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PSEUDOFINITE H -STRUCTURES AND GROUPS DEFINABLE IN
SUPERSIMPLE H -STRUCTURES

TINGXIANG ZOU

Abstract. In this article we explore some properties of H -structures which are introduced in [2]. We
describe a construction of H -structures based on one-dimensional asymptotic classes which preserves
pseudofiniteness. That is, the H -structures we construct are ultraproducts of finite structures. We also
prove that under the assumption that the base theory is supersimple of SU -rank one, there are no new
definable groups in H -structures. This improves the corresponding result in [2].

§1. Introduction. H -structures are introduced in [2]. They are based on a geo-
metric theory, where algebraic closure satisfies the exchange property and ∃∞ is
eliminated. When a dense and co-dense independent subset is added to a model
of this theory, the resulting structure is an H -structure. Strongly minimal theories,
supersimple SU -rank one theories and superrosy thorn-rankone theories with elim-
ination of ∃∞ are examples of geometric theories. In these cases, the corresponding
H -structures preserve �-stability, supersimplicity or superrosiness and the rank is
either one or �.
In the following, we will recall the definition of H -structures and some of their
main properties.
LetT be a complete geometric theory in a languageL. LetH be a unary predicate
and put LH = L ∪ {H}. Let M |= T ; we say that A ⊆ M is finite dimensional if
A ⊆ aclL(a1, . . . , an) for some a1, . . . , an ∈M . For a tuple a and a set of parameters
A, we write dimaclL(a/A) as the length of a maximal aclL-independent subtuple of
a over A.

Definition 1.1. We say that (M,H (M )) is anH-expansion ofM 1 if:

1. M |= T ;
2. H (M ) is an aclL-independent subset ofM ;
3. (Density/coheir property) If A ⊆ M is finite dimensional and q ∈ S1(A) is
nonalgebraic, there is a ∈ H (M ) such that a |= q;

4. (Extension property) If A ⊆ M is finite dimensional and q ∈ S1(A) is
nonalgebraic, then there is a ∈M , a |= q and a �∈ aclL(A ∪H (M )).
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1It is just called an H -structure in [2], we add this terminology to be more precise about the base

theory or the base model.
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Equivalently, we can replace density and extension properties with the following
more general ones:

• (Generalised density/coheir property) If A ⊆ M is finite dimensional and
q ∈ Sn(A) has dimension n, then there is a ∈ H (M )n such that a |= q;

• (Generalised extension property) IfA ⊆M is finite dimensional and q ∈ Sn(A)
is nonalgebraic, then there is a ∈Mn , a |= q and

dimaclL(a/A,H (M )) = dimaclL(a/A).

A structureM is called anH -structure if it is anH -expansion of some model of
a geometric theory.

H -structures are closely related to lovely pairs, where, instead of an indepen-
dent subset, a dense and co-dense elementary substructure is added. We recall
the definition of lovely pairs in the special case that the base theory is geometric,
see [1].

Definition 1.2. Let T be a geometric theory in a language L and let LP be the
expansion of L by a unary predicate P. An LP-structure (M,N) is a lovely pair of
models of T , if

1. M |= T ;
2. N is an L-elementary submodel ofM ;
3. (Density/coheir property) If A ⊆ M is finite dimensional and q ∈ S1(A) is
nonalgebraic, there is a ∈ N such that a |= q;

4. (Extension property) If A ⊆ M is finite dimensional and q ∈ S1(A) is
nonalgebraic, then there is a ∈M , a |= q and a �∈ aclL(A ∪N).

Fact 1.3 ([2] and [1]). Properties ofH -structures and lovely pairs.
Let T be a complete geometric theory in a language L.
• H -expansions of models ofT exist and all of them areLH -elementary equivalent.
Let TH be the corresponding theory. Similarly, lovely pairs of models of T exist,
and all of them are LP-elementary equivalent.

• If T is strongly minimal/supersimple/superrosy of rank 1 and the geometry of T
is nontrivial, then TH is �-stable/supersimple/superrosy of rank �.

• Let (M,H (M )) be anH -structure. Then (M, aclL(H (M ))) is a lovely pair.
Consider the theoryof pseudofinitefields. It is supersimpleofSU -rankone.By the
fact above,H -expansions and lovely pairs of pseudofinite fields exist. However, the
proof of existence uses general model theoretic techniques such as saturatedmodels
and union of chains. It is not clear whether it is possible to have H -expansions or
lovely pairs of pseudofinite fields that are ultraproducts of finite structures.
The answer turns out to be negative for lovely pairs.

Lemma 1.4. If (K, k) is a lovely pair of pseudofinite fields, then it is not
pseudofinite.2

Proof. Let (K ′, k′) =
∏
i∈I (K

′
i , k

′
i )/U be a pair of pseudofinite fields with

char(K ′) = char(k′) such that k′i � K
′
i are finite fields for any i ∈ I .

2This was already noticed by Gareth Boxall (private communication).
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Suppose char(K ′) �= 2. We will show that there are a1, a2 ∈ K ′ and ϕ(x;y1, y2)
in the language of rings such thatϕ(x; a1, a2) is nonalgebraic, but there is no b ∈ k′
such that ϕ(b; a1, a2) holds. However, as (K, k) is a lovely pair, the following holds
in (K, k):

∀y1∀y2(∃∞xϕ(x;y1, y2)→ ∃z ∈ kϕ(z;y1 , y2)).
Therefore, (K, k) is not elementary equivalent to (K ′, k′).
As char(K ′) �= 2, we may assume that char(Ki) �= 2 for all i ∈ I . For any i ∈ I
take �i ∈ Gal(K ′

i /k
′
i) with �i �= id . Let ai1 , ai2 ∈ K ′

i be such that �i(ai1 ) = ai2 and
ai1 �= ai2 . Let � = (�i)i∈I /U , a1 := (ai1 )i∈I /U and a2 := (ai2 )i∈I /U . Then a1 �= a2,
�(a1) = a2 and k′ ⊆ Fix(�). Define

ϕ(x;y1, y2) := ∃z(z2 = x − y1) ∧ ¬∃z(z2 = x − y2).
We claim that ϕ(x; a1, a2) is nonalgebraic in K ′. Since char(K ′

i ) �= 2 for any i ∈ I ,
we have {x2 : x ∈ K ′

i } � K ′
i . Let ei be such that there is no x ∈ K ′

i with x
2 = ei .

Then by [3, Proposition 4.3], the ideal generated by {(X1)2 − (X − ai1 ); (X2)2 −
ei(X − ai2 )} is absolutely prime and does not contain X − ai1 or X − ai2 . Let V be
the corresponding irreducible variety. Then V has dimension 1; by the Lang-Weil
estimate |V ∩ K ′

i | ≈ |K ′
i |. We claim that Ki |= ϕ(x; ai1 , ai2 ) for any (x1, x2, x) ∈

V ∩ K ′
i with x �= ai2 . Since if not, there is some x3 such that x − ai2 = (x3)2. As

x �= ai2 , we have x3 �= 0. Then ei = (x2x3 )2, contracting that ei is not a square-root.
Therefore, we can define a function

�i : (V ∩K ′
i ) \ {(x1, x2, ai2 ) : x1, x2 ∈ K ′

i } → ϕ(K ′
i ; ai1 , ai2 )

by �i(x1, x2, x) := x. As char(K ′
i ) �= 2, it is easy to see that �i is a four-to-one

function. By that |V ∩K ′
i | ≈ |K ′

i |, we conclude that

|ϕ(K ′
i ; ai1 , ai2 )| ≈

1
4
|V ∩K ′

i |.
Thus, ϕ(x; a1, a2) is nonalgebraic.
On the other hand, for any b ∈ k′ we have

∃z(z2 = b − a1)⇐⇒ ∃z(�(z2) = �(b − a1))
⇐⇒ ∃z(�(z)2 = b − a2)⇐⇒ ∃z(z2 = b − a2).

