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Flow in sidewall cerebral aneurysms can be ideally modelled as the combination of
flow over a spherical cavity and flow in a curved circular pipe, two canonical flows.
Flow in a curved pipe is known to depend on the Dean number De, combining the
effects of Reynolds number Re and of the curvature along the pipe centreline, κ .
Pulsatility in the flow introduces a dependence on the Womersley number Wo. Using
stereo particle image velocimetry measurements, this study investigated the effect of
these three key non-dimensional parameters, by modifying pipe curvature (De), flow rate
(Re) and pulsatility frequency (Wo), on the flow patterns in a spherical cavity. A single
counter-rotating vortex was observed in the cavity for all values of pipe curvature κ and
Reynolds number Re, for both steady and pulsatile inflow conditions. Increasing the pipe
curvature impacted the flow patterns in both the pipe and the cavity, by shifting the
velocity profile towards the cavity opening and increasing the flow rate in to the cavity.
The circulation in the cavity was found to collapse well with only the Dean number, for
both steady and pulsatile inflows. For pulsatile inflow, the counter-rotating vortex was
unstable and the location of its centre over time was impacted by the curvature of the pipe,
as well as Re and Wo in the free stream. The circulation in the cavity was higher for steady
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inflow than for the equivalent average Reynolds number and Dean number pulsatile inflow,
with very limited impact of the Womersley number in the range studied. A second part of
this study, that focuses on the changes in fluid dynamics when the intracranial aneurysm
is treated with a flow-diverting stent, can be found in this issue (Barbour et al., J. Fluid
Mech., vol. 915, 2021, A124).

Key words: biomedical flows, blood flow

1. Introduction

Understanding the fluid dynamics at the neck and inside the sac of intracranial aneurysms,
and its dependence on anatomical and physiological parameters that change from case to
case, is essential to quantify the changes in haemodynamics introduced by endovascular
treatment, and in particular by flow diverting stents (Fukuda et al. 2019; Texakalidis et al.
2019; Wan et al. 2019). Flow patterns such as strong inflow jets in the aneurysmal sac
have been found to be detrimental to treatment with flow diverters (Chen et al. 2019;
Su et al. 2020), whose goal is the formation of a stable thrombus for successful treatment
(Rajah, Narayanan & Rangel-Castilla 2017). These studies provide evidence that the
haemodynamics has a controlling effect on thrombosis through the Lagrangian residence
time of platelets and the Eulerian wall shear stress (WSS) on endothelial cells (Ngoepe
et al. 2018).

More generally, despite not being fully understood, the mechanisms involved in the
initiation, growth and rupture of aneurysms are considered to be strongly linked to the
mechanical stresses applied on the vessel wall by the fluid, and more specifically their
tangential component, WSS (Meng et al. 2014).

To understand the fluid mechanics of intracranial aneurysms, specifically sidewall
aneurysms, flow in the aneurysmal sac can be interpreted as a combination of two
canonical flows: flow over a cavity (the aneurysmal sac) and flow in a curved pipe (the
parent vessel). These two flow configurations are relevant in a number of industrial and
engineering processes, including internal flows through pipe networks, and external flows
over wheel wells, fuel vents and landing gear bays (Sarno & Franke 1994). As a result, they
have both been studied and characterized extensively, but independently (Eustice 1910;
Dean 1928; Weiss & Florsheim 1965; Burggraf 1966; Pan & Acrivos 1967; McConalogue
& Srivastava 1968; Collins & Dennis 1975).

The defining characteristics of steady viscous flow in a curved circular pipe are a shift in
the maximum axial velocity towards the outer wall and the development of secondary flow
vortices (Williams, Hubbell & Fenkell 1902; Eustice 1910, 1911). In a theoretical analysis
performed by Dean (1927, 1928), and later expanded upon by McConalogue & Srivastava
(1968), the flow solutions are shown to be dependent on a single non-dimensional number,
later termed the Dean number, De = Re

√
κD/2, where D is the pipe diameter, κ is the pipe

centreline curvature and Re is the Reynolds number of the flow in the pipe. The magnitude
of the secondary flow or Dean vortices and the outward radial shift of the maximum axial
velocity were shown to increase with De up to De = 606 in these first analytic solutions.
Later, finite-difference solutions showed that these trends continue for the entirety of the
laminar range, De = 0–5000 (Collins & Dennis 1975).

Pulsatile flows in a straight pipe have also been widely studied, and theoretical analysis
showed that they depend on a single non-dimensional number: the Womersley number
Wo = R

√
2π/Tν, where R is the radius of the pipe, T is the period of the flow and ν is the

915 A123-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1114


Flow in a spherical cavity on a curved round pipe

kinematic viscosity of the fluid (Womersley 1955). In addition to the dependence on the
Womersley number Wo, pulsatile flows in curved pipes have also been shown to depend
on the Dean number De (Hamakiotes & Berger 1988).

