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The influence of the lunar phases and tidal range on the fish capture was analysed in a tidal flat in Barra do Paraguaçu (Baı́a
de Todos os Santos). The sampling was realized in the flood tide and ebb tide of the spring (full moon) and neap (waning
moon) tides, between June 2007 and May 2008. At all sampling occasions, two parallel drags were accomplished to the
tidal flat, in the same direction of the current, in a 100 m long area marked on the beach beforehand, using a seine net of
15 m × 2.0 m with a mesh of 12 mm between adjacent knots. A total of 2312 fish specimens were captured (26.5 kg), belong-
ing to 75 species from 45 families. The mean number of captured fish was significantly larger in full moon at ebb tides, while
the mean weight in the captures was larger in ebb tides. There was significant difference in number of species, number of fish,
richness and diversity between full and waning moons. The number of fish and biomass were significantly different between
tides. Significant differences were found in community structure regarding trophic groups in relation to tide and moon,
although the classic diversity indices did not capture this effect between tides. Furthermore, it was possible to identify prefer-
ences of occurrence related to the change of tide in dominant species.
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I N T R O D U C T I O N

In estuarine systems, environmental variations of short and
long periods can limit the diversity of species (Nagelkerken
et al., 2008). However, the maintenance of great numbers of
individuals in these ecosystems is assured by the large
amount of food sources and by the great structural complexity
which promotes the occurrence of several ecological niches
(Odum & Herald, 1972). Among the different estuarine habi-
tats, tidal flats are areas that are exposed and submerged reg-
ularly by tides and that can be distributed from estuarine to
marine areas. These flats are transitional systems between
the terrestrial and the aquatic environments and, generally,
they limit the narrow strips between salt marshes and/or man-
groves and brackish waters (Reise, 1985).

Tidal flats are important for the growth of several fish
species (Manderson et al., 2004) and characterized by large
variations in environmental conditions and in the structure
of fish assemblages (Godefroid et al., 2003). The species of
fish that inhabit these places are generally small and most of
them do not present migratory behaviour (Weinstein &
Heck, 1979). In tropical tidal flats tides are usually important
to distribute nutritious and minerals resources especially
where primary productivity is reduced (Carter, 1988). The

intertidal zone provides an important, but temporary, accessi-
ble foraging ground for coastal fish and other nektonic species
(e.g. shrimps and gastropods) (e.g. Wolff et al., 2005). Thus, it
is expected that spatial and temporal patterns of fish abun-
dance in tidal flats are related to patterns of feeding, although
avoidance of predation, reproduction, and appropriate
environmental conditions may also explain changes in abun-
dance (Gibson, 1992, 1996; Rountree & Able, 1993; Gibson
et al., 1998).

The Paraguaçu River, the main tributary of the Baı́a de
Todos os Santos (BTS) is one of the most important aquatic
systems of the Bahia State. This system is of high value for
wildlife conservation and provides the main source of
protein and income (i.e. consumption and commercialization
of fish and shellfish) for the local communities (Barros et al.,
2008). In spite of the ecological and economic importance of
the Paraguaçu River estuary, there is no published work
addressing communities of fish, only work addressing
expansion of geographical distribution (Santos et al., 2008).

In Brazil, a few studies considered the influence of the
moon and tide for estuarine fish, most for sub-tropical areas
(Corrêa et al., 1988; Godefroid et al., 1998, 2003; 2004). The
variation of the level of water with the tide and the lunar
phase, in tidal flats, are ecologically relevant, for instance air
exposure can affect the maturation time and patterns of
feeding (Nybakken & Bertness, 2004). These changes can
modify the distribution and the density of fish species
(Rozas & Minello, 1998). A review of the literature shows that,
despite studies on seasonal variations of the ichthyofauna
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in estuaries (Rozas & Minello, 1998; Lin & Shao, 1999;
Giarrizzo & Krumme, 2009), few studies evaluated the influ-
ence of time (Santos & Nash, 1995; Gray et al., 1998), tide
(Rozas, 1995; Catellanos & Rozas, 2001) and phase of the
moon (Quinn & Kojis, 1981) on the structure of the ichthyo-
fauna assemblages. Furthermore, information about temporal
variations of intertidal fish from estuarine environments
(Brenner & Krumme, 2007) are scarce, thus making predic-
tions of general patterns of intertidal fish is difficult. This
way, the present study evaluates the following null hypothesis
that the structure and composition the ichthyofauna are the
same in different lunar phases (waning and full) and tidal
stages (ebb and flood).

