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Abstract

In the 1970s, Dwork defined the logarithmic growth (log-growth for short) filtrations for
p-adic differential equations Dx = 0 on the p-adic open unit disc |t| < 1, which measure
the asymptotic behavior of solutions x as |t| → 1−. Then, Dwork calculated the log-
growth filtration for p-adic Gaussian hypergeometric differential equation. In the late
2000s, Chiarellotto and Tsuzuki proposed a fundamental conjecture on the log-growth
filtrations for (ϕ,∇)-modules over K[[t]]0, which can be regarded as a generalization of
Dwork’s calculation. In this paper, we prove a generalization of the conjecture to (ϕ,∇)-
modules over the bounded Robba ring. As an application, we prove a generalization of
Dwork’s conjecture proposed by Chiarellotto and Tsuzuki on the specialization property
for log-growth Newton polygons.
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Introduction

In the introduction, let K be a complete discrete valuation field of mixed characteristic
(0, p) equipped with a valuation | · | such that |p| = p−1, with integer ring OK and residue
field k. In this paper, we study the logarithmic growth (log-growth for short) filtrations for
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(ϕ,∇)-modules over the bounded Robba ring Rbd. Our main result is a proof of a generalization
of Chiarellotto–Tsuzuki conjecture (Theorem 0.1). Recall that (ϕ,∇)-modules over Rbd natu-
rally arise from Picard–Fuchs modules, in the sense of [Ked10, Definition 22.1.1], associated with
nice families f : X → P1

K of algebraic varieties [Ked10, Theorem 22.2.1, Remark 22.2.2]. In the
following, we recall Dwork’s result of [Dwo82], which illustrates Chiarellotto–Tsuzuki conjecture
in the case where f is given by Legendre family of elliptic curves.

Dwork’s result
In this paragraph, we assume that k is algebraically closed of characteristic p �= 2, and OK

is the ring of Witt vectors over k. Let X → P1
K be Legendre family of elliptic curves defined

by Et : w2 = z(z − 1)(z − t). Then, the associated (first) Picard–Fuchs module corresponds
to Gaussian hypergeometric differential operator H := t(1 − t)∂2 + (1 − t)∂ − 1/4 (see [Ked10,
Examples 22.2.1, 22.2.3]). Let a ∈ OK be a lift of ā ∈ k\{0, 1}. We put Sa := {x ∈ K[[t− a]]; t(1 −
t)d2x/d(t− a)2 + (1 − t)dx/d(t− a) − x/4 = 0}, which is regarded as the set of local solutions
of Hx = 0 around t = a. We denote by K{t− a} the subring of K[[t− a]] consisting of series
converging on the open unit disc |t− a| < 1. Then, we have dimK Sa = 2, and Sa ⊂ K{t− a}.
That is, the differential equation Hx = 0 is solvable on the open unit disc |t− a| < 1. However,
one can prove that no nonzero x ∈ Sa converges on the closed unit disc |t− a| � 1. To under-
stand the asymptotic behavior of x ∈ Sa as |t− a| → 1−, we introduce the log-growth filtration
Fil•K{t− a} of K{t− a}. Let λ ∈ R�0. A formal power series x =

∑
i∈N xi(t− a)i ∈ K[[t− a]]

with xi ∈ K has log-growth λ if there exists C ∈ R such that |xi| � Ciλ for all i ∈ N. Note that
if x satisfies the condition, then x ∈ K{t− a}. We define FilλK{t− a} as the K-subspace of
K[[t− a]] consisting of series having log-growth λ. We put FilλK{t− a} = 0 for λ ∈ R<0. Then,
we put Sa,λ := Sa ∩ FilλK{t− a} for λ ∈ R. Dwork proves that the slope multiset of the filtra-
tion Sa,• is {0, 1} if Eā is ordinary, and {1/2, 1/2} if Eā is supersingular (see [CT09, 7.4] for
further explanation).

Chiarellotto–Tsuzuki conjecture
In [CT09], Chiarellotto and Tsuzuki formulated a conjecture called the Chiarellotto–Tsuzuki con-
jecture in this paper, which is regarded as a generalization of Dwork’s result. Let us briefly recall
the statement of the conjecture. Let q be a positive power of p, and ϕK an isometric ring endo-
morphism on K which lifts the q-power map on k. We define K[[t]]0 := OK [[t]] ⊗OK

K, that is, the
subring of K{t} consisting of series x =

∑
i∈N xit

i with bounded coefficients, which is equipped
with Gauss norm defined by |x|0 = supi∈N |xi|. We endow K{t} with the K-linear derivation ∂ =
d/dt : K{t} → K{t} and a ring endomorphism ϕ of the form ϕ(

∑
i∈N xit

i) =
∑

i∈N ϕK(xi)(S′)i

for some S′ ∈ K[[t]]0 with |S′ − tq|0 < 1. Then, both ϕ and ∂ restrict to K[[t]]0. Recall that for a
ring R with a ring endomorphism ϕ, a ϕ-module over R is a finite free R-moduleM equipped with
a ϕ-semilinear endomorphism ϕM such that the R-linear mapM ⊗R,ϕ R→M ;m⊗ r 	→ ϕM (m)r
is an isomorphism. A (ϕ,∇)-module over K[[t]]0 is a ϕ-module M over K[[t]]0 equipped with a
K-linear differential operator ∂M relative to ∂ satisfying the compatibility condition ∂(ϕ(t)) ·
ϕM ◦ ∂M = ∂M ◦ ϕM . We define the sets of analytic horizontal sections and analytic solutions
of M , respectively, by V (M) := ker (∂M ⊗ idK{t} + idM ⊗ ∂ : M ⊗K[[t]]0 K{t} →M ⊗K[[t]]0 K{t})
and Sol(M) := {f ∈ HomK[[t]]0(M,K{t}); ∂ ◦ f = f ◦ ∂M}, which are equipped with a canonical
perfect pairing V (M) ⊗K Sol(M) → K. By Dwork’s trick [Ked10, Corollary 17.2.2], V (M) and
Sol(M) are regarded as ϕ-modules over K of dimension equal to the rank of M , where ϕV (M) and
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ϕSol(M) are defined as the restriction of ϕM ⊗ ϕ and the unique ϕK-semilinear endomorphism
on Sol(M) satisfying ϕSol(M)(f)(ϕM (m)) = ϕ(f(m)) for f ∈ Sol(M),m ∈M , respectively. Con-
sequently, V (M) and Sol(M) are endowed with the Frobenius slope filtrations S•(V (M)) and
S•(Sol(M)), respectively (see Theorem 1.5(ii)). We also define the growth filtrations Sol•(M)
and V (M)• of Sol(M) and V (M) respectively by Solλ(M) = {f ∈ Sol(M); f(M) ⊂ FilλK{t}}
and V (M)λ = Solλ(M)⊥ for λ ∈ R, where Solλ(M)⊥ denotes the orthogonal part of Solλ(M)
with respect to the canonical pairing V (M) ⊗K Sol(M) → K.

The Chiarellotto–Tsuzuki conjecture concerns a comparison between V (M)• (respectively,
Sol•(M)) and S•(V (M)) (respectively, S•(Sol(M))). To state the conjecture precisely, we
briefly recall the notion of being pure of bounded quotient (PBQ), which is a condition on
the generic fiber of M (see [CT11, 5.1] for details). Let E be the Amice ring, that is, the
completion of the fraction field of K[[t]]0 for the norm | · |0, endowed with natural exten-
sions of ϕ and ∂. We define E [[X − t]]0 as before with X − t a variable. We define the ring
homomorphism τ : E → E [[X − t]]0; f 	→ ∑

i∈N ∂
i(f) · (X − t)i/i!. We endow E [[X − t]]0 with the

E-linear derivation ∂ = d/d(X − t) : E [[X − t]]0 → E [[X − t]]0 and a ring endomorphism ϕ defined
by ϕ(

∑
i∈N xi(X − t)i) =

∑
i∈N ϕ(xi)(τ(ϕ(t)) − S′)i, which commute with τ . Let M ′ be a (ϕ,∇)-

module over E . Let λmax(M ′) denote the maximum Frobenius slope of M ′ (see Definition 1.3).
Regarding τ∗(M ′) := M ′ ⊗E,τ E [[X − t]]0 as a (ϕ,∇)-module over E [[X − t]]0 (see § 4.1), we define
a ϕ-module V (τ∗(M ′)) over E equipped with a growth filtration V (τ∗(M ′))• as before. For λ ∈ R,
by a theorem of Robba, we have a (unique) subobject (M ′)λ of M ′ in the category of (ϕ,∇)-
modules over E such that there exists a canonical isomorphism V (τ∗(M ′/(M ′)λ)) ∼= V (τ∗(M ′))λ,
which forms a decreasing filtration ofM ′ called the log-growth filtration of M ′ (see [CT09, 3.2 and
3.3]). We say that M ′ is PBQ if M ′/(M ′)0 is pure as a ϕ-module over E , that is, the Frobenius
Newton polygon of M ′/(M ′)0 is a straight line.

Chiarellotto–Tsuzuki conjecture [CT11, Conjecture 2.5]. Let M be a (ϕ,∇)-module
over K[[t]]0. We regard ME := M ⊗K[[t]]0 E as a (ϕ,∇)-module over E .

(i) We have V (M)λ =
⋃

μ>λ V (M)μ and Solλ(M) =
⋂

μ>λSolμ(M) for an arbitrary real
number λ. Moreover, the slope multisets of V (M)• and Sol•(M), which coincide by
definition, are consisting of rational numbers.

(ii) If ME is PBQ, then

V (M)λ =
⋃

μ<λmax(ME)−λ

Sμ(V (M)),

or, equivalently,

Solλ(M) = Sλ−λmax(ME)(Sol(M)),

for an arbitrary real number λ.

We quickly review known results on the Chiarellotto–Tsuzuki conjecture. If M is of
rank 1, then the conjecture obviously holds as M is trivial as a ∇-module over K[[t]]0 (see
[Ked10, Proposition 18.4.3]). If M arises from the Picard–Fuchs module associated with the
Legendre family of elliptic curves, then Dwork’s result implies part (ii) of the conjecture (see
[CT09, 7.4] for details). Chiarellotto and Tsuzuki proved the conjecture in the rank 2 case [CT09,
Theorem 7.1(1)]. The present author proved part (i) of the conjecture without assumptions
[Ohk17, Theorem 3.7(i)].
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A generalization of Chiarellotto–Tsuzuki conjecture
In this paper, we prove Theorem 0.1, which is regarded as a generalization of the
Chiarellotto–Tsuzuki conjecture to (ϕ,∇)-modules over the bounded Robba ring Rbd. For
r ∈ R�0 and a formal Laurent series over K denoted by x =

∑
i∈Z xit

i with xi ∈ K, we put
|x|r = supi∈Z |xi|e−ri ∈ [0,∞]. We define the (respectively, bounded) Robba ring R (respectively,
Rbd) as the ring consisting of series x such that there exists r > 0 such that |x|s < +∞ for all
s ∈ (0, r] (respectively, s ∈ [0, r]). We fix an element X ∈ OK [[t]] of the form tiv with i ∈ N�1

and v ∈ OK [[t]]×, and define Rlog as the polynomial ring R[�X ] with a variable �X . Then, the
ring Rbd is a field, and we have the following commutative diagram of rings, where the hooked
arrows denote the inclusions.

E K[[t]]0� ��� � � ��
� �

��

K{t}
� �

��
E Rbd� ��� � � �� R � � �� Rlog.

We endow R with the K-linear derivation ∂ = d/dt : R → R and a ring endomorphism ϕ of the
form ϕ(

∑
i∈N xit

i) =
∑

i∈N ϕK(xi)Si for some S ∈ Rbd with |S − tq|0 < 1. Then, ϕ and ∂ restrict
to Rbd, and extend to E , Rlog by setting ϕ(�X) = log (ϕ(X)/Xq) + q�X and ∂(�X) = ∂(X)/X,
respectively (see Definitions 2.1(ii), (iii), and 2.2). We define the log-growth filtrations of R
and Rlog by FilλR = {x ∈ R; |x|r = O(r−λ) as r → +0} if λ ∈ R�0, FilλR = 0 if λ ∈ R<0, and
FilλRlog :=

⊕
i∈N Filλ−iR · �iX for λ ∈ R. We can define the notion of (ϕ,∇)-modules over Rbd

as before. For a literal generalization of the Chiarellotto–Tsuzuki conjecture, we should study
the whole category of (ϕ,∇)-modules M over Rbd, where we encounter problems caused by the
absence of a näıve analogue of Dwork’s trick. To avoid complications, in this paper, we assume
that MR := M ⊗Rbd R is unipotent as a ∇-module over R. Thanks to the assumption, we can
define V (M),Sol(M), etc., as before, where K[[t]]0 and K{t} are replaced by Rbd and Rlog,
respectively. The main result of this paper is as follows.

Theorem 0.1 (A generalization of the Chiarellotto–Tsuzuki conjecture). Let M be a (ϕ,∇)-
module over Rbd such that MR is unipotent as a ∇-module over R. We regard ME := M ⊗Rbd E
as a (ϕ,∇)-module over E .

(i) We have V (M)λ =
⋃

μ<λ V (M)μ and Solλ(M) =
⋂

μ>λSolμ(M) for an arbitrary real number

λ. Moreover, the slope multisets of V (M)• and Sol•(M), which coincide by definition, are

consisting of rational numbers.

(ii) If ME is PBQ, then

V (M)λ =
⋃

μ<λmax(ME)−λ

Sμ(V (M)),

or, equivalently,

Solλ(M) = Sλ−λmax(ME)(Sol(M))

for an arbitrary real number λ.

We prove part (ii) of Theorem 0.1 in § 8. We give two proofs of part (i) of Theorem 0.1; the
first given in § 5 is done by a reduction to the case X = t, in which case the assertion is proved
in [Ohk17, Theorem 4.19], and the second given in § 10 is simple and self-contained.
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In the rest of this subsection, we put S = S′ ∈ K[[t]]0 so that the inclusion K[[t]]0 → Rbd is
ϕ-equivariant. Moreover, we admit part (ii) of Theorem 0.1 and the property of the log-growth
filtrations of R and Rlog (see § 3.2). Under this setup, we will prove the following result.

Theorem 0.2. Part (ii) of the Chiarellotto–Tsuzuki conjecture holds.

Note that even a log analogue of the Chiarellotto–Tsuzuki conjecture holds (Theorem 10.6).

Lemma 0.3. Let M be a (ϕ,∇)-module over K[[t]]0. We put MRbd := M ⊗K[[t]]0 Rbd, which is

regarded as a (ϕ,∇)-module over Rbd. Then, (MRbd)R is unipotent as a ∇-module over R.

Moreover, there exist canonical isomorphisms of ϕ-modules over K

α : V (M) → V (MRbd),

β : Sol(M) → Sol(MRbd),

which are compatible with the canonical pairings. Furthermore, the maps α and β induce

isomorphisms V (M)• → V (MRbd)• and Sol•(M) → Sol•(MRbd) of filtrations, respectively. In

particular, the log-growth Newton polygon NP(M) of M (see [CT11, 2.3] or the next subsection)

coincides with the log-growth Newton polygon NP(MRbd) of MRbd (Definition 10.1(i)).