Flow over and inside of square cavities has been studied exhaustively since the 1960s,
with some of the more notable early works showing that two primary flow topologies exist
for cavities of finite aspect ratio (Weiss & Florsheim 1965; Burggraf 1966; Pan & Acrivos
1967; Shen & Floryan 1985). At Re � 100, the bulk flow separates near the cavity–free
stream interface and a primary recirculating vortex develops near the centre of the cavity,
growing to fill more of its volume with increasing Re. At sufficiently high Re, the cavity
consists of an inviscid vortex, and viscous effects are isolated to the boundaries. However,
at low Re, the bulk flow expands into the cavity at the leading edge, exits at the trailing
edge, and does not separate into a recirculating vortex. At all Re, small recirculation
vortices are found in the corners (Moffat vortices). In a problem with greater relevance
to aneurysm flow, Higdon (1985) studied shear flow over a flat plate with a circular
cavity. Flow patterns inside the cavity were studied at different depression angles, with a
depression angle α = 0 representing the limiting case of no cavity (just the flat plate) and
α = 90◦ representing a semicircular cavity. Below α = 68◦, flow enters the cavity at the
leading edge and exits at the trailing edge, remaining attached to the cavity wall. At deeper
angles of depression, flow separation occurs and recirculation, counter-rotating to the free
stream, occurs. At α = 135◦, a geometry that largely resembles an idealized aneurysm, the
cavity flow is dominated by a single recirculating vortex and very little disturbance to the
free-stream flow field.

Sobey (1980) extended the analysis of flow over a cavity by investigating the effect
of unsteady, or pulsatile, free-stream flow. This work showed that the occurrence of
separation for unsteady flow is dependent on the relationship between two opposing
pressure gradients: a positive pressure gradient that is proportional to the acceleration
of the free-stream flow, and a negative pressure gradient at the leading edge of the
expansion due to a deceleration of the fluid entering the cavity. Separation may occur when
the magnitude of the free-stream flow pressure gradient (rate of acceleration) decreases
below a certain threshold and the adverse pressure gradient dominates. This condition for
separation was shown to be a function of Re and Strouhal (Womersley) numbers.

More recently, the haemodynamics of intracranial aneurysms has been studied
numerically and experimentally, for idealized or patient-specific geometries (Sforza,
Putman & Cebral 2009). Asgharzadeh & Borazjani (2016) numerically investigated the
effect of Re and Wo for a straight parent vessel and a patient-specific geometry, and showed
that these parameters impact the propagation of the vortex ring formed at the neck. These
results differ from the observations made by Le, Borazjani & Sotiropoulos (2010), showing
that Wo does not affect the flow dynamics but that the amplitude of the pulsatile inflow
does. Other studies on the haemodynamics of idealized aneurysmal geometry investigated
the effect of different geometrical parameters (Imai et al. 2008; Nair et al. 2016). More
specifically, Imai et al. (2008) highlighted the impact of the geometry of the parent vessel
on the inflow pattern and flux, in a numerical study. By studying the haemodynamics
in a spherical aneurysmal sac attached to parent vessels with different curvatures and
orientations and for steady inflows, they observed that the secondary flow generated in the
parent artery dominates the inflow into the aneurysm cavity. Epshtein & Korin (2018) also
demonstrated, in their experimental study performed in idealized aneurysm geometries,
that higher curvature of the parent vessel led to a lower washout time, but that changes in
the pulsatility of the inflow had negligible effect on the washout.

915 A123-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1114


F. Chassagne and others

3.5 mm

5 mm

4 mmrC

κ = 1/rC

κ = 0 mm–1

κ = 0.06 mm–1

κ = 0.14 mm–1

κ = 0.22 mm–1

60°

Figure 1. Sketch of the curved pipe with a spherical cavity, with the key geometrical parameters used to
define the study and the four different models with varying centreline curvatures (κ = 0, 0.0625, 0.14 and
0.22 mm−1).

In this context, the present study aims to investigate the full parameter range of inertia –
convective, pulsatile and centrifugal – through a wide range of values in the physiological
and anatomical range. Thus, the effect of the centreline curvature, flow rate and pulsatility
of the parent vessel (i.e. a curved pipe) on the intra-aneurysmal haemodynamics is studied
quantitatively (i.e. the fluid dynamics inside the spherical cavity), and its effect on the
treatment with flow-diverting stents (addressed in the Part 2 companion paper, Barbour
et al. 2021). The effect of the curvature, characterized by the Dean number, De, is assessed
for different flow rates in the parent vessel and under steady and unsteady flow conditions,
i.e. for varying Re and Wo numbers.