M A T E R I A L S A N D M E T H O D S

Study area
The studied tidal flat is located at Barra do Paraguaçu (12850′S
38847′W), in the western section of the Baı́a de Todos os
Santos (BTS), in the estuarine portion of the Paraguaçu
River (Figure 1). This river is the main contributor of fresh-
water for BTS. The sediments are a mixture of terrigenous
material with biogenic material produced in or near the
tidal flat. In this area, the bottom is predominantly sandy
with deposition of coarse fractions, mainly biogenic gravel
(shell and coral fragments) and plant debris. The deposition
of fine sediment or organic matter is generally restricted to
nearby areas of low energy. The tides are semi-diurnal with

currents in the bay mainly bi-directional and stronger
during the ebb tide in most of the bay (Lessa et al., 2001).
The circulation inside the BTS is mostly tidally driven and
does not vary significantly throughout the year (Cirano &
Lessa, 2007).

Sampling design
Fish assemblages of the tidal flat were sampled monthly at
flood and ebb tide of the spring (full moon) and neap
(waning moon) tides, between June 2007 and May 2008. At
each sampling occasion two parallel drags were accomplished
to the coast, in the same direction as the current, in 100 m
long areas marked on the beach beforehand, using a seine
net (15 m × 2 m, 12 mm between knots). After capture, all
individuals were identified and the length (mm) and the
biomass (weight of individual fish; g) were recorded.

Trophic categories
The feeding habits of each species were described using a
trophic classification adapted from Bouchon-Navarro et al.
(1992): herbivores, fish that consume algae and seagrass
beds; planktivores, fish that consume plankton; omnivores,
which eat invertebrates and algae; first-order carnivores (CI)
that preferentially consume small benthic invertebrates;
second-order carnivores (CII) that mostly eat invertebrates
and fish; and third-order carnivores (CIII), whose diet consists
of more than 80% of fish. One category, illiophagy-scavenger,
was added to this classification (Zavala-Camin, 1996). The

Fig. 1. Map of the channel of outlet of Paraguaçu River locating the sampling point in the tidal flat.
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scientific nomenclature followed Nelson (1994), Eschmeyer
(2006) and Froese & Pauly (2006).

Statistical analysis
Differences in fish assemblage composition and in abundance
were tested by analysis of variance (ANOVA) using
STATISTICA 8.0 software (Statsoft, Inc.) where tide and
moon were fixed factors both with two levels. The monthly
averages of the numbers of fish, number of species, weight
of the capture and the indices of richness (Margalef), diversity
(Shannon–Wiener) and evenness (Pielou) were also tested.
The alpha value was corrected by the Bonferroni method
(0.008) to avoid the Type I error. Before the ANOVA, data
were fourth-root transformed to down-weight the influence
of dominant species and reduce the significant correlation
between the variance and mean (Chang & Winnell, 1981).
The independence of the means were evaluated by the corre-
lation among the mean and the standard deviation, and the
homogeneity of the variances and data normality were
tested by the Bartlett and Shapiro–Wilk tests, respectively
(Sokal & Rohlf, 1995).

A Bray–Curtis distance was computed where the most
abundant species were considered attributes (Clarke &
Warwick, 2001). These data were log (x + 1) transformed,
to avoid the high value units, and used to compare samples
and identify groupings graphically using cluster analysis. A
similarity matrix using the Bray–Curtis index was computed
using PRIMER 5 following Clarke & Warwick (2001).

In the tidal flat, the associations of fish were identified
through the ordering technique non-metric multidimensional
scaling (nMDS). As abundances between the species differed
by two orders of magnitude, so data were log (x + 1) trans-
formed. To evaluate the similarity between groups of
samples corresponding tide and moon analysis of similarity
(ANOSIM) were performed.