Proof. As M ⊗K[[t]]0 K{t} is trivial as a ∇-module over K{t} by Dwork’s trick [Ked10, Corollary
17.2.2], (MRbd)R ∼= (M ⊗K[[t]]0 K{t}) ⊗K{t} R is unipotent (even trivial) as a ∇-module over R.
We define the maps

α′ : M ⊗K[[t]]0 K{t} → (M ⊗K[[t]]0 Rbd) ⊗Rbd Rlog;m⊗ r 	→ m⊗ 1 ⊗ r,

β′ : HomK[[t]]0(M,K{t}) → HomRbd(M ⊗K[[t]]0 Rbd,Rlog); f 	→ (m⊗ r 	→ f(m)r),

which are compatible with Frobenius actions and differential operators. Let α : V (M) →
V (MRbd) and β : Sol(M) → Sol(MRbd) be the morphisms of ϕ-modules over K induced by α′

and β′, respectively. As α′ and β′ are injective, the maps α and β are isomorphisms by comparing
dimensions. By definition, α and β are compatible with the canonical pairings. To complete the
proof, we have only to prove, by duality, that for f ∈ Sol(M), we have f ∈ Solλ(M) if and only
if β(f) ∈ Solλ(MRbd). If f ∈ Solλ(M), then β(f) ∈ Solλ(MRbd) by

β(f)(MRbd) = f(M) · Rbd ⊂ (FilλK{t}) · Rbd ⊂ FilλRlog · Fil0Rlog ⊂ FilλRlog,

where we use Corollary 3.7(i) and (iii). Conversely, if β(f) ∈ Solλ(MRbd), then f ∈ Solλ(M) by

f(M) ⊂ K{t} ∩ β(f)(MRbd) ⊂ K{t} ∩ FilλRlog = K{t} ∩ FilλR = FilλK{t},

where we use Corollary 3.6. �

Proof of Theorem 0.2. Let M be a (ϕ,∇)-module over K[[t]]0 such that ME is PBQ. Then, we
can apply part (ii) of Theorem 0.1 to MRbd because (MRbd)R is unipotent as a ∇-module
over R by Lemma 0.3, and (MRbd)E ∼= ME is PBQ. Hence, we obtain the assertion by using
Lemma 0.3. �
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Application to Dwork’s conjecture
Recall that the Grothendieck–Katz specialization theorem for ϕ-modules M over K[[t]]0 asserts
that the Frobenius Newton polygon of M/tM lies on or above the Frobenius Newton polygon
of ME with the same endpoints [Ked10, Theorem 15.3.2]. Chiarellotto and Tsuzuki formulated
Dwork’s conjecture as an analogue of the Grothendieck–Katz specialization theorem for (ϕ,∇)-
modules M over K[[t]]0 (see also Remark 10.5). Recall that a slope of V (M)• is a real number
λ such that

⋂
μ<λV (M)μ �= ⋃

μ>λ V (M)μ. Let {s1(M) � · · · � sn(M)} denote the multiset of
slopes λ of V (M)• with multiplicity dimK

⋂
μ<λV (M)μ − dimK

⋃
μ>λ V (M)μ, where n denotes

the rank of M . Then, we define the log-growth Newton polygon NP(M) of M as the boundary of
the lower convex hull of the points (0, 0) and (i, s1(M) + · · · + si(M)) for i ∈ {1, . . . , n}. Similarly,
we define the Newton polygon NP(M) of a (ϕ,∇)-module M over E (Definition 10.1(ii)).

Dwork’s conjecture [CT11, Conjecture 2.7]. Let M be a (ϕ,∇)-module over K[[t]]0. Then,
NP(M) lies on or above NP(ME) with the same endpoints.

Dwork’s conjecture is previously known in the case where the rank is less than or equal to
two [CT09, Corollary 7.3]. In § 10, we prove the following result.

Theorem 0.4. (A generalization of Dwork’s conjecture) LetM be a (ϕ,∇)-module of dimension

n over Rbd such that MR is unipotent as a ∇-module over R. Then, the Newton polygon NP(M)
of M (Definition 10.1(i)) lies on or above NP(ME) with the same endpoints. In particular, we

have sn(M) � sn(ME), where sn(M(E)) denotes the maximum slope of NP(M(E)).

If we admit Theorem 0.4, then we have the following.

Theorem 0.5. Dwork’s conjecture holds.

Proof. Let M be a (ϕ,∇)-module over K[[t]]0. We can apply Theorem 0.4 to MRbd by using
Lemma 0.3 as in the proof of Theorem 0.2. Moreover, NP(M) (respectively, NP(ME)) coincides
with NP(MRbd) (respectively, NP((MRbd)E)) by Lemma 0.3 (respectively, by definition), which
implies the assertion. �

Structure of the paper
We prove part (ii) of Theorem 0.1 in § 8. If the reader admits the key ingredients,
that is, Propositions 3.11 and 7.2, then the (short) proof can be easily understood.
We prove Propositions 3.11 and 7.2 in §§ 3 and 7 respectively, after giving preparations in §§ 1,
2 and §§ 4–6, respectively. We prove part (i) of Theorem 0.1 and Theorem 0.4 in § 10 by using
the PBQ filtrations of (ϕ,∇)-modules over Rbd, which are studied in § 9.

In § 6, we prove the invariance of the growth filtration under the base change of the coefficient
field K, which can be skipped by assuming that k is algebraically closed. Parts of §§ 2 and 3
(specifically, §§ 2.2, 2.3, 3.1, and 3.3) are rather technical because the extended Robba ring is
involved. Hence, the reader may postpone these parts by admitting results proved there.

Finally, we note that to make the paper concise, some results of an earlier version of this
paper are not available in the current version, and will be included in a forthcoming paper(s).
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Notation and terminology
(1) In this paper, a ring R is a commutative ring with 1 unless otherwise mentioned. For a
ring homomorphism ψ : R→ S, we define the base change functor ψ∗(−) from the category of
R-modules to the category of S-modules by M 	→ ψ∗M = MS = M ⊗R S. When ψ is injective,
we identify R with ψ(R), and regard ψ as the inclusion.

(2) We recall some terminology of difference modules [Ked10, § 14]. A difference ring (respec-
tively, field) is a ring (respectively, field) R equipped with a ring endomorphism φ. Let R be
a difference ring. A difference module over R is an R-module M equipped with a φ-semilinear
endomorphism φM . A φ-module over R is a difference module M over R such that M is finite
free as an R-module, and the R-linear map φ∗M = M ⊗R,φ R→M ;m⊗ r 	→ rφM (m) is an iso-
morphism. The category of φ-modules over R is equipped with the following operations: the
internal Hom HomR(−,−), the tensor product (−) ⊗R (−), the dual (−)∨ = HomR(−, R), and
the natural pairing (−) ⊗R (−)∨ → R. For c ∈ R×, letR(c) = Rec be the φ-module overR defined
by φR(c)(ec) = cec. We define the twist of a φ-module M over R by c to be M(c) = M ⊗R R(c).
For d ∈ N>0, we define the d-pushforward functor [d]∗(−) from the category of φ-modules over
R to the category of φd-modules over R by (M,φM ) 	→ (M,φd

M ). For a morphism ψ : R→ S

of difference rings, we define a base change functor ψ∗(−), as in part (1), from the category of
φ-modules over R to the category of φ-modules over S. Then, the d-pushforward functor and
the base change functor are compatible with internal Homs, tensor products, duals, and natural
pairings in an obvious sense.

Let F be a difference field with respect to a ring endomorphism φ. We say that F is inversive
if φ is bijective. We say that F is weakly difference-closed if any equation of the form φ(x) = cx

with c ∈ F× always has a solution x ∈ F×. We say that F is strongly difference-closed if F is
weakly difference-closed and inversive.

(3) Let V be a finite-dimensional vector space over a field F with n = dimF V , equipped
with a filtration of subspaces which is exhaustive and separated. We recall the definition of the
Newton polygon associated with the filtration. For simplicity, we assume that our filtration is
decreasing, which is denoted by {V λ;λ ∈ R}. We put m(λ) = dimF (

⋂
ε>0V

λ−ε)/(
⋃

ε>0 V
λ+ε) =

limε→0+ dimF V
λ−ε − limε→0+ dimF V

λ+ε. Note that m(λ) = 0 for all but finitely many λ, and∑
λ∈Rm(λ) = n. Ifm(λ) �= 0, then we call λ a slope of V •. The slope multiset of V • is the multiset

consisting of slopes λ of V • with multiplicity m(λ), which is denoted by {s1 � · · · � sn}. We
define the Newton polygon NP(V •) of V • by the boundary of the lower convex hull in the xy-plane
of the set of points (0, 0) and (i, s1 + · · · + si) for i ∈ {1, . . . , n}.

1. Basic results on φ-modules over a complete discrete valuation field

We recall the definition of the slope filtrations S•(M) of φ-modules M over a complete discrete
valuation field [CT09, CT11]: our slope filtration will be defined by renumbering a filtration of
M as in [Ked10, Theorem 14.4.15] so that the indices of S•(M) represent the slopes of M . Then,
we give basic properties of slope filtrations by rephrasing results of [Ked10, § 14].

Definition 1.1. In this section, we fix a triple (F, φ, q), where F is a complete discrete valuation
field of mixed characteristic (0, p) together with a valuation | · |, φ is an arbitrary isometric ring
endomorphism on F , and q is a positive power of p. Let φ̄ denote the endomorphism on the
residue field of F induced by φ. Unless otherwise mentioned, we regard F and its residue field
as difference rings with respect to φ and φ̄, respectively. When φ̄ is the q-power map, we call φ
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a q-power Frobenius lift, and we put the adjective Frobenius everywhere (for example, a slope is
called a Frobenius slope).

An extension of (F, φ, q) is a triple (E, φ, q) as previously equipped with an isometric
ring homomorphism F → E which is φ-equivariant; in the case where φ : F → F is a q-power
Frobenius lift, we tacitly assume that φ : E → E is also a q-power Frobenius lift.

In the rest of this section, let c ∈ F×, d ∈ N>0, λ ∈ R, and let M,N be φ-modules over F .
Moreover, let (E, φ, q) be an extension of (F, φ, q) .

Remark 1.2. There exists an extension E of F such that the value groups of E and F coincide,
and the residue field of E is strongly difference-closed [Ked08, Proposition 3.2.4]. Moreover, if
φ is a q-power Frobenius lift on F , then we may assume that the residue field of E is alge-
braically closed: for example, we consider the completion of a maximal unramified extension of
the inductive limit lim−→ (F

φ−→ F
φ−→ · · · ) (see [Ked10, Hypothesis 14.4.1 and Proposition 14.3.4]).

Definition 1.3 [Ked10, Definitions 6.1.3, 14.4.6, and Remark 14.4.7]. We endow M with the
supremum norm with respect to a basis ofM (see [Ked10, Definition 1.3.2]). We define the spectral
radius of φM as limn→∞(supv∈M,v 	=0 |φn

M (v)|/|v|)1/n, which is independent of the choice of the
norm [Ked10, Theorem 1.3.6, Proposition 6.1.5]. Let {Mi} be the Jordan–Hölder constituents
of M . We call M pure if there exists λ ∈ R such that the φ-modules Mi have spectral radius
|q|λ; in this case, we call λ the slope of M . Note that M = 0 and any irreducible φ-module over
F are pure by definition: for example, F (c) is pure of slope log |c|/ log |q|. We define the slope
multiset of M as the multiset consisting of the slopes of the φ-modules Mi with multiplicity
dimF Mi. We define λmax(M) as the maximum element in the slope multiset of M if M �= 0,
and λmax(M) = 0 if M = 0. Unless otherwise mentioned, we calculate the slope multiset of the
φd-module [d]∗M over F (respectively, the φ-module M ⊗F E over E) with respect to the triple
(F, φd, qd) (respectively, (E, φ, q)).

Lemma 1.4.

(i) If we replace (F, φ, q) in Definition 1.1 by (F, φ, q′) with q′ a power of p, then the slope

multiset of M is multiplied by log |q|/ log |q′|.
(ii) If 0 →M ′ →M →M ′′ → 0 is an exact sequence of φ-modules over F , then the slope

multiset of M is equal to the disjoint union of those of M ′ and M ′′. In particular, the

slope multiset of M ⊕N is equal to the disjoint union of those of M and N .

(iii) (Rationality) The slope multiset of M consists of rational numbers. In particular, λmax(M)
is a rational number.

(iv) (Base change) The slope multiset of M ⊗F E is equal to that of M .

(v) (d-pushforward) The slope multiset of [d]∗M is equal to that of M .

(vi) (Tensor product) The slope multiset of M ⊗F N consists of λ+ μ where λ, μ respectively

run over the slope multisets of M , N with multiplicity.

(vii) (Dual) The slope multiset of M∨ is equal to (−1) times that of M . In particular, M is

pure of slope λ if and only if M∨ is pure of slope −λ.

Proof. Parts (i), (ii), and (v) hold by definition. By part (ii), to prove the rest of the assertion,
we may reduce to the irreducible case. Then, parts (iii), (iv), (vi), and (vii) follow from [Ked10,
Corollary 14.4.5, Lemma 14.4.3(c), Corollary 14.4.9, and Proposition 14.4.8] respectively. �
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Theorem 1.5.

(i) [Ked10, Theorem 14.4.13] Assume that F is inversive. Then, there exists a unique internal

direct sum decomposition M =
⊕

λ∈RMλ of φ-modules, in which each nonzero Mλ is pure

of slope λ. Moreover, the multiplicity of λ in the slope multiset of M is equal to dimF Mλ.

(ii) (Cf. [CT09, Definition 2.3].) There exists a unique increasing filtration {Sλ(M);λ ∈ R} of

φ-submodules of M , called the slope filtration of M , satisfying the following:

(a) the filtration S•(M) is exhaustive and separated;

(b) (right continuity) we have Sλ(M) =
⋂

μ>λSμ(M), i.e.Sλ(M) = Sλ+ε(M) for all suffi-

ciently small ε ∈ R>0;

(c) if Sλ(M)/
⋃

μ<λ Sμ(M) is nonzero, then it is pure of slope λ.

Moreover, the multiset consisting of slopes of M less than or equal to (respectively, strictly

greater than) λ coincides with the slope multiset of Sλ(M) (respectively, M/Sλ(M)); the

multiplicity of λ in the slope multiset of M is equal to dimF (Sλ(M)/
⋃

μ<λ Sμ(M)).
(iii) If F is inversive, then Sλ(M) =

⊕
μ�λMμ. In particular, Sλ(M)/

⋃
μ<λ Sμ(M) ∼= Mλ.

(iv) (Functoriality) Let f : M → N be a morphism of φ-modules over F . Then, we have f(Mλ) ⊂
Nλ if F inversive, and f(Sλ(M)) ⊂ Sλ(N).

Lemma 1.6. If the slope multisets of M and N are disjoint, then Hom(M,N) = 0.

Proof. By dévissage, we may assume that M and N are irreducible. By assumption, M � N ,
hence, Hom(M,N) = 0. �

Proof of Theorem 1.5. (ii) We prove the existence of S•(M). By [Ked10, Theorem 14.4.15],
there exists a unique filtration 0 = F0M ⊂ F1M ⊂ · · · ⊂ FmM = M of φ-modules such that
FiM/Fi−1M is pure of slope λi with λ1 < · · · < λm. We define Sλ(M) = 0 if λ ∈ (−∞, λ1),
Sλ(M) = FiM if λ ∈ [λi, λi+1) for i = 1, . . . ,m, and Sλ(M) = M if λ ∈ [λm,+∞). Then, S•(M)
satisfies the required conditions. Let S′•(M) be another filtration satisfying conditions (a)–(c)
as in part (ii). Then, the filtration F•(M) can be recovered by using S′•(M) in an obvious way,
which implies that S′•(M) = S•(M).

(iii) As the filtration {⊕μ�λMμ;λ ∈ R} satisfies conditions (a)–(c) as in part (ii), the
assertion follows from the uniqueness of S•(M).

(iv) By Lemma 1.6, we have Hom(Mλ, Nμ) = 0 for μ �= λ if F is inversive, and
Hom(Sλ(M), N/Sλ(N)) = 0, which implies the assertion. �

For example, the slope filtration of M = F (c) is given by Sλ(M) = M if λ � log |c|/ log |q|,
and Sλ(M) = 0 otherwise.

A pairing of M and N is a morphism M ⊗F N → F of φ-modules over F , which bijectively
corresponds to, an F -bilinear map b : M ×N → F such that b(φM (m), φN (n)) = φ(b(m,n)) for
m ∈M,n ∈ N . Furthermore, the pairing is called perfect if b is nondegenerate. For example, the
canonical map M ⊗F M

∨ → F is a perfect pairing of M and M∨. We define the orthogonal part
of a φ-submodule M0 of M by M⊥

0 := {n ∈ N ; b(m0, n) = 0 ∀m0 ∈M0}, which is a φ-submodule
of N . We similarly define the orthogonal part of a φ-submodule N0 of N .

Lemma 1.7.

(I) Assume that F is inversive.

(i) (Base change) There exists a canonical isomorphism Mλ ⊗F E ∼= (M ⊗F E)λ.
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(ii) (d-pushforward) There exists a canonical isomorphism [d]∗(Mλ) ∼= ([d]∗M)λ.

(iii) (Strictness) If 0 →M ′ →M →M ′′ → 0 is an exact sequence of φ-modules over F , then

there exists an induced exact sequence 0 →M ′
λ →Mλ →M ′′

λ → 0.

(iv) (Tensor product) There exists a canonical isomorphism (M ⊗F N)λ
∼= ⊕

μ+ν=λ(Mμ ⊗F

Nν).
(v) (Twist) Put μ := log |c|/ log |q| ∈ Q. Then, there exists a canonical isomorphism

M(c)λ
∼= Mλ−μ(c).

(vi) (Duality) Let M ⊗F N → F be a perfect pairing. Then, we have (N−λ)⊥ =
⊕

μ 	=λMμ.

(II) (i) (Base change) There exists a canonical isomorphism Sλ(M) ⊗F E ∼= Sλ(M ⊗F E).
(ii) (d-pushforward) There exists a canonical isomorphism [d]∗(Sλ(M)) ∼= Sλ([d]∗M).
(iii) (Strictness) If 0 →M ′ →M →M ′′ → 0 is an exact sequence of φ-modules over F , then

there exists an induced exact sequence 0 → Sλ(M ′) → Sλ(M) → Sλ(M ′′) → 0.