2. Experimental methods

2.1. Flow model
Four models with varying curvature κ were created for the study. In all models, the
spherical cavity had a diameter of 7 mm and the round pipe had a diameter of 4 mm
(figure 1). The spherical cavity was connected to the curved pipe so that the cavity
opening length (along the flow path) was constant at 5 mm, corresponding to an angle
between the spherical surface and the pipe equal to α = 144◦. The pipe diameter, cavity
diameter and cavity opening width are chosen such that the models are representative of
a typical sidewall aneurysm found within the circle of Willis (Parlea et al. 1999). The
curvature of the pipe centreline varied in the range κ = 0, 0.0625, 0.14 and 0.22 mm−1

(Rc = ∞, 16, 7, 4.5 mm, respectively). The angle between the two straight sections of the
pipe upstream and downstream of the cavity was constant at 60◦. As a result, the arclength
of the curved section of the pipe differed between models.

To create the transparent flow models, a ‘positive’ print of the interior of the model
was first made from polylactic acid (PLA; Flashforge, Rowland Heights, CA, USA). This
part was coated with mould release (XTC-3D, Smooth-on, Macungie, PA, USA) and cast
in silicone rubber (OOMOO 25, Smooth-on, Macungie, PA, USA). This mould was then
carefully split along the pipe centreline, the PLA positive was extracted, and water-soluble
wax (Freeman Optical Soluble Wax, Freeman Manufacturing and Supply Co., Avon, OH,
USA) was poured into the negative silicone rubber mould and cured. The positive wax
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Figure 2. Schematic of the experimental configuration.

part was removed from the mould, placed in the centre of an acrylic box and cast into
an optically transparent silicone elastomer (Sylgard 184, Dow Corning Corp., Auburn,
MI, USA). The resultant silicone model was placed in a water bath to dissolve the positive
wax part and produced an optically clear in vitro flow model with the characteristics of the
geometry under study (Chivukula et al. 2019).

The working fluid was a 47.5 : 35.8 : 16.7 water : glycerine : NaCl mixture (by weight)
with a viscosity of 3.8 cP. This was chosen to match the index of refraction of the silicone
models, avoiding refraction artifacts in the imaging of the flow.

2.2. Flow analysis
Steady flow was generated by a constant hydrostatic pressure in a reservoir connected
through an open flow loop to the model. Flow rate was controlled using a high-precision
needle valve and measured using an ultrasonic flow meter (Titan, Dorset, UK) downstream
of the flow phantom. The flow rates used in the experiments were chosen to produce Repipe
equal to 120, 240, 360 and 480, covering the full range of Re in the human internal carotid
artery (Ford et al. 2005).

Unsteady flow conditions were created by a pulsatile pump (Harvard Apparatus, Boston,
MA, USA) that was connected to the flow model in the test section by rigid tubing
(figure 2). The time-averaged Reynolds number, �Repipe, was controlled to match exactly the
four values of Re used in the steady experiments: 120, 240, 360 and 480. Two frequencies
were chosen for the periodic unsteady inflow: 0.8 Hz and 1.6 Hz (approximately 50 and
100 cycles per minute). These frequencies resulted in Womersley numbers Wo equal to
0 (steady), 2.6 and 3.6. The peak Re for all unsteady experiments was set to be double
the time average. The acceleration phase was set to be shorter than the deceleration phase
(40 %/60 % of the time period) to accentuate the unsteady acceleration and move away
from a pure harmonic inflow.

Stereoscopic particle image velocimetry (PIV) measurements of flow inside the flow
phantoms were made with a solid-state dual-head laser emitting short (O(10−8 s))
pulses of visible light at 527 nm (TerraPIV, Continuum, San Jose, CA, USA), and two
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high-resolution, high-speed cameras (Phantom v641, Vision Research, Wayne, NJ, USA).
The models and laser plane were arranged so that the laser plane was oriented in the
streamwise direction, traversing down through the top of the cavity and across the pipe,
as sketched in figure 2. PIV measurements were collected at the plane of symmetry of the
model, with a laser plane thickness of 1.5 mm. The fluid was seeded with 10 μm diameter
spherical hollow glass particles (TSI, Shoreview, MN, USA). For the analysis of the steady
flow, 2500 image pairs were recorded for each experimental condition, with the frame rate
of the cameras varying from 200 to 500 Hz as the Re or Wo numbers increased. For the
pulsatile flow, a total of 5800 image pairs were analysed for each case, to achieve fully
converged phase-averaged statistics.

The quality of the measurements depends critically on the stereoscopic calibration
procedure. A clear target with a grid of black dots was submerged in the tank, filled
with the same water : glycerine : NaCl fluid as used inside the flow models. The target
was traversed perpendicular to the imaging plane and imaged at nine positions spanning
the laser plane thickness.