R E S U L T S

There were 2312 fish captured, weighing 26.53 kg, belonging
to 75 species of 45 families (Table 1). The captures of the
ebb tide of full moon (EF) were 948 individuals, weighing
8.30 kg, belonging to 49 species and 35 families, while in the
flood tide of the full moon (FF) 551 individuals were collected,
weighing 6.84 kg, belonging to 46 species of 30 families. In
periods of the ebb tide of the waning moon (EW) 442 fish
were captured, with weight of 5.88 kg corresponding to 44
species of 29 families, and, in the flood tide of the waning
moon (FW), 375 fish, weighing 5.69 kg, belonging to 44
species of 27 families (Table 1).

The dominant species and their biomass in the EF were
Haemulon steindachneri (Jordan & Gilbert, 1882), Sphoeroides
greeleyi Gilbert, 1900, Lutjanus synagris Linnaeus, 1758 and
Eucinostomus argenteus (Baird & Girard, 1855), corresponding
to 52.6% of the total number of individuals and 67.8% of the total
biomass in these conditions. In FF the species Lile piquitinga
(Schneider & Miranda Ribeiro, 1903), Sphoeroides greeleyi,
Hemiramphus brasiliensis Linnaeus, 1758 and Sphoeroides testu-
dineus Linnaeus, 1758 prevailed, representing 47.1% of the total
of fish captured (Figure 2). At EW, the dominant species and
biomass were Sphoeroides greeleyi, Sphoeroides testudineus,
Eucinostomus argenteus and Atherinella brasiliensis (Quoy &

Gaimard, 1824), representing 45.1% of the total captured and
59.8% of the total biomass. In the FW, the dominant species
were Hemiramphus brasiliensis, Atherinella brasiliensis, Albula
vulpes Linnaeus, 1758 and Lile piquitinga accounting for
42.6% of the total captured (Figure 2).

In the present work several species (i.e. L. synagris, H. sten-
dachneri, E. argenteus, S. testudineus, S. spengleri (Bloch,
1785), S. greeleyi, Pellona harroweri (Fowler, 1917), L. piqui-
tinga, A. vulpes, Caranx latus (Agassiz, 1831) and Etropus cross-
otus Jordan & Gilbert, 1882) occurred frequently during the full
moon, and some species were specifically captured in singular
situations (e.g. 80% of S. spengleri in the full moon of April).
Narcine brasiliensis (Olfers, 1831), Anchoa januaria
(Steindachner, 1879), Anchoa tricolor (Agassiz, 1829), C. bartho-
lomaei (Cuvier, 1833), Chloroscombrus crhysurus (Linnaeus,
1766), Sparisoma radians (Valenciennes, 1840), Paraclinus
arcanus (Guimarães & Bacelar, 2002) and Gobionellus oceanicus
(Pallas, 1770) were captured only at waning moons.

There was significant difference in number of species (P ¼
0.001), number of fish (P ¼ 0.001), richness (P ¼ 0.004) and
diversity (P ¼ 0.001) between full and waning moons. At
each tide, the number of fish (P ¼ 0.007) and biomass (P ¼
0.006) were also significantly different. The number of
species, individuals, richness and diversity were significantly
higher in the full than in the waning moon. The number of
fish and biomass were significantly higher at ebb than at
flood tide (Table 2). The trophic groups of the full moon
were dominated by the carnivores. In the ebb tide, the first
order carnivores, followed by omnivores, were more abun-
dant. At flood tide, planktivores followed by omnivores were
more abundant. In the waning moon, omnivores dominated
overall. At ebb tide, omnivores followed by first order carni-
vores were the most abundant, and in the flood tide, plankti-
vores followed by omnivores reached the higher values of
capture (Figure 3). The ANOSIM test revealed significant
differences on fish assemblages during the flood and ebb
tides (R global ¼ 0.58; P ¼ 0.002) and the full and waning
moon (R global ¼ 0.55; P ¼ 0.006), which can be observed
in the nMDS plots (Figure 4A and Figure 4B, respectively).