Therefore, there is no b ∈ k′ such that ϕ(b; a1, a2) holds.
The case of char(K ′) = 2 is similar, using cubes instead of squares (and possibly
going to some finite extension of K ′). �
In view of the close connection between H -structures and lovely pairs, we might
expect H -expansions of pseudofinite fields never to be pseudofinite. Luckily, this is
not so. In fact, we can see from the proof above that the reason (K ′, k′) is not a
lovely pair is the existence of a nontrivial automorphism � ofK ′ that fixes k′. In the
case ofH -expansions, instead of a subfield we only need to add a subset. Intuitively,
we might be able to choose a pseudofinite set large enough such that no nontrivial
automorphism can fix all the points in this set.

Definition 1.5. Let T be a geometric theory in a language L. Let M =∏
i∈I Mi/U |= T be an infinite ultraproduct of finite structures. We call an H -
expansion (M,H (M)) an exact pseudofiniteH -expansion ofM if (M,H (M)) =∏
i∈I (Mi,Hi )/U with Hi ⊆Mi for all i ∈ I .
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Remark 1.6. Let M =
∏
i∈I Mi/U |= T be pseudofinite. Then an arbitrary

pseudofinite H -expansion need not to be exact, since it need not be this particu-
lar ultraproduct. For example, let U be a nonprincipal ultrafilter on N. Suppose
V :=

∏
i∈N
Vn/U is an ultraproduct of finite vector spaces over F2 such that

limn∈N dim(Vn) = ∞. It is easy to build an exact pseudofinite H -expansion of
V by choosing an independent set Hn ⊆ Vn for each n ∈ N with

lim
n∈N

dim(Hn) = lim
n∈N

codim(Hn) =∞

and put (V,H ) =
∏
n∈N
(Vn,Hn)/U . LetH ′ ⊆ V be a countable independent set of

V . Then (V,H ′) is pseudofiniteH -expansion of V as (V,H ′) ≡ (V,H ). But (V,H ′)
is not ℵ1-saturated, hence cannot be an ultraproduct over nonprincipal ultrafilters.
Thus (V,H ′) is not exact.

Let C be a one-dimensional asymptotic class andM be an infinite ultraproduct
of members of C. In Section 2 we show that exact pseudofinite H -expansions of
M always exist. In particular, pseudofinite H -expansions of pseudofinite fields do
exist.
Section 3 dealswith definable groups inH -structures.Ourmotivation is to classify
definable groups in H -expansions of pseudofinite fields. There are some results
about definable groups in H -structures when the base theory is superstable in [2]
using the group configuration theorem. The problem to generalise these results
is that in simple (even in supersimple) theories, there is no nice version of the
group configuration theorem available in general. However, pseudofinite fields are
exceptional: the group configuration theorem for pseudofinite fields has essentially
been given in [5]. We can easily deduce that definable groups in H -expansions of
pseudofinite fields are virtually isogenous to algebraic groups.
However, this is not very satisfactory. It is of course the best one could get
when one compares definable groups in H -expansions of pseudofinite fields with
algebraic groups. But as has been noticed in [2], “since the geometry on H is
trivial, we expected adding H should not introduce new definable groups.” With
the help of the group chunk theorem in simple theories (see Fact 3.11) we give a
more satisfactory answer, namely, there are no new definable groups inH -structures
when the base theory is supersimple of SU -rank one. Notably, Eleftheriou also got
a same classification of definable groups inH -structures in the setting of o-minimal
theories using the similar strategy, see [4, Theorem 1.2].

§2. PseudofiniteH -structures. This section deals with pseudofiniteH -structures
built from one-dimensional asymptotic classes.
One-dimensional asymptotic classes are classes of finite structures with a nicely
behaved dimension and counting measure on all families of uniformly definable
sets. They are introduced in [6] inspired by the class of finite fields.
We recall the definition of a one-dimensional asymptotic class and list some
examples.

Definition 2.1. Fix a language L. A class C of finite L-structures is called a
one-dimensional asymptotic class if the following holds for every m ∈ N and every
formula ϕ(x; ȳ) with |ȳ| = m:
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1. There is a positive constant C and a finite set E ⊆ R>0 such that for any
M ∈ C and b̄ ∈Mm , either |ϕ(M ; b̄)| < C or there is � ∈ E with

||ϕ(M ; b̄)| − �|M || < C · |M | 12 .
2. For every � ∈ E there is an L-formula ϕ�(ȳ) such that for any M ∈ C and
b̄ ∈Mm

M |= ϕ�(b̄) if and only if ||ϕ(M ; b̄)| − �|M || < C · |M | 12 .
Examples of one-dimensional asymptotic classes are:

• The class of finite fields.
• The class of finite-dimensional vector spaces over a fixed finite field.
• The class of finite cyclic groups.
Fact 2.2 ([6], Lemma 4.1). Let C be a one-dimensional asymptotic class andM
an infinite ultraproduct of members of C. Then Th(M ) is supersimple of SU -rank 1.
In particular, the theory of any infinite ultraproduct of members of a one-
dimensional asymptotic class is a model of a geometric theory, and we will show
that it always allows an exact pseudofiniteH -expansion.

Definition 2.3. Let C be a one-dimensional asymptotic class in a language L.
Let ϕ(x; ȳ) (ȳ nonempty) be an L-formula and E ⊆ R>0 be as in Definition 2.1.
Put

�ϕ(ȳ) :=
∨
�∈E
ϕ�(ȳ).

For a structure M ∈ C and a subset X ⊆ M , we say X covers �ϕ(ȳ) in M if the
following holds: ⋃

x∈X
ϕ(x;M |ȳ|) ⊇ �ϕ(M |ȳ|).

Let φ(x; ȳ) be a formula. Suppose φ(x; ȳ) is algebraic (ȳ can be empty) over any
ȳ. For a structureM ∈ C and a linearly ordered subsetX ⊆M , we say thatX avoids
φ(x; ȳ) inM if there is no x, x1, . . . , x|ȳ| ∈ X |ȳ|+1 such that x > max{x1, . . . , x|ȳ|}
and

M |= φ(x;x1, . . . , x|ȳ|).
LetM be an infinite ultraproduct ofmembers of C.For anyϕ(x, ȳ) and ā ∈ M|ȳ|,
ifM |= �ϕ(ā), then there is � ∈ E such that |ϕ(M, ā)| ≈ �|M|. As � > 0 and
M is infinite, we get ϕ(M, ā) is infinite. On the other hand, ifM |= ¬�ϕ(ā), then
by the definition one-dimensional asymptotic class, there must be some C ∈ N

such that |ϕ(M, ā)| ≤ C . Therefore, �ϕ(ȳ) defines the set of ā such that ϕ(x, ā) is
nonalgebraic in any infinite ultraproduct of members of C.
Lemma 2.4. Let C be a one-dimensional asymptotic class, Γ be a finite set of
algebraic formulas of the form φ(x; z̄) (z̄ could be empty) and Δ any finite set of
formulas of the form ϕ(x; ȳ) (the length of ȳ can vary and ȳ is nonempty). Then there
are NΔ,Γ ∈ N and CΔ,Γ ∈ R>0 such that the following holds:
For anyM ∈ C with |M | ≥ NΔ,Γ, there exists (HΔ,Γ(M ),≤) with HΔ,Γ(M ) ⊆ M
and |HΔ,Γ(M )| ≤ CΔ,Γ · log |M | such that for any ϕ(x; ȳ) ∈ Δ and φ(x; z̄) ∈ Γ, we
haveHΔ,Γ(M ) covers �ϕ(ȳ) and avoids φ(x; z̄) inM .
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In particular, |M | ≥ NΔ,Γ should imply the equation (2) and the inequality (3),
which are defined throughout the proof.

Proof. By Definition 2.1, for each ϕ(x; ȳ) ∈ Δ there are finitely many
�0,ϕ , . . . , �kϕ,ϕ > 0 and Cϕ ∈ R, such that for anyM ∈ C and ā ∈M |ȳ|,

�ϕ(ā) =⇒
∨
j≤kϕ
(||ϕ(M ; ā)| − �j,ϕ · |M || < Cϕ · |M | 12 ).

