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Abstract
We prove a ‘resilience’ version of Dirac’s theorem in the setting of random regular graphs. More precisely,
we show that whenever d is sufficiently large compared to ε > 0, a.a.s. the following holds. Let G′ be any
subgraph of the random n-vertex d-regular graph Gn,d with minimum degree at least (1/2+ ε)d. Then G′

is Hamiltonian.
This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly the

condition that d is large cannot be omitted, and secondly the minimum degree bound cannot be improved.

2020 MSC Codes: Primary 05C80; Secondary 05C35, 05C45

1. Introduction
The study of Hamiltonicity has been at the core of graph theory for the past few decades. A graphG
is said to beHamiltonian if it contains a cycle which covers all of the vertices ofG, and this is called
aHamilton cycle. It is well known that the problem of determining whether a graph is Hamiltonian
is NP-complete, and thus most results about Hamiltonicity deal with sufficient conditions which
guarantee this property. One of the most well-known examples is due to Dirac, who proved that
any graph G on n� 3 vertices with minimum degree at least n/2 is Hamiltonian.

1.1 Hamilton cycles in random graphs
The search for Hamilton cycles in various models of random graphs has also been a driving force
in the development of this theory. The classical binomial model Gn,p, in which each possible edge
is added to an n-vertex graph with probability p independently of the other edges, has seen many
results in this direction. In particular, Komlós and Szemerédi [23] showed that p= log n/n is the
‘sharp’ threshold for the existence of a Hamilton cycle. This can be strengthened to obtain the
following hitting time result. Consider a random graph process as follows: given a set of n vertices,
add each of the

(n
2
)
possible edges, one by one, by choosing the next edge uniformly at random

among those that have not been added yet. In this setting, Ajtai, Komlós and Szemerédi [1] and
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Bollobás [10] independently proved that a.a.s. the resulting graph becomes Hamiltonian as soon
as its minimum degree is at least 2.

The search for Hamilton cycles in other random graph models has proved more difficult. In
this paper we will deal with random regular graphs: given n, d ∈N such that d < n and nd is even,
Gn,d is chosen uniformly at random from the set of all d-regular graphs on n vertices. The study of
this model is oftenmore challenging than that ofGn,p due to the fact that the presence and absence
of edges in Gn,d are correlated. Several different techniques have been developed to deal with this
model, such as the configuration model (see Section 3.3) or edge-switching techniques. Robinson
andWormald [33] proved that Gn,3 is a.a.s. Hamiltonian, and later extended this result to Gn,d for
any fixed d� 3 [34]. This is in contrast to Gn,p, where the average degree must be logarithmic in n
to ensure Hamiltonicity. These results were later generalized by Cooper, Frieze and Reed [14] and
Krivelevich, Sudakov, Vu and Wormald [26] for the case when d is allowed to grow with n, up to
d� n− 1. Many further results can be found in the recent survey of Frieze [16].

1.2 Local resilience
More recently, several extremal results have been translated to random graphs via the concept of
local resilience. The local resilience of a graph G with respect to some property P is the maximum
number r ∈N such that, for allH ⊆Gwith�(H)< r, the graphG \H satisfiesP . We say thatG is
r-resilient with respect to a property P if the local resilience of G is greater than r. The systematic
study of local resilience was initiated by Sudakov and Vu [36], and the subject has seen a lot of
research since.

Note that Dirac’s theorem can be restated in this terminology to say that the local resilience
of the complete graph Kn with respect to Hamiltonicity is �n/2�. This concept of local resilience
then naturally suggests a generalization of Dirac’s theorem to random graphs. In the binomial
model, Lee and Sudakov [27] showed that, for any constant ε > 0, if p� C log n/n and C is suffi-
ciently large, then a.a.s. Gn,p is (1/2− ε)np-resilient with respect to Hamiltonicity. This improved
on earlier bounds [7, 8, 17, 36]. Very recently, Montgomery [30] and independently Nenadov,
Steger and Trujić [32], proved a hitting time result for the local resilience of Gn,p with respect
to Hamiltonicity. In a different direction, Condon, Espuny Díaz, Kim, Kühn and Osthus [12]
considered ‘resilient’ versions of Pósa’s theorem and Chvátal’s theorem for Gn,p.

The resilience of random regular graphs with respect to Hamiltonicity is less understood. Ben-
Shimon, Krivelevich and Sudakov [7] proved that, for large (but constant) d, a.a.s. Gn,d is (1−
ε)d/6-resilient with respect toHamiltonicity. They conjectured that the true value should be closer
to d/2.

Conjecture 1.1 (Ben-Shimon, Krivelevich and Sudakov [7]). For every ε > 0 there exists an inte-
ger D=D(ε)> 0 such that, for every fixed integer d >D, the local resilience of Gn,d with respect to
Hamiltonicity a.a.s. lies in the interval ((1/2− ε)d, (1/2+ ε)d).

