.

The following result holds [3] for the bilinear equations (3.3)–(3.6) with specific initial

values:

Lemma 1 Given the initial values

Fn−m = Fn−m+1 = · · · = Fn0 = 1, Gn−m = 0, Gn−m+1 = Gn−m+2 = · · · = Gn−1 = n, Gn0 = Sn,
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the solution of the bilinear equations (3.3)–(3.6) can be expressed as

Fn(k−1)(m+1)+i = Hk(Δ
iSn), i = 1, 2, . . . , m+ 1

Gn(k−1)(m+1)+1 = Hk−1(Δ
m+2Sn), Gnk(m+1) = Hk+1(Sn),

Gn(k−1)(m+1)+i = ψk+1(Δ
i−1Sn), i = 2, 3, . . . , m.

From Lemma 1, the determinantal expressions of the multistep ε-algorithm are obtained

ε
(n)
k(m+1),m =

Hk+1(Sn)

Hk(Δm+1Sn)
, k = 1, 2, . . . , n = 0, 1, . . .

These expressions correspond to the multistep Shanks transformation in [3], and the

intermediate quantities are given by

ε
(n)
(k−1)(m+1)+1,m =

Hk−1(Δ
m+2Sn)

Hk(ΔSn)
,

ε
(n)
(k−1)(m+1)+i,m =

ψk+1(Δ
i−1Sn)

Hk(ΔiSn)
, i = 2, 3, . . . , m.

3.2 A generalization of the multistep ε-algorithm and the non-autonomous discrete

extended Lotka–Volterra equation

We now turn to construct a generalization of the multistep ε-algorithm. First, we set

Hk(un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k−1

Rmun Rmun+1 · · · Rmun+k−1

R2mun R2mun+1 · · · R2mun+k−1

...
...

...

R(k−1)mun R(k−1)mun+1 · · · R(k−1)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k = 1, 2, . . . , n = 0, 1, . . . ,

Φk(un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k−1

un un+1 · · · un+k−1

Rmun Rmun+1 · · · Rmun+k−1

R2mun R2mun+1 · · · R2mun+k−1

...
...

...

R(k−2)mun R(k−2)mun+1 · · · R(k−2)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k = 1, 2, . . . , n = 0, 1, . . . ,
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and

Ψk(un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yn yn+1 · · · yn+k−1

un un+1 · · · un+k−1

Rmun Rmun+1 · · · Rmun+k−1

R2mun R2mun+1 · · · R2mun+k−1

...
...

...

R(k−2)mun R(k−2)mun+1 · · · R(k−2)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k = 1, 2, . . . , n = 0, 1, . . . ,

where {xn} and {yn} are auxiliary sequences and un = xnSn. The operator R is defined by

(2.7), with {yn} satisfying

Ryn = Δ

(
yn

xn

)
= xn. (3.7)

We now show the relationship between the determinants H and Φ. We first rewrite

the determinant Φ in another form, then subtract the j − 1th column to jth column for

j = n, n− 1, . . . , 2, and apply the definition of the operator R (2.7), then we have

Φk(un) =

k−1∏
j=0

xn+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

un
xn

un+1

xn+1
· · · un+k−1

xn+k−1

Rmun
xn

Rmun+1

xn+1
· · · Rmun+k−1

xn+k−1

R2mun
xn

R2mun+1

xn+1
· · · R2mun+k−1

xn+k−1

...
...

...

R(k−2)mun
xn

R(k−2)mun+1

xn+1
· · · R(k−2)mun+k−1

xn+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

k−1∏
j=0

xn+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

un
xn

Δ
(
un
xn

)
· · · Δ

(
un+k−2

xn+k−2

)
Rmun
xn

Δ
(
Rmun
xn

)
· · · Δ

(
Rmun+k−2

xn+k−2

)
R2mun
xn

Δ
(
R2mun
xn

)
· · · Δ

(
R2mun+k−2

xn+k−2

)
...

...
...

R(k−2)mun
xn

Δ
(
R(k−2)mun

xn

)
· · · Δ

(
R(k−2)mun+k−2

xn+k−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

k−1∏
j=0

xn+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

un
xn

Run · · · Run+k−2

Rmun
xn

Rm+1un · · · Rm+1un+k−2

R2mun
xn

R2m+1un · · · R2m+1un+k−2

...
...

...

R(k−2)mun
xn

R(k−2)m+1un · · · R(k−2)m+1un+k−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
That is,

Φk(un) =

k−1∏
j=0

xn+jHk−1(Run). (3.8)

However, sometimes we still use the symbol Φ instead of H for simplicity in the subsequent

expressions.