Take 0 < � < min{�0,ϕ, . . . , �kϕ ,ϕ : ϕ ∈ Δ}. Let
C� :=

⋂
ϕ∈Δ

{M ∈ C : �ϕ(ā) implies |ϕ(M ; ā)| ≥ � · |M | for all ā ∈M |ȳ|}.

We claim that there is someN ∈ N such that for anyM ∈ C and |M | > N , we have
M ∈ C�. Otherwise, there are ϕ(x; ȳ) ∈ Δ, �i0 ,ϕ > 0 and {Mi ∈ C, āi ∈ M |ȳ|

i : i ∈
N} such that the following holds:
• limi→∞ |Mi | =∞;
• Mi |= ϕ�i0 ,ϕ (āi) for each i ∈ N;
• |ϕ(Mi ; āi)| < � · |Mi | < �i0,ϕ · |Mi | for each i ∈ N.

Therefore,

�i0,ϕ · |Mi | − |ϕ(Mi ; āi)| > (�i0 ,ϕ − �) · |Mi | = (�i0 ,ϕ − �) · |Mi |
1
2 · |Mi | 12 .

By the definition of one-dimensional asymptotic class, there is some Cϕ > 0 such
that

||ϕ(Mi ; āi)| − �i0 ,ϕ · |Mi || < Cϕ · |Mi |
1
2 .

Since limi→∞(�i0,ϕ − �) · |Mi |
1
2 =∞, there is clearly a contradiction.

Assume Δ = {ϕ1(x; ȳ1), . . . , ϕn(x; ȳn)}. Fix anyM ∈ C with |M | > N , for 1 ≤
i ≤ n, define inductively the following sets:X ij , Lij ,H ij ⊆M andY ij ⊆ �ϕi (M |ȳi |).

• Y 10 := �ϕ1(M |ȳ1|);
• X 10 := H 10 := L10 := ∅;
Suppose Y ij , X

i
j ,H

i
j , L

i
j are defined. There are two cases.

• If Y ij = ∅ and i < n, define
– Y i+10 := �ϕi+1(M

|ȳi+1|);
– X i+10 := Li+10 := ∅;
– Hi+10 := Hij .

• If Y ij �= ∅, define
– Lij+1 :=

⋃
φ(x;z̄)∈Γ{a ∈ M : ∃z̄ ∈ (Hij )

|z̄|,M |= φ(a; z̄)} ∪⋃
φ′(x)∈Γ φ

′(M ).
– X ij+1 :=M \ (Hij ∪ Lij+1).
– Choose an element hij+1 in X

i
j+1 such that ϕi(h

i
j+1;Y

i
j ) has the maximal

cardinality among {ϕi(a;Y ij ) : a ∈ X ij+1}.
– Hij+1 := H

i
j ∪ {hij+1} and Y ij+1 = Y ij \ ϕi (hij+1;Y ij ).

The construction stops either when Ynj is empty, that isH
i
j covers�ϕi (ȳi) for any

1 ≤ i ≤ n, or when Y ij �= ∅ and X ij+1 = ∅ for some 1 ≤ i ≤ n and j ∈ N.
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Let Y 10 , . . . , Y
i
j be a maximal sequence of the construction. Define HΔ,Γ(M ) :=

Hij if i = n and Y
i
j = ∅.

Claim 2.5. There isNΔ,Γ ∈ N such that ifM ∈ C and |M | ≥ NΔ,Γ, thenHΔ,Γ(M )
is always defined.

Proof. Suppose |M | > N andM ∈ C. We first estimate the size ofY ij+1 in terms
of Y ij when the latter is not empty during the construction of {Hij, Y ij , Lij, X ij : i ≤
n, j ≥ 0}.
Suppose all φ(x; z̄) ∈ Γ have nomore thanC -many solutions over any parameter
z̄ (z̄ can be empty). Let CΓ := C · |Γ| and k0 := max{|z̄| : φ(x; z̄) ∈ Γ}. Then
|Lij+1| ≤ CΓ · (|Hij |+ 1)k0 .3
Therefore,

|X ij+1| ≥ |M | − CΓ · (|Hij |+ 1)k0 − |Hij |. (1)

By construction,Y ij+1 = Y
i
j \ {ϕi(hij+1;Y ij )}. As ϕi(hij+1;Y ij ) is maximal among

{ϕi(a;Y ij ) : a ∈ X ij+1}, we get

|ϕi (hij+1;Y ij )| ≥
|⋃a∈Xij+1{(a, ȳ) : ȳ ∈ ϕi(a;Y ij )}|

|X ij+1|

≥
|⋃a∈Xij+1{(a, ȳ) : ȳ ∈ ϕi(a;Y ij )}|

|M | .

Let Tot :=
⋃
x∈(M\Hij ){(x, ȳ) : ȳ ∈ ϕi(x;Y ij )}, then⋃

a∈Xij+1
{(a, ȳ) : ȳ ∈ ϕi(a;Y ij )} = Tot \

⋃
a∈Lij+1

{(a, ȳ) : ȳ ∈ ϕi(a;Y ij )}.

AsM ∈ C�, for each ȳ ∈ Y ij we have |ϕi(M ; ȳ)| ≥ � · |M |. And by the definition
of Y ij , for any ȳ ∈ Y ij , ifM |= ϕi(a; ȳ), then a �∈ Hij . Hence, |Tot| ≥ � · |M | · |Y ij |.
On the other hand,

|
⋃
a∈Lij+1

{(a, ȳ) : ȳ ∈ ϕi(a;Y ij )}| ≤
∣∣Lij+1| · |Y ij ∣∣ ≤ CΓ · (|Hij |+ 1)k0 · |Y ij |.

Hence,

|ϕi (hij+1;Y ij )| ≥
� · |M | · |Y ij | − CΓ · (|Hij |+ 1)k0 · |Y ij |

|M |

=

(
�− CΓ · (|H

i
j |+ 1)k0

|M |

)
|Y ij |.

Let 	0 := max{|ȳi | : 1 ≤ i ≤ n}. Define

hM := � 	0 · log |M |
− log(1− �/2)�+ 1. (2)

3Since we need to include the algebraic elements over ∅ defined by formulas in Γ, it can be thatHij = ∅
but Lij+1 �= ∅, that’s the reason we put |Hij |+ 1 instead of |Hij |.
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Then there is some N�/2 such that whenever |M | ≥ N�/2, we have
CΓ · (n · hM + 	0)k0

|M | ≤ �
2
. (3)

In particular, we have
CΓ · (n · hM + 1)k0

|M | ≤ �
2
. (4)

Therefore, when |Hij | ≤ n · hM , we have |ϕi(hij+1;Y ij )| ≥ �
2 |Y ij |, and hence,

|Y ij+1| = |Y ij | − |ϕi(hij+1;Y ij )| ≤
(
1− �
2

)
|Y ij |.

Consequently,

|Y ij+1| ≤
(
1− �
2

)
|Y ij | ≤

(
1− �
2

)2
|Y ij−1| ≤ · · ·

≤
(
1− �
2

)j+1
|Y i0 | ≤

(
1− �
2

)j+1
|M |	0 .

There is some NΔ,Γ > max{N�/2, N} such that whenever |M | > NΔ,Γ, we have
(1 − �

2 ) · |M | > n · hM . Fix someM ∈ C with |M | > NΔ,Γ and let
Y 10 , . . . , Y

1
t1
; · · · , ;Y i0 , . . . , Y iti

be a maximal sequence. We claim that for each i ′ ≤ i , if |Hi′ti′ | ≤ n · hM , then
ti′ ≤ hM . Otherwise, Y i′hM is in the sequence. By the argument above, |Y i

′
hM

| ≤
(1 − �

2 )
hM · |M |	0 . By calculation, we have

k >
	0 · log |M |

− log(1− �/2) =⇒
(
1− �
2

)k
· |M |	0 < 1.