They also suggested studying the same problem when d is allowed to grow with n. In this
direction, Sudakov and Vu [36] showed that, for any fixed ε > 0 and for any (n, d, λ)-graph G
(i.e. a d-regular graph on n vertices whose second largest eigenvalue in absolute value is at most
λ) with d/λ > log2 n, we have that G is (1/2− ε)d-resilient with respect to Hamiltonicity. This,
together with a result of Krivelevich, Sudakov, Vu and Wormald [26] and recent results of Cook,
Goldstein and Johnson [13] and Tikhomirov and Youssef [37] about the spectral gap of random
regular graphs, implies that for log4 n� d� n− 1, a.a.s. Gn,d is (1/2− ε)d-resilient with respect
to Hamiltonicity. One can extend this to d 	 log n by combining a result of Kim and Vu [22] on
joint distributions of binomial random graphs and random regular graphs with the result of Lee
and Sudakov [27] about the resilience of Gn,p with respect to Hamiltonicity.
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The study of local resilience has not been restricted to Hamiltonicity. Other properties that
have been considered include the containment of perfect matchings [12, 32], directed Hamilton
cycles [15, 18, 31], cycles of all possible lengths [25], kth powers of cycles [35], bounded degree
trees [5], triangle factors [6] and bounded degree graphs [2, 20].

1.3 New results
In this paper we completely resolve Conjecture 1.1, as well as its extension to d growing slowly
with n (recall that the case when d 	 log n is covered by earlier results). This can be seen as a
version of Dirac’s theorem for random regular graphs. Our main result gives the lower bound in
Conjecture 1.1.

Theorem 1.2. For every ε > 0 there exists D such that, for every D< d� log2 n, the random graph
Gn,d is a.a.s. (1/2− ε)d-resilient with respect to Hamiltonicity.

While we do not try to optimize the dependence of D on ε, we remark that D in Theorem 1.2
can be taken to be polynomial in ε−1. This is essentially best possible in the sense that Theorem 1.2
fails if d� (2ε)−1.

Theorem 1.3. For any odd d > 2, the random graph Gn,d is not a.a.s. (d − 1)/2-resilient with
respect to Hamiltonicity.

Our proof also shows that Gn,d is not a.a.s. (d − 1)/2-resilient with respect to the containment
of a perfect matching. Moreover, one can adapt the proof of Theorem 1.3 to show that, for every
even d, the random graph Gn,d is not a.a.s. d/2-resilient with respect to Hamiltonicity (or the
containment of a perfect matching). It would also be interesting to obtain bounds on the resilience
for small d. In particular, here are some questions.

(i) Given any fixed even d, determine whether the graph Gn,d is a.a.s. (d/2− 1)-resilient with
respect to Hamiltonicity.

(ii) What is the likely resilience of Gn,4 with respect to Hamiltonicity or the containment
of perfect matchings? Is a graph obtained from Gn,4 by removing any matching a.a.s.
Hamiltonian?

Finally, we observe (as is well known) that the upper bound of (1/2+ ε)d in Conjecture 1.1
follows easily from edge distribution properties of random regular graphs. Indeed, we note that for
every ε > 0 there exists a constant D such that for every D� d� log2 n, a.a.s. the graph G=Gn,d
has the property that between any two disjoint sets A, B of size �n/2� and 
n/2�, respectively, the
number of edges inG[A, B] is a.a.s. bounded from above by (1/2+ ε/2)nd/2 (see Proposition 4.2).
Now letA, B be amaximum cut inG. Thus eG(a, B)� d/2 for all a ∈A, and similarly for all b ∈ B. If
|A| �= |B|, then by deleting the edges inG[A]∪G[B], the remaining graph is not Hamiltonian since
it forms an unbalanced bipartite graph. If |A| = |B|, then by the above property, there must exist
a vertex x ∈A such that eG(x, B)� (1/2+ ε/2)d. Let A′ :=A \ {x} and B′ := B∪ {x}. As before, by
deleting the edges in G[A′]∪G[B′], we obtain a graph which is not Hamiltonian.

1.4 Organization of the paper
The remainder of the paper is organized as follows. In Section 2 we give a sketch of the proof of
Theorem 1.2. In Section 3 we collect notation, some probabilistic tools, and observations about the
configuration model. Section 4 is devoted to proving different edge-distribution and expansion
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properties of random regular graphs and their subgraphs, and the proof of Theorem 1.2 is given in
Section 5, using all the techniques that have been introduced before. Finally, we prove Theorem 1.3
in Section 6.

