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The existence of Bolgiano–Obukhov (BO) scaling in Rayleigh–Bénard convection (RBC)
has long been speculated. However, due to the inhomogeneity and anisotropy of the
flow, and the lack of clear scale separation, no conclusive evidence has been found. To
avoid these non-ideal factors, we construct an idealized isotropic convection system by
introducing an additional horizontal buoyancy field to RBC in a doubly periodic domain.
We focus on the two-dimensional case so that its upscale kinetic energy flux can enable a
long inertial range for detecting the BO scaling. Through direct numerical simulations of
this system, we justify the existence of BO scaling using second- and third-order structure
functions, which are in good agreement with our theoretically obtained scaling relations
from the Kármán–Howarth–Monin equations. These theoretical and numerical results
provide direct support for the conjecture that the existence of the BO scaling in RBC
is associated with the inverse kinetic energy cascade. For higher-order structure functions,
we found strong intermittent effects in the buoyancy field, but not in the velocity. By
comparing the present system with the canonical anisotropic RBC in a periodic domain,
the effects of anisotropy on the scaling properties are elucidated.

Key words: homogeneous turbulence, isotropic turbulence, turbulent convection

1. Introduction

Thermal convection is important for nature and engineering applications. An idealized
system to study thermal convection is Rayleigh–Bénard convection (RBC), where a fluid
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layer is heated from below and cooled from above. Despite tremendous progress achieved
in the understanding of RBC over the years (Ahlers, Grossmann & Lohse 2009; Lohse &
Xia 2010; Chillà & Schumacher 2012; Xia 2013; Verma, Kumar & Pandey 2017), there
remain several major issues that are not settled fully. One of them is the existence of the
so-called Bolgiano–Obukhov (BO) scaling.

As a generalization to the structure function theory for isotropic turbulence (Monin &
Yaglom 1975; Frisch 1995), the BO theory was proposed initially for density stratified
turbulence (Bolgiano 1959; Obukhov 1959). In the BO scenario, the nth-order structure
functions for the velocity and temperature fields can be expressed as (with intermittency
ignored)

Su
n(r) = δun ∼ r3n/5 and Sθn(r) = δθn ∼ rn/5, (1.1a,b)

where δu and δθ are the velocity and temperature increments with a separation r,
respectively. These scaling relations are distinctive from those based on the celebrated
Kolmogorov–Obukhov (KO) theory (Kolmogorov 1941; Obukhov 1949), in which the
scaling exponents in the non-intermittent case are equal to n/3 for both velocity and
temperature structure functions.

Although the BO scaling was developed originally for stably stratified turbulence, the
experimental work on temperature power spectra in turbulent RBC by Wu et al. (1990)
led to some theoretical arguments that the BO scaling can also be observed in unstably
stratified convective turbulence (L’vov 1991; Yakhot 1992). Since then, numerous efforts
have been devoted to the search for the BO scaling in turbulent RBC, but its existence
is still debatable (for review, see Lohse & Xia 2010). According to the most recent
understandings (Lohse & Xia 2010; Ching 2014; Kunnen & Clercx 2014), there are several
factors that prevent the observation of the BO scaling in a canonical RBC system. (a)
The impact of the wall makes the convection inhomogeneous, so the statistics of velocity
and temperature are different in different locations of the convection system (Camussi
& Verzicco 2004; Sun, Zhou & Xia 2006; Li et al. 2021a,b). (b) The turbulent flow is
anisotropic, which in part is also caused by the wall. More intrinsically, RBC is driven by
buoyancy along the vertical direction, while the buoyancy effect in the horizontal direction
is absent. Even though the bulk flow at the centre of RBC has been found to be isotropic
(Zhou, Sun & Xia 2008; Ni, Huang & Xia 2011), no buoyancy effect is manifested in that
region. (c) There exist large-scale circulations in wall-bounded systems, which modify the
turbulent dynamics and thus contaminate the small-scale statistics (Kunnen et al. 2008;
Li et al. 2021b). To disentangle the mixed flow dynamics, one should decompose the
perturbation and mean flow (Mashiko et al. 2004) or analyse the data via conditional
statistics (Ching 2007; Ching et al. 2013). (d) The last factor is the almost impossibility
of fulfilling the condition of scale separation that gives the distinct inertial range of BO
cascade scenario (Grossmann & Lohse 1991, 1992). Thanks to detailed numerical studies
(Kunnen et al. 2008; Kaczorowski & Xia 2013; Kaczorowski, Chong & Xia 2014; Kunnen
& Clercx 2014), this fundamental obstacle has become more evident in the past decade.

To avoid the impact of the walls, which contribute to the first three complicating factors
mentioned above, some approaches have been proposed to explore the BO scaling in
RBC under more ideal conditions. For example, Calzavarini, Toschi & Tripiccione (2002)
employed a lattice Boltzmann scheme to simulate RBC directly with the lateral boundaries
being periodic and the top/bottom boundaries being stress-free. These numerical settings
allow us to maintain the flow homogeneity along horizontal directions, and reduce the
effects of viscous shear near the walls. However, due to the limited resolution of their
simulations, no evident scaling range can be detected in the structure functions. Instead,
they resorted to the extended self-similarity analysis (Benzi et al. 1993) to test the
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BO phenomenology indirectly. Moreover, although Calzavarini et al. (2002) found a
BO-like scaling near the top/bottom walls, they cannot distinguish the effects of buoyancy
and viscous shear, as the stress-free boundary condition does not suppress the viscous
boundary layers completely. Thus they suggested that it is helpful to perform simulations
with periodic boundary conditions in all directions, i.e. homogeneous RBC (Lohse &
Toschi 2003).