(iv) (Tensor product) There exists a canonical isomorphism

Sλ(M ⊗F N) ∼=
∑

μ+ν=λ

Sμ(M) ⊗F Sν(N).

(v) (Twist) Put μ := log |c|/ log |q| ∈ Q. Then, there exists a canonical isomorphism

Sλ(M(c)) ∼= Sλ−μ(M)(c).
(vi) (Duality) Let M ⊗F N → F be a perfect pairing. Then, we have S−λ(N)⊥ =⋃

μ<λ Sμ(M).

Proof. (I) Parts (i), (ii), and (iv) follow from the uniqueness of the decomposition given in
Theorem 1.5(i). Part (iii) follows from Theorem 1.5(iv). Part (v) is a special case of part
(iv). We prove part (vi). By Lemma 1.6, the image of Mμ ⊗F N−λ under the given pairing
vanishes if μ �= λ. Hence, N−λ ⊂ (

⊕
μ 	=λMμ)⊥. By Theorem 1.5(i), we have (

⊕
μ 	=λMμ)⊥ ∼=

(M/(
⊕

μ 	=λMμ))∨ ∼= (Mλ)∨. Hence, (
⊕

μ 	=λMμ)⊥ is pure of slope −λ. Therefore, the image of
(
⊕

μ 	=λMμ)⊥ under the projection N → N/N−λ vanishes by Lemma 1.6. Hence, (
⊕

μ 	=λMμ)⊥ ⊂
N−λ, which implies the assertion.

(II) Part (i) follows from the uniqueness of the slope filtration. To prove the rest of the
assertion, by performing a base change and using part (i), we may assume that F is inversive, in
which case Sλ(M), Sλ(N) etc., can be replaced by

⊕
μ�λMλ,

⊕
μ�λNλ, etc. Then, parts (ii)–(v)

follow from parts (ii)–(v) of part (I), respectively. We prove part (vi). By part (I)(vi), we have
S−λ(N)⊥ = (

⊕
ν�λN−ν)⊥ =

⋂
ν�λ(N−ν)⊥ =

⋂
ν�λ(

⊕
μ 	=ν Mμ) =

⊕
μ<λMμ. �

We gather miscellaneous results used later in this paper.

Definition 1.8 (Cf. [Ked05b, Definition 4.2.1]). A d-eigenvector of M is a nonzero element
v ∈M such that φd

M (v) = cv for some c ∈ F×; we call the quotient log |c|/ log |q|d the slope of v.
Note that v is regarded as a 1-eigenvector of [d]∗M whose slope is equal to that of v.

Lemma 1.9. If v ∈M is a d-eigenvector of slope λ, then v ∈ Sλ(M) and v /∈ ⋃
μ<λ Sμ(M).

Moreover, if M is pure, then the slope of M is equal to λ.

Proof. By Lemma 1.7(II)(ii), we may replace M by [d]∗M . Thus, we may assume that d = 1. By
Lemma 1.7(II)(iii), we may replace M by Fv. Thus, we may assume that M = F (c) for some
c ∈ F× with λ = log |c|/ log |q|, in which case the assertion is obvious. �
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Theorem 1.10 (Dieudonné–Manin classification theorem [Ked10, Theorem 14.6.3]). Assume

that the residue field of F is strongly difference closed. Then, there exists d such that M admits

an F -basis e1, . . . , en consisting of d-eigenvectors, where n = dimF M ; if M is pure of slope zero,

i.e. étale, then we may assume that φM (ei) = ei for all i. Moreover, if μi denotes the slope of ei,

then the slope multiset of M coincides with the multiset {μi; 1 � i � n}, and Mλ is spanned by

{ei;μi = λ}.

Definition 1.11 (Cf. [Liu13, Definition 1.6.6]). Assume that F is inversive. Let M =⊕
λ∈RMλ be the decomposition given in Theorem 1.5(i). We define the reverse filtration S•(M)

of M by Sλ(M) =
⊕

μ�λMμ for λ ∈ R.

Note that S•(M) is a decreasing filtration of φ-submodules of M , which is exhaustive and
separated. Moreover, the slope multiset of S•(M) coincides with that of M•.

2. The Robba ring and the extended Robba ring

In this section, we recall basic facts on various analytic rings used in this paper, in particular,
the extended Robba ring R̃, which is introduced in [Ked08], and studied further in [Liu13]. We
also define a log analogue R̃log of R̃.

Notation 1. In the rest of the paper, let p be fixed a prime number. Let (K,ϕK , q) be a triple
as in Definition 1.1. In §§ 2 and 3, as in [Ked08, Liu13], we do not assume that ϕK is a q-power
Frobenius lift. Let OK , mK , and k be the integer ring, maximal ideal, and residue field of K,
respectively. Except in § 2, we normalize the valuation | · | of K by |p| = p−1.

In this paper, when we denote rings associated to K, such as the Robba ring RK , we omit
the subscript K if no confusion arises.

2.1 The Robba ring
Definition 2.1. (i) [Ked08, Definitions 1.1.1, 1.2.3] For r > 0, let Rr be the ring of formal
Laurent series

∑
i∈Z ait

i with ai ∈ K converging on e−r � |t| < 1. We define the Robba ring R
(over K) as the union of the Rr’s, which is a Bézout domain. Explicitly, we have

Rr =
{ ∑

i∈Z

ait
i; lim

i→±∞
|ai|e−sn = 0 (s ∈ (0, r])

}
,

R =
⋃

r∈(0,+∞)

Rr.

We equip Rr with the norm | · |s for s ∈ (0, r] defined by |∑i∈Z ait
i|s = supi∈Z{|ai|e−si}.

(ii) [Ked08, Definition 1.1.3] We define the bounded (respectively, integral) Robba ring Rbd

(respectively, Rint) as the subring of R consisting of series with bounded (respectively, integral)
coefficients. We equip Rbd with Gauss norm | · |0 defined by |∑i∈Z ait

i|0 = supi∈Z |ai|. Then,
the ring Rbd is a henselian discrete valuation field of mixed characteristic (0, p) with integer
ring Rint and residue field k((t)) (see [Ked08, Lemma 3.9]). We define the Amice ring E as the
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completion of Rbd for Gauss norm. Explicitly, we have

Rint =
{ ∑

i∈Z

ait
i ∈ R; ai ∈ OK

}
,

Rbd =
{ ∑

i∈Z

ait
i ∈ R; sup

i∈Z

|ai| <∞
}

∼= Rint ⊗OK
K,

E =
{ ∑

i∈Z

ait
i; sup

i∈Z

|ai| <∞, lim
i→−∞

|ai| = 0
}
.

(iii) Let X = tiv be an element of OK [[t]] with i ∈ N�1 and v ∈ OK [[t]]× such that
ϕK(v|t=0)/(v|t=0)q ∈ 1 + mK (this always holds when ϕK is a q-power Frobenius lift). We define
Rlog as the polynomial ring R[�X ] with a variable �X called the branch of log associated to X.
We will endow Rlog with extra structures by regarding �X as logX (Definitions 2.2 and 4.2).

Definition 2.2 [Ked08, Definition 1.2.1]. A relative (q-power) Frobenius lift on R is a ring
endomorphism ϕ : R → R of the form

∑
i∈Z ait

i 	→ ∑
i∈Z ϕK(ai)Si for some S ∈ Rbd satisfy-

ing |S − tq|0 < 1. We show that ϕ naturally induces ring endomorphisms on Rint,Rbd,Rlog,
and E , moreover, on K[[t]]0,K{t} if S ∈ K[[t]]0, which we denote by ϕ for notational simplicity.
Note that ϕ(X)/Xq ∈ 1 + mKRint by ϕ(t)/tq, ϕ(v)/vq ∈ 1 + mKRint. We extend ϕ to Rlog by
setting ϕ(�X) = log (ϕ(X)/Xq) + q�X , where log : 1 + mKRint → Rbd; f 	→ ∑∞

n=1(−1)n−1(f −
1)n/n. Obviously, ϕ restricts to Rint,Rbd, and to K[[t]]0,K{t} if S ∈ K[[t]]0. Note that |ϕ(f)|0 =
|f |0 for f ∈ Rbd. We define ϕ : E → E as the completion of ϕ : Rbd → Rbd for Gauss norm.

Convention 1. In the rest of the paper, unless otherwise mentioned, we fix a relative Frobenius
lift ϕ on R, and a branch �X of log. When we speak of K[[t]]0 and K{t}, we tacitly assume that
ϕ(t) = S ∈ K[[t]]0. Moreover, we apply results of § 1 to ϕ-modules over K, E , and Ẽ (defined in
§ 2.2) with respect to the triples (K,ϕK , q), (E , ϕ, q), and (Ẽ , ϕ, q), respectively.

2.2 The extended Robba ring
Throughout this subsection, we make the following assumption.

Assumption 2.3. We assume that k is strongly difference-closed. As K is inversive [Liu13,
Lemma 1.3.2], our assumption coincides with [Ked08, Hypothesis 2.1.1].

Definition 2.4 ([Ked08,Definition2.2.4 andRemark2.2.5], [Liu13,Definition1.4.1]). For r > 0,
let R̃r be the abelian group of formal sums

∑
i∈Q aiu

i with ai ∈ K satisfying the following
conditions.

(a) For each c > 0, the set of i ∈ Q such that |ai| � c is well-ordered.
(b) We have limi→−∞ |ai|e−ri = 0.
(c) We have supi∈(−∞,+∞) |ai|e−ri <∞.
(d) For all s > 0, we have limi→+∞ |ai|e−si = 0.

The group R̃r forms a ring with multiplication given by convolution. We call the union
R̃ =

⋃
r∈(0,+∞) R̃r the extended Robba ring over K, which is a Bézout domain. In the rest of this

subsection, when we write
∑

i∈Q aiu
i, we tacitly assume that ai ∈ K for all i ∈ Q. We equip R̃r
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with the norm |∑i∈Q aiu
i|r = supi∈Q{|ai|e−ri}. We define R̃log as the polynomial ring R̃[log u]

over R̃ with a variable log u.
We define the bounded (respectively, integral) extended Robba ring R̃bd (respectively, R̃int)

as the subring of R̃ consisting of series with bounded (respectively, integral) coefficients. We
equip R̃bd with Gauss norm | · |0 defined by |∑i∈Q aiu

i|0 = supi∈Q |ai|. Then, the ring Rbd is a
henselian discrete valuation field with integer ring Rint and residue field k((uQ)). Here, k((uQ))
denotes the field of Hahn series over k (see [Ked08, Definition 2.2.1, Notation 2.5.1]). We define Ẽ
as the completion of R̃bd for Gauss norm, which coincides with the set of formal sums

∑
i∈Q aiu

i

satisfying condition (a) as previously, limi→−∞ |ai| = 0, and supi∈(−∞,+∞) |ai| < 0 (see [Liu13,
Definition 1.4.4 and Remark 1.4.5]).

We endow R̃ with the ring automorphism ϕ defined by ϕ(
∑

i∈Q aiu
i) =

∑
i∈Q ϕK(ai)uqi.

Note that ϕ(R̃qr) ⊂ R̃r and |ϕ(f)|r = |f |qr for f ∈ R̃qr. As in Definition 2.2, ϕ induces ring
endomorphisms on R̃int, R̃bd, Ẽ , and R̃log by setting ϕ(log u) = q log u, which we denote by ϕ.
Moreover, the field k((uQ)) is strongly difference-closed with respect to the ring endomorphism
induced by ϕ : R̃int → R̃int (see [Ked08, Proposition 2.5.5]).

Lemma 2.5. Let f =
∑

i∈Q aiu
i ∈ R̃r′ with r′ > 0. Then, for any r ∈ (0, r′] and i0 ∈ Q, we have

sup
i∈(−∞,i0]

|ai|e−ri � |f |r′e(r′−r)i0(<∞).

Proof. The assertion follows from

sup
i∈(−∞,i0]

|ai|e−ri = sup
i∈(−∞,i0]

|ai|e−r′i+(r′−r)i � sup
i∈(−∞,i0]

|ai|e−r′i+(r′−r)i0 � |f |r′e(r′−r)i0 . �

Lemma 2.6.

(i) For 0 < r � r′, we have R̃r′ ⊂ R̃r. Consequently, R̃r′ is endowed with the family of the

norms {| · |r; r ∈ (0, r′]}.
(ii) (Maximum modulus principle) Let f ∈ R̃r′ . Then, for any closed interval I = [r1, r2] ⊂

(0, r′], we have

sup
r∈I

|f |r = max{|f |r1 , |f |r2},

inf
r∈I

|f |r = min{|f |r1 , |f |r2}.

Proof. (i) Let f =
∑

i∈Q aiu
i ∈ R̃r′ . It suffices to verify conditions (a)–(d) in Definition 2.4. We

consider conditions (a)′–(d)′ as in Definition 2.4 with r replaced by r′, which hold by f ∈ R̃r′ .
By definition, conditions (a) and (d) coincide with conditions (a)′ and (d)′ respectively, and
condition (b) is weaker than condition (b)′. In particular, conditions (a), (b), and (d) hold. By
condition (d)′, there exists i0 ∈ Q such that supi∈[i0,+∞) |ai|e−ri <∞. As supi∈(−∞,i0] |ai|e−ri �
|f |r′e(r′−r)i0 <∞ by Lemma 2.5, condition (c) holds.

(ii) We have only to prove min{|f |r1 , |f |r2} � |f |r � max{|f |r1 , |f |r2} for all r ∈ I. Then, we
may assume that f is a monomial, in which case the assertion is obvious. �

Lemma 2.7. For f ∈ R̃r, we have f ∈ R̃bd if and only if sups∈(0,r] |f |s <∞; in this case,

lims→0+ |f |s exists and lims→0+ |f |s = |f |0.

1277

https://doi.org/10.1112/S0010437X21007107 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007107


S. Ohkubo

Proof. Write f =
∑

i∈Q aiu
i, and put |f |0 = supi∈Q |ai| (it can be equal to ∞). Then, we have

the equality in R ∪ {∞}:
sup

s∈(0,r]
|f |s = max{|f |0, |f |r} (2.7.1)

by

sup
s∈(0,r]

|f |s = sup
s∈(0,r]

sup
i∈Q

|ai|e−si = sup
i∈Q

sup
s∈(0,r]

|ai|e−si = sup
i∈Q

max{|ai|, |ai|e−ri} = max{|f |0, |f |r}.

The first assertion is an immediate consequence of (2.7.1). We will prove the second
assertion. Assume that sups∈(0,r] |f |s <∞. Put f+ =

∑
i�0 aiu

i, f− =
∑

i<0 aiu
i. As |f |s =

max{|f+|s, |f−|s} for all s ∈ [0, r], we may assume that f = f±. In the case f = f+, the func-
tion s 	→ |f |s on (0, r] is non-increasing and bounded above by |f |0. Hence, lims→0+ |f |s exists
and lims→0+ |f |s � |f |0. We also have |f |0 � lims→0+ |f |s by (2.7.1), which implies the asser-
tion. In the case f = f−, the function s 	→ |f |s on (0, r] is non-decreasing and bounded below
by |f |0. Hence, lims→0+ |f |s exists and |f |0 � lims→0+ |f |s. To complete the proof, it suffices to
prove that lims→0+ |f |s � |f |0. By condition (b) in Definition 2.4, there exists i0 < 0 such that
supi∈(−∞,i0] |ai|e−ri � |f |0. Then, for any s ∈ (0, r], we have

|f |s = max
{

sup
i∈(−∞,i0)

|ai|e−si, sup
i∈[i0,0]

|ai|e−si
}

� max
{

sup
i∈(−∞,i0)

|ai|e−ri, sup
i∈[i0,0]

|ai|e−si0
}

� max{|f |0, |f |0e−si0}.
By taking the limit s→ 0+, we obtain the assertion. �

Lemma 2.8. For any b ∈ mK , the map ϕ− b : R̃bd → R̃bd is bijective.