Velocity fields, u, were calculated at the plane of symmetry for each of the four models
and all flow conditions. The experimental parameters varied with the length of the cycle
(frequency of the inflow) and the Re in the free stream. For the steady inflow conditions,
velocity measurements were obtained separately in the free stream and in the cavity. As the
velocity magnitude inside the cavity is almost an order of magnitude lower than that in the
curved pipe, PIV image collection and analysis were performed separately, with different
experimental parameters (acquisition frequency and Δt between each pair of images), for
the curved free stream and the cavity flow domains. For the pulsatile inflow conditions,
velocity fields were only obtained inside the cavity.

2.3. Analysis of velocity fields
The stereo PIV measurements provide the three components of the velocity field in the
plane of symmetry of the aneurysm geometry figure 3. Several metrics were derived from
the analysis of these two-dimensional velocity fields. The fields obtained for several cycles
were averaged onto one cycle. The velocity at the opening of the cavity (i.e. the aneurysm
neck), ū, was computed by integrating the inward velocities along the opening of the
cavity:

ū = 1
L1 − L0

∫ L1

L0

u · n dl, (2.1)

with the boundaries L0 and L1 of u · n being positive. This velocity is representative of
the amount of flow entering the cavity. The Reynolds number at the opening Reopening was
computed from this velocity: Reopening = ūDopening/ν. The circulation in the aneurysm Γ

was computed as the space integral of the vorticity over the area of the cavity. Finally, the
location of the centre of the vortex was defined as the location of the minimum velocity
magnitude in the cavity.

3. Results

3.1. Steady flow

3.1.1. Flow field topology
The velocity fields in the spherical cavity are shown in figure 3. The colour represents the
out-of-plane velocity and the vectors represent the in-plane velocity. The grey intensity of
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Figure 3. Velocity fields in the cavity in the plane of symmetry of the aneurysm geometry (highlighted in red in
the schematic of the aneurysm geometry). The colours represent the magnitude of the out-of-plane velocity and
the vectors represent the in-plane velocity. The vectors’ grey intensity is proportional to the in-plane velocity
magnitude. Columns from left to right correspond to increasing free-stream curvature κ and the rows from top
to bottom correspond to increasing inflow Qpipe (i.e. increasing Re).

the vectors is proportional to the in-plane velocity magnitude. The flow in the curved pipe
is from left to right. For all experimental conditions (flow rates, Qpipe and pipe curvatures),
the flow separates at the leading edge of the cavity. The flow enters the cavity at the
trailing edge (downstream), expands into it, rotating anticlockwise, and exits at the leading
edge (upstream) (figure 3). The flow separation from the pipe wall at the leading edge
brings the vorticity from the pipe wall into the cavity and forms a single counter-rotating
vortex. As the pipe Re increases (down the rows), the flow topology remains unchanged
but the velocity and vorticity in the cavity increase. The same is true for increasing pipe
De (curvature increases by columns from left to right), as the Dean flow along the centre
of the curved pipe shifts the peak free-stream velocity towards the upper wall, increasing
the magnitude of the velocity near the wall as it reaches the cavity, mimicking the effect
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of increasing the overall flow rate in the pipe. There is, however, an important difference:
the out-of-plane velocity evolves in a complex manner with increasing pipe curvature.
The flow rotation is three-dimensional and not contained in the cavity’s plane of symmetry.
As the curvature increases, the flow becomes more three-dimensional, with the flow
entering the cavity transitioning from having a negative out-of-plane velocity component
(shown in blue in figure 3) to a positive out-of-plane velocity component at the highest
curvature (shown in red). Additionally, an increase in curvature results in an increase in
the percentage of flow that is entering the aneurysm. This can be observed in the zero or
positive vertical velocity component of the vectors at the cavity–free stream interface in
the two highest curvatures, compared to the negative vertical velocity component at the
cavity entrance for the two lowest curvatures.

This single counter-rotating vortex has been described for steady laminar flow in a
spherical or square cavity (Sobey 1980; Stephanoff, Sobey & Bellhouse 1980; Higdon
1985; Tippe & Tsuda 2000), as well as in aneurysm geometries (Hoi et al. 2004; Imai
et al. 2008). The flow topology was found to depend on the opening angle of the cavity and
the ratio between the depth and the width of the cavity. For small Re (Re ≤ 5) Stephanoff
et al. (1980) observed no separation between the flow in the pipe and the flow in the cavity.
Similarly, for small opening angle of the cavity (α = 65◦) and at very low Re, Higdon
(1985) described no separation of the flow from the walls at the leading edge of the cavity.
However, separation was described for all higher opening angles, which agrees very well
with the experimental observations in this study.