This sort of homogeneous convection system was first investigated by Borue &
Orszag (1997), who adopted hyperviscosity to eliminate the unpleasant ‘elevator modes’
(Calzavarini et al. 2006). Through simulating RBC computationally in a triply periodic
box driven by a constant vertical temperature gradient, Borue & Orszag (1997) found that
the scaling laws of the second-order correlation functions favour the KO picture rather than
the BO one. The most important reason for the absence of the BO scaling in homogeneous
RBC is that the Bolgiano scale, only above which the buoyancy becomes dominant and
thus the BO scaling is expected to hold, is of the order of the system size (Borue & Orszag
1997; Biferale et al. 2003). The lack of a wide separation of length scales (i.e. factor (d)
aforementioned), which is also valid for canonical RBC and horizontally periodic RBC,
seems to imply that detecting the BO scaling in RBC is unrealistic.

The situations discussed above are based on RBC in three dimensions. To obtain a
wide inertial range for the BO scaling, a two-dimensional (2-D) configuration may be
considered by taking advantage of its intrinsic feature of inverse kinetic energy cascade
(Kraichnan 1967). This phenomenology was first considered by Chertkov (2003) in the
study of another kind of buoyancy-driven turbulent flows, namely the Rayleigh–Taylor
(RT) turbulence (see Boffetta & Mazzino (2017) and Zhou (2017) for reviews of this
subject). According to Chertkov (2003), while the three-dimensional (3-D) RT turbulence
follows the KO picture, the BO scaling can be expected for the 2-D case. These predictions
have been confirmed numerically and extended to the cases with intermittency effects
(Celani, Mazzino & Vozella 2006; Boffetta et al. 2009; Zhou 2013). The relation between
the scaling properties in 3-D and 2-D RT systems is revealed further by the study in
the quasi-2-D case. By using a configuration with strong confinement in one horizontal
direction, Boffetta et al. (2012) observed the coexistence of KO and BO scaling regimes
separated by the Bolgiano scale. In particular, due to the geometrical constraint, the flow at
scales larger than the Bolgiano scale behaves like 2-D turbulence. This interesting finding
brought about a conjecture that the BO phenomenology could be observed whenever an
upscale energy transfer is induced in the turbulent flow, but its validation in RBC has not
been checked as far as we know.

As RT turbulence and homogeneous RBC, both being free of physical boundaries, are
dynamically similar (Mazzino 2017), one would expect that the phenomenological model
for RT turbulence is equally applicable to homogeneous RBC. Indeed, the realization of
the BO scaling in 2-D homogeneous RBC has been confirmed numerically for lower-order
structure functions (Celani, Mazzino & Vergassola 2001; Celani et al. 2002). It is
further found in these studies that the velocity structure functions at higher orders still
closely follow the BO prediction, but the temperature ones show strongly intermittent
effects, which is in line with the observations in quasi-equilibrium RT turbulence (Celani
et al. 2006). In a similar numerical study by Biskamp, Hallatschek & Schwarz (2001),
which investigated the scaling properties of 2-D homogeneous RBC less directly, the
BO scaling is also found to be approximately valid, though their previous work using a
lower numerical resolution precluded the BO scaling even for the second-order structure
functions (Biskamp & Schwarz 1997). Note that all these studies were limited to the
statistics of isotropic structure functions (Mazzino 2017). Thus there remains a question
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of whether the isotropic and anisotropic structure functions are independent. If not, then
there should be an impact of anisotropy on the scaling properties, making the latter differ
from the predictions of the isotropic theory.

The simulations in 2-D RBC have stimulated some innovative 2-D convection
experiments using soap films/bubbles driven by a temperature gradient (Zhang & Wu
2005; Zhang, Wu & Xia 2005; Seychelles et al. 2008, 2010). These experiments also
observed a BO-like scaling when the temperature gradient is large enough (Zhang & Wu
2005; Seychelles et al. 2010). However, while the probability density functions (p.d.f.s)
of the velocity increment in these studies show exponential tails that manifest intermittent
effects, the p.d.f.s of the temperature increment are nearly Gaussian (i.e. non-intermittent),
which contradicts the observation in the simulations of 2-D homogeneous RBC (Biskamp
et al. 2001; Celani et al. 2001). Although the reason for this discrepancy remains unknown,
it is clear that the flow fields in these convection experiments are neither homogeneous nor
isotropic (Zhang et al. 2005; Seychelles et al. 2008), and only horizontal velocity structure
functions were examined in the study by Seychelles et al. (2010). These complicating
factors will undoubtedly affect the scaling properties, as we discussed at the beginning
of this Introduction.

The motivation of this paper is to explore the BO scaling in a situation where all the
non-ideal conditions are absent. This requires us to avoid the impact of inhomogeneity,
anisotropy and large-scale circulations, and to generate a long inertial range for energy
cascade. Therefore, we constructed an isotropic convection system by introducing a
horizontal buoyancy field to RBC in a 2-D periodic domain. This isotropic system will
be introduced in § 2, followed by a theoretical argument on the BO scenario and the
accordingly obtained expressions of statistical quantities in § 3. Then we will perform
numerical simulations in § 4 to justify the isotropy of the system and examine the
corresponding statistical quantities. These results will be compared with those obtained
in the canonical anisotropic RBC. Finally, we summarize and discuss our findings in § 5.
Appendix A presents the structure functions of some non-traditional quantities brought
about by the presence of the newly introduced horizontal buoyancy field.