Proof. To prove the injectivity, we suppose, by way of contradiction, that there exists x ∈
R̃bd\{0} such that ϕ(x) = bx. Then, |ϕ(x)|0 = |x|0 = |bx|0 < |x|0, which is a contradiction.
To prove the surjectivity, we may replace ϕ− b by 1 − ϕ−1

K (b)ϕ−1(= ϕ−1 ◦ (ϕ− b)). We have
only to prove that for a given f =

∑
i∈Q aiu

i ∈ R̃bd, there exists g ∈ R̃bd such that f =
(1 − ϕ−1

K (b)ϕ−1)g. For i ∈ Q, we put bi :=
∑

n∈N ϕ
−1
K (b) · · · · · ϕ−n

K (b)ϕ−n
K (aiqn) ∈ K. Since

|bi| � sup
n∈N

|b|n|aiqn | � sup
n∈N

|aiqn | � |f |0, (2.8.1)

the sequence {|bi|}i∈Q is bounded. Fix r > 0 such that f ∈ R̃r. We define conditions (a)′–(d)′ as
in Definition 2.4 with the ai’s replaced by the bi’s. We claim that conditions (a)′–(d)′ hold. If the
claim holds, then g :=

∑
i∈Q biu

i belongs to R̃bd, and f = (1 − ϕ−1
K (b)ϕ−1)g by definition, which

implies the assertion. Fix c > 0. Put I := {i ∈ Q; |ai| � c}, which is well-ordered by f ∈ R̃r, and
put I ′ := {i ∈ Q; |bi| � c}. Choose m ∈ N sufficiently large such that |b|m+1 · |f |0 < c/2. If i ∈ I ′,
then max{|ai|, |aiq|, . . . , |aiqm |} � c, i.e. i ∈ I ∪ · · · ∪ q−mI, by

c � |bi| � max
{

sup
0�n�m

|b|n|aiqn |, sup
m+1�n

|b|n|aiqn |
}

� max{|ai|, |aiq|, . . . , |aiqm |, |b|m+1|f |0}.

where the second inequality follows from (2.8.1). Hence, I ′ ⊂ I ∪ · · · ∪ q−mI, which implies that
I ′ is well-ordered. Thus, condition (a)′ holds. For i � 0, we have

|bi|e−ri � sup
n∈N

|aiqn |e−ri � sup
n∈N

|aiqn |e−riqn � sup
j∈(−∞,i]

|aj |e−rj ,
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where the first inequality follows from (2.8.1). Hence, condition (b)′ holds by condition (b) in
Definition 2.4. Moreover, by (2.8.1) and the displayed inequalities just above,

sup
i∈Q

|bi|e−ri = max
{

sup
i∈(−∞,0]

|bi|e−ri, sup
i∈[0,+∞)

|bi|e−ri
}

� max
{

sup
j∈(−∞,0]

|aj |e−rj , sup
i∈[0,+∞)

|bi|
}

� max{|f |r, |f |0} <∞.

Hence, condition (c)′ holds. Finally, condition (d)′ holds by the boundedness of {|bi|}i∈Q. �

Finally, we recall the reverse filtrations of ϕ-modules over R̃bd constructed in [Liu13].

Definition 2.9 (Cf. Definition 1.8). Let M̃ be a ϕ-module over R̃bd, and d a positive integer.
A d-eigenvector of M̃ is a nonzero element v ∈ M̃ such that ϕd

M (v) = cv for some c ∈ (R̃bd)×;
we call the quotient log |c|0/ log |q|d the slope of v. We also define the notion of d-eigenvectors of
R̃log with M̃ replaced by R̃log.

Proposition 2.10 [Liu13, Propositions 1.5.4, 1.6.9, and Theorem 1.5.8]. Let M̃ be a ϕ-module

over R̃bd. Then, the reverse filtration of M̃Ẽ (Definition 1.11) descends to a filtration S•(M̃) of M̃ ,

which we call the reverse filtration of M̃ . Moreover, there exists d ∈ N>0 such that each graded

piece Sλ(M̃)/
⋃

μ<λ S
μ(M̃) admits a basis consisting of d-eigenvectors of slope λ. In particular,

Sλmax(M̃Ẽ)(M̃) admits a basis consisting of d-eigenvectors of slope λmax(M̃Ẽ).

2.3 Embeddings to extended rings
Proposition 2.11. We choose an extension L of K such that the residue field of L is strongly

difference-closed (Remark 1.2). We repeat the construction as in § 2.2 with K replaced by

L. Then, there exist a ϕ-equivariant embedding ψ̃L : R ↪→ R̃L and r0 > 0 such that for any

r ∈ (0, r0), Rr maps to R̃r
L preserving | · |r. Moreover, Rint (respectively, Rbd) maps R̃int

L

(respectively, R̃bd
L ) preserving | · |0.

Proof. By embedding R into RL via the inclusion, we may assume that L = K, in which case
the assertion is proved in [Ked08, Proposition 2.2.6] and [Liu13, Remark 1.4.10]. �

Lemma 2.12. Let notation be as in Proposition 2.11.

(i) There exists a unique c0 ∈ R̃bd
L such that ϕ(c0) = qc0 + ψ̃L(log (ϕ(X)/Xq)).

(ii) Let c0 be as in part (i), and c1 ∈ (K×)ϕK=1 (for example, c1 = 1). We extend ψ̃L : R ↪→ R̃L

to Rlog → R̃L,log by setting ψ̃L(�X) := c0 + c1 log u. Then, ψ̃L is injective and ϕ-equivariant.

Proof. As ψ̃L(log(ϕ(X)/Xq)) ∈ R̃bd
L by Definitions 2.1(ii), 2.2, and Proposition 2.11, part (i)

follows from Lemma 2.8 with b = q. Part (ii) follows from a direct computation. �

Notation 2. In the rest of § 2, let L, ψ̃L, r0, c0, and c1 be as previously. By abuse of notation, let
ψ̃L denote the embedding E ↪→ ẼL obtained by completing ψ̃L : Rbd ↪→ R̃bd

L for Gauss norms.

1279

https://doi.org/10.1112/S0010437X21007107 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007107


S. Ohkubo

Lemma 2.13.

(i) [Ked08, Propositions 3.2.4 and 3.5.2] The multiplication map R̃bd
L ⊗Rbd R → R̃L;x⊗ y 	→

xψ̃L(y) is injective and ϕ-equivariant.

(ii) The multiplication map R̃bd
L ⊗Rbd Rlog → R̃L,log;x⊗ y 	→ xψ̃L(y) is injective and

ϕ-equivariant.

(iii) (Cf. [deJ98, Proposition 8.1]) The multiplication map R̃bd
L ⊗Rbd E → ẼL;x⊗ y 	→ xψ̃L(y) is

injective and ϕ-equivariant.

Proof. (ii) We have only to prove the injectivity. Assume that z ∈ R̃bd
L ⊗Rbd Rlog belongs to the

kernel of the multiplication map. Write z =
∑n

i=0 zi(1 ⊗ �X)i with zi ∈ R̃bd
L ⊗Rbd R. Then, zn

belongs to the kernel of the multiplication map in part (i) by assumption, hence, zn = 0. By
repeating this argument, we obtain z = 0.

(iii) We claim that there exists a Qp-linear map fη : ẼL → E such that:

(a) ′ we have fη(ψ̃L(y)w) = yfη(w) for y ∈ E , w ∈ ẼL.

Let f : R̃L → R be a natural projection as in [Ked08, Definition 3.5.1]: recall that f restricts
to R̃r

L → Rr for any r ∈ (0, r0), and:

(a) we have f(ψ̃L(y)w) = yf(w) for y ∈ Rbd, w ∈ R̃L;
(b) we have |w|r = supα∈[0,1),a∈L×{|a|−1e−α|f(au−αw)|r} for w ∈ R̃r

L,

Fix w ∈ R̃bd
L . We choose r1 ∈ (0, r0) such that w ∈ R̃r1

L . By part (b) with α = 0 and a = 1 on
the right-hand side, we obtain |f(w)|r � |w|r for all r ∈ (0, r1]. By Lemma 2.7, we have f(w) ∈
Rbd, and |f(w)|0 = limr→0+ |f(w)|r � limr→0+ |w|r = |w|0. Hence, f restricts to a Qp-linear map
R̃bd

L → Rbd bounded for Gauss norms. By taking the completion, we obtain a Qp-linear map
fη : ẼL → E , which satisfies part (a)′ by definition. Thus, we obtain the claim.

We suppose, by way of contradiction, that there exists a nonzero element z belonging to the
kernel of the multiplication map. Write z =

∑n
i=1 xi ⊗ yi ∈ R̃bd

L ⊗Rbd E with n minimal. Then,
y1, . . . , yn are linearly independent over Rbd by [Ked08, Corollary 3.4.3]. As x1 �= 0, there exist
α ∈ (0, 1] and a ∈ L× such that f(au−αx1) �= 0 by part (b). By applying fη to

∑n
i=1 au

−αxi ·
ψ̃L(yi) = 0 and then using part (a)′, we have

∑n
i=1 f(au−αxi) · yi = 0, which is a nontrivial

relation between the elements yi over Rbd. This contradicts the choices of elements yi. �

The following lemma will only be used in the proof of Proposition 9.6. Hence, the reader
may skip it if they are interested only in the proof of part (ii) of Theorem 0.1.

Lemma 2.14 (Cf. [CT11, Lemma 5.7]). Let M be a nonzero ϕ-module over Rbd, and Q a

ϕ-module over E which is pure of slope μ. If there exists an Rbd-linear map f : M → Q which is

injective and ϕ-equivariant, then λmax(ME) = μ.

Proof. Put M̃ := M ⊗Rbd R̃bd
L (respectively, Q̃ := Q⊗E ẼL), which is regarded as a ϕ-module

over R̃bd
L (respectively, ẼL). We define the R̃bd-linear map f̃ : M̃ → Q̃ as the composition of the

maps

M ⊗Rbd R̃bd
L → Q⊗E E ⊗Rbd R̃bd

L ;m⊗ x 	→ f(m) ⊗ 1 ⊗ x,

Q⊗E E ⊗Rbd R̃bd
L → Q⊗E ẼL;w ⊗ y ⊗ x 	→ w ⊗ xψ̃L(y).
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Then, f̃ is injective and ϕ-equivariant by assumption and Lemma 2.13(iii). By Proposition
2.10, there exists a d-eigenvector ṽ ∈ M̃ of slope λmax(ME)(= λmax(M̃Ẽ)) for some d > 0. Hence,
f̃(ṽ) ∈ Q̃ is also a d-eigenvector of slope λmax(ME) (in the sense of Definition 1.8). Therefore,
the assertion follows from Lemma 1.9. �

3. Logarithmic growth filtration

In § 3.1 (respectively, § 3.2), we define the log-growth filtrations of the rings R,Rlog (respectively,
R̃, R̃log). In § 3.3, we study, in the viewpoint of log-growth, the images of certain homomorphisms
of the forms M → Rlog and M̃ → R̃log, where M and M̃ denote ϕ-modules over Rbd and R̃bd

respectively.

3.1 Logarithmic growth filtrations of R̃ and R̃log

In this subsection, we keep Assumption 2.3.

Definition 3.1. Let f ∈ R̃ and λ ∈ R�0. We choose r′ ∈ R>0 such that f ∈ R̃r′ . We say that
f has log-growth λ if there exists a constant C such that

rλ|f |r � C for all r ∈ (0, r′].

The definition does not depend on the choice of r′ by Lemma 2.6(ii). We define the λth log-growth
filtration FilλR̃ as the K-subspace of R̃ consisting of series having log-growth λ. For λ ∈ R<0,
we set FilλR̃ = 0. Note that FilλR̃ for λ > 0 is not closed under multiplication, hence, not a
subring of R̃.

We define the log-growth filtration of Rlog by

FilλR̃log =
∞⊕

n=0

Filλ−nR̃ · (log u)n ⊂ R̃log for λ ∈ R.

Note that we have FilλR̃log = 0 for λ < 0 by definition. We say that f ∈ R̃log has log-growth
λ if f ∈ FilλR̃log. Furthermore, if f /∈ FilμR̃log for all μ < λ, then we say that f has exact
log-growth λ.

This definition may be rephrased in terms of the behavior of the norms of the coefficients of
f ∈ R̃.

Lemma 3.2. Let f =
∑

i∈Q aiu
i ∈ R̃ with ai ∈ K, and λ ∈ R�0. Then, the following are

equivalent.

(i) We have f ∈ FilλR̃.

(ii) We have |ai| = O(iλ) as i→ +∞.

Proof. In the following, fix r′ > 0 such that f ∈ R̃r′ . Assume that condition (i) holds, i.e. there
exists C ∈ R such that rλ|f |r � C for r ∈ (0, r′]. For arbitrary i ∈ Q and r ∈ (0, r′], we have

|ai| = rλ|ai|e−rieri/rλ � rλ|f |reri/rλ � Ceri/rλ. (3.2.1)

Hence, |ai| � Ce · iλ for all i � 1/r′ by (3.2.1) with r = 1/i. Thus, condition (ii) holds.

1281

https://doi.org/10.1112/S0010437X21007107 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007107


S. Ohkubo

Assume that condition (ii) holds, i.e. there exist C ∈ R and i0 > 0 such that |ai| � Ciλ

for all i ∈ [i0,+∞). If we put g1 =
∑

i∈(−∞,i0] aiu
i and g2 =

∑
i∈[i0,+∞) aiu

i, then g1, g2 ∈ R̃r′

and |f |r = max{|g1|r, |g2|r} for all r ∈ (0, r′]. Hence, to verify condition (i), we have only to
prove g1, g2 ∈ FilλR̃. Since |g1|r � |g1|r′e(r′−r)i0 � |g1|r′er′i0 for r ∈ (0, r′] by Lemma 2.5, we have
g1 ∈ FilλR̃. For r ∈ (0, r′], we have

rλ|g2|r = rλ sup
i∈[i0,+∞)

|ai|e−ri � C sup
i∈[i0,+∞)

(ri)λe−ri � C sup
x∈(0,+∞

xλe−x <∞,

which implies g2 ∈ FilλR̃. �

Lemma 3.3 (Cf. [Ohk17, Lemma 4.7]). Let R ∈ {R̃, R̃log}.
(i) The filtration Fil•R is an increasing filtration of K-subspaces of R satisfying

FilλR · FilμR ⊂ Filλ+μR for λ, μ ∈ R.

(ii) We have ϕ(FilλR) ⊂ FilλR for λ ∈ R.

(iii) We have Fil0R = R̃bd.

Proof. By definition, we may reduce to the case R = R̃. Then, part (i) follows from the multi-
plicativity of | · |r. To prove part (ii), we may assume λ � 0. Let f ∈ FilλR̃. We choose r′ > 0
such that f ∈ R̃qr′ . Then, rλ|ϕ(f)|r = q−λ(qr)λ|f |qr for r ∈ (0, r′], which implies ϕ(f) ∈ FilλR̃.
In part (iii), we have R̃bd ⊂ Fil0R̃ by Lemma 3.2, and the converse follows from Lemma 2.7. �

3.2 Logarithmic growth filtrations of R and Rlog

Definition 3.4. Let  ∈ { , log}. We define the log-growth filtration Fil•R
 of R
 by repeating
the construction as in Definition 3.1 after replacing R̃ and log u by R and �X , respectively. Note
that Fil•R
 is independent of the choice of ϕ by definition.

By the following lemma, the embedding ψ̃L : R
 → R̃L,
 for  ∈ { , log} as in § 2.3 respects the
log-growth filtration. Hence, some properties of Fil•R̃L,
 will automatically transmit to Fil•R
.

Lemma 3.5. Let notation be as in § 2.3. Let  ∈ { , log}, let f ∈ R
, and λ ∈ R. Then, f ∈ FilλR


if and only if ψ̃L(f) ∈ FilλR̃L,
.

Proof. In the case  = (empty), the assertion immediately follows from the fact that ψ̃L :
Rr → R̃r

L preserves | · |r (Proposition 2.11). In the case  = log, we write f =
∑n

i=0 fi�
i
X with

fi ∈ R, and prove by induction on n. In the base case n = 0, the assertion follows from the
previous result. In the induction step, we first assume f ∈ FilλRlog. Then, for all i, we have
fi ∈ Filλ−iR by assumption, which implies ψ̃L(fi) ∈ Filλ−iR̃L by the induction hypothesis.
As ψ̃L(�X) ∈ Fil1R̃L,log, we have ψ̃L(f) =

∑n
i=0 ψ̃L(fi)ψ̃L(�X)i ∈ FilλR̃L,log by Lemma 3.3(i).

Conversely, we assume ψ̃L(f) ∈ FilλR̃L,log. As ψ̃L(f) = cn1 ψ̃L(fn)(log u)n + · · · ∈ FilλR̃L,log with
c1 ∈ K× as in Lemma 2.12(ii), we have cn1 ψ̃L(fn) ∈ Filλ−nR̃L by definition. Hence, ψ̃L(fn) ∈
Filλ−nR̃L, which implies fn ∈ Filλ−nR by the previous result. By applying the induction hypoth-
esis to ψ̃L(f − fn�

n
X) = ψ̃L(f) − ψ̃L(fn)ψ̃L(�X)n ∈ FilλR̃log, we have f − fn�

n
X ∈ FilλRlog, which

implies f = f − fn�
n
X + fn�

n
X ∈ FilλRlog. �

Corollary 3.6. Let f =
∑

i∈Z ait
i ∈ R with ai ∈ K, and λ ∈ R�0. Then, f ∈ FilλR if and only

if |ai| = O(iλ) as i→ +∞.
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Proof. As Fil•R is independent of the choice of ϕ, we may assume that ϕ(t) = S = tq, in which
case ψ̃L : R → R̃L is regarded as the inclusion. Then, the assertion follows from Lemmas 3.2
and 3.5. An alternative proof is given by simply repeating the argument as in the proof of
Lemma 3.2. �

Corollary 3.7. Let R ∈ {R,Rlog}.
(i) The filtration Fil•R is an increasing filtration of K-subspaces of R satisfying

FilλR · FilμR ⊂ Filλ+μR for λ, μ ∈ R.