Hence, Y i0hM = ∅. We conclude ti0 ≤ hM . Therefore, t1 ≤ hM and by induction,
for each 1 ≤ i ′ ≤ n, we have |Hi′ti′ | =

∑
1≤j≤i′ tj ≤ i ′ · hM . Now we can see that

|Hiti | ≤ n · hM .
Consider the set X iti+1. By inequality (1),

|X iti+1| ≥ |M | − CΓ · (|Hiti |+ 1)k0 − |Hiti | ≥ |M | − CΓ · (n · hM + 1)k0 − n · hM .
By inequality (4) and (1 − �

2 ) · |M | > n · hM , we get

|X iti+1| ≥ |M | − �
2
|M | − n · hM > 0.

Hence X iti+1 �= ∅. As Y iti is the end term of a maximal sequence, it can only be the
case that Y iti = ∅ and i = n.
Therefore, if |M | > NΔ,Γ andM ∈ C, then HΔ,Γ(M ) exists and

|HΔ,Γ(M )| ≤ n · hM ≤ CΔ,Γ · log |M |,
where CΔ,Γ := n ·

(
� 	0
− log(1−�/2)�+ 1

)
. �

Take any M ∈ C with |M | ≥ NΔ,Γ, let HΔ,Γ(M ) as defined in Claim 2.5 and
for hij, h

t
m ∈ HΔ,Γ, define hij ≤ htm if i < t or i = t and j ≤ m. By construction
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we have (HΔ,Γ(M ),≤) covers �ϕ(ȳ) and avoids φ(x, ȳ) in M for any ϕ ∈ Δ and
φ(x, ȳ) ∈ Γ. �
Theorem 2.6. Let C be a one-dimensional asymptotic class in a countable language

L. LetM :=
∏
i∈I Mi/U be an infinite ultraproduct of members among C. Then exact

pseudofiniteH -expansions ofM exist.

Proof. Let {ϕi(x; ȳi ), i ∈ N} be a list of all formulas in L such that x is in one
variable and ȳi �= ∅ is a tuple of variables. For n ∈ N, let Δn := {ϕi(x; ȳi) : i ≤ n}.
Let {
i(x; z̄i) : i ∈ N} be a list of all formulas such that 
i(x; z̄i) is algebraic (z̄i
can be empty). Let Γn := {
i(x; z̄i ) : i ≤ n}.
By Lemma 2.4, there are NΔn ,Γn ∈ N such that for anyM ∈ C with |M | ≥ NΔn ,Γn
there exists (HΔn ,Γn (M ),≤)withHΔn ,Γn(M ) ⊆M such thatHΔn,Γn(M ) covers�ϕ(ȳ)
and avoids 
(x; z̄) inM for all ϕ ∈ Δn and 
(x, z̄) ∈ Γn .
For any i ∈ I , let in := max{n : |Mi | ≥ NΔn ,Γn} (set max ∅ = −∞). Define
Hi := HΔin ,Γin (Mi) if in �=∞; otherwise let Hi := ∅.
Claim 2.7. The structure (M,H (M)) := ∏i∈I (Mi,Hi )/U is an exact pseudofi-
niteH -expansion ofM.
Proof. We only need to show that (M,H (M)) is an H -expansion ofM. We
verify the conditions one by one. It is clear thatM |= ThL(M).
We verify that H (M) is an aclL-independent subset. Suppose, towards a con-
tradiction, that there are {a0, a1, . . . , ak} which are not aclL-independent. We may
assume that any proper subset of {a0, a1, . . . , ak} is an aclL-independent set. Sup-
pose for 0 ≤ t ≤ k, each at := (ait )i∈I /U . Let O := (i0, i1, . . . , ik) be an ordering of
0, . . . , k and

IO := {j ∈ I : (aji0 , a
j
i1
, . . . , ajik ) is increasing in (Hj,≤)}.

Let A be the collections of all the orderings of 0, . . . , k. Since A is finite and
I =

⋃
O∈A IO , we have exactly one IO ∈ U . We may assume that O = (0, . . . , k).

Suppose ai ∈ aclL({a0, . . . , ak} \ {ai}). By assumption,
ai �∈ aclL({a0, . . . , ak} \ {ai , ak}).

Since aclL satisfies the exchange property, we have ak ∈ aclL(a0, . . . , ak−1). Let
ϕ(x; z0, . . . , zk−1) witness algebraicity (i.e., ϕ(x; z0, . . . , zk−1) is algebraic andM |=
ϕ(ak ; a0, . . . , ak−1)). As {
i(x; z̄i ) : i ∈ N} is a list of all algebraic formulas,
ϕ(x; z0, . . . , zk−1) = 
j(x; z0, . . . , zk−1) := 
j(x; z̄j ) for some j.
Let J := {i ∈ I : in ≥ j} = {i ∈ I : |Mi | ≥ NΔj ,Γj}. Since M is infinite,
J ∈ U . For any i ∈ J , we have 
j(x; z̄j) ∈ Γin , hence Hi avoids 
j(x; z̄j ). As
aik > max{ai0, . . . , aik−1} in Hi , by construction, the setHi avoids 
j(x; z̄j), we get

Mi |= ¬
j(aik ; ai0, . . . , aik−1)
for any i ∈ J . We concludeM |= ¬
j(ak ; a0, . . . , ak−1), contradiction.
We verify that the density/coheir property holds. As (M,H (M)) is pseudofinite,
it is ℵ1-saturated. Therefore, we only need to show that for any a0, . . . , ak ∈ M,
if ϕ(x; a0, . . . , ak) is nonalgebraic, then there is h ∈ H (M) such that M |=
ϕ(h; a0, . . . , ak). We may assume that ϕ(x;y0, . . . , yk) = ϕj(x; ȳj).
Let J := {i ∈ I : in ≥ j} = {i ∈ I : |Mi | ≥ NΔj ,Γj}. Then J ∈ U . Note that
ϕj(x; ȳj) ∈ Δin for any i ∈ J . ThereforeHi covers �ϕj (ȳj) inMi for any i ∈ J .
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Suppose at := (ait )i∈I /U for 0 ≤ t ≤ k. Let
J ′ := {i ∈ J :Mi |= �ϕj (ai0, . . . , aik)}.

As ϕj(x; a0, . . . , ak) is nonalgebraic, J ′ ∈ U .
For any i ∈ J ′, since Hi covers �ϕj (ȳj) inMi andMi |= �ϕj (ai0, . . . , aik), there
is some hi ∈ Hi such that Mi |= ϕj(hi ; ai0, . . . , aik). For i �∈ J ′, choose hi ∈ Mi
randomly. Let h := (hi)i∈I /U . Then h ∈ H (M) andM |= ϕj(h; a0, . . . , ak), i.e.,
M |= ϕ(h; a0, . . . , ak).
We now check the extension property. Suppose A ⊆ F is finite dimensional. Let
A′ = {a0, . . . , ak} be a base of A. Suppose at := (ait )i∈I /U for each t ≤ k. Let
A′
i = {ai0, . . . , aik} ⊆Mi . Let

closi(Hi ∪ A′
i) :=

⋃
j≤in ,ā∈(Hi∪A′

i )
|z̄j |


j(Mi ; ā),

and define clos(H (M′) ∪ A′) :=
∏
i∈I closi(Hi ∪ A′

i )/U . By essentially the same
argument as aclL-independence of H (M), we have

aclL(H (M) ∪ A) ⊆ clos(H (M) ∪ A′).

By the fact that (M, clos(H (M) ∪ A′)) is pseudofinite, hence ℵ1-saturated, we
only need to show that for any b0, . . . , bt ∈ A, ifϕ(x; b0 , . . . , bt) is nonalgebraic, then
there is a ∈ M\ clos(H (M)∪A′) such thatM |= ϕ(a; b0, . . . , bt). We may assume
that ϕ(x;y0, . . . , yt) = ϕj(x; ȳj). Assume bk = (bik)i∈I /U for k ≤ t. There is some
J ∈ U and � > 0 such that for all i ∈ J , we have |ϕ(Mi ; bi0, . . . , bit )| ≥ � · |Mi |.
Consider the size of closi(Hi ∪ A′). We have

|closi(Hi ∪ A′)| ≤ CΓin · (|Hi ∪ A′|)k0 ,
where as above Γin := {
j(x; z̄j) : j ≤ in}, k0 := max{|z̄j | : j ≤ in} and CΓin :=
(in + 1) · C with C is the largest number of solutions of 
j over parameters for
j ≤ in.
Let Δin := {ϕj(x; ȳj) : j ≤ in} and 	0 := max{|ȳj | : j ≤ in}. Note that there is
some J ′ ∈ U such that for all i ∈ J ′ we have k ≤ 	0. Hence

|Hi ∪A′| ≤ |Hi |+ k ≤ |Δin | · hMi + 	0,
where hMi is defined as the equation (2). By the inequality (3), we have

CΓin · (|Δin | · hMi + 	0)k0 ≤
�

2
· |Mi |.