We now define functions fnk and gnk by

fn(k−1)(m+1)+1 = Hk(Run), (3.9)

fn(k−1)(m+1)+i = Φk+1(R
i−1un), i = 2, 3, . . . , m+ 1, (3.10)

gn(k−1)(m+1)+1 = Φk(R
m+1un), gnk(m+1) = Hk+1(un), (3.11)

gn(k−1)(m+1)+i = Ψk+1(R
i−1un), i = 2, 3, . . . , m, (3.12)

for k = 1, 2, . . . Here we also omit the subscripts that indicate the dependence on the fixed

integer m in gnk and fnk .

Notice that when xn = 1 and yn = n (∀n), the determinants Hk(un) and Ψk(un) are

identical to Hk(un) and ψk(un), respectively. Therefore fnk and gnk reduce to Fnk and Gnk ,

respectively.

Now the functions fnk and gnk do not satisfy the bilinear relations (3.3)–(3.6) any more.

By similar determinantal identities as the proof of equations (3.3)–(3.6), we can obtain the

new equations fnk and gnk satisfy. The new results are as follows:

Theorem 1 The functions fnk and gnk defined by (3.9)–(3.12) satisfy the bilinear equations

k+1∏
j=1

xn+j(f
n
k(m+1)+1g

n+1
k(m+1)+1 − fn+1

k(m+1)+1g
n
k(m+1)+1) = −fnk(m+1)+2f

n+1
k(m+1), (3.13)

fnk(m+1)+2g
n+1
k(m+1)+2 − fn+1

k(m+1)+2g
n
k(m+1)+2 =

k+2∏
j=0

xn+jf
n
k(m+1)+3f

n+1
k(m+1)+1, (3.14)

k+1∏
j=1

xn+j(f
n
k(m+1)+1g

n+1
(k−1)(m+1)+1 − fn+1

(k−1)(m+1)+1g
n
k(m+1)+1) = −fn(k−1)(m+1)+2f

n+1
k(m+1), (3.15)

fnk(m+1)+2g
n+1
(k−1)(m+1)+2 − fn+1

(k−1)(m+1)+2g
n
k(m+1)+2 =

k+1∏
j=0

xn+jf
n
(k−1)(m+1)+3f

n+1
k(m+1)+1, (3.16)
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and for i = 3, 4, . . ., m+ 1,

fnk(m+1)+ig
n+1
k(m+1)+i − fn+1

k(m+1)+ig
n
k(m+1)+i = xnf

n
k(m+1)+i+1f

n+1
k(m+1)+i−1, (3.17)

xn+k+2(f
n
k(m+1)+ig

n+1
(k−1)(m+1)+i − fn+1

(k−1)(m+1)+ig
n
k(m+1)+i) = xnf

n
(k−1)(m+1)+i+1f

n+1
k(m+1)+i−1. (3.18)

Proof We need to use the determinantal relation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k+2

yn yn+1 · · · yn+k+2

Riun Riun+1 · · · Riun+k+2

...
...

...

Ri+kmun Ri+kmun+1 · · · Ri+kmun+k+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

k+2∏
j=0

xn+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

yn
xn

yn+1

xn+1
· · · yn+k+2

xn+k+2

Riun
xn

Riun+1

xn+1
· · · Riun+k+2

xn+k+2

...
...

...

Ri+kmun
xn

Ri+kmun+1

xn+1
· · · Ri+kmun+k+2

xn+k+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

k+2∏
j=0

xn+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

yn
xn

Δ
(
yn
xn

)
· · · Δ

(
yn+k+1

xn+k+1

)
Riun
xn

Δ
(
Riun
xn

)
· · · Δ

(
Riun+k+1

xn+k+1

)
...

...
...

Ri+kmun
xn

Δ
(
Ri+kmun
xn

)
· · · Δ

(
Ri+kmun+k+1

xn+k+1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

k+2∏
j=0

xn+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k+1

Ri+1un Ri+1un+1 · · · Ri+1un+k+1

Ri+1+mun Ri+1+mun+1 · · · Ri+1+mun+k+1

...
...

...

Ri+1+kmun Ri+1+kmun+1 · · · Ri+1+kmun+k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.19)

in subsequent calculations which can be obtained in similar way to the formula (3.8) with
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the relation (3.7) . We first prove the bilinear identity (3.17) for i = 3, 4, . . . , m. If we define

D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k+2

yn yn+1 · · · yn+k+2

Ri−1un Ri−1un+1 · · · Ri−1un+k+2

...
...

...