2. Formulation

We start from the 2-D RBC with the governing equations

∇2ψt + J (ψ,∇2ψ)− gβθx = ν0 ∇4ψ, (2.1a)

θt + J (ψ, θ)− θ̄zψx = κ0 ∇2θ, (2.1b)

where ψ is the streamfunction such that (u,w) = (−∂zψ, ∂xψ), g is gravity, β is the
expansion coefficient, θ is the temperature, θ̄z is the background temperature stratification
that leads to linear instability, and ν0 and κ0 are viscosity and thermal diffusivity,
respectively.

The governing equations above are inherently anisotropic, which brings about
complications to justify the isotropic theory of BO. In addition, simulations of RBC
in a doubly periodic domain will generate elevator modes that modify drastically the
statistically steady states (Calzavarini et al. 2006). To prevent these effects, we construct
an isotropic convection system by adding an additional buoyancy component subjected to
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a ‘horizontal gravity’:

∇2ψt + J (ψ,∇2ψ)− gβθx + gβσz = ν0 ∇4ψ, (2.2a)

σt + J (ψ, σ )+ σ̄xψz = κ0 ∇2σ, (2.2b)

θt + J (ψ, θ)− θ̄zψx = κ0 ∇2θ. (2.2c)

Here, σ is the new horizontal buoyancy. To ensure the isotropy of the system, we further
set the background gradients to be θ̄z = σ̄x, and the diffusivity of the two buoyancy fields
are also taken to be the same.

As we focus on the inertial range dynamics in statistically steady states, to extend the
inertial range with fixed resolutions, we replace the normal viscosity (diffusivity) with the
hyperviscosity (hyperdiffusivity), and introduce the hypoviscosity and hypodiffusivity to
absorb the upscale energy flux (cf. Celani et al. 2002). Thus (2.2a)–(2.2c) become

∇2ψt + J (ψ,∇2ψ)− gβθx + gβσz = ν∗ ∇8ψ + α∗ψ, (2.3a)

σt + J (ψ, σ )+ σ̄xψz = κ∗ ∇6σ + μ∗Δ−1σ, (2.3b)

θt + J (ψ, θ)− θ̄zψx = κ∗ ∇6θ + μ∗Δ−1θ. (2.3c)

Through introducing the non-dimensionalization

t → 1√
gβθ̄z

t, x → Lx, ψ →
√

gβθ̄z L2ψ and (θ, σ ) → θ̄zL(θ, σ ), (2.4a–d)

where L is a characteristic length of the domain size, (2.3a)–(2.3c) become

∇2ψt + J
(
ψ,∇2ψ

)
− θx + σz = ν ∇8ψ + αψ, (2.5a)

σt + J (ψ, σ )+ ψz = κ ∇6σ + μΔ−1σ, (2.5b)

θt + J (ψ, θ)− ψx = κ ∇6θ + μΔ−1θ, (2.5c)

with

ν = ν∗

L6
√

gβθ̄z
, κ = κ∗

L6
√

gβθ̄z
, α = α∗L2√

gβθ̄z
and μ = μ∗L2√

gβθ̄z
. (2.6a–d)

These non-dimensional parameters can be linked to the oft-used control parameters
of canonical RBC, namely the Rayleigh (Ra) and Prandtl (Pr) numbers, through the
definitions

Ra = 1
νκ

= gβθ̄zL12

ν∗κ∗ and Pr = κ

ν
= κ∗

ν∗ . (2.7a,b)

Here, the definition of Pr shares the same form as the usual definition, except that ν∗ and
κ∗ are hyperviscosity and hyperdiffusivity, respectively.

It is noteworthy that because of the hyperviscosity and hyperdiffusivity used, we may
not compare directly the above-defined Ra with the oft-used one based on normal viscosity
and diffusivity. Nevertheless, for curiosity and also a better understanding of the present
isotropic system, we can consider a virtual canonical RBC where the dissipation scale
and the potential energy dissipation rate are the same as those in the system given by
(2.5a)–(2.5c). For this virtual system, the normal diffusivity can be expressed as μvirtual ∼
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μ1/4ε
1/4
P , with εP being the small-scale potential energy dissipation rate. Then, with other

quantities fixed, the corresponding Ra in the virtual system scales as Ravirtual ∼ Ra1/4. In
other words, a value Ra = 1032 based on the present definition is equivalent to an order of
108 in the usual case.

With the above construction, we obtain an isotropic system described by (2.5a)–(2.5c).
If we rotate the x- and z-coordinates by an angle γ via the transformation

x′ = x cos γ − z sin γ and z′ = x sin γ + z cos γ, (2.8a,b)

introduce

ψ ′(x′, z′) = ψ(x, z), (2.9)

and define new scalars

σ ′ = σ cos γ − θ sin γ and θ ′ = σ sin γ + θ cos γ, (2.10a,b)

then this system is invariant. Note that this isotropic convection system resembles the
isotropic inertia-gravity-wave system studied by Xie & Bühler (2019b), which consists of
two stably stratified buoyancy fields.

For a single Fourier mode, exp(λt − 1i(kx + mz)), the linear growth rate λ with respect
to the zero state of (2.5a)–(2.5c) is

λ = 1
2

(
−(ν + κ)K6 − (α + μ)K−2 +

√
4 + [

(ν − κ)K6 + (α − μ)K−2
]2)

, (2.11)

where K = √
k2 + m2, with k and m the horizontal and vertical wavenumbers, respectively.

The linear growth rate inherits the isotropy of system governed by (2.2a)–(2.2c), which
differs from the canonical RBC system described by (2.1a)–(2.1b) that has an anisotropic
linear growth rate.