2. Outline of the proof of Theorem 1.2
Consider G=Gn,d. Let H ⊆G be such that �(H)� (1/2− ε)d and let G′ :=G \H. We will prove
thatG′ contains a ‘sparse’ spanning subgraph Rwhich has strong edge expansion properties. These
properties will then be used to provide a lower bound on the number of edges in G whose addi-
tion would make R Hamiltonian, or increase the length of a longest path in R (such edges are
commonly called ‘boosters’: see e.g. [24]). We then argue that some of these edges must in fact be
retained when passing to G′. We then add such edges to R and iterate the above process (at most
n times) until R becomes Hamiltonian.

More specifically, as a preliminary step we ‘thin’ the graphG′, that is, we take a subgraph R⊆G′
with �(R)� δd, for some δ � ε. As described above, we consider a longest path in R and then
argue that it can be extended via edges inG′ \ R. The fact that R is relatively ‘sparse’ with respect to
G′ will be important when calculating union bounds over all graphs R of this type, at a later stage
in the proof (this idea was introduced by Ben-Shimon, Krivelevich and Sudakov [7]).

Given many paths of maximum length and with different end-points in R, it follows that
there will be many edges whose addition will increase the length of a longest path (or make
R Hamiltonian). A theorem of Pósa implies that graphs with strong expansion properties will
indeed contain many of such paths. These expansion properties are captured by the notion of a
3-expander (see Definition 4.1). Therefore we wish to show that our thinned graph R can be cho-
sen to be a 3-expander. This is one point where working with the random graph Gn,d proves more
difficult than working with Gn,p, due to the fact that the appearance of edges in Gn,d is correlated.

The next step is to provide a lower bound on the number of edges whose addition to R would
increase the length of a longest path (or make R Hamiltonian). Here we further develop an
approach of Montgomery [30] who, instead of considering single edges that would bring R closer
to being Hamiltonian, considered ‘booster’ edge pairs whose addition would yield the same result.
For example, if R is connected and P is a longest path in R with end-points x and y, and ab is an
edge of P (with b closer to y on P), then {ya, xb} is a booster pair. The main advantage of consid-
ering such pairs of edges is that it results in a much larger set of boosters for R. More precisely, we
show the existence of another thinned graph F ⊆G′ \ R for which each booster we consider is of
the form {e, e′}, where e ∈ E(F) and e′ ∈ E(G′) (see Corollary 5.4).

Finally, we can complete the proof of the main theorem by iteratively adding booster pairs
to the thinned graph R, increasing the length of a maximum path in each step until R becomes
Hamiltonian. Two points are important here as to why we can iterate this process. First, proving
the existence of boosters (see Lemma 5.5) involves a union bound over all pairs of thinned graphs
R and F. To bound this efficiently, we need that both R and F are relatively ‘sparse’ with respect
to G′. But in each step we only add two booster edges to R, so it remains sparse. Secondly, we
take special care to ensure that no vertex is contained in too many of the boosters we add to R,
ensuring that its degree in successive iterations remains small. This process terminates after at
most n iterations, resulting in a graph R′ ⊆G′ which is Hamiltonian.

3. Preliminaries
3.1 Notation
For n ∈N, we denote [n] := {1, . . . , n}. Given any set S, we denote

S(2) := {{s1, s2} : s1, s2 ∈ S, s1 �= s2}.
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The parameters which appear in hierarchies are chosen from right to left. That is, whenever we
claim that a result holds for 0< a� b� 1, we mean that there exists a non-decreasing function
f : [0, 1)→ [0, 1) such that the result holds for all a> 0 and all b� 1 with a� f (b). We will not
compute these functions explicitly.

Throughout this paper, the word graph will refer to a simple, undirected graph. Whenever the
graphs are allowed to have parallel edges or loops, we will refer to these asmultigraphs. Given any
(multi)graph G= (V , E) and sets A, B⊆V , we will denote the (multi)set of edges of G spanned by
A as EG(A), and the (multi)set of edges of G having one end-point in A and one end-point in B
as EG(A, B). The number of such edges will be denoted by eG(A) and eG(A, B), respectively. We
will also write e(G) for eG(V). Given two (multi)graphs G1 and G2 on the same vertex set V , we
write G1 +G2 := (V , E(G1)∪ E(G2)), where the union represents set union for graphs and mul-
tiset union for multigraphs. When G1 and G2 are graphs, we write G1 \G2 := (V , E(G1) \ E(G2)).
Given any vertex v ∈V , we will denote the set of vertices which are adjacent to v in G by NG(v).
We define NG(A) :=⋃

v∈A NG(v). The degree of vertex v in a multigraph G is

dG(v) := |{e ∈ E(G) : v ∈ e}| + |{e ∈ E(G) : e= vv}|
(i.e. each loop at v contributes two to dG(v)). We denote �(G) :=maxv∈V dG(v) and δ(G) :=
minv∈V dG(v). The (multi)graph G is said to be d-regular for some d ∈N if all vertices have degree
d. Given amultigraphG on [n], we refer to the vector d= (dG(1), . . . , dG(n)) as its degree sequence.
In general, a vector d= (d1, . . . , dn) with di ∈Z�0 for all i ∈ [n] is called graphic if there exists a
graph on n vertices with degree sequence d (note that, as long as

∑n
i=1 di is even, there is always a

multigraph with degree sequence d). Given a graph G and a real number α > 0, let Hα(G) be the
collection of all spanning subgraphs H ⊆G for which dH(v)� αdG(v), for all v ∈V(G).