Figure 4 shows the velocity field in the curved pipe for the different free-stream Re (flow
rates) and De (curvature values, κ). For the case with zero curvature (κ = 0.0 mm−1),
the maximum velocity is at the pipe axis, following a Poiseuille flow velocity profile. By
increasing the curvature of the pipe, the maximum velocity is shifted towards the outer wall
of the pipe, towards the cavity opening. This asymmetry in the free-stream flow leads to
increased flow rate entering the cavity and an increased velocity inside, as can be observed
in figure 3. This phenomenon is dominated by the Dean number, De, and, as it increases
(diagonally from top left to bottom right in figure 4), the velocity shift towards the outer
edge of the curved pipe is magnified and the velocity gradient at the wall near the cavity
increases, and, as a result of these changes, the slope of the velocity profile at the leading
edge of the cavity becomes steeper.

The location of the centre of the vortex was computed from the velocity field, shown in
figure 5 for the four values of curvature κ (colours) and the four free-stream Re (symbols).
As the Dean number increases, the location of the vortex centre moves further into the
cavity (further from the opening of the cavity). The behaviour with increasing Reynolds
number is not as clearly defined, corresponding to the strong effect that the Dean number
has on this flow (note that, as the Reynolds number increases, the Dean number also
increases even for a constant curvature value). For the lowest and highest curvature values
(blue and orange in figure 5), the motion of the centre of the vortex is anticlockwise, that is,
it follows the sense of rotation of the cavity vortex. For the intermediate curvature values,
the centre of the vortex moves clockwise inside the cavity in the direction contrary to the
sense of rotation of flow inside the cavity. This difference in the direction of motion of the
centre of the vortex is associated with the strong increase in the three-dimensionality of
the cavity flow with Reynolds number, visible by the out-of-plane velocity measurements
described above.

The relocation of the centre of the vortex for an increased Re in the pipe has been
described for the flow in a furrow (Sobey 1980). By increasing Repipe, the centre of the
single vortex formed inside the furrow moved downstream and deeper in the cavity. In our
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Figure 4. Free-stream velocity (in the parent vessel, highlighted in red on the aneurysm schematic) for
different pipe curvatures and inflow rates. The colours represent the velocity magnitude, and the arrows
represent the direction of the in-plane velocity (columns, from left to right) corresponding to increasing pipe
curvature κ (Dean number increases diagonally from top left to bottom right) and (rows, from top to bottom)
corresponding to increasing Reynolds number (inflow rate, Qpipe).

κ = 0 mm–1

κ = 0.063 mm–1

κ = 0.143 mm–1

κ = 0.222 mm–1

RePipe = 120

RePipe = 240

RePipe = 360

RePipe = 480

Figure 5. Location of the centre of the vortex for the different Re and De (curvature of the pipe) numbers.

study, the effect of the curvature of the parent vessel on the velocity profile changes the
momentum and the vorticity injected at the trailing edge of the cavity, and these changes
tend to relocate the centre of the vortex deeper in the cavity, with a stronger effect than the
increase in the Re of the free stream outside the cavity.

3.1.2. Velocity characterization
The flow velocity injected into the cavity is computed along a line at the cavity opening.
Figure 6 shows the velocity at the opening for the different experimental conditions. The
flow enters the cavity at the trailing edge (downstream) over a narrow region but with high
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Figure 6. Velocity at the opening of the cavity (highlighted in red in the aneurysm schematic). The lines are
coloured as a function of u · n, blue meaning that the flow is exiting the cavity (u · n < 0) and red meaning
that the flow is entering through the opening (u · n > 0).

net inflow velocity. It then recirculates anticlockwise, slows down and exits the cavity at the
leading edge (upstream) over a wider area and with a lower velocity. The velocity profile at
the opening of the cavity thus presents a strong asymmetry from the trailing-edge inflow
to the leading-edge outflow. The profiles show a strong effect of the Dean number, causing
a large increase of the velocity entering the cavity. For low De, the flow entering the cavity
is localized at the trailing edge. As De increases, the flow entering the cavity occupies a
larger area, growing towards the centre of the cavity opening. The direction of the velocity
vectors entering the cavity is also influenced by the curvature of the pipe. For higher Dean
number, the flow entering the cavity is directing towards the downstream part of the wall.
The change of direction of the inflow jet may impact the growth of the aneurysm (increased
WSS in these areas and over a larger area). These observations are consistent with the
numerical analysis by Hoi et al. (2004), showing that increasing the curvature leads to
a larger impact zone (i.e. an increased flow impingement). This important impinging jet
entering the cavity, which becomes more important with the curvature of the parent vessel,
has been found to impact the outcomes of treatment with flow diverters (Chen et al. 2019;
Su et al. 2020). Hence, aneurysms attached to a vessel with high curvature may be more
likely to fail when being treated with diverters.