(ii) We have ϕ(FilλR) ⊂ FilλR for λ ∈ R.

(iii) We have Fil0R = Rbd.

Proof. The assertion is reduced to Lemma 3.3 by Lemma 3.5. �

3.3 Technical results
In this subsection, we keep Assumption 2.3.

Lemma 3.8 (Cf. [CT11, Lemma 4.8]). Assume that g, h ∈ R̃log satisfy a relation of the form

(ϕd − c)g = h with c ∈ (R̃bd)× and d ∈ N�1.

If we have h ∈ FilλR̃log for some λ � log |c|0/ log |q|d, then g ∈ FilλR̃log.

Proof. After replacing ϕ by ϕd, we may assume d = 1. We reduce to the case where g, h ∈ R̃
and c ∈ K×. Write g =

∑n
i=0 gi(log u)i, h =

∑n
i=0 hi(log u)i with gi, hi ∈ R̃. Then, (ϕ− c/qi)gi =

hi/q
i, and hi ∈ Filλ−iR̃. Moreover, g ∈ FilλR̃log if and only if gi ∈ Filλ−iR̃ for all i. Hence, after

replacing (g, h, c, λ) by (gi, hi/q
i, c/qi, λ− i), we may assume g, h ∈ R̃. We can choose c′ ∈ K×

such that |c′| = |c|0, since K is discretely valued. As Ẽ(c′/c) is pure of slope 0 as a ϕ-module
over Ẽ , there exists b ∈ Ẽ× such that b = (c′/c)ϕ(b) by Dieudonné–Manin classification theorem
1.10 (recall that the residue field k((tQ)) of Ẽ is strongly difference-closed). We have b ∈ (R̃bd)×

by [Ked08, Proposition 2.5.8], and (ϕ− c′)(g/b) = c′h/cb. Hence, by Lemma 3.3(i) and (iii), we
have g, h ∈ FilλR̃log, respectively, if and only if g/b, c′h/cb ∈ FilλR̃log, respectively. Therefore,
after replacing (g, h, c) by (g/b, c′h/cb, c′), we may assume c ∈ K× as desired.

We choose r0 ∈ (0,+∞) such that g, h ∈ R̃r0 . Then,

sup
r∈[r0/q,r0]

rλ|g|r � sup
r∈[r0/q,r0]

rλ · sup
r∈[r0/q,r0]

|g|r <∞

by Lemma 2.6(ii). Hence, we can choose C ∈ R sufficiently large such that

|g|r � C/|c| · r−λ ∀r ∈ [r0/q, r0],

|h|r � C · r−λ ∀r ∈ (0, r0].

Then, it suffices to prove

|g|r � C/|c| · r−λ ∀r ∈ [r0/qn+1, r0/q
n]
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by induction on n ∈ N. In the base case n = 0, we have nothing to prove. In the induction step,
the assertion follows from

|cg|r = |ϕ(g) − h|r � max{|ϕ(g)|r, |h|r} = max{|g|qr, |h|r} � max{C/|c| · (qr)−λ, Cr−λ} = Cr−λ.

�

Lemma 3.9 (Cf. [Ohk17, Theorem 6.1]). If g ∈ R̃log is a d-eigenvector of slope λ (Definition

2.9), then we have λ � 0, and g has exact log-growth λ.

Proof. By definition, there exists c ∈ (R̃bd)× such that (ϕd − c)g = 0 and λ = log |c|0/ log |q|d.
By Lemma 3.8, we have g ∈ FilλR̃log. Hence, λ � 0 by g �= 0. To prove the second assertion,
we have only to prove that g does not have log-growth μ for any μ < λ. As in the proof of
Lemma 3.8, we may assume d = 1, g ∈ R̃, and c ∈ K×. We choose r0 > 0 such that g ∈ R̃r0 . As
we have

inf
r∈[r0/q,r0]

rλ|g|r � inf
r∈[r0/q,r0]

rλ · inf
r∈[r0/q,r0]

|g|r > 0

by Lemma 2.6(ii), we can choose C ′ > 0 sufficiently small such that |g|r � C ′/|c| · r−λ for all
r ∈ [r0/q, r0]. Then, it suffices to prove

|g|r � C ′/|c| · r−λ ∀r ∈ [r0/qn+1, r0/q
n]

by induction on n ∈ N. In the base case n = 0, we have nothing to prove. In the induction step,
the assertion follows from |cg|r = |ϕ(g)|r = |g|qr � C ′/|c| · (qr)−λ = C ′r−λ. �

Proposition 3.10. Let M̃ be a nonzero ϕ-module over R̃bd. Put M̃Ẽ := M̃ ⊗R̃bd Ẽ , which is

regarded as a ϕ-module over Ẽ . Let f̃ : M̃ → R̃log be an R̃bd-linear map such that ϕ ◦ f̃ =
cf̃ ◦ ϕM̃ for some c ∈ (R̃bd)×. Put μ := log |c|0/ log |q|.
(i) We have f̃(M̃) ⊂ Filμ+λmax(M̃Ẽ)R̃log.

(ii) Assume that f̃ is injective. If f̃(M̃) ⊂ FilλR̃log, then μ+ λmax(M̃Ẽ) � λ.

Proof. We reduce to the case c = 1, where f̃ is ϕ-equivariant, and μ = 0. Put Ñ = M̃(c), which
is a ϕ-module over R̃bd such that λmax(ÑẼ) = μ+ λmax(M̃Ẽ). We define the R̃bd-linear map f̃ ′ :
Ñ → Rlog;m⊗ ec 	→ f̃(m). It is straightforward to see that ϕ ◦ f̃ ′ = f̃ ′ ◦ ϕÑ and f̃ ′(Ñ) = f̃(M̃).
Moreover, f̃ ′ is injective if and only if so is f̃ . Hence, after replacing f̃ by f̃ ′, we may assume
c = 1 as desired.

(i) Let F0 = 0 � F1 � · · · � Fm = M̃ denote the reverse filtration of M̃ (Proposition 2.10).
We have only to prove f̃(Fi) ⊂ Filλmax(M̃Ẽ)R̃log by induction on i ∈ {0, . . . ,m}. In the base case
i = 0, the assertion is trivial. In the induction step, for some d, there exists a set of generator
of Fi+1/Fi consisting of d-eigenvectors of slopes less than or equal to λmax(M̃Ẽ). We choose
a lift S of such a set to Fi+1. For v ∈ S, we have v′ := (ϕd

M̃
− c′)v ∈ Fi for some c′ ∈ (R̃bd)×

(depending on v), and log |c′|0/ log |q|d � λmax(M̃Ẽ). Then, (ϕd − c′)(f̃(v)) = f̃((ϕd
M̃

− c′)v) =
f̃(v′) ∈ f̃(Fi) ⊂ Filλmax(M̃Ẽ)R̃log by the induction hypothesis. Hence, by applying Lemma 3.8

to (g, h) = (f̃(v), f̃(v′)), we have f̃(v) ∈ Filλmax(MẼ)R̃log. We complete the proof by f̃(Fi+1) =
f̃(Fi + R̃bd · S) = f̃(Fi) + R̃bd · f̃(S) ⊂ Filλmax(M̃Ẽ)R̃log.
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(ii) By Proposition 2.10, there exists a d-eigenvector v ∈ M̃ of slope λmax(M̃Ẽ). As f̃ is
ϕ-equivariant and injective, f̃(v) ∈ R̃log is also a d-eigenvector of slope λmax(M̃Ẽ). Hence, f̃(v)
has exact log-growth λmax(M̃Ẽ) by Lemma 3.9. As f̃(v) ∈ FilλR̃log, we have λ � λmax(M̃Ẽ). �

Proposition 3.11. LetM be a nonzero ϕ-module over Rbd. Let f : M → Rlog be an Rbd-linear

map such that ϕ ◦ f = cf ◦ ϕM for some c ∈ (Rbd)×. Put μ := log |c|0/ log |q|.
(i) We have f(M) ⊂ Filμ+λmax(ME)Rlog.

(ii) Assume that f is injective. If f(M) ⊂ FilλRlog, then μ+ λmax(ME) � λ.

Proof. (i) Let ψ̃K : Rlog → R̃log be an embedding as in § 2.3 with L = K. Put M̃ = M ⊗Rbd R̃bd,
which is regarded as a ϕ-module over R̃bd. Let f̃ : M̃ → R̃log be the composition

M ⊗Rbd R̃bd
f⊗idR̃bd

�� Rlog ⊗Rbd R̃bd � � �� R̃log,

where the second morphism is a multiplication map as in Lemma 2.13(ii). Then, ϕd ◦ f̃ = cf̃ ◦ ϕd
M̃

by assumption. Hence, f̃(M̃) ⊂ Filμ+λmax(ME)R̃log by Proposition 3.10(i). As ψ̃K(f(M)) =
f̃(M ⊗Rbd Rbd) ⊂ f̃(M̃) by the definition of f̃ , we have f(M) ⊂ Filμ+λmax(ME)Rlog by
Lemma 3.5.

(ii) Let notation be as previously. As f is injective, so is f̃ by definition. Moreover, we have
f̃(M̃) ⊂ FilλR̃log by

f̃(M̃) = ψ̃K(f(M)) · R̃bd ⊂ ψ̃K(FilλRlog) · R̃bd ⊂ FilλR̃log · Fil0R̃log ⊂ FilλR̃log,

where we use Lemmas 3.3(i), 3.3(iii), and 3.5. Hence, we obtain the assertion by
Proposition 3.10(ii). �

4. Preliminaries on (ϕ, ∇)-modules over the Robba ring

We give the formalism of ∇-modules and (φ,∇)-modules over certain rings in § 4.1, and recall
basic results on unipotent ∇-modules over R in § 4.2.

4.1 Definition of (ϕ, ∇)-modules over the Robba ring
Definition 4.1. Let R be a ring, and A ⊂ R a subring. Let ∂ : R→ R be an A-linear derivation,
and x an element of R such that ∂(x) = 1.

(i) We define a ∇-module over R (relative to A) as a finite free R-module M endowed with
an A-linear differential operator ∂M relative to ∂, that is, ∂M : M →M is an A-linear map
satisfying ∂M (rm) = ∂(r)m+ r∂M (m) for r ∈ R and m ∈M . We may regard a ∇-module over
R as a differential module over R in the sense of [Ked10, Definition 5.1.2]. We define basic
operations in the category of ∇-modules over R, such as the internal Hom HomR(−,−), the
tensor product −⊗R −, and the dual (−)∨ as in [Ked10, 5.3]. We also define the natural pairing
M ⊗R M

∨ → R; v ⊗ f 	→ f(v). We put M∇ := ker ∂M , which is regarded as an A-submodule
of M .

(ii) Let φ be a ring endomorphism on R such that ∂(φ(x))φ ◦ ∂ = ∂ ◦ φ, and φ(A) ⊂ A. We
define a (φ,∇)-module over R (relative to A) as a φ-module M over R endowed with an A-linear
differential operator ∂M relative to ∂ satisfying the compatibility condition ∂(φ(x)) · φM ◦ ∂M =
∂M ◦ φM . We define the forgetful functor from the category of (φ,∇)-modules over R to the cat-
egory of φ-modules (respectively, ∇-modules) over R by (M,φM , ∂M ) 	→ (M,φM ) (respectively,
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(M,φM , ∂M ) 	→ (M,∂M )). In the category of (φ,∇)-modules over R, we can naturally define the
internal Hom, the tensor product, the dual, and the natural pairing in such a way that these
operations are preserved under the above forgetful functors. Let M be a (φ,∇)-module over R.
We define the d-pushforward [d]∗M of M to be (φd,∇)-module over R given by (M,φd

M , ∂M ). For
c ∈ A×, let R(c) = Rec be the (φ,∇)-module over R defined by φR(c)(ec) = cec and ∂R(c)(ec) = 0,
and M(c) := M ⊗R R(c). As in part (i), we put M∇ := ker ∂M , which is regarded as a difference
module over A = (A, φ|A).

Let (R,A, ∂, φ, x) be a 5-tuple as above. We give a few remarks on base changes of (φ,∇)-
modules over R, which also applies to ∇-modules over R by regarding the category of ∇-modules
over R as a full subcategory of (idR,∇)-modules over R via the correspondence (M,∂M ) 	→
(M, idM , ∂M ). Let (R′, A′, ∂′, φ′, x′) be another 5-tuple as in Definition 4.1, and ψ : R→ R′ a
ring homomorphism such that ψ ◦ φ = φ′ ◦ ψ, ∂′ ◦ ψ = ψ ◦ ∂, ψ(x) ∈ x′ +A′, and ψ(A) ⊂ A′. We
define the base change functor ψ∗(−) from the category of (φ,∇)-modules over R to the category
of (φ,∇)-modules over R′ by the correspondence (M,φM , ∂M ) 	→ (ψ∗M,φM ⊗ φ′, ∂M ⊗ idR′ +
idM ⊗ ∂′). Note that the base change functor is compatible with compositions. Precisely speaking,
let (R′′, A′′, ∂′′, φ′′, x′′) be a 5-tuple with a ring homomorphism ψ′ : R′ → R′′ as previously. Then,
we have a natural isomorphism (ψ′ ◦ ψ)∗ ∼= (ψ′)∗ ◦ ψ∗.

Definition 4.2. Let R denote any one of K[[t]]0,K{t},Rbd,R,Rlog, and E . Let ∂ := d/dt :
R→ R be the natural derivation for R �= Rlog. We extend ∂ : R→ R to Rlog → Rlog by set-
ting ∂(�X) := ∂(X)/X = i/t+ ∂(v)/v with notation as in Definition 2.1(iii). We can see that
∂(ϕ(t))ϕ ◦ ∂ = ∂ ◦ ϕ. We define the category of (ϕ,∇)-modules over R by applying Definition
4.1(ii) to the 5-tuple (R,K, ∂, ϕ, t). Any inclusion between the rings K[[t]]0,K{t},Rbd,R,Rlog,
and E (see the commutative diagram in the Appendix) induces a base change functor between
the corresponding categories of (ϕ,∇)-modules.

We endow the ring E [[X − t]]0 with ϕ and ∂ as in the introduction. Then, we can define
the notion of (ϕ,∇)-modules over E [[X − t]]0 as previously. Moreover, the ring homomorphism
τ : E → E [[X − t]]0 as in the introduction induces the base change functor from the category of
(ϕ,∇)-modules over E to the category of (ϕ,∇)-modules over E [[X − t]]0.

4.2 Unipotent ∇-modules over the Robba ring
We start with proving that in the category of differential rings, the isomorphism class of the differ-
ential ring (Rlog, ∂) is independent of the choice of �X . Let �X′ be another branch of log associated
to X ′ = tjv′ with v′ ∈ OK [[t]]× and j ∈ N�1. Put c′1 = i/j, and g := ∂(X)/X − c′1∂(X ′)/X ′ =
∂(v)/v − c′1∂(v′)/v′ ∈ K[[t]]0. Then, there exists c′0 ∈ K{t} (unique up to modulo K) such that
∂(c′0) = g by considering an antidifferential of g. Note that we have c′0 ∈ K{t} ∩ Fil1R by
g ∈ K[[t]]0 and Corollary 3.6(or by using [CT09, Proposition 1.2(5)]). We define the R-algebra
homomorphism TX,X′ : R[�X ] → R[�X′ ]; �X 	→ c′0 + c′1�X′ .

Lemma 4.3. Let notation be as previously.

(i) We have the following commutative diagram.

R[�X ]
∂ ��

TX,X′
��

R[�X ]

TX,X′
��

R[�X′ ]
∂ �� R[�X′ ]

1286

https://doi.org/10.1112/S0010437X21007107 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007107


Logarithmic growth filtrations for (ϕ,∇)-modules

(ii) The map TX,X′ is bijective.

(iii) The map TX,X′ induces a bijection FilλR[�X ] → FilλR[�X′ ] for λ ∈ R.

Proof. Part (i) is verified directly. We define the R-algebra homomorphism TX′,X : R[�X′ ] →
R[�X ]; �X′ 	→ −c′0/c′1 + 1/c′1 · �X . Then, TX′,X gives an inverse of TX,X′ , which implies part (ii).
Since TX,X′(�X) ∈ Fil1R[�X′ ], we have TX,X′(FilλR[�X ]) ⊂ FilλR[�X′ ] for λ ∈ R. Similarly, we
have TX′,X(FilλR[�X′ ]) ⊂ FilλR[�X ] for λ ∈ R, which implies part (iii). �

Lemma 4.4. The K-linear derivation ∂ : Rlog → Rlog is surjective.