3. Theoretical argument for the existence of BO scaling

Since the system described by (2.5a)–(2.5c) is isotropic, and if we consider the situation
with no external forcing, it will develop into a statistically homogeneous isotropic steady
state, which is the focus of the present paper. We can explore the statistical properties using
two-point structure functions.

3.1. Derivation of the Kármán–Howarth–Monin equations
Consider two measured points located at x and x′ = x + r, where r is the displacement
of these two points. We denote the quantities evaluated at x′ with a prime, e.g. u′ =
u(x′) = u(x + r). Homogeneity implies that for two-point statistical quantities, the spatial
derivatives follow

∇ = −∇′ = −∇r, (3.1)

where ∇′ and ∇r denote the gradients taken with respect to x′ and r, respectively.
For statistically steady states, by multiplying ψ ′, σ ′ and θ ′ to (2.5a), (2.5b) and

(2.5c), and then adding the corresponding conjugate equations, respectively, we obtain
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the Kármán–Howarth–Monin (KHM) equations (cf. Monin & Yaglom 1975; Frisch 1995)
for (2.5a)–(2.5c):

−1
2
∇ · δu (δu2 + δw2

)+
(

uσ ′ + u′σ − wθ ′ − w′θ
)

= Dψ, (3.2a)

−1
2
∇ · δu δσ 2 +

(
uσ ′ + u′σ

)
= Dσ , (3.2b)

−1
2
∇ · δu δθ2 −

(
wθ ′ + w′θ

)
= Dθ , (3.2c)

where

Dψ = −2ν ∇4ψ ∇′4ψ ′ − 2αψψ ′, (3.3a)

Dσ = −2κ ∇3σ ∇′3σ ′ − 2μΔ1/2σΔ′1/2σ ′, (3.3b)

Dθ = −2κ ∇3θ ∇′3θ ′ − 2μΔ1/2θΔ′1/2θ ′, (3.3c)

are the effects of dissipation and diffusivity. Note that Dψ |r=0, Dσ |r=0 and Dθ |r=0 are all
negative.

For the present isotropic convection system, we know qualitatively that the instability
brings about energy injection through the buoyancy terms, i.e. the quadratic terms on
the left-hand sides of (3.2a)–(3.2c), then the nonlinear advection transfers energy across
scales, and finally, the energy is dissipated due to dissipation and diffusivity. Since an
important feature of the BO theory is the interaction between the potential energy and
kinetic energy, this physical picture inspires us to argue the BO scaling from the energy
transfer processes.

3.2. Argument based on energy flux
Taking the Fourier transform of the KHM equations (3.2a)–(3.2c), we obtain the spectral
energy equation, which can be written symbolically as

∂KFK + B = DK, (3.4a)

∂KFP + B = DP, (3.4b)

where F is the energy flux across scales, B is the buoyancy effect that injects energy into
the system, D is the dissipation, and the subindices K and P denote the kinetic and potential
energy, respectively.

We now argue the existence of BO scaling based on the transfer directions of the kinetic
and potential energy. To be specific, we assume that for the present 2-D isotropic system,
the kinetic energy transfers upscale, while the potential energy transfers downscale. This
assumption is based on the 2-D turbulence’s upscale energy transfer (Kraichnan 1967)
and the forward cascade of temperature field in a turbulent velocity field (Obukhov 1949;
Corrsin 1951). Although in some cases, the existence of potential parts may lead to a
downscale flux of the kinetic energy in two dimensions (Xie & Bühler 2019b), in § 4 we
will demonstrate numerically the validity of this assumption for the present system.

The potential energy transfers downscale, so if the buoyancy generation is a power
function of wavenumber (i.e. a simple cascade picture), say B ∼ K−a (a > 1), then the
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potential energy flux can be expressed as

FP ∝
∫ K

K0

K̃−a dK̃ = K−a+1
0 − K−a+1, (3.5)

where K0 is the large-scale dissipation wavenumber. This formula immediately implies
that a constant potential energy flux is seen at small scales when K/K0 	 1. We can also
obtain the relative importance of the constant flux and the energy injection by comparing
FP and K ∂KFP: ∣∣∣∣ FP

K ∂KFP

∣∣∣∣ = 1
a − 1

((
K0

K

)1−a

− 1

)
, (3.6)

which tends to infinity, implying that the flux is dominant as K → ∞. Therefore, the BO
scaling induced by constant potential energy flux should be observed at small scales.

For the kinetic energy, which transfers upscale, we have

FK ∝
∫ K

−∞
K̃−a dK̃ = − 1

1 − a
K−a+1. (3.7)

Note that because of the opposite directions of energy transfer, the integration directions
in (3.7) and (3.5) are opposite. Similarly, we have∣∣∣∣ FK

K ∂KFK

∣∣∣∣ = 1
a − 1

, (3.8)

implying a balance between the transfer and injection of kinetic energy, which completes
the BO scenario.

It is noteworthy that because of the inverse cascade of kinetic energy, the Bolgiano scale
is not important in the 2-D case. To be specific, we can estimate the Bolgiano scale using
the expression (cf. Lohse & Xia 2010)

lB = ε
5/4
K ε

−3/4
P (βg)−3/2, (3.9)

where εK and εP are the small-scale kinetic and potential energy dissipation rates,
respectively. Because εK is approximately zero as the downscale energy flux is negligibly
small in 2-D turbulence, we have lB = 0 theoretically, which in numerical simulations
is approximately equal to the smallest resolved length scale (Celani et al. 2002). The
negligibly small lB also implies the non-existence of the KO scaling in the present 2-D
system.