The cluster analysis distinguished three main groups
among the 10 most frequent species (Figure 5A). Group I
was formed by the species Sphoeroides greeleyi, S. testudineus
and Eucinostomus argenteus grouped in a level above 90%
similarity. These species were the most abundant of the
assemblage and occurred in all months of the year, occurring
more frequently in the full moon, with Sphoeroides greeleyi
and E. argenteus more often captured in ebb tides with full
moon. Group II was formed by the species Atherinella brasi-
liensis and Lile piquitinga, with similarity of 77%, in the area
throughout the sampling period. But, L. piquitinga used pri-
marily the flood tide with emphasis on full moon, while
Atherinella brasiliensis was numerically similar between the
tides and moons. Group III consisted of Albula vulpes,
Hemiramphus brasiliensis and Rypticus randalli Courtenay,
1967, with the first two together at a level of 100% similarity.
These two species followed a similar variation in their abun-
dances, with larger values in August, September, October,
December and January with decline from February until
May. However, Hemiramphus brasiliensis was numerically
dominant in the flood tide. The species Lutjanus synagris
and Haemulon stendachneri became isolated probably due
to the high number of captures in the dry period (January
to March) and had preferential dominance in the EF. The
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Table 1. Species collected, trophic categories, number of individuals and biomass (weight of individual fish) (maximum, minimum and standard
deviation) of the different moons and tides sampled in the tidal flat of Barra do Paraguaçu, during the period June 2007–May 2008.