Proof. By Lemma 4.3(i) and (ii), we may assume X = t, in which case the assertion is trivial. �

Definition 4.5. Let M be a ∇-module over R. We put V(M) := (M ⊗R Rlog)∇, which is
regarded as a vector space over K. We define the monodromy operator NX as the K-linear
endomorphism on V(M) induced by idM ⊗ d/d�X , where d/d�X : Rlog → Rlog is the unique
(locally nilpotent) R-linear derivation sending �X to 1.

Let C denote the category of ∇-modules over R. Recall that C is an abelian tensor category
whose objects admit composition series [Cre98, 6.2]. Moreover, the correspondence M 	→ V(M)
gives a left-exact covariant functor from C to the category of vector spaces over K. Recall that
M ∈ C is trivial (respectively, unipotent) if M is isomorphic to a finite direct sum (respectively,
a successive extension) of copies of R, where R is equipped with the trivial differential operator
∂ (see [Ked05a, Definition 4.27]). Then, the unipotent objects form an abelian full subcategory
Cunip of C, which is closed under formation of direct sums, tensor products, duals, subobjects,
quotients, and extensions [Ked04, Definition 4.27].

Lemma 4.6. Let M be a ∇-module over R.

(i) We have M∇ = 0 if and only if V(M) = 0.

(ii) If M is irreducible in C, then we have either V(M) = 0 or M ∼= R.

(iii) The canonical maps

M∇ ⊗K R →M, V(M) ⊗K Rlog →M ⊗R Rlog

are injective. In particular, dimK V(M) � rankRM , and NX is nilpotent.

Proof. Part (i) follows from V(M)NX=0 = M∇ and the local nilpotency of NX . Part (ii) can be
proved by using part (i) and a canonical isomorphismM∇ ∼= HomC(R,M) (see [Ked10, Deifnition
5.3.2]). To prove part (iii), by dévissage, we may assume that M is irreducible in C, in which
case the assertion immediately follows from parts (i) and (ii). �

Corollary 4.7. The restriction of the functor V(−) to Cunip is faithfully exact, compatible

with tensor products and direct sums, and preserves the rank. Moreover, if M ∈ Cunip, then

there exists a functorial isomorphism V(M) ⊗K Rlog
∼= M ⊗R Rlog of ∇-modules over Rlog.

Proof. Note that if M ∈ Cunip, then the differential operator ∂M⊗RRlog
: M ⊗R Rlog →M ⊗R

Rlog is surjective, which is easily seen by reducing to Lemma 4.4. This fact implies the faith-
ful exactness of the restriction of V(−) to Cunip. Hence, by dévissage, we can easily see that
V(M) ⊗K Rlog

∼= M ⊗R Rlog for M ∈ Cunip, which implies the rest of the assertion. �
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Lemma 4.8. Let M be a ∇-module over R.

(i) There exists a maximum unipotent subobject U(M) of M . Moreover, we have a canonical

isomorphism V(U(M)) ∼= V(M), and V(M/U(M)) = 0.

(ii) Let n := rankRM . Then,M is unipotent (respectively, trivial) if and only if dimK V(M) = n

(respectively, dimK M∇ = n).

Proof. (i) Let N is any maximal unipotent subobject of M . If N ′ is a unipotent subobject of M ,
then N +N ′ is also unipotent, hence, N +N ′ = N , i.e. N ′ ⊂ N . Hence, N is a maximum unipo-
tent subobject of M . For the rest of the assertion, it suffices to prove that V(M/U(M)) = 0.
The inverse image U ′ of U(M/U(M)) under the projection M →M/U(M) is a unipotent
subobject of M . Hence, U ′ = U(M), that is, U(M/U(M)) = 0. Therefore, any morphism
R →M/U(M) of ∇-modules over R has image 0, i.e.(M/U(M))∇ ∼= HomC(R,M/U(M)) = 0,
which implies the assertion by Lemma 4.6(ii).

(ii) As dimK V(M) = rankRU(M) by part (i) and Corollary 4.7, M is unipotent if and
only if dimK V(M) = n. If M is trivial, then we obviously have dimK M∇ = n. Conversely, if
dimK M∇ = n, then M is trivial since the injection M∇ ⊗K R ↪→M in Lemma 4.6(iii) is an
isomorphism by comparing ranks. �

In the rest of this subsection, we study the behavior of ∇-modules over R under base changes
of the coefficient field K.

Notation 3. Let (K ′, ϕK′ , q) be an extension of (K,ϕK , q) in the sense of Definition 1.1. We put
RK′,log = RK′ [�X ], where we regard X as an element of OK′ [[t]]. By abuse of notation, we denote
the inclusions R → RK′ and Rlog → RK′,log by ψ.

Lemma 4.9. Let M be a ∇-module over R. If M∇ = 0, then (ψ∗M)∇ = 0.

Proof. Assume that (ψ∗M) �= 0. We prove that M∇ �= 0. We extend idK : K → K to a bounded
K-linear map χ : K ′ → K by the p-adic Hahn–Banach theorem [Rob00, 4.7]. We define the
R-linear map χ′ : RK′ → R;

∑
i∈Z xit

i 	→ ∑
i∈Z χ(xi)ti. Then, the map M ⊗R RK′ →M ;m⊗

r′ 	→ χ′(r′)m commutes with differential operators. Thus, we obtain a map χ′′ : (ψ∗M)∇ →M∇.
We have only to prove χ′′ �= 0. Let x be a nonzero element of (ψ∗M)∇, and e1, . . . , en a basis ofM .
We write x = e1 ⊗ r1 + · · · + en ⊗ rn with rj =

∑
i∈Z rijt

i ∈ RK′ . By x �= 0, we have rij ∈ (K ′)×

for some i, j. Then, χ′′(x/rij) = χ′(r1/rij)e1 + · · · + χ′(rj/rij)ej + · · · + χ′(rn/rij)en is nonzero
because the coefficient of ti in χ′(rj/rij) is equal to 1. �

Proposition 4.10. Let M be a ∇-module over R. Then, the canonical maps

M∇ ⊗K K ′ → (ψ∗M)∇, V(M) ⊗K K ′ → V(ψ∗M)

are isomorphisms. In particular, M is unipotent (respectively, trivial) if and only if ψ∗M is

unipotent (respectively, trivial).

Proof. Since M∇ ∼= V(M)NX=0 and (ψ∗M)∇ ∼= V(ψ∗M)NX=0, we have only to prove that
the second map is an isomorphism. We have V(M/U(M)) = 0 by Lemma 4.8(i), hence,
V(ψ∗M/ψ∗(U(M))) = 0 by Lemma 4.9. Therefore, we have a canonical isomorphism
V(ψ∗(U(M))) ∼= V(ψ∗M). Hence, after replacing M by U(M), we may assume that M ∈ Cunip.
Then, by dévissage, we may reduce to the case M = R, in which case the assertion is trivial. �
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5. Logarithmic growth filtrations for (ϕ, ∇)-modules over Rbd

Assumption 5.1. In the rest of the paper, we assume that ϕK is a q-power Frobenius lift on K.
We also fix an extension L of K such that the residue field of L is algebraically closed (Remark
1.2). Note that the residue field of L is strongly difference-closed [Ked10, Proposition 14.3.4], i.e.
satisfies Assumption 2.3.

Convention 2. In the rest of this paper, unless otherwise is mentioned, a subquotient of a
(ϕ,∇)-module M over Rbd (respectively, E) means a subquotient of M in the category of (ϕ,∇)-
modules over Rbd (respectively, E).

In the following, we study (ϕ,∇)-modules M over Rbd such that MR is unipotent as a
∇-module over R. Note that these M form an abelian full subcategory of the category of (ϕ,∇)-
modules over Rbd, which is closed under formation of direct sums, extensions, internal Homs,
duals, and tensor products. We define V (M) and Sol(M), which are ϕ-modules over K called the
sets of analytic horizontal sections and analytic solutions, respectively, equipped with a perfect
pairing V (M) ⊗K Sol(M) → K called the canonical pairing. We put

V (M) := (M ⊗Rbd Rlog)∇,

Sol(M) := {f ∈ HomRbd(M,Rlog); ∂ ◦ f = f ◦ ∂M}.

Then, both V (M) and Sol(M) are regarded as ϕ-modules over K, where ϕSol(M) is defined
as the unique ϕK-semilinear map satisfying ϕSol(M)(f)(ϕM (m)) = ϕ(f(m)) for f ∈ Sol(M) and
m ∈M . We define the canonical pairing as that induced by the K-bilinear map

V (M) × Sol(M) → R∇
log

∼= K; (m, f) 	→ f ′(m),

where f ′ denotes the linear extension of f to M ⊗Rbd Rlog → Rlog. It is straightforward to
check that the canonical pairing is perfect, and V (−) (respectively, Sol(−)) forms a covariant
(respectively, contravariant) functor, which is faithfully exact, compatible with direct sums and
tensor products, and preserves the rank. In the following, unless otherwise mentioned, when S

is a subset of Sol(M), let S⊥ denote the orthogonal part of S with respect to the above bilinear
map V (M) × Sol(M) → K.

We define the Frobenius slope filtration S•(V (M)) and S•(Sol(M)) of V (M) and Sol(M),
respectively, as in § 1. For λ ∈ R, we have the natural duality

⋃
λ<μ

S−μ(V (M)) = Sλ(Sol(M))⊥.

We define the growth filtrations Sol•(M) and V (M)• of Sol(M) and V (M), respectively, by
Solλ(M) := {f ∈ Sol(M); f(M) ⊂ FilλRlog} and V (M)λ = Solλ(M)⊥ for λ ∈ R. As in the liter-
ature, we may call V (M)• the special log-growth filtration of M . Then, V (M)• (respectively,
Sol•(M)) is a decreasing (respectively, increasing) filtration of ϕ-submodules of V (M) (respec-
tively, Sol(M)) by Corollary 3.7(ii), and V (−)/V (−)λ (respectively, Solλ(−)) is regarded as a
right-exact quotient functor (respectively, left-exact subfunctor) of V (−) (respectively, Sol(−)),
which commutes with direct sums and d-pushforwards.
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Remark 5.2 (Independence of the choice of the branch of log). As a consequence of Lemma 4.3,
the isomorphism class of V (M)• (respectively, Sol•(M)) in the category of vector spaces over K
with decreasing (respectively, increasing) filtrations is independent of the choice of the branch
�X of log. Note that the growth filtrations for M in the case X = t are already studied in
[Ohk17], where Rlog, V (M)(•), and Sol(•)(M) are denoted by Γlog,an,con,V(M)(•), and Sol(•)(M),
respectively.

First proof of part (i) of Theorem 0.1. By Remark 5.2, we may assume that X = t, in which
case the assertion is nothing but [Ohk17, Theorem 4.19]. �

We have the following relations between growth filtrations and Frobenius slope filtrations,
which are analogues of [CT11, Theorem 2.3 (2)] for (ϕ,∇)-modules over Rbd.

Proposition 5.3 (Cf. [Ohk17, Proposition 4.1(i)]). Let M be a (ϕ,∇)-module over Rbd such

that MR is unipotent as a ∇-module over R. Then, we have

V (M)λ ⊂
⋃

μ<λmax(ME)−λ

Sμ(V (M)),

or, equivalently,

Solλ(M) ⊃ Sλ−λmax(ME)(Sol(M))

for an arbitrary real number λ.

See § 8 for the proof.

Remark 5.4. (i) The first displayed relation may be written as V (M)λ ⊂ Sλ−λmax(ME)(V (M∨))⊥

à la [CT11, Theorem 2.3(2)] by Lemma 1.7(II)(vi), where the orthogonal part is taken with
respect to the natural K-bilinear map V (M) × V (M∨) → K.

(ii) In terms of Newton polygons, Proposition 5.3 says that the Newton polygon of V (M)•

lies on or below that of Sλmax(ME)−•(V (M)) (Proposition 10.3(i)).

Corollary 5.5. Let notation be as in Proposition 5.3. Then, the filtrations V (M)• and Sol•(M)
are exhaustive and separated.

Proof. By duality, we have only to prove the exhaustivity of Sol•(M). Let μ denote the maximum
Frobenius slope of Sol(M). Then, we have Solμ+λmax(ME)(M) = Sol(M) by the second displayed
relation in Proposition 5.3 with λ = μ+ λmax(ME). �

Finally, we briefly recall some results on the log-growth filtrations of (ϕ,∇)-modules over E .
In the rest of this section, let M be a (ϕ,∇)-module over E . The log-growth filtration M• (see
the introduction) is a decreasing filtration of subobjects of M indexed by R, which is exhaustive
and separated. Moreover, the correspondence M 	→Mλ forms a covariant endofunctor on the
category of (ϕ,∇)-modules over E (see [CT09, Proposition 3.6]). Furthermore, M �= 0 implies
Mλ �= M for λ � 0 (see [CT09, Theorem 3.2(4)]). Recall that we say that M is PBQ if M/M0

is pure as a ϕ-module over E (see [CT11, Definition 5.1(1)]). As a consequence of functorial-
ity, if M is PBQ, then so is any quotient of M (see [CT11, Proposition 5.3]). We define the
Frobenius slope filtration S•(M) of M as in § 1. Then, we have analogues of Proposition 5.3 and
Theorem 0.1.
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Theorem 5.6 [CT11, Theorems 2.3(1) and 7.1].

(i) We have Mλ ⊂ ⋃
μ<λmax(M)−λ Sμ(M) for an arbitrary real number λ with equality when M

is PBQ.

(ii) We have Mλ =
⋃

μ>λM
μ for an arbitrary real number λ. Moreover, the slope multiset of

M• consists of rational numbers.

6. Base change of the coefficient field

In this section, let notation be as in Notation 3. By abuse of notation, we denote the inclusions
Rbd → Rbd

K′ and E → EK′ by ψ. We prove that the base change functor ψ∗(−) respects the growth
filtration (Lemma 6.2).

Lemma 6.1 (Cf. [CT11, Proposition 2.1]). Let  ∈ { , log}.
(i) The canonical ring homomorphism R
 ⊗K K ′ → RK′,
 is injective. Moreover, (FilλR
) ⊗K

K ′ maps FilλRK′,
.

(ii) Let c1, . . . , cn ∈ K ′ be K-linearly independent, and r1, . . . , rn ∈ R
. If
∑n

j=1 cjrj ∈
FilλRK′,
, then we have rj ∈ FilλR
 for all j.

Proof. We may easily reduce to the case  = (empty).
(i) The second assertion follows from Corollary 3.7. We prove the first. Assume that x belongs

to the kernel of the map R⊗K K ′ → RK′ . Write x =
∑n

j=1 rj ⊗ cj ∈ R⊗K K ′ with n minimal.
Then, the cj ’s are K-linearly independent. Write rj =

∑
i∈Z rijt

i ∈ RK with rij ∈ K. By 0 =∑n
j=1 cjrj =

∑
i∈Z(

∑n
j=1 cjrij)t

i, we have
∑n

j=1 cjrij = 0, which implies rij = 0 for all i, j, i.e.
x = 0.

(ii) Write rj ∈ R as above. Then, supi�1 i
−λ|∑n

j=1 cjrij | <∞ by assumption and
Corollary 3.6. By [Ked10, Theorem 1.3.6], there exists a constant C such that

sup{|α1|, . . . , |αn|} � C

∣∣∣∣
n∑

j=1

cjαj

∣∣∣∣∀α1, . . . , αn ∈ K.

Then, r1, . . . , rn ∈ FilλR by

sup
j=1,...,n

sup
i�1

i−λ|rij | = sup
i�1

sup
j=1,...,n

i−λ|rij | � sup
i�1

i−λC

∣∣∣∣
n∑

j=1

cjrij

∣∣∣∣ <∞. �

Lemma 6.2 (Cf. [CT09, Proposition 1.10]).

(i) LetM be a (ϕ,∇)-module over Rbd such thatMR is unipotent as a ∇-module over R. Then,

(ψ∗M)RK′ is unipotent as a ∇-module over RK′ , and there exist canonical isomorphisms

of ϕ-modules over K ′

V (M) ⊗K K ′ → V (ψ∗M),

Sol(M) ⊗K K ′ → Sol(ψ∗M),
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which are compatible with the canonical pairings. Moreover, these isomorphisms respectively

induce isomorphisms

V (M)• ⊗K K ′ ∼= V (ψ∗M)•,

Sol•(M) ⊗K K ′ ∼= Sol•(ψ∗M).

(ii) (See [CT09, Proposition 1.10] and [CT11, Proposition 2.1].) Let M be a (ϕ,∇)-module over

K[[t]]0. Then, we have analogous isomorphisms as in part (i).

(iii) Let M be a (ϕ,∇)-module over E . Then, there exists a canonical isomorphism

ψ∗(M•) ∼= (ψ∗M)•.