3.3. Scalings of structure functions
From the perspective of the KHM equations (3.2a)–(3.2c), the BO scaling is consistent
with the knowledge of 2-D and 3-D turbulence, which transfers energy upscale and
downscale, respectively. The key is the link between the direction of energy flux and
the anomaly’s influence on the procedure of obtaining the expressions for the third-order
structure functions. Specifically, in 3-D turbulence, where the kinetic energy transfers
downscale and dissipates, we can ignore the effect of energy injection, and take the
leading-order approximation of the dissipation as the energy dissipation in the KHM
equations to obtain the Kolmogorov 4/5-law (Kolmogorov 1941; Frisch 1995). While
for 2-D turbulence, where the kinetic energy transfers upscale, we need to subtract the
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leading-order constant energy dissipation from the dissipation term in the KHM equations
(Lindborg 1999; Xie & Bühler 2018).

Therefore, assuming that the buoyancy potential energy transfers downscale, following
the argument of 3-D turbulence, (3.2b) implies

∇ · δu δσ 2 = constant. (3.10)

Similarly, as the kinetic energy transfers upscale in our 2-D system, after subtracting the
leading-order energy injection by buoyancy terms and the constant energy dissipation,
(3.2a) results in

− 1
2
∇ · δu(δu2 + δw2)+ f (−δu δσ + δw δθ) = 0. (3.11)

Combining (3.10) and (3.11), and invoking the dimensional analysis, we obtain the third-
and second-order structure functions

V(1)K ≡ δu(δu2 + δw2) ∼ r9/5, (3.12a)

V(1)P ≡ δu(δσ 2 + δθ2) ∼ −r, (3.12b)

δu2 ∼ δw2 ∼ r6/5, (3.12c)

δσ 2 ∼ δθ2 ∼ r2/5, (3.12d)

which are exactly the predictions of the BO theory. Here, the upper index (1) denotes
the horizontal component of the structure function vector, and correspondingly, we define

V(2)K ≡ δw
(
δu2 + δw2

)
and V(2)P ≡ δw

(
δσ 2 + δθ2

)
for the vertical components. The signs

of the third-order structure functions correspond to the direction of energy flux. The
positive and negative signs correspond to the downscale and upscale fluxes, respectively
(Cho & Lindborg 2001; Xie & Bühler 2019a). Note that to obtain (3.12b), we do not need to
invoke the dimensional analysis, so it is more robust compared with other relations. Also,
in above derivation we make use of the inverse cascade of kinetic energy to obtain (3.11),
therefore we claim that the BO scaling coexists with the inverse kinetic energy cascade,
which is supported by our numerical results shown in § 4.

The high-order structure functions may also be power functions of the two-point
distance, i.e.

δun ∼ rζu and δθn ∼ rζθ , (3.13a,b)

where ζu and ζθ are both functions of n. In a non-intermittent situation, the BO scenario
implies

ζu = 3
5 n and ζθ = 1

5 n. (3.14a,b)

4. Numerical simulations

In this section, we perform numerical simulations of the isotropic convection system based
on (2.5a)–(2.5c) to justify the above theoretical argument. The simulations use a Fourier
pseudospectral method with 2/3 de-aliasing in space, resolutions up to 2048 × 2048, and
a fourth-order explicit Runge–Kutta scheme in time, in which the nonlinear terms are
treated explicitly and linear terms implicitly using an integrating factor method. Since
we focus on the scales away from the impact of dissipation and diffusivity, we do not
study the influence of Pr and thus take ν = κ . Also, we take α = μ. In the simulations,
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ν ranges from 10−12 to 10−16, and α = 2 is fixed. This parameter setting results in a
hyperviscosity-based Ra range 1024–1032, equivalent to a range 106–108 based on the usual
definition. In the simulation with resolution 2048 × 2048, to obtain trustable statistics, we
run the simulation to a statistically steady state and maintain for 5 × 104 eddy turnover
time, which is calculated as the inverse of the mean square vorticity.

To extend the inertial range, we apply hyperviscosity instead of the ordinary viscosity.
The impact of hyperviscosity has been studied before; e.g. Jimenez (1994) found that
hyperviscosity brings about oscillatory tails to vortices. As the order of hyperviscosity
increases, the Navier–Stokes equation behaves more like the truncated Euler equation,
and the energy spectrum scales as k2 instead of the Kolmogorov scaling k−5/3 in
3-D turbulence (Frisch et al. 2008; Agrawal et al. 2020). Despite the above-mentioned
differences between ordinary and hyperviscous flows, Haugen & Brandenburg (2004)
justified that in 3-D isotropic hyperviscous turbulence, particularly with the viscous
operator ∇6, scalings of structure functions up to 8th order are consistent with those
obtained in ordinary viscous turbulence, therefore we use the hyperviscous operator ∇6

in our model (2.5a)–(2.5c).

4.1. Turbulent fields
We first present some important features of the turbulent fields using the numerical results
with ν = 10−16. Figure 1 shows snapshots of vorticity ∇2ψ and two buoyancy fields. It is
seen that the vertical buoyancy field θ , which contains up- and down-moving plumes, just
resembles the temperature field in the 2-D homogeneous RBC system (Celani et al. 2000).
However, it differs from the horizontal buoyancy field σ , where left- and right-moving
plumes are present. Their difference can be seen from the asymmetry of sharp interfaces:
in the θ field, the horizontal sharp interfaces prefer negative gradients of θ , while the
vertical interfaces consist of nearly symmetric positive and negative gradient of θ ; and
vice versa for the σ field. Thus the combination of θ and σ leads to the present isotropic
convection.