Species Trophic categories EF FF EW FW

Acanthostraciun quadricornis Omnivore 5 (5–17 g + 4.5) 4 (6–10 g + 2.3)
Achirus lineatus Carnivore I 2 (15–23 g) 2 (8–12 g) 1 (13 g) 2 (12–14 g)
Achirus sp. Carnivore I 1 (19.5 g)
Albula vulpes Carnivore I 39 (3–57 g + 8.7) 24 (4.5–59 g + 7.7) 18 (3.5–25 g + 7.2) 38 (4–60.5 + 6.5)
Aluterus heudeloti Omnivore 1 (23 g)
Amphychthys criptocentrus Carnivore II 1 (87 g) 1 (76 g)
Anchovia clupeoides Planktivore 1 (65 g) 3 (60–61–60 g) 7 (55–67 g + 3.2)
Anchoa januaria Planktivore 1 (39 g)
Anchoa tricolor Planktivore 9 (35–67 + 4.2)
Archosargus romboidalis Carnivore I 13 (25–78 g + 5.6) 6 (17–34 g + 2.9) 3 (12–16–56 g)
Atherinella brasilensis Omnivore 36 (5–25 g + 4.6) 27 (4–20 g + 6.2) 36 (5–17 + 5.9) 42 (4–16 + 3.5)
Bathygobius soporator Omnivore 3 (7–8–13 g) 3 (6–6.6–13 g) 2 (4–5.6 g) 9 (5–18 g + 5.6)
Bothus ocelatus Carnivore II 1 (43 g)
Calamus calamus Carnivore I 1 (19 g)
Caranx latus Carnivore II 9 (34–78 g + 5.7) 2 (60–76 g) 3 (55–67–89 g)
Carangoides bartholomaei Carnivore III 1 (15 g) 1 (30 g)
Chloroscombrus crhysurus Omnivore 1 (5 g) 1 (8.5 g)
Centropomus undecimalis Carnivore II 3 (40–67–68 g)
Centropomus parallelus Carnivore II 2 (44–56 g) 1 (78 g)
Centegraulis edentulus Planktivore 1 (77g)
Citharichthys spilopterus Carnivore II 10 (4–20 g + 3.9) 5 (10–24 g + 4.5) 8 (12–23 g + 3.4) 1 (13 g)
Chaetodipterus faber Omnivore 3 (12–13.4–17 g) 7 (5–18.4 g + 2.4) 3 (6–8.8–23 g) 3 (7.6–8–10.7 g)
Chilomycterus spinosus Omnivore 22 (17–239 g + 8.9) 26 (19–189 g + 8.1) 16 (23–154 g + 7.6) 12 (12–89 g + 4.7)
Ctenogobius boleassoma Omnivore 1 (2.3 g) 1 (2g) 2 (2–2.7 g)
Dactylopterus volitans Carnivore I 30 (7–67 g + 9.8) 23 (6–66 g + 6.7) 11 (5–55 g + 5.9) 10 (34–56 + 4.9)
Diapterus auratus Omnivore 2 (12–21 g) 1 (16 g) 1 (11.4 g)
Diapterus rhombeus Omnivore 4 (30–67 g + 5.4) 4 (18–23 g + 3.6) 2 (17–20 g + 2.9)
Diplectrum radiale Carnivore II 9 (20–32 g + 3.4) 5 (15–50 g + 8.3) 14 (20–40 g + 5.9) 4 (21–27g + 1.3)
Eucinostomus gula Carnivore I 32 (4–19 g + 4.1) 20 (3–18 g + 3.8) 15 (5–29 g + 6.6) 14 (5–17 g + 7.8)
Eucinostomus argenteus Carnivore I 99 (15–40 + 5.5) 36 (20–40 + 2.3) 40 (5–39 + 7.5) 30 (30–41 + 2.3)
E. melanopterus Omnivore 2 (15–17 g) 6 (6–18 g + 2.7) 2 (10–14 g) 2 (3–8 g)
E. havana Carnivore I 2 (12–17 g)
Etropus crossotus Carnivore I 24 (8–24 g + 5.6) 9 (7.3–22 g + 4.2) 13 (6.5–18 g + 3.1) 4 (7.8–17 g + 4.1)
Fistularia tabacaria Carnivore III 2 (67–89 g) 7 (55–88 g + 7.8) 12 (44–76 g + 3.4) 5 (60–70 g + 2.9)
Gerres cinereus Carnivore I 1 (13 g) 2 (17–27 g) 1 (18 g) 1 (10 g)
Gobionellus oceanicus Illiophagy-scavenger 3 (10–12–15 g)
Haemulon steindachneri Carnivore I 166 (32–62 g + 4.5) 6 (35–65 g + 4.6) 28 (45–55 g + 2.5) 1 (43–60 g + 3.9)
Hemiramphus brasiliensis Carnivore II 7 (20–24 g + 1.8) 52 (25–30 g + 3.3) 1 (34 g) 45 (28–40 g + 3.1)
Lile piquitinga Planktivore 9 (30–35 g + 2.1) 97 (30–40 g + 2.8) 9 (32–41 g + 2.7) 35 (30–36 g + 2.2)
Lobotes surinamensis Carnivore II 1 (8.9 g) 1 (10.9 g)
Lutjanus synagris Carnivore II 116 (7–45 + 9.8) 16 (10–39 +3.4) 14 (10–40 + 4.5) 12 (8–40 + 3.9)
Mugil curema Illiophagy-scavenger 4 (60–70 g + 3.8) 2 (69–75 g) 6 (67–90 g + 4.5)
Narcine brasiliensis Carnivore II 2 (156–189 g)
Ocyurus chrysurus Carnivore II 2 (2.3–3.4 g) 1 (3.6 g)
Ogcocephalus vespertilio CarnivoresII 1 (124 g)
Oligoplites saurus Carnivore II 1 (69.6 g) 1 (78.1 g)
Opistognathus cuvieri Planktivore 2 (39–44 g) 1 (50 g)
Paraclinus arcanus Carnivore I 1 (2.6 g)
Pellona harroweri Planktivore 4 (66–76 g + 4.3) 10 (65–78 g + 4.8)
Pomadasis corvaeniformes Omnivore 1 (34 g)
Prionotus punctatus Carnivore II 22 (6–55 g + 6.9) 7 (67–69 + 0.2) 15 (10–80 + 8.7) 5 (12–59 + 6.6)
Pseudopenaeus maculatus Carnivore I 1 (14 g)
Rhinobatos percellens Carnivore II 1 (201 g)
Rypticus randalli Carnivore II 45 (8–45 g + 10.9) 13 (12–39 g + 4.3) 27 (12–40 g + 7.6) 4 (10–20 g + 4.3)
Scorpaena plumieri Carnivore II 1 (44 g) 1 (50 g)
Selene setapinnis Carnivore II 2 (70–100.4g) 1 (89.7 g)
Selene vomer Carnivore II 1 (56 g)
Serranus flaviventris Carnivore II 3 (10–12–15 g) 2 (5–8 g) 7 (34 g + 2.3)
Sparisoma axillare Herbivore 5 (18–23 g + 2.4)
Sparisoma radians Herbivore 1 (5.6 g)
Sphoeroides testudineus Omnivore 45 (10–40 + 7.6) 46 (15–39 + 3.4) 68 (15–35 + 3.4) 13 (20–39 + 4.1)
Sphoeroides greeleyi Omnivore 119 (12–45 + 6.7) 65 (10–55 g + 8.3) 55 (12–44 + 4.5) 29 (15–50 + 6.5)
Sphoeroides spengleri Omnivore 24 (8–67 g + 6.5) 3 (12–15–16 g) 2 (13–20 g)