Ri−1+kmun Ri−1+kmun+1 · · · Ri−1+kmun+k+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

then by equations (3.8) and (3.19) we have

D =

k+2∏
j=0

xn+jΦk+2(R
iun) =

k+2∏
j=0

xn+jf
n
k(m+1)+i+1,

D(1, 2|1, k + 3) =
Φk+2(R

i−2un+1)∏k+2
j=1 xn+j

=
fn+1
k(m+1)+i−1∏k+2
j=1 xn+j

,

D(1|1) = Ψk+2(R
i−1un+1) = gn+1

k(m+1)+i,

D(2|k + 3) = Φk+2(R
i−1un) = fnk(m+1)+i,

D(1|k + 3) = Ψk+2(R
i−1un) = gnk(m+1)+i,

D(2|1) = Φk+2(R
i−1un+1) = fn+1

k(m+1)+i,

where D(j|k) and D(j, k|p, q) are (m+2)th order and (m+1)th order determinants obtained

by eliminating the jth row and the kth column from the determinant D and by eliminating

the jth and kth rows and the pth and qth columns from D, respectively.

From the above results, we see that the bilinear equation (3.17) is equivalent to the

Jacobi identity [6]

DD(1, 2|1, k + 3) = D(1|1)D(2|k + 3) − D(1|k + 3)D(2|1).

Bilinear equations (3.13) and (3.14) can be proved in a similar way. The case when

i = m+ 1 for equation (3.17) can also be proved directly by the Jacobi identity.

Next we prove equation (3.18) for i = 3, 4, . . . , m. By equations (3.8), (3.19) and

Schwein’s determinantal identity [1], we have

∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k+1

Ri−1un Ri−1un+1 · · · Ri−1un+k+1

...
...

...

Ri−1+kmun Ri−1+kmun+1 · · · Ri−1+kmun+k+1

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

yn+1 yn+2 · · · yn+k+1

Ri−1un+1 Ri−1un+2 · · · Ri−1un+k+1

...
...

...

Ri−1+(k−1)mun+1 Ri−1+(k−1)mun+2 · · · Ri−1+(k−1)mun+k+1

∣∣∣∣∣∣∣∣∣∣∣
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−

∣∣∣∣∣∣∣∣∣∣∣

xn+1 xn+2 · · · xn+k+1

Ri−1un+1 Ri−1un+2 · · · Ri−1un+k+1

...
...

...

Ri−1+(k−1)mun+1 Ri−1+(k−1)mun+2 · · · Ri−1+(k−1)mun+k+1

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

yn yn+1 · · · yn+k+1

Ri−1un Ri−1un+1 · · · Ri−1un+k+1

...
...

...

Ri−1+kmun Ri−1+kmun+1 · · · Ri−1+kmun+k+1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k+1

yn yn+1 · · · yn+k+1

Ri−1un Ri−1un+1 · · · Ri−1un+k+1

...
...

...

Ri−1+(k−1)mun Ri−1+(k−1)mun+1 · · · Ri−1+(k−1)mun+k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

Ri−1un+1 Ri−1un+2 · · · Ri−1un+k+1

Ri−1+mun+1 Ri−1+mun+2 · · · Ri−1+mun+k+1

...
...

...

Ri−1+kmun+1 Ri−1+kmun+2 · · · Ri−1+kmun+k+1

∣∣∣∣∣∣∣∣∣∣∣
.

In other words,

Φk+2(R
i−1un)Ψk+1(R

i−1un+1) − Φk+1(R
i−1un+1)Ψk+2(R

i−1un)

=

k+1∏
j=0

xn+jΦk+1(R
iun)

Φk+2(R
i−2un+1)∏k+2

j=1 xn+j
,

which is equivalent to equation (3.18). The case when i = m + 1 for equation (3.18) and

the bilinear equations (3.15)–(3.16) can be proved in a similar way. �

Notice that equations (3.13)–(3.18) are non-autonomous form of (3.3)–(3.6). When

xn = 1 (∀n), then equations (3.13)–(3.18) reduce to (3.3)–(3.6).