Figure 7(a) shows that the average inflow velocity into the cavity, ū (2.1), is proportional
to the flow rate in the curved pipe Qpipe, but this proportionality varies with the curvature
of the pipe. In the straight model, the radial velocity component is zero upstream of the
cavity. However, even at very low Repipe, the flow separates and enters the cavity. Because
the radial component of the velocity upstream is zero for the straight pipe (no curvature),
the velocity at the opening ū is only slightly influenced by an increase in the free-stream
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Figure 7. (a) Velocity of the flow entering the cavity as a function of the flow rate in the pipe for the four
different curvatures. (b) Reynolds number Re at the opening of the cavity as a function of De.

Re (figure 7a). When the pipe is curved, the flow in the cavity is driven by the upstream
asymmetrical flow in the pipe, which is shifted towards the cavity, and as the curvature
increases, the free-stream flow becomes more asymmetrical. Consequently, the flow into
the cavity becomes more sensitive to the inertia of the free-stream flow (i.e. Re).

The velocity at the opening of the cavity Reopening was found to be proportional to the
Dean number (figure 7b). By increasing De, the shift in axial velocity towards the outer
wall in a curved pipe is accompanied by secondary vortices transporting the fluid along
the centre plane from the inner to the outer wall. The magnitude of the outward radial
velocity component at the midplane of the pipe increases with increasing curvature. As a
result, the magnitude of flow entering the aneurysm also increases.

4. Unsteady flow

4.1. Flow structure over a cycle
Figure 8 shows the circulation in the spherical cavity over time (a whole cycle), for the
four different Reynolds numbers at a single value of pipe curvature (κ = 0.063 mm−1)
and Womersley number (Wo = 2.5). The pulsatile flow in the free stream is forced in
such a way that the acceleration phase is shorter than the deceleration (40 %/60 %). This
results in a steeper slope for the velocity increase than for the velocity decrease. The peak
circulation and variation of circulation over the course of the flow cycle increase with
increasing free-stream Re.

As observed for steady inflow, the flow in the cavity always separates at the leading
edge (figure 9), for all experimental conditions and cavity–pipe geometries. Flow enters
the cavity near the trailing edge and rotates anticlockwise inside the spherical cavity (in
the direction opposite to the free-stream flow) before exiting the cavity near the leading
edge, reattaching to the free-stream flow in the curved pipe. The aspect ratio of the cavity
will have an effect on the number of vortices formed inside the cavity, and this will
be studied in a follow-up experiment; but for the current spherical shape and range of
Reynolds numbers, there is a single three-dimensional vortex that fills the cavity, and that
is maintained during the entire period. The observations differ from previous numerical
studies run for a straight parent vessel (Asgharzadeh & Borazjani 2016; Asgharzadeh
et al. 2019), for which a single counter-rotating vortex was only observed during the
acceleration of the flow in the vessel. However, the geometry of the aneurysmal sac and
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Figure 8. Circulation in the cavity (Wo = 2.5) over the cycle for four different Re in the curved pipe
(κ = 0.063 mm−1).
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Figure 9. Velocity field in the cavity at four points of the cycle for Re = 240, Wo = 2.5 and
κ = 0.063 mm−1.

more specifically the opening (i.e. the neck of the aneurysm) were larger than in the present
study.

During the acceleration phase (from A to B in figure 9), the velocity inside the cavity
increases. The acceleration of the flow in the pipe and the asymmetry of the velocity profile
in the pipe due to its curvature lead to the motion of the centre of the vortex, which rotates
in the same direction as the flow recirculation. The centre is pushed deeper into the cavity
by the flow in the pipe (further from the opening of the cavity), as shown in figure 9. This
relocation of the centre of the vortex is similar to that observed for the steady case as the
free-stream Re increased.

During the deceleration phase (from B to C in figure 9), as the velocity in the cavity
decreases, the centre of the vortex rotates back towards the cavity entrance, still following
the sense of rotation of the recirculation, which is maintained throughout the deceleration
phase. At the very end of the deceleration phase, the centre of the vortex is very close to
the cavity opening and the velocity is very low, but the flow in the cavity remains separated
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from the flow in the pipe (D in figure 9). This is consistent with the observations made for
the steady case, for which the flow in the cavity is always separated from the flow in the
curved pipe, even at low free-stream Re and low Dean number (i.e. low curvature of the
pipe).

The motion of the centre of the vortex during the flow cycle is consistent with the
description of pulsatile flow in a furrowed channel in Sobey (1980). However, in that study,
the flow in the furrow separated during the acceleration phase and then reattached at the
end of the deceleration phase. This is likely to be due to the significantly lower free-stream
Re examined in that study and the lack of curvature. Further investigation into the effect of
a lower cavity Reynolds number is explored in Part 2 of this work (Barbour et al. 2021).