We will use Gn,d to denote the set of all d-regular graphs on vertex set [n], and Gn,d will denote
a graph chosen from Gn,d uniformly at random. Whenever we use this notation, we implicitly
assume that nd is even. In more generality, given a graphic degree sequence d= (d1, . . . , dn), we
will denote the collection of all graphs on vertex set [n] with degree sequence d by Gn,d, and Gn,d
will denote a graph chosen from Gn,d uniformly at random.

We use a.a.s. as an abbreviation for asymptotically almost surely. Given a sequence of events
{En}n∈N, whenever we claim that En holds a.a.s., we mean that the probability that En holds tends
to 1 as n tends to infinity. For the purpose of clarity, we will ignore rounding issues when dealing
with asymptotic statements. By abusing notation, given p� 0 and n ∈N, we write Bin(n, p) for the
binomial distribution with parameters n and min{p, 1}.

3.2 Probabilistic tools
We will need the following Chernoff bound (see e.g. [21, Corollary 2.3]).

Lemma 3.1. Let X be the sum of n independent Bernoulli random variables and let μ :=E[X].
Then, for all 0� δ � 1, we have that P[|X − μ|� δμ]� 2e−δ2μ/3.

The following bound will also be used repeatedly (see e.g. [3, Theorem A.1.12]).

Lemma 3.2. Let X ∼ Bin(n, p), and let β > 1. Then P[X � βnp]� (e/β)βnp.

Given any sequence of random variables X = (X1, . . . , Xn) taking values in a set A and a func-
tion f : An →R, for each i ∈ [n]∪ {0} define Yi :=E[f (X) | X1, . . . , Xi]. The sequence Y0, . . . , Yn
is called the Doob martingale for f . All the martingales that appear in this paper will be of this
form. To deal with them, we will need the following version of the well-known Azuma–Hoeffding
inequality.
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Lemma 3.3 (Azuma’s inequality [4, 19]). Let X0, X1, . . . be a martingale and suppose that |Xi −
Xi−1|� ci for all i ∈N. Then, for any n, t ∈N,

P[|Xn − X0|� t]� 2 exp

(
−t2

2
∑n

i=1 c2i

)
.

Finally, the Lóvasz local lemmawill be useful. LetE := {E1, E2, . . . , Em} be a collection of events.
A dependency graph for E is a graph H on vertex set [m] such that, for all i ∈ [m], Ei is mutually
independent of {Ej : j �= i, j /∈NH(i)}, that is, ifP[Ei]= P[Ei |∧j∈J Ej] for all J ⊆ [m] \ (NH(i)∪ {i}).
We will use the following version of the local lemma (it follows from [3, Lemma 5.1.1], for
example).

Lemma 3.4 (Lóvasz local lemma). Let E := {E1, E2, . . . , Em} be a collection of events and let H be
a dependency graph for E. Suppose that �(H)� d and P[Ei]� p for all i ∈ [m]. If ep(d + 1)� 1,
then

P

[ m∧
i=1

Ei
]
� (1− ep)m.

3.3 The configurationmodel
We will work with the configuration model introduced by Bollobás [9], which can be used to sam-
ple d-regular graphs uniformly at random. In more generality, it can be used to produce graphs
with any given graphic degree sequence d. The process to generate such graphs is as follows.

Given n ∈N and a degree sequence d= (d1, . . . , dn) with m :=∑n
i=1 di even, consider a set of

m vertices labelled as xij for i ∈ [n] and j ∈ [di]. For each i ∈ [n], we call the set {xij : j ∈ [di]} the
expanded set of i. Similarly, for any X ⊆ [n], we call the set {xij : i ∈ X, j ∈ [di]} the expanded set
of X. Choose uniformly at random a perfect matching M covering the expanded set of [n]. Then
obtain a multigraph ϕ(M)= ([n], E) by letting E be the following multiset: for each edge e ∈M,
consider its end-points e= xijxk	, for some i, k ∈ [n], j ∈ [di] and 	 ∈ [dk], and add ik to E (if i= k,
this adds a loop to E).