Next we consider the non-linear equation of the bilinear form (3.13)–(3.18). If we set

ε
(n)
k,m =

gnk
fnk
, (3.20)

we have
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Theorem 2 Given the initial conditions

fn−m = fn−m+1 = · · · = fn0 = xn, gn−m = 0, gn−m+1 = gn−m+2 = · · · = gn−1 = yn, gn0 = un,

if we define ε
(n)
k,m by (3.20), then bilinear equations (3.13)–(3.18) lead to the generalized

multistep ε-algorithm

ε
(n)
k+1,m = ε

(n+1)
k−m,m +

(xn)
m∏m

i=1(ε
(n+1)
k−m+i,m − ε

(n)
k−m+i,m)

, k, n = 0, 1, . . . (3.21)

with initial values

ε
(n)
−m,m = 0, ε(n)−m+1,m = ε

(n)
−m+2,m = · · · = ε

(n)
−1,m =

yn

xn
, ε

(n)
0,m = Sn, n = 0, 1, . . . (3.22)

For all k and n, it holds that

ε
(n)
k(m+1),m =

Hk+1(un)

Φk+1(Rmun)
, (3.23)

which can be considered as a generalization of the multistep Shanks transformation proposed

in [3]. For k = 1, 2, . . . and n = 0, 1, . . ., the intermediate quantities can be expressed by

ε
(n)
(k−1)(m+1)+1,m =

Φk(R
m+1un)

Hk(Run)
, (3.24)

ε
(n)
(k−1)(m+1)+i,m =

Ψk+1(R
i−1un)

Φk+1(Ri−1un)
, i = 2, 3, . . . , m. (3.25)

Proof The validity of equation (3.21) can be proved directly by bilinear relations (3.13)–

(3.18). The expressions for ε(n)k,m in (3.23)–(3.25) are just direct results of Theorem 1.

Note that when xn = 1 and yn = n (∀n), the algorithm (3.21)–(3.22) is identical to the

multistep ε-algorithm (3.1)–(3.2). If m = 1, the algorithm (3.21)–(3.22) reduces to the first

generalization of the ε-algorithm (2.4)–(2.5) proposed by Brezinski. �

We see that the kernel of the generalized multistep Shanks transformation (3.23), i.e.,

the set of sequences that are transformed into a constant sequence, is given by

Theorem 3 A necessary and sufficient condition that, for all n, ε(n)k(m+1),m = S is that there

exist constants a1, . . . , ak , ak � 0, such that, for all n,

(Sn − S)xn = a1R
mun + a2R

2mun + · · · + akR
kmun.

Lastly, we turn to consider the relationship of equation (3.21) to integrable systems.

Setting
(
a

(n)

k− m−1
2

)−1

= ε
(n+1)
k,m − ε

(n)
k,m, then from equation (3.21) we have

(xn+1)
m

m−1∏
i=0

a
(n+1)

k− m−1
2 +i

− (xn)
m

m−1∏
i=0

a
(n)

k− m−1
2 +i

=
1

a
(n)

k+ m+1
2

− 1

a
(n+1)

k− m+1
2

. (3.26)

https://doi.org/10.1017/S0956792515000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000479


208 Y. He et al.

When xn = 1 (∀n), equation (3.26) is identical to a discretization of the extended Lotka–

Volterra equation [3]

m−1∏
i=0

a
(n+1)

k− m−1
2 +i

−
m−1∏
i=0

a
(n)

k− m−1
2 +i

=
1

a
(n)

k+ m+1
2

− 1

a
(n+1)

k− m+1
2

, (3.27)

which can be derived from the multistep ε-algorithm (3.1)–(3.2). Thus we may consider

equation (3.26) as the non-autonomous version of equation (3.27).

By Theorem 1 and equations (3.9)–(3.12), we obtain the molecule solution of (3.26):

a
(n)

k(m+1)+1− m−1
2

= −
k+1∏
j=1

xn+j
Hk+1(Run)Hk+1(Run+1)

Φk+2(Run)Φk+1(Rmun+1)
,

a
(n)

k(m+1)+2− m−1
2

=
1∏k+2

j=0 xn+j

Φk+2(Run)Φk+2(Run+1)

Φk+2(R2un)Hk+1(Run+1)
,

a
(n)

k(m+1)+i− m−1
2

=
1

xn

Φk+2(R
i−1un)Φk+2(R

i−1un+1)

Φk+2(Riun)Φk+2(Ri−2un+1)
, i = 3, 4, . . . , m,

a
(n)

(k+1)(m+1)− m−1
2

=
1

xn

Φk+2(R
mun)Φk+2(R

mun+1)

Hk+2(Run)Φk+2(Rm−1un+1)
,

for k = 0, 1, . . ., with initial values

a
(n)

−m− m−1
2

= ∞, a
(n)

−m+1− m−1
2

= · · · = a
(n)

−1− m−1
2

=
1

xn
, a

(n)

− m−1
2

=
1

ΔSn
.

4 A generalization of the convergence acceleration algorithm related to the lattice

Boussinesq equation and a non-autonomous integrable system

It has been shown in [3] that when m = 2, the multistep ε-algorithm (3.1)–(3.2) is just

the convergence acceleration algorithm related to the lattice Boussinesq equation [10].