Continued
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obvious groups over 65% of the cluster are also visible in the
nMDS, indicating that the proximity between the species is
almost equivalent to the original similarities (Figure 5B).

D I S C U S S I O N

Moon and tide effects
In the studied tidal flat, there was a clear separation of fish
assemblages in relation to the tide, as shown by Bonecker

et al. (2009) in another tropical estuary in Brazil. The signifi-
cant differences observed in abundance and composition
between assemblages sampled in the different tide stages
emphasizes the importance of the tidal cycles in the structure
of the ichthyofauna. Tidal variation can change behaviour in
fish, making them more active in slow currents and less
active when current increases (Kleypas & Dean, 1983).

In the present study, the diversity showed no significant
differences between tides, only a small increase in ebb tide.
However, the abundance and biomass were greater on ebb
than on flood, contrasting with the results of Godefroid

Table 1. Continued

Species Trophic categories EF FF EW FW

Sphyraena barracuda Carnivore III 2 (56–79 g) 1 (77.4 g)
Stephanolepis setifer Omnivore 2 (5–7 g) 1 (6.5 g)
Strongylura marina Carnivore III 1 (101 g) 6 (98–109 g + 4.3) 1 (109 g)
Strongylura timuco Carnivore III 1 (78 g) 2 (109–111 g) 1 (89 g)
Syacium micrurum Carnivore II 1 (79 g)
Syngnathus sp. Planktivore 2 (5–7 g)
Synodus foetens Carnivore II 1 (98 g) 2 (70–78 g)
Symphurus diomedianus Carnivore I 1 (15.5 g)
Symphurus plagusia Carnivore I 1 (18 g)
Thalassophryne punctata Carnivore II 2 (60–98 g) 1 (64 g) 1 (68 g) 1 (50 g)
Trachinotus falcatus Carnivore II 1 (45.9 g)
Trinectes microphthalmus Carnivore I 1 (5 g)

EF, ebb tide full moon; FF, flood tide full moon; EW, ebb tide waning moon; FW, flood tide waning moon. Carnivores I, first order; II, second order;
III, third order.

Fig. 2. Dominant species, number of individuals (A) and biomass (B) in the flood and ebb tide of the full moon and waning moon. E/F, ebb tide/full moon; F/F,
flood tide/full moon; E/W, ebb tide/waning moon; F/W, flood tide/waning moon; H.ste, Haemulon stendachneri; L.piq, Lile piquitinga; S.gre, Sphoeroides greeleyi;
L.syn, Lutjanus synagris; H.bra, Hemiramphus brasiliensis; E.arg, Eucinostomus argenteus; A.bra, Atherinella brasiliensis; A.vul, Albula vulpes.
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et al. (2003), where diversity was greater in flood tide and
abundance and weight did not show any significant differ-
ences. The species Lile piquitinga, Hemiramphus brasiliensis,
S. greeleyi, A. brasiliensis and A. vulpes were more abundant
in flood tides. These results suggest that these species follow
the movements of the tides for food or protection.
Godefroid et al. (2003) also observed this pattern in Albula
vulpes in the south of Brazil.