When we consider a multigraph G obtained via this configuration model, this will be denoted
by G∼ Cn,d. In particular, when we obtain a d-regular multigraph via the configuration model, we
will denote this by G∼ Cn,d. We refer to the possible perfect matchings on the expanded set of [n]
as configurations, and we will denote a configuration obtained uniformly at random byM ∼ C∗

n,d.
By abusing notation, we will sometimes also use C∗

n,d to denote the set of all configurations with
parameters n and d. In order to easily distinguish the setting of graphs from that of configurations,
we will call the elements of the expanded sets points, and each element in a configuration will be
called a pairing.

The above process may produce amultigraph with loops and/ormultiple edges. However, if d is
a graphic degree sequence, then, when conditioning on the resulting multigraph being simple, the
configuration model yields a graph G ∈ Gn,d chosen uniformly at random. The following proposi-
tion bounds the probability that this happens, and can be proved similarly to (part of) a result of
Cooper, Frieze and Reed [14, Lemma 7] (see [11] for details). It will be useful when analysing the
distribution of edges in Gn,d via the configuration model.

Proposition 3.5. Let 0< δ < 1/10. Let d� log2 n be a positive integer and let R be a graph on
vertex set [n] with degree sequence d′ = (d1, . . . , dn) such that di < δd for all i ∈ [n]. Let d := (d −
d1, . . . , d − dn) and let F ∼ Cn,d. Then, if n is sufficiently large,

P[R+ F is simple]� e−3d2 .
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Note that, by choosing R to be the empty graph on n vertices, we obtain a lower bound on the
probability that the multigraph obtained by a random configuration is simple.

When studying the configuration model, it will be useful to consider the following process to
generateM ∼ C∗

n,d. Let d= (d1, . . . , dn) and suppose thatm :=∑n
i=1 di is even. Label the points of

the expanded set of [n] in any arbitrary order, x1, . . . , xm, and identify them naturally with the set
[m]. Start with an empty set of pairingsM0. Inductively, for each i ∈ [m], if i is covered byMi−1, let
Mi :=Mi−1; otherwise, choose a point j ∈ [m] \ (V(Mi−1)∪ {i}) uniformly at random and define
Mi :=Mi−1 ∪ {ij}. We sometimes refer toMi as the ith partial configuration. Finally, letM :=Mm.
It is clear that the resulting configurationM is generated uniformly at random, independently of
the labelling of the expanded set of [n].

We will often be interested in bounding the number of edges in Gn,d between two sets of ver-
tices. For this, it will be useful to consider binomial random variables that stochastically dominate
the number of edges. We formalize this via the following lemma.

Lemma 3.6. Let n, d ∈N with d < n, and let δ ∈ [0, 1). Let d= (d1, . . . , dn) with
∑n

i=1 di even be
such that (1− δ)d� di � d for all i ∈ [n]. Let G∼ Cn,d and let A, B⊆ [n] be any (not necessarily dis-
joint) sets of vertices such that 2|A| < (1− δ)n. Then the random variable eG(A, B) is stochastically
dominated by a random variable

X ∼ Bin

(∑
a∈A

da, |B|/((1− δ)n− 2|A|)
)
.

Proof. Let t :=∑
a∈A da. Let X , A′ and B′ be the expanded sets of [n], A and B, respectively. Label

the points of X so that all the points in A′ come first, that is, A′ = {x1, . . . , xt}. Generate a random
configuration M ∼ C∗

n,d following this labelling. Then eG(A, B) is the number of pairings in M
with one end-point in A′ and the other in B′, and we will estimate the probability that each pairing
added toM contributes to eG(A, B).

First, note that all pairings added after Mt do not contribute to eG(A, B), as they do not have
an end-point in A′. For each i ∈ [t], define an indicator random variable Xi which takes value
1 if Mi �=Mi−1 and e= xiy ∈Mi \Mi−1 is such that y ∈ B′, and 0 otherwise, so that eG(A, B)=∑

i∈[t] Xi. Observe that, in the above process, the bound

P[Xi = 1 |Mi �=Mi−1]�
|B|

(1− δ)n− 2|A|
holds for all i ∈ [t], since at every step of the process there are at most |B|d points available in
B′ and at least (1− δ)nd − 2|A|d points available in X \ (V(Mi−1)∪ {xi}). On the other hand,
P[Xi = 1 |Mi =Mi−1]= 0, so given M0,M1, . . . ,Mi−1, each Xi is stochastically dominated by a
Bernoulli random variable Yi with parameter |B|/((1− δ)n− 2|A|). By summing over all i ∈ [t],
we conclude that eG(A, B) is stochastically dominated by X ∼ Bin(t, |B|/((1− δ)n− 2|A|)).

4. On the existence of a sparse 3-expander
Definition 4.1. An n-vertex graphG is called a 3-expander if it is connected and, for every S⊆ [n]
with |S|� n/400, we have |NG(S)|� 3|S|.