The isotropic feature of the turbulent fields is illustrated further in figure 2, where
the second- and third-order isotropic fields, including δu2 + δw2, δσ 2 + δθ2, ∇ · VK and
∇ · VP, are plotted separately. As expected, all these fields show isotropic behaviours,
which will be confirmed quantitatively later. Although anisotropy is present at large scales,
owing to the effect of the square periodic box, the flows at these scales are dominated by
large-scale damping and therefore do not affect the statistics at scales where BO scaling
presents.

4.2. Low-order structure functions
In § 3.2, we discussed that the key for the BO scenario is associated with the transfer
directions of the potential and kinetic energy. Here, we present the numerical evidence.
Figure 3 shows the kinetic and potential energy fluxes, and their difference is also
presented because the buoyancy terms in the kinetic and potential energy equations
cancel. It is seen that the potential energy transfers downscale and the kinetic energy
transfers upscale, thus supporting the assumption proposed in § 3.2. And the wide plateau
appearing in their difference justifies not only the negligible effects of dissipation and
diffusivity, but also the correctness of our simulations. We also compare the potential
energy fluxes in simulations with different ν. It is seen that decreasing the hyperviscosity
results in a wider range for the approximately constant potential energy flux, and therefore

942 A19-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.373


Bolgiano–Obukhov scaling in 2-D isotropic convection

1

0

2

3

4

5

6

1 2 3 4 5 6

100

50

–50

–100

0

1

0

2

3

4

5

6

0

–1

–2

–3

–4

1

1

2

2

3

3

0

–1

–2

–3

–4

1

2

3

4 5 6

1

0

2

3

4

5

6

1 2 3
x

x
θ

σ

x

z

z

z

4 5 6

∇�ψ(a) (b)

(c)

Figure 1. Snapshots of ∇2ψ , σ and θ at a statistically steady state.

extends the possible range for detecting the BO scaling. In other words, the present
isotropic convection system would exhibit the BO scaling more evidently with smaller
hyperviscosities (equivalently, at larger Ra values).

To verify the above discussion quantitatively, and most importantly the scaling relations
(3.12) derived in § 3.3, we now check in figure 4 the third-order structure functions
corresponding to the kinetic and potential energy fluxes. There exists a wide range of
length scales in which the data closely follow the BO scaling. Moreover, the results in
figure 4(b) show that the BO scaling range extends much further as the hyperviscosity
decreases, confirming the discussion above. Here, the isotropic features of the present
system are verified quantitatively by comparing the results in different directions.
Similarly, the second-order structure functions shown in figure 5 also follow the BO
scalings. In addition, the well-collapsed data for different directions and components
further demonstrate the isotropy of the flow fields. Thus combining the information of
figures 4 and 5, we can conclude safely that the BO scaling is well observed in the
low-order structure functions of the present isotropic convection system.

4.3. High-order structure functions
In this section, we study the high-order structure functions. Because the flow fields
well satisfy the isotropic condition, we focus on the statistics of the horizontal velocity
u and the temperature field θ . In figure 6, we plot the structure functions of δu and
δθ from order 2 to order 9, and the corresponding scaling exponents ζu and ζθ (cf.
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Figure 3. Kinetic (FK) and potential (FP) energy fluxes, as well as their difference. Potential energy fluxes
with different hyperviscosities are also plotted for comparison.
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Figure 4. The third-order structure functions corresponding to the kinetic and potential energy fluxes at
different directions. The BO scalings are plotted for reference. Again, the data with different hyperviscosities
are plotted in panel (b) for comparison.
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Figure 5. The second-order structure functions of (a) velocity and (b) temperature fields for different
components and directions. The BO scalings are plotted for reference.

(3.13a,b)) in the inertial range are also shown. Note that only the absolute values of Sθn
are exhibited, as the high-order structure functions of θ can be negative. Figures 6(c,d)
show the compensated plots of the ninth-order structure functions of u and θ , to show
the quality of scaling behaviour. The compensated scaling r27.3/5 in the velocity structure
function is very close to the BO scaling r27/5. A bottleneck effect (cf. Frisch et al. 2008)
is seen in the structure function of θ , but the scaling recalls similar behaviour observed
in 3-D isotropic turbulence by Haugen & Brandenburg (2004). The bottleneck effect is
not seen in the velocity structure function; this is because the kinetic cascades upscale
while the potential energy cascades downscale. The high-order structure functions do
have power-function dependence on two-point distance. The non-intermittent BO scaling
ζu = 3n/5 (cf. (3.14a,b)) well captures the behaviour of the high-order velocity structure
functions, but the temperature structure functions show strong intermittency. It is seen that
the scaling exponent ζθ deviates from the BO prediction (i.e. ζθ = n/5) and saturates to
value 0.75 as n ≥ 5, which is similar to the results in 2-D homogeneous RBC (Celani
et al. 2002). However, an interesting observation is that δθ3 ∼ r3/5, which was not shown
in previous studies.
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Figure 6. (a,b) Structure functions Su
n and Sθn with n = 2, 3, 4, 5, 6, 7, 8, 9. The curves are shifted vertically.

(c,d) Compensated ninth-order structure functions of u and θ , where the horizontal dashed lines are presented
for reference. The power-function fittings to the data in the BO scaling range are also presented. (e, f )
Corresponding scaling exponents ζu and ζθ .