Proof. (i) The first assertion follows from Proposition 4.10. To prove the second assertion, by
duality, we have only to prove that Solλ(M) ⊗K K ′ ∼= Solλ(ψ∗M) for λ ∈ R. For f ∈ Sol(M),
let β(f) ∈ Sol(ψ∗M) be the image of f ⊗ 1 under the map Sol(M) ⊗K K ′ → Sol(ψ∗M). We
claim that f ∈ Solλ(M) if and only if β(f) ∈ Solλ(ψ∗M). By definition, β(f) coincides with the
composition

M ⊗Rbd Rbd
K′

f⊗idRbd
K′

�� Rlog ⊗Rbd Rbd
K′ �� RK′,log

where the second map is the multiplication map. Hence, β(f)(ψ∗M) = f(M) · Rbd
K′ = f(M) ·

Fil0RK′,log by Corollary 3.7(iii). Therefore, we obtain the claim by using Corollary 3.7(i) and
the fact Rlog ∩ FilλRK′,log = FilλRlog.

We fix a basis {cj}j∈J of K ′ as a vector space over K. Let F ∈ Sol(ψ∗M). We can uniquely
write F =

∑
j∈J cjβ(fj) with fj ∈ Sol(M) such that fj = 0 for all but finitely many j. By Lemma

6.1(ii), F ∈ Solλ(ψ∗M) if and only if β(fj) ∈ Solλ(ψ∗M) for all j ∈ J . Moreover, by the claim,
the latter condition is equivalent to fj ∈ Solλ(M) for all j ∈ J , which implies the assertion.

(ii) We may reduce to part (i) by Lemma 0.3.
(iii) Let notation be as in the introduction. We naturally extend τ : E → E [[X − t]]0 (respec-

tively, ψ : E → EK′) to EK′ → EK′ [[X − t]]0 (respectively, E [[X − t]]0 → EK′ [[X − t]]0;X − t 	→ X −
t), which is denoted by τ (respectively, ψ) for simplicity. As ψ ◦ τ = τ ◦ ψ, we have a natu-
ral isomorphism ψ∗ ◦ τ∗ ∼= τ∗ ◦ ψ∗. Let λ ∈ R. By the definition of the log-growth filtration,
(ψ∗M)λ is characterized as a unique subobject U of ψ∗M such that there exists a canonical iso-
morphism V (τ∗U) ∼= V (τ∗ψ∗M)λ. Hence, we have only to prove V (τ∗ψ∗(Mλ)) ∼= V (τ∗ψ∗M)λ.
We have V (τ∗ψ∗(Mλ)) ∼= V (ψ∗τ∗(Mλ)) and V (τ∗ψ∗M)λ ∼= V (ψ∗τ∗M)λ. By applying part (ii)
to ψ : E [[X − t]]0 → EK′ [[X − t]]0, we have V (ψ∗τ∗(Mλ)) ∼= V (τ∗(Mλ)) ⊗E EK′ ∼= V (τ∗M)λ ⊗E
EK′ ∼= V (ψ∗τ∗M)λ, which implies the assertion. �

Corollary 6.3. Let M be a (ϕ,∇)-module over E . Then, M is PBQ if and only if ψ∗M is

PBQ.

Proof. As we have a canonical isomorphism ψ∗M/(ψ∗M)0 ∼= ψ∗(M/M0) by Lemma 6.2(iii),
M/M0 is pure as a ϕ-module over E if and only if ψ∗M/(ψ∗M)0 is pure as a ϕ-module over
EK′ . �
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7. Slope criterion

Lemma 7.1 (Cf. [Ohk17, Lemma 7.3]). LetM be a (ϕ,∇)-module over E . Then, λmax(M/M0) =
λmax(M).

Proof. It suffices to prove λmax(M/M0) � λmax(M). As we have a canonical sur-
jection M/M0 →M/

⋃
μ<λmax(M) Sμ(M) by Theorem 5.6(i), we have λmax(M/M0) �

λmax(M/
⋃

μ<λmax(M) Sμ(M)) = λmax(M). �

Proposition 7.2 (Slope criterion). For a (ϕ,∇)-module M over E , we consider the following

conditions.

(i) The (ϕ,∇)-module M over E is PBQ.

(ii) For any nonzero quotient Q of M , we have λmax(Q) = λmax(M).

Then, condition (i) implies condition (ii). Moreover, if k is perfect, then condition (ii) implies

condition (i).

Proof. Let (i)′ and (ii)′ denote conditions (i) and (ii) for M/M0 respectively, that is:

(i) ′ the (ϕ,∇)-module M/M0 over E is PBQ;
(ii) ′ for any nonzero quotient Q of M/M0, we have λmax(Q) = λmax(M/M0).

We claim that conditions (i) and (i)′ (respectively, (ii) and (ii)′) are equivalent. Note that
(M/M0)0 = 0 because τ∗(M/M0) is trivial as a ∇-module over E [[X − t]]0. Hence, conditions
(i) and (i)′ are equivalent. By Lemma 7.1, condition (ii) implies condition (ii)′. Conversely,
assume that condition (ii)′ holds. Let Q be a nonzero quotient of M . We have λmax(Q) =
λmax(Q/Q0), λmax(M) = λmax(M/M0) by Lemma 7.1, and λmax(Q/Q0) = λmax(M/M0) by con-
dition (ii)′, where Q/Q0 is regarded as a nonzero quotient of M/M0. Hence, condition (ii) holds.
Thus, we obtain the claim.

To prove the assertion, we may replace M by M/M0 in virtue of the claim. Thus, we may
assume that M0 = 0. Then, condition (i) is equivalent to saying that M is pure as a ϕ-module
over E . Hence, condition (i) implies condition (ii). We assume that k is perfect and condition
(ii) holds. Let μ1 be the least Frobenius slope of M . Then, Sμ1(M) is regarded as a quotient of
M by Theorem 7.3. By applying condition (ii) to Q = Sμ1(M), we obtain μ1 = λmax(M), which
implies that M = Sλmax(M)(M) = Sμ1(M) is pure (of slope μ1) as a ϕ-module over E . �

Theorem 7.3 (Splitting theorem [CT11, Theorem 4.1]). Let M be a (ϕ,∇)-module over E .

Assume that k is perfect. Then, M is bounded in the sense of [CT11, 2.2], that is, M0 = 0
if and only if the Frobenius slope filtration of M splits, that is, there exists an isomorphism of

(ϕ,∇)-modules over E

M ∼=
⊕

i=1,...,m

Sμi(M)
/ ⋃

μ<μi

Sμ(M),

where μ1 < · · · < μm denote the Frobenius slopes of M without multiplicity. In particular,

Sμ1(M) is regarded a quotient of M .
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8. Proofs of Proposition 5.3 and part (ii) of Theorem 0.1

Proof of Proposition 5.3. We may assume that M �= 0. By duality, we have only to prove that
Solλ−λmax(ME)(Sol(M)) ⊂ Sol(M) for λ ∈ R. By Lemma 6.2(i), we may reduce to the case K = L.
Thus, we may assume that k is algebraically closed. As the functors S•(−) and Sol•(−) commute
with d-pushforwards, after replacing M by [d]∗M , we may assume that Sλ−λmax(ME)(Sol(M))
admits a K-basis B consisting of Frobenius 1-eigenvectors f of slopes μf . Let f ∈ B. Then,
we have ϕSol(M)(f) = cff with cf ∈ K×, i.e. ϕ ◦ f = cff ◦ ϕM , and μf = log |cf |/ log |q| � λ−
λmax(ME). By applying Proposition 3.11(i) to f , we have f ∈ Solμf+λmax(ME)(M) ⊂ Solλ(M).
Hence, Sλ−λmax(ME)(Sol(M)) =

∑
f∈B Kf ⊂ Solλ(M). �

Proof of part (ii) of Theorem 0.1. We may assume that M �= 0. By duality and Proposition 5.3,
we have only to prove that Sol(M) ⊂ Solλ−λmax(ME)(Sol(M)) for λ ∈ R. By Corollary 6.3 and a
reduction argument as previously, we may assume that k is algebraically closed, and Solλ(M)
admits aK-basis B consisting of Frobenius 1-eigenvectors f of slopes μf . Let f ∈ B, and cf ∈ K×

be as previously. Let N be the kernel of the map f : M → Rlog. Then, N is regarded as a
subobject of M because N is stable under ϕM and ∂M . Moreover, we have N �= M by f �= 0.
Hence, we may regard Q := M/N as a nonzero quotient ofM . By Slope criterion 7.2, λmax(QE) =
λmax(ME). Let f ′ ∈ Sol(Q) be the solution induced by f . By definition, f ′ is injective, ϕ ◦ f ′ =
cff

′ ◦ ϕSol(Q), and f ′(Q) = f(M) ⊂ FilλRlog. By applying Proposition 3.11(ii) to f ′, we obtain
μf � λ− λmax(QE) = λ− λmax(ME). Hence, we have f ∈ Sμf

(Sol(M)) ⊂ Sλ−λmax(ME)(Sol(M)).
Therefore, Solλ(M) =

∑
f∈B Kf ⊂ Sλ−λmax(ME)(Sol(M)). �

9. The PBQ filtration

The PBQ filtration of an arbitrary (ϕ,∇)-module over K[[t]]0 is constructed in [CT11].
We generalize the construction to an arbitrary (ϕ,∇)-module over Rbd.

Assumption 9.1. In this section, as in [CT11, 5.2 and 5.3] we assume that k is perfect.

Definition 9.2. Let M be a (ϕ,∇)-module over E , and N ⊂M a subobject. Then, N0 ⊂M0

by the functoriality of the log-growth filtration, andM0 ⊂ ⋃
μ<λmax(M) Sμ(M) by Theorem 5.6(i).

Thus, we obtain the canonical morphism

σN,M : N/N0 →M

/ ⋃
μ<λmax(M)

Sμ(M).

Proposition 9.3 (Cf. [CT11, Proposition 5.4]). Let M be a (ϕ,∇)-module over E . Then, there

exists a unique subobject N of M such that σN,M is an isomorphism. Moreover, N is PBQ with

λmax(N) = λmax(M), and N �= 0 if M �= 0. We call N the maximally PBQ submodule of M .

Proof. We may assume that M �= 0. The first assertion is proved in the reference. As σN,M is an
isomorphism, N/N0 is pure of slope λmax(M). Hence, N is PBQ, and λmax(N) = λmax(N/N0) =
λmax(M) by Lemma 7.1. �

Definition 9.4 [CT11, Corollary 5.5]. Let M be a (ϕ,∇)-module over E . We define Pi(M)
for i ∈ N as follows. We put P0(M) = 0, P1(M) = N with notation as in Proposition 9.3.
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For i � 2, we inductively define Pi(M) as the inverse image of P1(M/Pi−1(M)) under
the canonical projection M →M/Pi−1(M). By definition, we have a canonical isomorphism
Pi(M)/Pi−1(M) ∼= P1(M/Pi−1(M)). Thus, P•(M) forms an increasing filtration of subobjects of
M , which is called the PBQ filtration of M .

Lemma 9.5. Let M be a (ϕ,∇)-module over E .

(i) The (ϕ,∇)-module P1(M) over E is PBQ with λmax(P1(M)) = λmax(M), and P1(M) �= 0
if M �= 0.

(ii) We have P1(M) = M if and only if M is PBQ. In particular, if M is not PBQ, then

P1(M) �= M .

(iii) The filtration P•(M) is separated and exhaustive, and each graded piece Pi+1(M)/Pi(M)
is PBQ.

(iv) If M is not PBQ, then λmax(M/P1(M)) < λmax(M).

Proof. Part (i) is a part of Proposition 9.3. We prove part (ii). If P1(M) = M , then M is PBQ
by part (i). Conversely, if M is PBQ, then σM,M is an isomorphism by using Theorem 5.6(i) with
λ = 0, which implies that P1(M) = M by uniqueness. In part (iii), the separatedness is trivial,
and the rest of the assertion follows from Pi(M)/Pi−1(M) ∼= P1(M/Pi−1(M)) and part (i). We
prove part (iv). As M = P1(M) +

⋃
μ<λmax(M) Sμ(M) by the surjectivity of σP1(M),M , we have

M/P1(M) =
⋃

μ<λmax(M) Sμ(M/P1(M)) by Lemma 1.7(II)(iii), which implies the assertion. �

Proposition 9.6. Let M be a (ϕ,∇)-module over Rbd. Then, P•(ME) descends to a filtration

P•(M) of subobjects of M . We call P1(M) (respectively, P•(M)) the maximally PBQ submodule
(respectively, the PBQ filtration) of M .

Proof. By the definition of P•(ME), we have only to prove that P1(ME) descends to Rbd. We
may assume that M �= 0. We proceed by induction on n = dimRbd M . In the case where ME is
PBQ (including the base case n = 1), we have P1(M) = M by P1(ME) = ME (Lemma 9.5(ii)). In
the induction step, we may assume that ME is not PBQ. It suffices to construct a subobject N of
M satisfying the following conditions: (a) N �= M ; (b) λmax(NE) = λmax(ME); (c) the canonical
morphism i : NE/

⋃
μ<λmax(ME) Sμ(NE) →ME/

⋃
μ<λmax(ME) Sμ(ME) is an isomorphism. Indeed,

if this is the case, then P1(NE) descends to P1(N) by condition (a) and the induction hypothesis.
As σP1(NE),ME = i ◦ σP1(NE ),NE by condition (b), the morphism σP1(NE),ME is an isomorphism by
condition (c). Hence, P1(ME) = P1(NE) by uniqueness. Thus, P1(ME) descends to P1(N). We
construct N , and then verify conditions (a)–(c). Let μ denote the minimum Frobenius slope of
ME/M0

E . Then, μ < λmax(ME) by assumption, and Q := Sμ(ME/M0
E ) is regarded as a quotient

of ME/M0
E by Theorem 7.3. Let f : M → Q be the composition of the canonical map M →ME

followed by the projection ME → Q. We have f �= 0 because f(M) generates Q(�= 0) as a vector
space over E . Let N denote the kernel of f . Then, N is a nonzero subobject of M . By applying
Lemma 2.14 to the map M/N ↪→ Q induced by f , we have λmax((M/N)E) = λmax(Q) = μ <

λmax(ME). Hence, λmax(NE) = λmax(ME) and (M/N)E =
⋃

μ<λmax(ME) Sμ((M/N)E). Therefore,
the morphism i is an isomorphism by Lemma 1.7(II)(iii). �

We record the following consequence though it is not used in the paper.

Corollary 9.7. If M is an irreducible object in the category of (ϕ,∇)-modules over Rbd, then

ME is PBQ.
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Proof. If ME is not PBQ, then 0 � P1(ME) � ME by Lemma 9.5(i) and (ii), which implies that
0 � P1(M) � M . In particular, M is reducible. �

Lemma 9.8. Let 0 →M ′ →M →M ′′ → 0 be an exact sequence of (ϕ,∇)-modules over Rbd

such that MR is unipotent as a ∇-module over R. Let λ ∈ R.

(i) Assume that V (M ′)λ =
⋃

μ<λmax(ME)−λ Sμ(V (M ′)), or, equivalently, Solλ(M ′) = Sλ−λmax(ME)

(Sol(M ′)). Then, there exist canonical exact sequences

0 → V (M ′)λ → V (M)λ → V (M ′′)λ → 0,

0 → Solλ(M ′′) → Solλ(M) → Solλ(M ′) → 0.

(ii) There exist canonical exact sequences

0 → V (P1(M))λ → V (M)λ → V (M/P1(M))λ → 0,

0 → Solλ(M/P1(M)) → Solλ(M) → Solλ(P1(M)) → 0.

In particular, the slope multisets of V (M)• and Sol•(M), which coincide by definition, are

equal to the disjoint union of those of V (P1(M))• and V (M/P1(M))•.

Proof. (i) We proceed as in the proof of [CT11, Proposition 2.6(1)]. By duality and the left exact-
ness of Solλ(−), we have only to prove the surjectivity of Solλ(M) → Solλ(M ′). By assumption
and Proposition 5.3, we obtain the following commutative diagram.

Solλ(M) ��

inc.
��

Solλ(M ′)

Sλ−λmax(ME)(Sol(M)) �� Sλ−λmax(ME)(Sol(M ′))

Then, the bottom horizontal arrow is surjective by Lemma 1.7(II)(iii), which implies the
assertion.

(ii) As P1(M)E is PBQ with λmax(P1(M)E) = λmax(ME) (Lemma 9.5(i)), we have
V (P1(M)) =

⋃
μ<λmax(ME)−λ Sμ(V (P1(M))) by Theorem 0.1(ii). Hence, we obtain the assertion

by applying part (i) to M ′ = P1(M). �

Lemma 9.9.