In order to give bounds on the distribution of edges in Gn,d, we will use an edge-switching
technique first introduced by McKay and Wormald [29]. We consider the following switching.

Definition 4.2. Let G= (V , E) and G′ = (V , E′) be two multigraphs on the same vertex set such
that |E| = |E′|. We write G∼G′ if there exist u1u2, v1v2 ∈ E such that E′ = (E \ {u1u2, v1v2})∪
{u1v1, u2v2}.

https://doi.org/10.1017/S0963548320000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000346


24 P. Condon, A. Espuny Díaz, A. Girão, D. Kühn and D. Osthus

The following lemma bounds the probability that certain variables on configurations deviate
from their expectation.

Lemma 4.1. Let d= (d1, . . . , dn) be a degree sequence with di � log2 n for all i ∈ [n], and such that∑n
i=1 di is even. Let � :=maxi∈[n]{di}. Let c> 0 and let X be a random variable on C∗

n,d such that,
for every pair of configurations M ∼M′, we have |X(M)− X(M′)|� c. Then, for all ε > 0,

P[|X −E[X]|� εE[X]]� 2 exp
(

−ε2E[X]2

2�nc2

)
.

Proof. Let m :=∑n
i=1 di. Fix any labelling x1, . . . , xm of the expanded set of [n]. LetM ∼ C∗

n,d be
generated following this labelling. Let the partial configurations of M be M0, . . . ,Mm. For each
i ∈ [m]∪ {0}, let

Yi(M) :=E[X(M) |Mi]=E[X(M) |M0, . . . ,Mi].

It follows that the sequence Y0(M), Y1(M), . . . , Ym(M) is a Doob martingale, where Y0(M)=
E[X] and Ym(M)= X(M). We will now show that the differences of this martingale are bounded
by c.

For any i ∈ [m], ifMi =Mi−1, then Yi(M)= Yi−1(M) and there is nothing to prove, so assume
that Mi �=Mi−1, that is, when generating the ith partial configuration, the ith point does not lie
in any of the previous pairings. For each j ∈ [m] \ (V(Mi−1)∪ {i}), letMj be the set of configura-
tions which contain Mi−1 as well as ij. It is easy to see that, for each k ∈ [m] \ (V(Mi−1)∪ {i}),
there is a bijection gj,k between Mj and Mk so that gj,k(M′)∼M′ for all M′ ∈Mj. Fix j ∈
[m] \ (V(Mi−1)∪ {i}), let N := |Mj| and label the configurations in Mj as Mj,1, . . . ,Mj,N . For
all k ∈ [m] \ (V(Mi−1)∪ {i, j}), labelMk byMk,	 := gj,k(Mj,	) for each 	 ∈ [N]. By assumption, we
have |X(Mj,	)− X(Mk,	)|� c for all distinct j, k ∈ [m] \ (V(Mi−1)∪ {i}) and 	 ∈ [N]. Using this, it
is easy to conclude that |Yi(M)− Yi−1(M)|� c.

The statement now follows by Lemma 3.3.

The following proposition implies that the distribution of edges in Gn,d behaves roughly as
in a binomial random graph Gn,d/n, even after conditioning on the containment of some ‘sparse’
subgraph.

Proposition 4.2. For every 0< ε � 1/2 there exists δ > 0 such that the following holds. Let d�
log2 n be a positive integer and let G=Gn,d. Let R be a graph on vertex set [n] with �(R)< δd.
Moreover, let A⊆ [n] and, for each a ∈A, let Za ⊆ [n](2) \ E(R) be a collection of edges incident to a
such that z :=∑

a∈A |Za| satisfies z > εn2. Then

P

[∣∣∣∣∣
∑
a∈A

|Za ∩ E(G)| − zd
n

∣∣∣∣∣� ε
zd
n

| R⊆G

]
� e−(ε/10)4nd.

Proof. Let 0< δ � ε. For each i ∈ [n], let di := d − dR(i)> (1− δ)d, and let d := (d1, . . . , dn). Let
M ∼ C∗

n,d and let F = ϕ(M), so that F ∼ Cn,d and R+ F is a d-regular multigraph. By Lemma 3.6,
for each a ∈A, the random variable Ya ∼ Bin(da, (n− |Za|)/((1− δ)n− 2)) stochastically domi-
nates eF(a, [n] \ (V(Za) \ {a})). Let Z(F) :=∑

a∈A |Za ∩ E(F)|.
Note that E[Ya]< (1+ ε3)da(n− |Za|)/n for all a ∈A. It then follows that

E[|Za ∩ E(F)|]� da −E[Ya]� (1+ ε3)|Za|da/n− ε3da.