The intermittent effects can be also observed in the p.d.f.s of, for example, the
normalized longitudinal velocity increment δuL and temperature increment δθL, as shown
in figure 7. Here, δuL is evaluated with the x-direction displacement, and δθL is evaluated
with the z-direction displacement. It is seen that the p.d.f.s of δuL for different scales
are well collapsed and all Gaussian-like, though the upscale energy transfer brings about
positive skewness, which resembles that in the inverse cascade range of 2-D turbulence
(cf. Boffetta, Celani & Vergassola 2000; Boffetta & Ecke 2012). However, the p.d.f.s
of δθL for different scales do not fall on top of each other, and their departure from the
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Figure 7. P.d.f.s of normalized δuL and δθL; r is the distance between two measured points. The black dashed
line is the normal distribution for reference.

Gaussian distribution becomes much stronger at smaller scales, manifesting the effects of
intermittency (Celani et al. 2001).

Figure 8 shows the integration kernels for the sixth- and eighth-order structure functions
of u and θ , which justify the convergence of high-order structure functions. Figures 8(a,b)
show a larger probability of the positive velocity difference, which is in consistent with
the positive third-order structure function δu3

L > 0 corresponding to an upscale kinetic
energy flux shown in figure 3. This contrasts with the integration kernels observed in
3-D RBC with a forward kinetic energy cascade (cf. Sun et al. 2006). The collapse of
integration kernels with different displacements again shows the non-intermittency of
velocity differences. The integration kernels of temperature structure functions shown
in figures 8(c,d) show a preference of negative values, which is in accord with the
plumes structures (cf. figure 1). The hot plumes travel upwards and cold plumes travel
downwards, so collisions of plumes give strong negative and weak positive θ gradients
in the vertical direction. This negative-value preference is also observed in 3-D RBC
(Sun et al. 2006). Different from the integration kernels of velocity difference, those
of temperature difference with different displacements do not collapse, indicating strong
intermittency, which is consistent with figure 7(b).

4.4. RBC in a periodic domain
To gain a better understanding of the present isotropic convection system, we compare
it with the homogeneous RBC system, i.e. the canonical anisotropic RBC in a periodic
domain. The simulation uses the same algorithm as for the isotropic system with ν =
10−16, but without the horizontal component in the buoyancy field. To obtain trustable
statistics, we run the simulation to a statistically steady state and maintain for 8 × 104

eddy turnover time, which is calculated as the inverse of the mean square vorticity. The
convergence of the statistics has also been checked by calculating the integral kernels of
structure functions (not shown here) as in figure 8.

Figure 9 shows some statistical quantities of the homogeneous RBC, which are the
counterparts of those shown in figure 2. It is seen that even the second-order statistics
have exhibited obvious anisotropic features, which elongate along the vertical direction
as expected. When it comes to the third-order statistics, the anisotropy is more dramatic,
resulting in the longitudinal and transversal structure functions being distinctive.
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Figure 8. Integration kernels for the sixth- and eighth-order longitudinal structure functions of u and θ with
different displacements of two measured points.

To further illustrate the impact of anisotropy, we show in figure 10 the third-order
structure functions corresponding to kinetic and potential energy fluxes in different
directions in the anisotropic RBC, which are the counterparts of those shown in figure 4.
Figure 10(a) shows that both the horizontal and vertical components of the kinetic energy
structure function deviate from the BO scaling, with a steeper scaling for the horizontal
component and a shallower scaling for the vertical component. For the potential energy
structure function, the vertical component is close to the BO scaling, while the horizontal
component is shallower. The anisotropic behaviour of both the kinetic and potential energy
third-order structure functions, which differ from the isotropic structure functions of our
isotropic system (cf. figure 4), shows the anisotropic energy flux phenomenon in the
homogeneous RBC.

The anisotropy traces back to instability, which drives the turbulent dynamics. In
homogeneous RBC, the linear growth rate λRBC with respect to the zero state of
(2.1a)–(2.1b) reads

λRBC = 1
2

⎛
⎝−(ν0 + κ0)K2 +

√
(ν0 + κ0)2K4 − 4ν0κ0K4 + 4gβk2

K2

⎞
⎠ , (4.1)

which is anisotropic. For horizontal modes with k = (0,m), the growth rate λRBC is
negative, therefore these modes are linearly stable and do not inject energy into the system,
while the most unstable mode is a so-called elevator mode with m = 0. Therefore, it
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Figure 9. Isotropic fields of δu2 + δw2, δθ2, ∇ · VK and ∇ · VP in 2-D homogeneous (but anisotropic) RBC.
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Figure 10. The third-order structure functions corresponding to the kinetic and potential energy fluxes at
different directions in anisotropic RBC. The BO scalings are plotted for reference.

is expected to observe more flow structures – plumes – propagating vertically. So in
figures 9(c,d), the divergence of third-order structure functions, which correspond to
energy sources and sinks, concentrate around locations with zero vertical displacement.
Considering that in the spectral space the nonlinear advection transfers energy from
sources, where the modes are unstable, to sinks, the anisotropic growth rate (cf. (4.1))
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leads to anisotropic energy transfer (cf. figure 10), which further leads to anisotropic
structure functions in inertial ranges. It is this anisotropic energy transfer that contaminates
the scaling behaviour in the canonical RBC. Note that an alternative way to analyse the
anisotropy in turbulent flows is by examining structure functions with different symmetry
(cf. Biferale & Procaccia 2005), which is beyond the scope of this paper.