(i) [CT11, Proposition 2.6 (1)] Let 0 →M ′ →M →M ′′ → 0 be an exact sequence of (ϕ,∇)-
modules over E , and λ ∈ R. Assume that (M ′)λ =

⋃
μ<λmax(M)−λ Sμ(M ′). Then, there exists

a canonical exact sequence 0 → (M ′)λ →Mλ → (M ′′)λ → 0.

(ii) Let M be a (ϕ,∇)-module over E , and λ ∈ R. Then, there exists a canonical exact sequence

0 → P1(M)λ →Mλ → (M/P1(M))λ → 0. In particular, the slope multiset of M• is equal

to the disjoint union of those of P1(M)• and (M/P1(M))•.

Proof. We can prove part (ii) as in the proof of Lemma 9.8(ii) with Theorem 0.1(ii) replaced by
Theorem 5.6(i). �
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10. Proof of Theorem 0.4

We start with a simple alternative proof of part (i) of Theorem 0.1 by using the PBQ filtration.

Second proof of part (i) of Theorem 0.1. We may assume that M �= 0. By duality, we have only
to prove that the filtration Sol•(M) is right continuous, and has rational slopes. As in the
proof of Proposition 5.3, we may assume that k is algebraically closed. We prove by induction on
n = dimRbd M . In the case where M is PBQ (including the base case n = 1), we have Solλ(M) =
Sλ−λmax(ME)(Sol(M)) by Theorem 0.1(ii). Hence, the assertion follows from Lemma 1.4(iii) and
Theorem 1.5(ii)(b). In the induction step, we may assume that ME is not PBQ. Then, we have
0 � P1(M) � M by Lemma 9.5(i) and (ii). Hence, by the second exact sequence in Lemma 9.8(ii),
the assertion follows from the induction hypothesis for P1(M) and M/P1(M). �

Definition 10.1. (i) Let M be a (ϕ,∇)-module over Rbd of dimension n such that MR is
unipotent as a ∇-module over R. We define the log-growth Newton polygon NP(M) of M as the
Newton polygon of V (M)•. Let {s1(M) � · · · � sn(M)} denote the slope multiset of V (M)•.
Put hi(M) := s1(M) + · · · + si(M) for i ∈ {1, . . . , n}, and h0(M) := 0.

(ii) Let M be a (ϕ,∇)-module over E of dimension n. We define the log-growth Newton
polygon NP(M) of M as the Newton polygon of M•. We also define si(M) for i ∈ {1, . . . , n},
and hi(M) for i ∈ {0, . . . , n} as previously.

Notation 4. For M a (ϕ,∇)-module over R, let S•(M) be the slope filtration of M in the sense
of [Tsu98, Definition 5.1.1], whose existence is proved in [Ked04]. Note that Tsuzuki’s definition
of the slopes [Tsu98, Definition 3.1.5(1)] is compatible with that given in Definition 1.3.

Lemma 10.2. Let M be a (ϕ,∇)-module over R which is unipotent as a ∇-module over R. Let

notation be as in § 4.2. We regard V(M) as a ϕ-module over K as is the case of V (M) (see § 5).

Then, dimK Sλ(V(M)) = rankRSλ(M) for λ ∈ R.

Proof. By dévissage, we may assume that M is irreducible in the category of (ϕ,∇)-modules
over R. The difference module M∇ over K is a ϕ-module over K since M∇ is isomorphic to
V(M)NX=0, which is a ϕ-submodule of V(M) byNX ◦ ϕV(M) = qϕV(M) ◦NX . Hence, the canon-
ical injection i : M∇ ⊗K R →M as in Lemma 4.6(ii) is an isomorphism of (ϕ,∇)-modules over
R by the irreducibility of M . Hence, i induces isomorphisms M∇ ∼= V(M∇ ⊗K R) ∼= V(M) of ϕ-
modules over K, and an isomorphism Sλ(M∇) ⊗K R ∼= Sλ(M) of R-modules by the uniqueness
of the slope filtration of M . Hence, dimK Sλ(V(M)) = dimK Sλ(M∇) = rankRSλ(M). �

Proposition 10.3. (i) Let M be a (ϕ,∇)-module over Rbd of dimension n such that MR
is unipotent as a ∇-module over R. Let {s′1(M) � · · · � s′n(M)} denote the slope multiset of

S•(MR), which coincides with that of S•(V (M)) by Lemma 10.2. Then, for i ∈ {1, . . . , n}, we

have si(M) � λmax(ME) − s′n−i+1(M) with equality when ME is PBQ. In particular, NP(M) lies

on or below the Newton polygon of Sλmax(ME)−•(MR), and the two polygons coincide if ME is

PBQ.

(ii) Let M be a (ϕ,∇)-module over E of dimension n. Let {s′1(M) � · · · � s′n(M)} denote

the slope multiset of S•(M). Then, for i ∈ {1, . . . , n}, we have si(M) � λmax(M) − s′n−i+1(M)
with equality when M is PBQ. In particular, NP(M) lies on or below the Newton polygon of

Sλmax(M)−•(M), and the two polygons coincide if M is PBQ.
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Proof. (i) We remark that as a consequence of the right continuity of V (M)• (respectively,
S•(V (M))) proved in Theorem 0.1(i), we have si(M) � λ (respectively, s′i(M) � λ) if and only if
n− dimK V (M)λ � i (respectively, dimK Sλ(V (M)) � i); moreover, we have si(M) � λ (respec-
tively, s′i(M) � λ) if and only if for any μ ∈ (−∞, λ), we have i > n− dimK V (M)μ (respectively,
i > dimK Sμ(V (M))).

We have

dimK V (M)λmax(ME)−s′n−i+1(M) � dimK

( ⋃
μ<s′n−i+1(M)

Sμ(V (M))
)
< n− i+ 1,

where the first (respectively, second) inequality follows from Proposition 5.3 (respectively, the
above remark). Hence, si(M) � λmax(ME) − s′n−i+1(M) by the previous remark. Assume that
ME is PBQ. Then, for any μ ∈ (−∞, λmax(ME) − s′n−i+1(M)), we have

dimK V (M)μ = dimK

( ⋃
η<λmax(ME)−μ

Sη(V (M))
)

� dimK Ss′n−i+1(M)(V (M)) = n− i+ 1,

where the first (respectively, second) equality follows from Theorem 0.1(ii) (respectively, the
previous remark). Hence, si(M) � λmax(ME) − s′n−i+1(M) by the previous remark, which implies
the assertion.

(ii) We can prove as previously with Proposition 5.3 and Theorem 0.1(ii) replaced by
Theorem 5.6. �

Remark 10.4 (Non-coincidence of the right endpoints). In part (i) (respectively, part (ii)) of
Proposition 10.3, the right endpoints of the two polygons may not coincide if ME (respectively,
M) is not PBQ. For example, let M be the (ϕ,∇)-module over Rbd defined by Rbd ⊕Rbd(q).
As M is trivial as a ∇-module over Rbd, we have s1(M(E)) = s2(M(E)) = 0. Moreover, we obvi-
ously have s′1(M(E)) = 0, s′2(M(E)) = 1, and λmax(ME) = 1. Hence, NP(M(E)) has right endpoint
(2, 0), and the Newton polygons of Sλmax(ME)−•(MR) and Sλmax(ME)−•(ME) have right end-
points (2, 1). Note that ME is not PBQ by M0

E = 0, and the PBQ filtration of M(E) is given
by P1(M) = Rbd(q), P2(M) = M (respectively, P1(ME) = E(q), P2(ME) = ME).

Proof of Theorem 0.4. As in the proof of Proposition 5.3, we may assume that k is alge-
braically closed. We have only to prove that hi(M) � hi(ME) for all i with equality when
i = n. We prove by induction on n. In the case where ME is PBQ (including the base
case n = 1), the assertion follows from Proposition 10.3 and the specialization theorem for
Frobenius Newton polygons [Ked10, Theorem 16.4.6], that is, s′n−i+1(M) + · · · + s′n(M) �
s′n−i+1(ME) + · · · + s′n(ME) with equality when i = n. In the induction step, we may assume
that ME is not PBQ. Then, 0 � P1(M) � M by Lemma 9.5(i) and (ii). As hi(M) is
equal to the minimum of the sums of i elements in the slope multiset of V (M)•, we
have hi(M) = min{hj(M/P1(M)) + hl(P1(M)); j, l ∈ N, j + l = i} by Lemma 9.8(ii). Similarly,
we have hi(ME) = min{hj((M/P1(M))E) + hl(P1(M)E); j, l ∈ N, j + l = i} by Lemma 9.9(ii).
Hence, the assertion follows from the induction hypothesis for M/P1(M) and P1(M). �

Note that the inequality sn(M) � sn(ME) in Theorem 0.4 may be regarded as a partial
generalization of Christol’s transfer theorem [CT09, Proposition 4.3], which asserts an analogous
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inequality for a ∇-module over K[[t]]0 such that M ⊗K[[t]]0 K{t} is trivial as a ∇-module over
K{t}.

Remark 10.5 (André’s theorem, cf. [CT11, Remark 2.8]). In [Dwo73, pp. 45–46], Dwork gives a
primitive version of Proposition 10.3 as a conjectural statement for p-adic differential equations.
Then, as an analogue of Grothendieck–Katz theorem in the sense of the introduction, Dwork
states the following.

Conjecture [Dwo73, Conjecture 2]. The [log-growth] Newton polygon (at b) rises under
specialization.

André proved this conjecture. Precisely speaking, let M be a ∇-module of rank n over K[[t]]0
such that M ⊗K[[t]]0 K{t} is trivial as a ∇-module over K{t}. We can define NP(M(E)) and
hn(M(E)) as in Definition 10.1. Let NPlog,0̄(M) (respectively, NPlog,t̄(Mt̄)) be the translation of
NP(M) (respectively, NP(ME)) by −hn(M) (respectively, −hn(ME)) along the y-axis so that the
right endpoint coincides with (n, 0), which is called the special (respectively, generic) log-growth
Newton polygon of M in [And08, 3.4]. Then, André proves that NPlog,0̄(M) lies on or above
NPlog,t̄(Mt̄) (see [And08, Theorem 4.1.1]); we consequently have hn(M) � hn(ME). Dwork’s
conjecture in the introduction is an analogue of the above conjecture for (ϕ,∇)-modules M
over K[[t]]0, which is equivalent to saying, under André’s notation, that NPlog,0̄(M) lies on or
above NPlog,t̄(Mt̄) with the same left endpoints, i.e. hn(M) = hn(ME); note that the equality
hn(M) = hn(ME) does not always hold for ∇-modules M over K[[t]]0 such that M ⊗K[[t]]0 K{t}
are trivial as ∇-modules over K{t} (see [Ohk15]). To the best of the author’s knowledge, at this
point, there is no alternative proof of Dwork’s conjecture or hn(M) = hn(ME) exploiting Andre’s
theorem in an essential way.

Finally, we give applications to log-(ϕ,∇)-modules over K[[t]]0. We put K{t}log := K{t}[�X ],
which is regarded as a K{t}-subalgebra of Rlog. Let R denote either K[[t]]0 or K{t}log. As in Con-
vention 2, we assume that ϕ on R satisfies ϕ(t) = S ∈ K[[t]]0. Then, R is stable under both ϕ and
∂log := t∂ = td/dt by ∂log(�X) = ∂log(X)/X = i+ ∂log(v)/v ∈ K[[t]]0, where we write X = tiv as
in Definition 2.1(iii). Moreover, we have ∂log(ϕ(t))/ϕ(t) · ϕ ◦ ∂log = ∂log ◦ ϕ. We define a log-∇-
module over R as a finite free R-module equipped with a differential operator relative to ∂log. We
define a log-(ϕ,∇)-module over R as a ϕ-module M over R equipped with a differential opera-
tor ∂log,M relative to ∂log satisfying the compatibility condition ∂log(ϕ(t))/ϕ(t) · ϕM ◦ ∂log,M =
∂log,M ◦ ϕM (cf. Definition 4.1(ii)). We put R′ = Rbd if R = K[[t]]0, and R′ = Rlog if R = K{t}log.
Then, M ′ := M ⊗R R

′ is regarded as a (ϕ,∇)-module over R′ by setting ϕM ′ = ϕM ⊗ ϕ and
∂M ′ = ∂log,M ⊗ t · idR′ + idM ⊗ ∂. Moreover, we have an obvious base change functor from the
category of log-(ϕ,∇)-modules over K[[t]]0 to the category of log-(ϕ,∇)-modules over K{t}log as
in § 4.1. Thus, we obtain the following diagram of functors, which is commutative up to a natural
isomorphism.

{log-(ϕ,∇)-modules over K[[t]]0} ��

��

{(ϕ,∇)-modules over Rbd}

��
{log-(ϕ,∇)-modules over K{t}log} �� {(ϕ,∇)-modules over Rlog}
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We claim that if M is a log-(ϕ,∇)-module over K[[t]]0, then M ⊗K[[t]]0 K{t}log is trivial as a
log-∇-module over K{t}log. As in Remark 5.2, we may assume that X = t, in which case the
claim follows from a nilpotent analogue of Dwork’s trick [Ked10, Corollary 17.2.4]: note that a
log-(ϕ,∇)-module over K[[t]]0 is regarded as a finite differential module over the differential ring
(K[[t]]0, td/dt) with a Frobenius structure in the sense of [Ked10, Remark 17.1.2].

We define the log-growth filtration of K{t}log by FilλK{t}log := K{t}log ∩ FilλRlog for λ ∈ R

(cf.[Ohk17, Definition 4.11]). By using the claim, we can define V (M),Sol(M), etc., for log-
(ϕ,∇)-modules M over K[[t]]0 as in § 5. Moreover, an analogue of Lemma 0.3 holds: note that
the unipotence of (MRbd)R follows from the above claim and Lemma 4.8(ii). Hence, we can prove
the following result as in the proof of Theorem 0.2 given in the introduction.

Theorem 10.6. Analogues of Proposition 5.3, Chiarellotto–Tsuzuki conjecture, and Dwork’s

conjecture hold for log-(ϕ,∇)-modules M over K[[t]]0, where we define ME := (M ⊗K[[t]]0 Rbd)E .

Acknowledgements

The author thanks Nobuo Tsuzuki for discussion and many comments. The author thanks Daxin
Xu for useful discussion. The author also thanks the anonymous referee(s) for valuable comments.
This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) JP17K14161.

Appendix

The following is a list of notation used in the paper.

§ 1 (F, φ, q), λmax(−), S•(−), S•(−)
§ 2 (K,ϕK , q), OK , mK , k

§ 2.1 Rr, R, | · |r : Rr → R�0, Rbd, Rint, | · |0 : Rbd → R�0, E , X, �X , Rlog, ϕ : R → R, S
§ 2.2 R̃r, R̃, | · |r : R̃r → R�0, R̃bd, R̃int, | · |0 : R̃bd → R�0, k((uQ)), Ẽ , R̃log, ϕ : R̃ → R̃
§ 2.3 L, ψ̃L, r0, c0, c1
§ 3.1 Fil•R̃, Fil•R̃log

§ 3.2 Fil•R, Fil•Rlog

§ 4.1 ∂, ∂M , φM , (−)∇

§ 4.2 TX,X′ , V(−), NX , K ′, ψ, U(−)
§ 5 V (−), Sol(−), V (−)•, Sol•(−), M•

§ 9 σN,M , P•(−)
§ 10 NP(−), s•(−), h•(−), s′•(−), K{t}log, ∂log, ∂log,M , Fil•K{t}log

The following is a commutative diagram of rings, where the hooked arrows denote the
inclusions, and all morphisms are injective.

E [[X − t]]0 E
τ�� K[[t]]0� ��� � � ��

� �

��

K{t} � � ��
� �

��

K{t}log = K{t}[�X ]
� �

��
E [[X − t]]0 E

ψ̃L

��

τ�� Rbd� ���

ψ̃L

��

� � �� R � � ��

ψ̃L

��

Rlog = R[�X ]

ψ̃L

��

ẼL R̃bd
L

� ��� � � �� R̃L
� � �� R̃L,log = R̃L[log u]
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Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 717–763.

Dwo73 B. Dwork, On p-adic differential equations. III. On p-adically bounded solutions of ordinary
linear differential equations with rational function coefficients, Invent. Math. 20 (1973), 35–45.

Dwo82 B. Dwork, Lectures on p-adic differential equations, Grundlehren der Mathematischen
Wissenschaften, vol. 253 (Springer, New York, 1982), with an Appendix by Alan Adolphson.

deJ98 A.J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic,
Invent. Math. 134 (1998), 301–333.

Ked04 K. Kedlaya, A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93–184.
Ked05a K. Kedlaya, Local monodromy of p-adic differential equations: an overview, Int. J. Number

Theory 1 (2005), 109–154.
Ked05b K. Kedlaya, Slope filtrations revisited, Doc. Math. 10 (2005), 447–525.
Ked08 K. Kedlaya, Slope filtrations for relative Frobenius, Astérisque 319 (2008), 259–301.
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