Therefore we have E[Z(F)]� (1− ε2)zd/n. Now, note that |Z(F)− Z(F′)|� 8 when F ∼ F′. Let
Z′ : C∗

n,d →Z be such that Z′(M)= Z(F) whenever ϕ(M)= F. It follows that |Z′(M)− Z′(M′)|� 8
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whenM ∼M′. Moreover, E[Z′(M)]=E[Z(F)]. Therefore we can apply Lemma 4.1 to obtain

P

[
Z′(M)� (1− ε)

zd
n

]
� 2e−ε4nd/512.

By definition, the same bound holds for Z(F). It now follows from Proposition 3.5 that

P

[
Z(F)� (1− ε)

zd
n

| R+ F is simple
]
� 2e3d

2
e−ε4nd/512. (4.1)

By a similar argument we can show that

P

[
Z(F)� (1+ ε)

zd
n

| R+ F is simple
]
� 2e3d

2
e−ε4nd/512. (4.2)

The result follows by combining (4.1) and (4.2).

Lemma 4.3. For every 0< δ < 10−5 there exists D ∈N such that, for any D< d� log2 n, we have
that a.a.s. the random graph Gn,d satisfies the following properties.

(i) For every S⊆ [n] with δ2d� |S|� 5δ2n, we have eGn,d (S)� δd|S|/25.
(ii) For every S⊆ [n] with 5δ2n� |S|� n/100, we have eGn,d (S)� d|S|/25.

Proof. Let 1/D� δ. For any D� d� log2 n, let G∼ Cn,d. For each S⊆ [n] such that δ2d� |S|�
5δ2n and any multigraph F on [n], let g(S, F) be the event that eF(S)� δd|S|/25. It follows by
Lemma 3.6 that the variable eG(S) is stochastically dominated by Y ∼ Bin(d|S|, 5|S|/(4n)). We let
P̂ denote the probabilitymeasure associated with the configurationmodel and letP be themeasure
associated with the space of (simple) d-regular graphs. Therefore, by Lemma 3.2 we have

P̂[g(S,G)]� P̂[eG(S)� δd|S|/25]= P̂[eG(S)� (4δn/(125|S|))5d|S|2/(4n)]< (|S|/en)2|S|.
To see this last inequality, note that((

125e|S|
4δn

)dδ/50 en
|S|

)2|S|
=
((

125e|S|
4δn

)dδ/50−1 125e|S|
4δn

en
|S|

)2|S|

�
(
125e2

4δ
(1000δe)δd/50−1

)2|S|

< 1.

It follows by Proposition 3.5 that

P

⎡
⎢⎢⎢⎣

∨
S⊆[n]

δ2d�|S|�5δ2n

g(S,Gn,d)

⎤
⎥⎥⎥⎦= P̂

⎡
⎢⎢⎢⎣

∨
S⊆[n]

δ2d�|S|�5δ2n

g(S,G) |G is simple

⎤
⎥⎥⎥⎦

� e3d
2 ∑

S⊆[n]
δ2d�|S|�5δ2n

P̂[g(S,G)]

� e3d
2

5δ2n∑
i=δ2d

(
n
i

)(
i
en

)2i

= o(1).
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Thus property (i) in the statement holds with probability 1− o(1). Similarly, we can show that
property (ii) also holds with probability 1− o(1).

Proposition 4.4. For every 0< δ < 10−5 there exists D ∈N such that, for any D< d� log2 n, we
have that a.a.s. the random graph G=Gn,d satisfies the following properties.

(i) Let R⊆G be a spanning subgraph with δ(R)> δd. Then, for every S⊆ [n] with |S|� δ2n, we
have |NR(S)|� 3|S|.

(ii) For every S, S′ ⊆ [n] with δ2n� |S|� |S′|� 3|S|� 3n/400, we have eG(S, S′)� d|S|/5.

Proof. Let 1/D� δ and condition on the statement of Lemma 4.3 holding, which occurs a.a.s. We
first prove (i). For each S⊆ [n] such that |S| < δ2d, the fact that every vertex has degree at least δd
ensures that |NR(S)|� δd > 3δ2d. Now let S⊆ [n] with δ2d� |S|� δ2n. Suppose |NR(S)| < 3|S|.
Let Y ⊆ [n] be such that |Y| = 3|S| and NR(S)⊆ Y . We have by Lemma 4.3(i) that

4|S|δd/25� eG(S∪ Y)� eR(S∪ Y)� eR(S, Y)� |S|δd − eG(S)> |S|δd/2,
a contradiction. The result follows.

In order to prove (ii), let S⊆ [n] with δ2n� |S|� n/400. Suppose there exists S′ ⊆ [n] with
|S|� |S′|� 3|S| and such that eG(S, S′)> d|S|/5. We have by Lemma 4.3 that

4|S|d/25� eG(S∪ S′)� eG(S, S′)> d|S|/5,
a contradiction. The result follows.