Therefore,
|closi(Hi ∪ A′)| ≤ CΓin · (|Hi ∪ A′|)k0 ≤ �

2
· |Mi |,

for all i ∈ J ∩ J ′.
As |ϕ(Mi ; bi0, . . . , bit )| ≥ � · |Mi |, there must be some

ai ∈ ϕ(Mi ; bi0, . . . , bit ) \ closi(Hi ∪A′)

for all i ∈ J ∩ J ′. Choose ai at random for i �∈ J ∩ J ′. Set a := (ai)i∈I /U , then
a �∈ clos(H ∪A′) andM |= ϕ(a; b0, . . . , bt).
Therefore, (M,H (M)) is an H -expansion ofM and it is ultraproduct of finite
structures. �

https://doi.org/10.1017/jsl.2019.17 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.17


PSEUDOFINITEH -STRUCTURES 947

This ends the proof of the theorem. �
Lemma 2.8. Let C be a one-dimensional asymptotic class in a languageL andM be
an infinite ultraproduct of members of C. Suppose aclL of ThL(M) is nontrivial. Then
the exact pseudofinite H -expansion (M,H (M)) is a pseudofinite structure whose
theory is supersimple of SU -rank �.

Remark 2.9. Let M :=
∏
i∈I Mi/U be an infinite ultraproduct of a one-

dimensional asymptotic class. The H -expansion (M,H (M)) := ∏i∈I (Mi,Hi)/U
constructed in the previous theorem always satisfies

lim
i∈I
log |Hi |
log |Mi | = 0, that is ���M(H (M)) = 0,

i.e., the pseudofinite coarse dimension of H (M) with respect toM is zero. This is
because by Lemma 2.4 we know that |Hi | = CΔin ,Γin · log |Mi |whereCΔin ,Γin depends
only on Δin and Γin . If we redefine

in := max{n : |Mi | > NΔn ,Γn and |Mi | > (CΔn,Γn )n},
we see that additionally ���M(H (M)) = 0.
Note that for generic element m ∈M , we have SUH (m) = � while SUH (h) < �
for any element h ∈ H (M ). In a following project, togetherwith other collaborators,
we found this fact generalises to all definable sets. That is, the coarse dimension of
a definable set equals to the coefficient of the �-part of the SU-rank of generic
elements. We also wonder if (Mi )i∈I is a one-dimensional asymptotic class, then
the class (Mi,Hi)i∈I we build in Claim 2.7 forms a multidimensional asymptotic
class. We expect this should involve a more detailed treatment of definable sets in
H -structures.

§3. Groups in H-structures. This section deals with definable groups in H -
structures when the base theory is supersimple of SU -rank one. We ask whether
there are any new definable groups in H -structures. As we said before, in [2] the
authors have partially solved the question by showing that in stable theories the
connected component of an LH -definable group in anH -structure is isomorphic to
some L-definable group. We record their results here.
Fact 3.1 ([2], Proposition 6.5). LetD be a group in a languageL withRM (D) =
1 and assume that (D,H ) is an ℵ0-saturatedH -structure. Let A ⊆ D be finite and let
G ≤ Dn be an LH -definable subgroup defined over A. Then G is L-definable over A.
Fact 3.2 ([2], Proposition 6.6). Let M be a stable structure of U -rank one in
a language L and let H be a subset of M such that (M,H ) is an ℵ1-saturated H -
structure. Let A ⊆ M be countable and let G ⊆ Mn be an LH -definable group over
A. Let G0 be the connected component of G . Then G0 is definably isomorphic to an
L-definable group over A.
In this section, we will show that in supersimple theories, all LH -definable groups
in H -structures are definably isomorphic to L-definable groups.4

4Indeed, we need to assume that the base theory has elimination of imaginaries. Facts 3.1 and 3.2 also
have this assumption.
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We first introduce some basic notions and facts aboutH -structures developed in
[2], as well as some results about groups in simple theories that we will use later.
Let (M,H (M )) be an H -structure. To simplify the notation, we write with
subscript/superscript H for notions in TH := ThLH (M,H (M )) and no sub-
script/superscript forT = ThL(M ). We also writeL-independent to denote forking
independence inT (LH -independent forTH respectively), andL-generic for generic
group element in T (LH -generic for TH respectively).
Definition 3.3. Let A be a subset of anH -structure (M,H (M )). We say thatA
is H -independent if A |�A∩H (M )H (M ).

Remark 3.4. Note that this is not the same as beingLH -independent in the sense
of forking in TH .

Definition 3.5. Let a be a tuple in an H -structure (M,H (M )) and let C =
acl(C ) be H -independent. Define the H -basis of a over C , denoted by HB(a/C ),
as the smallest tuple h in H (M ) such that a |�C,h

H (M ).

By [2, Proposition 3.9],H -bases exist and are unique up to permutation. Here is
a useful observation:

Lemma 3.6. Let (M,H (M )) be anH -structure and a be a tuple. Suppose a subset
C = acl(C ) is H -independent andHB(a/C ) = ∅. Then HB(a,C ) = HB(C ).
Proof. Suppose not, then a,C � |�HB(C )

H (M ). There is a finite tuple c ⊆ C such
that a, c � |�HB(C )

H (M ). Denote the dimension of the underlying geometric theory

as dimacl. Let c
′ ⊆ C be a finite tuple such that dimacl(a/C ) = dimacl(a/c′). Let

c′′ ⊆ C be a tuple containing both c and c′. Then
dimacl(a, c

′′/HB(C )) > dimacl(a, c
′′/H (M )).

By the choice of c′′, we have

dimacl(a/c
′′) ≥ dimacl(a/c′′,HB(C )) ≥ dimacl(a/C ) = dimacl(a/c′′).

By assumption, dimacl(a/C,H (M )) = dimacl(a/C ). Therefore,

dimacl(a/c
′′) ≥ dimacl(a/c′′,H (M )) ≥ dimacl(a/C,H (M ))
= dimacl(a/C ) = dimacl(a/c

′′).

We conclude that dimacl(a/c
′′,H (M )) = dimacl(a/c

′′) = dimacl(a/c
′′,HB(C )).

SinceC isH -independent, we also have dimacl(c
′′/H (M )) = dimacl(c

′′/HB(C )).
By additivity of dimacl, we have

dimacl(a, c
′′/H (M )) = dimacl(a/c

′′,H (M )) + dimacl(c
′′/H (M ))

= dimacl(a/c
′′,HB(C )) + dimacl(c

′′/HB(C ))
= dimacl(a, c

′′/HB(C )),

a contradiction. �
Definition 3.7. Let M be a structure. A set X is hyperdefinable over A ⊆ M
if there is a type-definable set Y ⊆ Mn for some n ∈ N and a type-definable
equivalence relation E on Y both defined over A such that X = Y/E.
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Fact 3.8 ([2], Lemma 2.8, Corollary 3.14, Proposition 6.2). Let (M,H (M )) be
anH -structure.

1. Let a, b beH -independent tuples such that tp(a,HB(a)) = tp(b,HB(b)). Then
tpH (a) = tpH (b).

2. Let A be a subset ofM , then aclH (A) = acl(A,HB(A)).
3. SupposeTh(M ) is superrosy of thorn-rank one and (M,H (M )) is ℵ0-saturated.
Let D be an LH -definable group over some finiteH -independent set A. Let b be
a generic element of the group. ThenHB(b/A) = ∅.