For steady flow, the location of the centre of the vortex is influenced by the Reynolds
and Dean numbers (the flow rate and curvature in the pipe). In the unsteady inflow case,
the centre of the vortex moves across the cavity during the cycle, exhibiting a certain
amount of hysteresis, as shown in figure 10. As discussed for one of the cases in figure 9,
the trajectory of the centre differs between the acceleration and deceleration phases. This
hysteresis is influenced by the experimental conditions and the geometry of the models.
At low Dean number (low curvature of the pipe or at low free-stream Re), a non-stationary
vortex is formed, with its centre moving over a wide range during the period (figure 10, A).
At increasing free-stream Re (increasing inertia), the vortex centre follows a more confined
trajectory (figure 10, B). But despite increasing inertia, the location of the centre of
the vortex persistently moves during the cycle. Shortening the length of the cycle (i.e.
increasing the Womersley number by increasing the frequency of the pulsatile forcing)
tends to shorten the trajectory of the centre of the vortex but does not stop this hysteretic
motion (figure 10, D). Finally, increasing the Dean number (increasing the curvature of the
pipe while keeping the Reynolds number constant) leads to a more stationary vortex, with
the least range of motion of its centre (figure 10, C). As a consequence of the increased
centrifugal inertia in the free stream, the asymmetry of the flow in the pipe at the leading
edge impacts the flow entering the cavity, its velocity and amount of circulation. In this
high-Dean-number case, the inertia of the vortex is so high that the circulation remains
high throughout the cycle, even during the deceleration phase, minimizing the motion of
the vortex centre.

The relocation of the centre of the vortex during the acceleration phase was numerically
observed by Asgharzadeh & Borazjani (2016). In their simulations, on a straight parent
vessel, the vortex is not maintained throughout the cycle. However, during the acceleration,
the centre of the vortex is relocated towards the downstream aneurysm wall and deeper in
the cavity.

4.2. Inertial effects (Dean and Reynolds numbers)
Figure 11(a) shows the non-dimensional spatial average of the velocity inside the cavity,
temporally averaged over the flow cycle (Reynolds number in the cavity Recavity), as a
function of Repipe. Similar to the steady inflow results, the velocity in the cavity is found to
be proportional to Repipe for a given value of pipe curvature. The magnitude of velocity in
the cavity also becomes more sensitive to increases of free-stream inertia with increasing
pipe curvature (i.e. the slope of lines increases with curvature). Indeed, with increasing
curvature, the flow in the pipe becomes more asymmetric, with more inertia contained
in the upper half of the pipe, resulting in a larger part of the pipe flow entering and
recirculating in the cavity. Both the extent of flow into the cavity and its velocity magnitude
increase with the pipe curvature, as described previously for steady flow.
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Figure 10. Location of the centre of the vortex in the spherical cavity for a pulsatile flow in the
pipe: A, Re = 240, Wo = 2.5, κ = 0.063 mm−1; B, Re = 480, Wo = 2.5, κ = 0.063 mm−1; C, Re = 480,
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as a function of De.

The flow topology in the free stream, including the asymmetry of the velocity profile
at the leading edge of the cavity, which strongly impacts the recirculation in the
spherical cavity, is dominated by the combination of flow inertia in the free stream
and centrifugal inertia near the outer wall of the curved pipe, which determines the
flow at the cavity opening. This combination points to the Dean number, De, as the
controlling non-dimensional parameter for this phenomenon. Figure 11(b) shows that
the time-averaged circulation in the cavity collapses for all cases when plotted against
the Dean number, De, and, in fact, is directly proportional to it. However, even if the trend
is similar between steady and pulsatile inflows, the average circulation is generally higher
for cases with steady inflow, as shown in figure 12, where circulation in the cavity, Γ , is
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Figure 12. Circulation Γ averaged over the cycle for the three Womersley numbers Wo = 0, 2.6 and 3.6 as a
function of De.

shown for steady flow (Wo = 0), and time-averaged over the flow cycle for both pulsatile
conditions (Wo = 2.6 and 3.6). At a given value of De, higher values of circulation are
seen in the steady inflow condition when compared to the two pulsatile conditions. This
means that the circulation injected into the cavity during the acceleration phase does not
compensate for the decrease in circulation introduced during deceleration. This could
partly be caused by the instability of the vortex associated with pulsatile inflow, compared
to the very stationary vortex induced by the steady inflow. The fact that the circulation
is higher for steady versus pulsatile, even for the highest-Dean-number case (figure 12),
where the vortex motion is significantly reduced, shows that the amount of circulation
brought by the flow in the pipe over a cycle is lower for unsteady conditions than the
quasi-steady injection of vorticity in the cavity associated with steady inflow.