Therefore we derive here a generalization of this latter algorithm from the generalized

multistep ε-algorithm (3.21)–(3.22) by setting m = 2.

The generalization is given by

U
(n)
k = U

(n+1)
k−3 +

(xn)
2

(U(n+1)
k−2 −U

(n)
k−2)(U

(n+1)
k−1 −U

(n)
k−1)

, k = 1, 2, . . . , n = 0, 1, . . . , (4.1)

with initial conditions

U
(n)
−2 = 0, U

(n)
−1 =

yn

xn
, U

(n)
0 = Sn, n = 0, 1, . . . (4.2)

The corresponding sequence transformations {T (n)
k } are

T
(n)
k = U

(n)
3k .
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Table 1. Numerical results of Example 1

n |Sn − S | |T (n)
1 − S | |T (n)

2 − S | |T (n)
3 − S | |T (n)

4 − S |

0 1.000 0.222 0.052 7.132×10−10 3.044×10−10

1 0.500 0.138 0.033 1.785×10−9

2 0.333 0.096 0.023 5.230×10−9

3 0.250 0.072 0.017 1.962×10−8

6 0.143 0.038 7.662×10−3

9 0.100 0.024

12 0.077

Notice that when xn = 1 (∀n), equation (4.1) is the recursion rule of the convergence

acceleration algorithm from the lattice Boussinesq equation, which can be seen as a

simplified lattice Boussinesq equation. Therefore equation (4.1) can be seen as the non-

autonomous simplified lattice Boussinesq equation.

Before presenting numerical examples, we show how to choose the initial values for

U
(n)
−1 = yn/xn in (4.2). Recall that the sequence {yn} satisfies the relation (3.7). Then if {xn}

is given, we can choose U(n)
−1 to be

U
(n)
−1 =

yn

xn
=

n−1∑
k=0

xk.

We now perform some numerical experiments to test convergence acceleration of the

algorithm (4.1)–(4.2).

Example 1. We consider the sequence

Sn = 1 +
1

n+ 1
,

which converges to 1 as n → ∞. Here we choose xn = 1
n+4

, the corresponding transform-

ation results are tabulated in Table 1.

Example 2. We consider the sequence

Sn =

n∑
k=1

(−1)k−1

k

of partial sums of an alternating series, which converges to S = ln 2. Here we choose

xn = 1 + 1
n+4

. The corresponding transformation results are given in Table 2.

Remark that similar to the first generalization of the ε-algorithm (2.5), for the new

algorithm (3.21) the variable xn is also just dependent on n and has no dependence on k.

But this factor affects the acceleration properties of the new algorithm compared with the

original multistep ε-algorithm (3.1). As it can be seen that [31] the multistep ε-algorithm

(3.1) is effective for the linearly convergent sequences but not for the logarithmically

convergent sequences. But from the above numerical results of example 1, we can see that
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Table 2. Numerical results of Example 2

n |Sn − S | |T (n)
1 − S | |T (n)

2 − S | |T (n)
3 − S | |T (n)

4 − S | |T (n)
5 − S |

1 0.307 0.019 1.582×10−3 1.396×10−4 1.267×10−5 1.163×10−6

4 0.110 2.547×10−3 1.038×10−4 5.463×10−6 3.311×10−7 2.187×10−8

7 0.066 8.025×10−4 1.910×10−5 6.427×10−7 2.670×10−8 1.276×10−9

10 0.048 3.536×10−4 5.515×10−6 1.283×10−7 3.851×10−9 1.380×10−10

13 0.037 1.868×10−4 2.058×10−6 3.503×10−8 7.941×10−10

16 0.030 1.106×10−4 9.073×10−7 1.180×10−8

19 0.026 7.091×10−5 4.500×10−7

the non-autonomous form of the original algorithm is effective for some logarithmically

convergent sequences when the variable xn is chosen appropriately.

5 Conclusions and discussions

In this article, we propose a new method to construct the non-autonomous form of

discrete integrable systems that related to convergence acceleration algorithms. By the

method, we can also obtain generalizations of the original convergence acceleration

algorithms which involves an auxiliary sequence {xn}. From the numerical examples

given in Section 4, we can see that the sequence {xn} plays an important role when

the algorithm applying to different kinds of sequences. How about the acceleration

properties of the generalized algorithms for different choices of {xn}? In addition, how

about the convergence and stability analysis of the generalized algorithms as they are

being applied to some important classes of linearly, logarithmically and hyperlinearly

convergent sequences? These problems need further studies, and we will consider these

problems in the future.
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