Fact 3.9 ([2], Proposition 5.6). Let (M,H (M )) |= TH be a κ-saturated H -
structure and C ⊆ D ⊆ M be aclH -closed and max{|C |, |D|} < κ. Suppose T is
supersimple of SU-rank one and a ∈ M . Then a |�

H

C
D if and only if none of the

following holds:

• a ∈ D \ C ;
• a ∈ acl(H (M ), D) \ acl(H (M ), C );
• HB(a/C ) �= HB(a/D).
Fact 3.10 ([7], Lemma 4.4.8). Let G be a type-definable/hyperdefinable group
in a simple theory. Let X be a nonempty type-definable/hyperdefinable subset of G .
Suppose for independent g, g ′ ∈ X we have g−1 · g ′ ∈ X , and put Y = X · X . Then
Y is a type-definable/hyperdefinable subgroup of G , andX is generic in Y . In fact,X
contains all generic types for Y .

Fact 3.11 ([7], Theorem 4.7.1). We fix an ambient simple theory. Let � be a
partial type and � be a partial type-definable function defined on pairs of independent
realizations of �, both over ∅ such that
1. Generic independence: for independent realizations a, b of � the product a � b
realizes � and is independent from a and from b;

2. Generic associativity: for three independent realizations a, b, c of �, we have
(a � b) � c = a � (b � c);

3. Generic surjectivity: for any independent a, b realizing �, there are c and c′

independent from a and from b, with a � c = b and c′ � a = b.

Then there are a hyperdefinable group G and a hyperdefinable bijection from � to the
generic types ofG , such that generically � is mapped to the group multiplication. G is
unique up to definable isomorphism.

We proceed by some lemmas, most of which are about the properties of generic
elements of definable groups in H -structures.
In the following we will assume κ is an cardinal with κ ≥ |L|.
Lemma 3.12. Let (M,H (M )) be a κ-saturated H -structure such that Th(M ) is
supersimple of SU -rank one. Let G be an LH -(type-)definable group over some set A
with |A| < κ and aclH (A) = A. Let a, b be LH -independent and LH -generic elements
in G . Then a · b ∈ dcl(a, b,A) and a−1 ∈ dcl(a,A).
Proof. By Fact 3.8(3), HB(a/A) = HB(b/A) = ∅. That is a |�A

H (M ) and
b |�A

H (M ).

By assumption, a |�
H

A
b. Hence, a |�A,H (M )

b. Thus, a |�A,H (M )
bH (M ).

Together with a |�A
A,H (M ), we get a |�A

b,H (M ). Hence, a, b |�A,b
H (M ).
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Again, as b |�A
H (M ), we have a, b |�A

H (M ). Since A |�HB(A)
H (M ), we

conclude that a, b,A |�HB(A)
H (M ). Therefore, HB(a, b,A) ⊆ HB(A) ⊆ A.

As c := a · b ∈ aclH (a, b,A) = acl(a, b,A,HB(a, b,A)) = acl(a, b,A), we have
a, b, c, A |�

HB(A)

H (M ).

Take c′ ∈ M with tp(c′/a, b,A) = tp(c/a, b,A). As c′ ∈ acl(a, b,A), we still have
a, b, c′, A |�HB(A)

H (M ). Therefore, a, b, c, A and a, b, c′, A are H -independent
tuples of the same L-type. By Fact 3.8(1), tpH (a, b, c′/A) = tpH (a, b, c/A). As c is
in the LH -definable closure of a, b,A, we get c′ = c. Hence, c ∈ dcl(a, b,A) as we
have claimed.
The proof of a−1 ∈ dcl(a,A) is similar. �
Lemma 3.13. Let (M,H (M )) be a κ-saturated model of TH . Let G ⊆ Mn be an

LH -type-definable group over A with aclH (A) = A and |A| < κ. Then there are a
partial LH -type �G(x) and a partial L-type �L(x) over A such that:
1. �G(Mn) is the set of all LH -generics in G .
2. For any complete L-type q(x) over A with q(x) ⊇ �L(x), there is a complete

LH -type p(x) over A such that p(x) ⊇ q(x) ∪ �G(x);
3. Let a, b, c be three realizations of �L(x) over A. Then there are a′, b′, c′ ∈ G
such that a′, b′, c′ realise �G(x), HB(a′, b′, c′/A) = ∅ and tp(a, b, c/A) =
tp(a′, b′, c′/A). In addition, if a, b, c are L-independent, then a′, b′, c′ are LH -
independent.

Proof. Suppose G is defined by a partial type �(x). Let �G(x) be the partial
LH -type over A which contains �(x) and is closed under implication such that for
all a ∈ Mn , a |= �G(x) if and only if a is LH -generic in G . Let �L(x) ⊆ �G(x) be
the restriction of �G(x) in the language L.
Claim. Item 2 holds. If not, then there exists L-type q(x) overA extending �L(x)
such that q(x)∪ �G(x) is inconsistent. By compactness, there is some �(x) ∈ q(x)
such that �G(x) � ¬�(x). As �G(x) is closed under implication, ¬�(x) ∈ �G(x),
hence also ¬�(x) ∈ �L(x), which contradicts that q(x) ⊇ �L(x).
Now we prove item 3. Write a = (a1, a2), b = (b1, b2) and c = (c1, c2), where
SU (a1/A) = |a1|, a2 ∈ acl(a1, A); SU (b1/A, a) = |b1|, b2 ∈ acl(b1, a, A) and
SU (c1/A, a, b) = |c1|, c2 ∈ acl(c1, a, b,A). (We remark that b1, c1 can be empty.)
As SU (a1, b1, c1/A) = |a1|+ |b1|+ |c1| and T has SU -rank 1, we get a1, b1, c1 are
L-independent. By the axioms of of TH and κ-saturation, there are a′1, b′1, c′1 inM
such that tp(a1, b1, c1/A) = tp(a′1, b

′
1, c

′
1/A) and

a′1, b
′
1, c

′
1 |�
A

H (M ).

Let a′2, b
′
2, c

′
2 be such that

tp(a′1, a
′
2, b

′
1, b

′
2, c

′
1, c

′
2/A) = tp(a1, a2, b1, b2, c1, c2/A).

Define a′ := (a′1, a
′
2), b

′ := (b′1, b
′
2) and c

′ := (c′1, c
′
2).

As a′1, b
′
1, c

′
1 |�A

H (M ) and a′, b′, c′ ∈ acl(a′1, b′1, c′1, A) we get a′, b′, c′ |�A

H (M ). Thus, HB(a′, b′, c′/A) = ∅. Hence, HB(a′/A) = HB(b′/A) =
HB(c′/A) = ∅.
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We only need to show that a′, b′ and c′ satisfy �G(x). Let q(x) := tp(a/A) ⊇
�L(x). By item 2, there is a complete LH -type p(x) overA extending q(x)∪�G(x).
Let a′′ be a realization of p(x). By Fact 3.8(3), HB(a′′/A) = ∅. Therefore, both
a′, A and a′′, A areH -independent and

tp(a′, A,HB(a′ , A)) = tp(a,A,HB(A)) = tp(a′′, A,HB(a′′ , A)).

By Fact 3.8(1), tpH (a
′/A) = tpH (a

′′/A). Hence tpH (a
′/A) ⊇ �G(x). Similarly, b′

and c′ are realizations of �G(x).
In addition, if a, b, c are L-independent, then b′ = (b′1, b′2) and c′ = (c′1, c′2) are
such that SU (b′1/A) = SU (b

′
1/A, a

′) = |b′1|, SU (c′1/A) = SU (c′1/A, a′, b′) = |c′1|
and b′2 ∈ acl(b′1, A), c′2 ∈ acl(c′1, A). As a′1, b′1, c′1 |�A

H (M ) and a′1 |�A
b′1, c

′
1, we

get
a′1 |�

A

b′1, c
′
1,H (M ).