The lunar phases may influence the specific composition of
the ichthyofauna, either by its action on the tidal level (Quinn
& Kojis, 1981), and/or caused by variation in light (Rooker &
Dennis, 1991). Moreover, it was suggested that reproductive
aggregations associated with lunar cycles can have significant
implications in the abundance of fish (Johannes, 1978).
Krumme et al. (2004) observed for mangrove creeks that the
structure of fish assemblages was more homogeneous in the
full moon of spring tide than at other situations corroborating
Reis-Filho et al. (2010) in a semi-urban estuary on the north-
ern coast of Bahia, Brazil. Differently, we found a more hetero-
geneous structure associated with the full moon. Perhaps this
difference can be attributed to the distinction of topographical
and hydrological features peculiar to these estuarine environ-
ments (mangrove creeks versus tidal flats). Furthermore, func-
tional characteristics of the use of this estuarine habitat by fish
species may explain this difference. According to Elliot et al.
(2007), fish that occur in the river mouths (salinities below

35) are marine stragglers that spawn at sea and typically
enter estuaries only in low numbers, most frequently in the
lower reaches. On the other hand, mangrove creeks species
may be estuarine residents capable of completing their
entire life cycle within the estuary environment. Although
the effect of the moon on the structure of fish communities
is still little studied, works conducted in Baı́a de Paranaguá,
south-east Brazil (Godefroid et al., 1998, 2003) and Joanes
River estuary, north-east Brazil (Reis-Filho et al., 2010)
found that the moon influenced the occurrence of species.

Rooker & Dennis (1991) and Krumme et al. (2004) found
no significant difference between the average number of indi-
viduals collected during the full and waning moons and
Reis-Filho et al. (2010) found no significant difference
between number of individuals and species. Contrasting
with the data found in the present study, where the number
of fish captured were greater in the full than at the waning
moon. However, Godefroid et al. (2003) showed significant
differences between the number of species during the two
moon stages, with more species in the full moon. This corre-
sponds to what was observed in the present study where sig-
nificant differences were found in the number of species
captured in full and waning moons. Although Krumme
et al. (2008) have suggested that the factor moon phase can
only be sampled once every month, efficient temporal
sampling is difficult within a short period (i.e. to avoid

Table 2. Result of two-way analysis of variance, analysing the effect of the moon and of the tide on the number of species, number of individuals,
biomass, richness of Margalef, diversity of Shannon–Wiener, and evenness of Pielou, of the fish assemblages in the tidal flat of Barra do Paraguaçu,

during the period June 2007–May 2008.

Moon Tide Moon 3 tide

F P value F P value F P value

No. of species 15.55 0.001 FM . WM 1.36 0.24 NS 0.01 0.89 NS
No. of fish 14.34 0.001 FM . WM 9.18 0.007 ET . FT 0.89 0.64 NS
Biomass 2.34 0.11 NS 10.77 0.006 ET . FT 3.45 0.09 NS
Richness 9.1 0.004 FM . WM 2.39 0.12 NS 1.91 0.28 NS
Diversity 13.65 0.001 FM . WM 1.55 0.21 NS 2.34 0.12 NS
Evenness 0.09 0.75 NS 0.15 0.69 NS 2.17 0.14 NS

FM, full moon; WM, waning moon; FT, flood tide; ET, ebb tide; NS, not significant.

Fig. 3. Number of individuals (mean and standard deviation) for trophic groups in the ebb and flood tide of full and waning moon.
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confusion between month and moon phase). Thus, we advo-
cate the need to evaluate the lunar cycle effect on the variation
of water level and the consequent availability of habitat for fish.

The ichthyofauna of the tidal flat studied was characterized
by dominance of juvenile of marine migrant forms with small
size that use it as areas of growth and feeding, a fact confirmed
in the same region by Oliveira-Silva et al. (2008) and in an
estuary of southern Brazil by Barletta et al. (2008). An important
characteristic of fish assemblages in intertidal mangrove zones is
that there are several residents (Barletta et al. 2000) that do not
move over large distances during their tidal migration (Horn
et al. 1999). However, we observed a small number of resident
species that regularly frequent the tidal flat, which does not
mean that the same group of individuals is constantly present
in the area throughout the period. Although there are differ-
ences between the tidal flats in relation to the pattern of
species dominance, the dominant fish are a few taxonomic
groups (Day et al., 1989) as shown in the present study.