The values of the circulation for Wo = 2.6 and Wo = 3.6 are very similar. This supports
the finding of a very limited impact of the frequency of the pulsatile inflow on the flow in
the cavity, within the range of frequencies studied in these experiments. The main impact
of the variation of the inflow frequency on the flow topology is on the motion of the centre
of the vortex. The length of the path of the vortex centre trajectory along the period is
reduced by 25 % when Wo was increased from 2.6 to 3.6 (doubling the frequency of the
inflow from 50 to 100 cycles per minute).

The Re in the pipe also impacts the trajectory of the centre of the vortex during the cycle,
as previously described for figure 10. Figure 13 shows the ratio between the area covered
by the centre of the vortex during the cycle and the area of the cavity. At low Reynolds
number and for the lowest curvature of the pipe, the location of the centre of the vortex is
strongly influenced by the acceleration and deceleration of the flow in the pipe, resulting in
a large area covered by the centre during the cycle. For low Repipe but high Dean number,
the inertia brought by the curvature of the flow in the pipe results in a more stationary
vortex and a smaller area covered by the centre during the cardiac cycle.

By increasing Re in the free stream, the influence of Wo (acceleration and deceleration)
of the inflow on the flow topology is reduced and the area covered by the centre of the
vortex is reduced, for all Dean numbers. The increased inertia brought by the free-stream
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Figure 13. Area covered by the motion of the centre of the vortex across the cycle as a function of Repipe.

flow increases the stability of the vortex in the cavity, minimizing its motion throughout
the flow cycle.

5. Conclusion

Flow in a spherical cavity attached to a curved circular pipe, used as an idealized aneurysm,
has been investigated for intermediate Reynolds numbers (Re = 100–500). The analysis
focuses on the effect of the curvature of the centreline of the pipe on the flow patterns in
the cavity, and includes both steady and pulsatile inflow conditions.

For every value of pipe curvature and Repipe, a single counter-rotating vortex is observed
in the cavity. This flow pattern agrees well with previous observations made for spherical
or square cavities (Sobey 1980; Stephanoff et al. 1980; Higdon 1985; Tippe & Tsuda 2000)
and idealized aneurysm geometries (Imai et al. 2008; Epshtein & Korin 2018).

As described in canonical Dean flows, the curvature of the pipe centreline leads to an
asymmetrical velocity profile, with peak axial velocity shifting outwards towards the outer
wall and the spherical cavity opening. As a consequence, higher values of pipe curvature
result in more momentum entering the cavity and influencing the strength and location of
the vortex centre. With increasing values of pipe curvature, the centre of the vortex moves
deeper into the cavity. The centre also relocates as the Reynolds number of the free stream
increases, as was described for the flow in a furrow (Sobey 1980). For pulsatile inflows,
the location of the centre varies between the acceleration and deceleration phase of the
inflow and is influenced by the free-stream Re and Wo, as well as the De (curvature of
the pipe centreline). During acceleration, the centre moves deeper in the cavity and then
relocates towards the opening of the cavity during deceleration. Increases in Wo shorten
the trajectory of the vortex centre, while increases in De stabilize the vortex, with high
values of De producing minimal vortex motion.

As a consequence of the asymmetry of the velocity profile induced by the curvature
of the pipe, the strength of circulation in the cavity and magnitude of velocity at the
cavity neck are dominated by the Dean number for both steady and pulsatile inflows.
However, even if this trend is similar for steady and pulsatile inflows, the time-averaged
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circulation is higher for steady inflow cases, suggesting that the circulation injected in the
cavity during the acceleration phase does not compensate for the decrease in circulation
induced by the deceleration of the free stream. For pulsatile inflow cases, the effect of the
Womersley number Wo on the circulation in the cavity is very small.

This study, which has focused on the effect of pipe curvature, flow rate (Re) and inertia
(Wo), shows that the flow in a spherical cavity attached to a curved pipe is dominated by
the Dean number De. Other geometrical parameters, such as the shape of the cavity or the
size of the opening, may impact the flow patterns in the cavity, but were not studied here.

The geometry studied here, namely flow in a curved pipe connected to a spherical
cavity, is an idealized representation of a common biofluid mechanics problem: sidewall
cerebral aneurysms. Understanding the fluid mechanics of cerebral aneurysms is crucial
to advancing our knowledge of the disease’s progression and our ability to design optimal
treatment options. In Part 2 of this study (Barbour et al. 2021), we expand upon our work
by incorporating aneurysm treatment methods that drastically reduce the flow into the
spherical cavity and create entirely new flow features.
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