Therefore, a′ |�A
b′, c′,H (M ), whence a′ |�AH (M )

b′, c′,H (M ). Together with

HB(a′/A) = HB(a′/Ab′c′) = ∅ we get a′ |�
H

A
b′, c′. The other LH -independences

among a′, b′, c′ are similar. Hence, a′, b′, c′ are LH -independent. �
Lemma 3.14. Let L0 ⊆ L1 be two languages. LetM be an L1-structure. Suppose
Y is L0-hyperdefinable and G is L1-type-definable in M such that there is an L1-
isomorphism from Y to G , then Y is L0-type-interpretable.
Proof. Suppose G =

⋂
i∈I Gi is L1-type-definable, Y = X/R where X =⋂

i∈I Xi and R =
⋂
i∈I Ri are L0-type-definable and Φ(x, y) :=

⋂
i∈I Φi : Xi → Gi

is L1-type-definable which induces an isomorphism between Y and G .
As Φ is the graph of a function from X to G , we have:∧

i,j,k∈I
Xi(x) ∧ Gj(y) ∧ Gj(y′) ∧Φk(x, y) ∧Φk(x, y′) |= y = y′.

By compactness, there are some i0, . . . , ik such that

f(x, y) :=
⋂
j≤k
Φij (x, y) ⊆

⎛
⎝⋂
j≤k
Xij ×

⋂
j≤k
Gij

⎞
⎠

is an L1-definable graph of a partial function.
Let R′ ⊆

(⋂
j≤k Xij

)
×
(⋂

j≤k Xij
)
be the L1-definable equivalence relation

given by R′(x, x′) if and only if there is some g ∈ ⋂j≤k Gij such that both f(x, g)
and f(x′, g) hold. We claim that

R′ � (X × X ) = R.
Let x, x′ ∈ X . Suppose R(x, x′) holds. As Φ is an isomorphism between Y and
G , there is some g ∈ G with Φ(x, g) and Φ(x′, g). Therefore, both f(x, g) and
f(x′, g) hold and so does R′(x, x′). On the other hand, if R′(x, x′) holds, then
there is g ∈ ⋂j≤k Gij with f(x, g) and f(x′, g). Let g ′, g ′′ ∈ G such that Φ(x, g′)
and Φ(x′, g ′′). Thus, we also have f(x, g ′) and f(x′, g ′′). Since f is a partial
function, g = g ′ = g ′′. Therefore, R(x, x′) holds.
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As R is defined by
⋂
i∈I Ri , by compactness, there is some {j0, . . . , jt} ⊇

{i0, . . . , ik} such that on
(⋂

i≤t Xji
)
×
(⋂

i≤t Xji
)
we have

RL0 (x, x
′) :=

⋂
i≤t
Rji (x, x

′) ⊆ R′(x, x′).

Thus, RL0 is L0-definable and it agrees with R on X . We have∧
i∈I
(Xi(x1) ∧ Xi(x2) ∧ Xi(x3)) |= RL0 (x1, x1)

∧(RL0 (x1, x2)→ RL0 (x2, x1))
∧(RL0 (x1, x2) ∧RL0 (x2, x3)→ RL0 (x1, x3)).

By compactness, there are {k0, . . . , km} ⊇ {j0, . . . , jt} such that RL0 is an
equivalence relation on

⋂
t≤m Xkt . Therefore, R is L0-definable. �

We first consider LH -(type-)definable subgroups of L-(type-)definable groups.
We generalize Fact 3.1 to supersimple theories.

Theorem 3.15. Let T be nontrivial of SU -rank one and let (M,H (M )) |= TH
be κ-saturated. Suppose D is an L-(type-)definable group and G is an LH -(type-
)definable subgroup ofD, both defined over some setA = aclH (A) with |A| < κ. Then
G is L-(type-) definable ovear A.
Proof. Suppose D ⊆ Mn. Let �G(x) and �L(x) be defined as in Lemma 3.13
with |x| = n. Suppose D is defined by the partial L-type �(x). As �G(x) is closed
under implication, �G(x) ⊇ �(x). Therefore, �L(x) ⊇ �(x).
By Fact 3.10, G = �G(Mn) · �G(Mn). We will show that �L(Mn) also satisfies
the conditions of Fact 3.10 in T .
LetX := �L(Mn). Since�(x) ⊆ �L(x),wehaveX ⊆ D. Take twoL-independent
realizations a, b of �L(x). By Lemma 3.13, there are a′, b′ both realising �G(x) such
that tp(a, b/A) = tp(a′, b′/A) and a′ |�

H

A
b′. Therefore, (a′)−1 · b′ is also generic in

G , which implies

�L(x) ⊆ �G(x) ⊆ tpH ((a′)−1 · b′/A).
As tp(a, b/A) = tp(a′, b′/A) and group operations are L-definable, we have

tp(a−1 · b/A) = tp((a′)−1 · b′/A).
Therefore, �L(x) ⊆ tp(a−1 · b/A), whence a−1 · b ∈ X . By Fact 3.10 we get an
L-type-definable group DG := X ·X such that X contains all L-generics in DG .
Clearly, G ≤ DG . Let a be an LH -generic element inDG . By Fact 3.8(3), we have
HB(a/A) = ∅. Since a is also L-generic in DG , we get a ∈ X . By Lemma 3.13
there is an a′ satisfying �G(x) such that tp(a/A) = tp(a′/A). As a′ is LH -generic
in G , HB(a′/A) = ∅ = HB(a/A). By Fact 3.8(1), tpH (a′/A) = tpH (a/A). Hence,
a realizes �G(x), i.e., a is LH -generic in G . Therefore, every LH -generic element of
DG is contained in G , whence DG ≤ G . We conclude that G = DG . �
Now we consider general LH -(type-)definable groups. The following is a
generalization of Fact 3.2.
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Theorem 3.16. Let T be supersimple of SU -rank one and (M,H (M )) |= TH be
κ-saturated. Let G be an LH -(type-)definable group over a set A = aclH (A) of size
less than κ. ThenG is LH -definably isomorphic to someL-(type)-interpretable group.
In particular, if T eliminates imaginaries, then every LH -(type-)definable group is
LH -definably isomorphic to some L-(type-)definable group.
Proof. SupposeG is type-definable.Let�G (x) and�L(x) be defined as inLemma
3.13. In the following, we will extend L-generically and L-type-definably the group
operation · of G to � on �L(x).
Let �2G(x, y) ⊇ �G(x) ∪ �G(y) be the partial LH -type over A such that a, b are

LH -independent andLH -generic inG overA if and only if (a, b) |= �2G(x, y) for any
a, b ∈Mn . For (a, b) |= �2G(x, y), we have a · b ∈ dcl(a, b) by Lemma 3.12. That is
a ·b = fa,b(a, b) for someL-definable functionfa,b overA. Let doma,b(x, y) be the
L-formula that defines the domain of the functionfa,b . Then define theLH -formula

ϕa,b(x, y) := doma,b(x, y) ∧ x · y = fa,b(x, y).
Then we can see that

�2G(x, y) ⊆
⋃

(a,b)|=�2G (x,y)
ϕa,b(x, y).

By compactness, there are (a1, b1), (a2, b2), . . . , (ak, bk) such that

�2G(x, y) |=
∨
1≤i≤k

ϕai ,bi (x, y).

Let ϕi (x, y) := ϕai ,bi (x, y) for 1 ≤ i ≤ k.
Let (a, b), (c, d ) be two pairs of realizations of �2G(x, y) such that tp(a, b/A) =
tp(c, d/A). Note that (a, b) is an LH -generic element in G × G . By Fact 3.8(3),
HB(a, b/A) = ∅. Similarly, HB(c, d/A) = ∅. Applying Fact 3.8(1), we get
tpH (a, b/A) = tpH (c, d/A). Therefore, (M,H (M )) |= ϕi (a, b) ↔ ϕi(c, d ) for
all 1 ≤ i ≤ k. The above argument shows:
�2G(x, y)∧�2G (x′, y′)∧

∧
�∈L(A)

�(x, y)↔ �(x′, y′) |=
∧
1≤i≤n

(ϕi (x, y)↔ ϕi(x′, y′)).