Functional aspects
In the present study more than 60% of species were carni-
vores. The dominance of species with generalized diet with a
strong tendency to carnivory (especially invertebrates) was
also documented in other tropical estuaries (Blaber, 2000;

Paiva et al., 2008). The carnivores and omnivores dominance
found in the present study indicates that tide changes modified
trophic categories, just altering the dominant species. Another
observation associated with change of tide is the preference of
planktivore species for the flood tide. During high tide, the
physical and chemical conditions of the water in the tidal flat
almost mirror those of the adjacent marine area, tending to
be uniform during flood tide (Barletta et al., 2003). Thus, this
condition is favourable to these species (generally nektonic)
for entering the tidal flat. Krumme et al. (2004), studying man-
grove creeks, explained that many species emigrate with filled
stomachs, feeding being considered the most important factor
for fish immigration into the tidal flat. Thus, the territorial
occupation may be linked to behavioural characteristics and
availability of food (Koch, 1999) due to the implications of
the lunar cycle and flood–ebb tide cycle on the movement of
water (Krumme et al., 2008).

Another aspect that the results of this study show is about
traditional measures of species diversity, which few estimates
are predictive of the structure and functioning of the commu-
nity (Webb, 2000; Dı́az & Cabido, 2001; Petchey, 2004; Ricotta
et al., 2005). Cianciaruso et al. (2009) provides an example
where, due to the environmental change, the community

Fig. 4. Non-metric multidimensional scaling ordination showing differences
between ebb and flood assemblages (A) and between full and waning
assemblages (B). Each individual point represents a sample. Squares, flood
tide and waning moon; triangles, ebb tide and full moon.

Fig. 5. Cluster (A) and non-metric multidimensional scaling (B), based on the
abundance of the dominant species data, sampled in the tidal flat of Barra do
Paraguaçu. The groups of the species delineated in the similarity level above
65% are surrounded in the ordering graph. Sph gre, Sphoeroides greeleyi;
Sph tes, Sphoeroides testudineus; Euc arg, Eucinostomus argenteus; Hem
bra, Hemiramphus brasiliensis; Hae ste, Haemulon stendachneri; Ryp
ran, Rypticus randalli; Lut syn, Lutjanus synagris; Ath bra, Atherinella
brasiliensis; Lil piq, Lile piquitinga; Alb vul, Albula vulpes.
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that had species in the different genus was replaced by another
with most species belonging to the same genus. Keeping the
same number of species and the same abundance distribution,
traditional analysis of diversity will not reveal any effect. In the
present study, we faced the problem that the species compo-
sition and the trophic guild showed differences in the commu-
nity structure, but there were no observed differences in the
diversity indices. Therefore, we suggest that diversity
measures that incorporate information about the functional
characteristics (Diaz & Cabido, 2001; Petchey & Gaston,
2006) and even phylogeny (Webb, 2000; Ricotta et al., 2005)
should be better than traditional measures.

The strategy of different fish species to use the tidal flats,
conditioned by the tolerance of some species to certain
environmental conditions, follows short term variations. The
interplay of the ebb–flood tide pulse together with the lunar
phase affects the fish assemblage composition. Additionally,
the trophic category in the tidal flat studied also changed.
Thus, despite the different forces that imply movement of
immigration and emigration of species in the tidal flat, the
functional structure responds to environmental variation.
Therefore, we argue that the functional diversity has been
more sensitive to detect community responses to environ-
mental changes compared to species diversity.
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Barletta M., Amaral C.S., Corrêa M.F.M., Guelbert F., Dantas D.V.,
Lorenzi L. and Saint-Paul U. (2008) Factors affecting seasonal vari-
ations in demersal fish assemblages at an ecoline in a tropical–subtro-
pical estuary. Journal of Fish Biology 73, 1314–1336.

Barros F., Hatje V., Figueiredo M.B., Magalhães W.F., Dórea H.S. and
Emı́dio E.S. (2008) The structure of the benthic macrofaunal assem-
blages and sediments characteristics of the Paraguaçu estuarine
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