5. Summary and discussion

In this paper, we construct a 2-D isotropic convection system in a doubly periodic domain,
aiming to explore the BO scaling in a situation without any complicating factor that
contaminates the scaling properties. The periodic domain avoids the impact of the walls
and the large-scale circulations, and the 2-D formulation with upscale kinetic energy flux
enables the observation of a long inertial range for the BO scenario. These advantages
are shared with previous studies of 2-D homogeneous RBC (Biskamp & Schwarz 1997;
Biskamp et al. 2001; Celani et al. 2001; Mazzino 2017) and RT turbulence (Chertkov 2003;
Boffetta et al. 2012). However, the turbulent fields in those systems are still anisotropic,
making the scaling properties of structure functions depend on the evaluated direction, as
we demonstrated in § 4.4. By introducing an extra buoyancy field subjected to horizontal
gravity, we successfully obtain an isotropic convection system, which makes the structure
functions directional-independent, and thus it is perfect to explore the BO scenario.

Based on the downscale flux of the potential energy and the upscale flux of the
kinetic energy, we derive structure function relations from the KHM equations for
the present isotropic convection system. And invoking self-similarity, these structure
function relations lead directly to the BO scaling, which is checked with direct numerical
simulations. It is found that the second- and third-order structure functions of velocity and
buoyancy all follow the BO scaling. For high-order structure functions, the velocity field
shows no intermittency, but the buoyancy field shows strong intermittency with the scaling
exponent ζθ → 0.75 as the order n ≥ 5. These results for high-order structure functions
are similar to those observed in 2-D homogeneous RBC (Celani et al. 2002; Mazzino
2017), while in 2-D RBC, ζθ tends to a value (∼0.8) slightly larger than 0.75. The major
difference is that the third-order structure function of buoyancy in the isotropic convection
follows the BO scaling perfectly, contradicting the result in homogeneous RBC. We believe
that this difference stems from the isotropy as discussed in § 4.4.

We end this paper by noting the key for detecting the BO scaling, which has been
conjectured to be associated with the inverse kinetic energy cascade (Boffetta et al. 2012).
Although some RBC experiments on soap films/bubbles have reported BO-like scaling,
the direction of the kinetic energy flux in these studies was unclear (Zhang & Wu 2005;
Seychelles et al. 2010). Thus our theoretical argument and numerical results provide
direct support for the validity of this conjecture in RBC. While the present 2-D isotropic
convection is physically unrealizable, the realization of inverse kinetic energy cascade in a
laboratory is quite feasible. One promising approach is to use geometrical confinement, i.e.
a quasi-2-D system, as Boffetta et al. (2012) did in the study of RT turbulence. Some recent
studies of quasi-2-D RBC have observed the condensation of turbulent structures (Huang
et al. 2013; Chong et al. 2015), which is an intriguing feature due to the inverse kinetic
energy cascade (Xia et al. 2011). In this context, the present 2-D system is also worthwhile
to extend to its counterparts in quasi-2-D and 3-D systems, which may help to reveal
the connection between 2-D and 3-D RBC in terms of small-scale statistics. We expect
that the present 2-D isotropic convection can not only improve theoretical understanding
of canonical RBC, but also stimulate experiments that go beyond the canonical RBC
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configuration, which is exactly the current trend in the field of turbulent convection (Xia
2013).
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Appendix A. Statistics of some other isotropic quantities

In this appendix, we study the structure functions of some isotropic scalars that are
non-intermittent. Due to the presence of a horizontal buoyancy field, we can introduce
two isotropic scalar quantities, namely Ψ and Φ, through the Helmholtz decomposition of
buoyancy fields, as

(σ, θ) = ∇Φ + ∇⊥Ψ. (A1)

It is natural to study their structure functions together with the streamfunction ψ . Based
on the discussion in § 3, a simple dimensional analysis implies that

δψ ∼ r8/5 and δΦ ∼ δΨ ∼ r6/5, (A2a,b)

which, however, is problematic. This is because, for the second-order statistics, we have

∇2δψ2 = 2(u2 + w2 − δu2 − δw2). (A3)

As δu2 + δw2 ∼ r6/5 follows the BO scaling, we immediately obtain

δψ2 ∼ r2 + h.o.t. (A4)

when considering the small-r limit, which is in contrast to (A2a,b). Note that (A4) holds
as long as the scaling exponent of δu2 + δw2 is positive. However, the high-order structure
functions of δψ do not have relations like (A3) that are linked to the structure functions of
δu, so their scalings are unknown. Nevertheless, according to (A4), a naive guess for the
nth-order structure functions of δψ (without intermittency) is

δψn ∼ rn. (A5)

Similarly, the structure functions of δΨ and δΦ for the leading order are expected to be

δΨ n ∼ rn and δΦn ∼ rn. (A6a,b)

Now we use the numerical data to check the scaling relations (A5) and (A6a,b). In
figure 11, we show the structure functions ofψ ,Ψ andΦ for different orders, together with
their scaling exponents obtained in the inertial range. For the structure functions of ψ and
Ψ , we plot their absolute values, but for the structure functions of Φ, we plot the positive
and negative parts separately due to their different scaling behaviours. It is seen that all the
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structure functions exhibit power-function dependencies and no intermittency is observed,
but their scaling exponents are distinctive. To be specific, while the scaling exponents ζψ of
the structure functions of ψ follow (A5) nicely, those for the structure functions of Ψ show
a non-expected dependence as ζΨ = 9n/10. Note that even for n = 2, ζΨ differs from the
prediction given by (A6a,b), though their differences are not that much. More interestingly,
the positive and negative parts of the structure functions of Φ exhibit different scalings.
While the scalings for the positive part also follow a dependence as ζΦ+ = 9n/10, those
for the negative part have a more strange behaviour as ζΦ− = 6/5 + 4n/5. We do not have
an explanation for the behaviour of these scaling exponents, which is subject to future
study.
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