By compactness, there is some finite set of L(A) formulas Δ such that the Δ-type
of any pair (a, b) |= �2G(x, y) determines (a, b) |= ϕi (x, y) or (a, b) |= ¬ϕi (x, y)
for any 1 ≤ i ≤ k. Hence, there are L-formulas �1(x, y), . . . , �k(x, y) such that

�2G(x, y) |=
∨
1≤i≤k

�i(x, y)

and for any 1 ≤ i ≤ k, we have

�2G(x, y) |= �i(x, y)→
⎛
⎝ϕi(x, y) ∧ ∧

1≤j<i
¬ϕj(x, y)

⎞
⎠ .

Let �2L(x, y) ⊇ �L(x) ∪ �L(y) be the partial L-type over A such that (a, b) |=
�2L(x, y) if and only if a, b are L-independent over A. By Lemma 3.13, for (a, b) |=
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�2L(x, y), there are a
′, b′ realizing �G(x) such that a′ |�

H

A
b′ and tp(a, b/A) =

tp(a′, b′/A). Note that (a′, b′) |= �2G(x, y). Hence,
(a′, b′) |= �i(x, y) ∧ ϕi(x, y) ∧

∧
1≤j<i

¬ϕj(x, y)

for some 1 ≤ i ≤ k. As tp(a, b/A) = tp(a′, b′/A), we also have
(a, b) |= �i(x, y) ∧ domi(x, y).

Define a�b := fai ,bi (a, b). Asfai ,bi (a
′, b′) |= �L(x) and tp(a, b/A) = tp(a′, b′/A),

we also havefai ,bi (a, b) |= �L(x). Note thata�b is defined byfai ,bi (x, y) if and only
if (a, b) |= �i(x, y). Hence, � is an L-type-definable function from �2L(Mn,Mn) to
�L(Mn) and � agrees with · on �2G(Mn,Mn).
We now verify all the conditions of the group chunk theorem (Fact 3.11) in order
to obtain an L-hyperdefinable group out of the generically given group operation.
Lemma 3.17. The L-type-definable function � : �2L(Mn,Mn)→ �L(Mn) satisfies
all the conditions in Fact 3.11.
Proof. Generic independence: Let a, b be L-independent realizations of �L(x)
and c := a�b. Then there areLH -independent andLH -generic elementsa′, b′ overA
such that tp(a′, b′/A) = tp(a, b/A). Let c′ := a′·b′. Since � isL-definable and agrees
with ·on�2G(Mn,Mn),we get c′ = a′�b′. Therefore, tp(a′, b′, c′/A) = tp(a, b, c/A).
As c′ |�

H

A
a′, we have c′ |�A

a′. Hence, we also have c |�A
a. Similarly, c |�A

b.
Generic associativity: Let a, b, c be L-independent realizations of �L(x). By
Lemma 3.13, there are LH -generic and LH -independent realizations a′, b′, c′ such
that

tp(a, b, c/A) = tp(a′, b′, c′/A).

Now we have

tp((a�b)�c), a�(b�c)) = tp((a′ �b′)�c′, a′�(b′�c′)) = tp((a′ ·b′)·c′, a′ ·(b′ ·c′)).
Since (a′ · b′) · c′ = a′ · (b′ · c′) we get (a � b) � c = a � (b � c).
Generic surjectivity: for any L-independent realizations a, b of �L(x), there are

LH -independent realizations a′, b′ of�G(x) such that tp(a, b/A) = tp(a′, b′/A). Let
c′ := (a′)−1 · b′. Then c′ is LH -independent from a′ and from b′. By Lemma 3.12,
c′ ∈ dcl((a′)−1, b′, A) = dcl(a′, b′, A). Let c be the element with tp(a, b, c/A) =
tp(a′, b′, c′/A). Clearly, c realizes �L(x) and is L-independent from a and from b.
Since a′ · c′ = a′ � c′ = b′ and tp(a, b, c/A) = tp(a′, b′, c′/A), we have a � c = b.
Similarly, we can find c′′ realizing �L(x), L-independent from a and from b such
that c′′ � a = b. �
By Fact 3.11, there are an L-hyperdefinable group D over A, and an L-type-
definable embedding f : �L(Mn) → D over A such that f(�L(Mn)) contains all
L-generics of D.
Consider f(�G(Mn)) ⊆ D. Take g, g ′ LH -independent elements in f(�G(Mn)).
Supposeg = f(a) and g′ = f(b).Asf is anLH -definable injection,we geta |�

H

A
b.

Hence, a−1 � b |= �G(x) and a |�
H

A
a−1 � b. Since f preserves � generically and

a, a−1, b ∈ G , we have
f(a) · f(a−1 � b) = f(a � (a−1 � b)) = f(a · (a−1 · b)) = f(b).
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Hence, f(a)−1 · f(b) = f(a−1 � b) ∈ f(�G(Mn)). By Fact 3.10,
Gf := f(�G(Mn)) · f(�G(Mn))

is an LH -hyperdefinable group, and f(�G(x)) contains all LH -generics in Gf .
Let X := {(g,f(g)) : g |= �G(x)} ⊆ G ×Gf . Let (g1, f(g1)) and (g2, f(g2)) be

LH -independent tuples in X . Consider
xg1 ,g2 := (g1, f(g1))

−1 · (g2, f(g2)) = (g−11 � g2, f(g−11 � g2)).
As g1 |�

H

A
g2 in �G(x) we get g−11 �g2 = g

−1
1 ·g2 ∈ �G(x). Therefore, xg1,g2 ∈ X . By

Fact 3.10,C := X ·X is a subgroupofG×Gf. Consider the projection�1(C ) ≤ G . It
contains �G(Mn), hence contains allLH -generics ofG . Thus �1(C ) = G . Similarly,
�2(C ) = Gf . Let I := {g : (g, 1) ∈ C} and I ′ := {g : (1, g) ∈ C}. If g ∈ I , then
there are g1, g2 ∈ �G(Mn) such that g = g1 �g2 andf(g1) ·f(g2) = f(g1 �g2) = 1.
As f is an embedding, we get g1 � g2 = 1. Therefore, I = {1}. Similarly, I ′ = {1}.
Hence, C is the graph a group isomorphism between G and Gf .
Let a be an LH -generic in D. Then HB(a/A) = ∅. Since a is also L-generic
in D, we get that f−1(a) satisfies �L(x). As f is an LH -definable embedding,
we have HB(f−1(a)/A) = ∅. Since f−1(a) |= �L(x), by Lemma 3.13 there is
a′ realizing �G(x) such that a′ and f−1(a) have the same L-type over A. Note
thatHB(a′/A) = ∅. By Fact 3.8(1), tpH (a′/A) = tpH (f−1(a)/A). Hence, f−1(a)
realizes �G(x), and a = f(f−1(a)) is LH -generic in Gf . Therefore, the set of LH -
generics of D is contained in Gf , whence D ≤ Gf . Together with Gf ≤ D, we get
Gf = D and G is LH -type-definably isomorphic to D.
Now Lemma 3.14 implies thatD is L-type-interpretable.
Suppose D = DG/E where E is an L-definable equivalence relation and DG
is L-type-definable. If G is definable, then DG is the image of an LH -definable
function, hence LH -definable. By compactness DG is L-definable. Therefore, G is
LH -definably isomorphic to an L-interpretable group D. �
Remark 3.18. Given an LH -definable group G , without the assumption that G
lives inside an L-definable group, we cannot generally have that G is L-definable.
Here is an example.

Example 3.19. Let D = (D, ·,−1) be a group without involutions of SU -rank
one in the language L = {·,−1}. Let (D,H (D)) be anH -structure.
Define � : D → D as �(x) = x if x �∈ H (D) ∪ (H (D))−1; and �(x) = x−1 if
x ∈ H (D)∪ (H (D))−1. Let � : G×G → G be defined as a�b := �−1(�(a) ·�(b)).
Then the group (D, �,−1) is LH -isomorphic to (D, ·,−1) via �, but not L-definable.
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