Proposition 4.5. For every 0< δ < 10−5 there exists D ∈N such that, for any D< d� log2 n, we
have that a.a.s. the random graph G=Gn,d has the following property. Let H ∈H1/2(G) and let
G′ :=G \H. Then there exists a spanning graph R⊆G′ such that �(R)< δd and, for every S⊆ [n]
with |S|� n/400, we have that |NR(S)|� 3|S|.

Proof. Let 1/D� δ and let δ̂ := δ/8. Condition on the event that the statements of Lemma 4.3 and
Proposition 4.4 hold with δ̂ playing the role of δ, which happens a.a.s. Suppose G satisfies these
events and H ∈H1/2(G), and let G′ :=G \H. We now construct a suitable R for this G′. Consider
a random subgraph R of G′ where each edge is chosen independently and uniformly at random
with probability 4δ̂. Consider the following events.

(G1) For all v ∈ [n], we have δ̂d < dR(v)< 8δ̂d.
(G2) For every S⊆ [n] with |S|� n/400, we have |NR(S)|� 3|S|.
Note that, if both (G1) and (G2) hold, then R is a subgraph which satisfies the properties in the
statement of the lemma.

For each v ∈ [n], letAv be the event that dR(v) /∈ (δ̂d, 8δ̂d). By Lemma 3.1, we have

P[Av]< 4e−δ̂d/6

for all v ∈ [n]. Observe that G′ is itself a dependency graph for {Av}v∈[n], and it has degree at most
d. By Lemma 3.4, it follows that

P[R satisfies (G1)]= P
⎡
⎣∧
v∈[n]

Av

⎤
⎦� (1− 12e−δ̂d/6)n � 2−n.

Next, for S, S′ ⊆ [n], let g(S, S′) be the event that NR(S)⊆ S′. Let (G3) be the event that, for no
pair of subsets S, S′ ⊆ [n] with S′ ⊆NG′(S) and δ̂2n� |S|� |S′|� 3|S|� 3n/400, the event g(S, S′)
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occurs. We have by Proposition 4.4(ii) and Lemma 4.3 that

eG′(S, [n] \ S′)� d|S|/2− eG′(S, S′)− eG′(S)� d|S|/2− d|S|/5− d|S|/25� d|S|/5.
Therefore we have

P[g(S, S′)]� (1− 4δ̂)d|S|/5 � e−4δ̂d|S|/5 � 2−4n.

A union bound implies that

P[R fails to satisfy (G3)]� 22n2−4n < 2−n.

Therefore there exists an instance of R which satisfies both (G1) and (G3) simultaneously.
Furthermore, since R satisfies (G1), it follows by Proposition 4.4(i) that, for every S⊆ [n] with
|S|� δ̂2n, we have that |NR(S)|� 3|S|. Combining this with (G3) we see that R also satisfies (G2).
Thus R is a subgraph of the desired form.

Proposition 4.6. For every ε > 0 there exists D> 0 such that, for any D< d� log2 n, we have that
a.a.s. the random graph G=Gn,d has the following property. Let H ∈H1/2−ε(G) and let G′ :=G \H.
Let R⊆G′ be a spanning graph such that, for every S⊆ [n]with |S|� n/400, we have |NR(S)|� 3|S|.
Then there exists a spanning 3-expander R′ ⊆G′ with e(R′)� e(R)+ 400.

Proof. Let 1/D� ε. We are first going to prove that a.a.s. G′ is connected. Note that a.a.s., for any
A, B⊆ [n] with |A| = n/400 and |B| = (1/2− ε/10)n, we have

∑
a∈A eG(a, B)> (1/2− ε/5)|A|d.

Indeed, this follows by an application of Proposition 4.2 with R :=∅ and Za being the star with
centre a whose leaves are all the vertices in B \ {a}. We now claim that, for any A⊆ [n] with
|A|� n/400, we have

|NG′(A)|� (1/2+ ε/10)n. (4.3)

To see this, note that if there exists A⊆ [n] with |A|� n/400 and |NG′(A)| < (1/2+ ε/10)n, then
we may take subsets A′ ⊆A with |A′| = n/400 and B⊆ [n] with |B| = (1/2− ε/10)n such that
eG′(A′, B)= 0. However, we have already noted that, for such A′ and B, we have∑

a∈A′
eG(a, B)� (1/2− ε/5)|A′|d.

It follows that there exists a ∈A′ with eG(a, B)> (1/2− ε/5)d and therefore eG′(a, B)> 0. Thus
no such A and B exist.

In particular, (4.3) implies that G′ is connected. Indeed, assume that G′ is not connected and
let A� [n] be a (connected) component of size |A|� n/2. We must have that |NG′(A)|� |A|, but
(4.3) and the statement hypotheses imply that |NG′(A)| > |A|, a contradiction.

Finally, note that R consists of at most 400 components, since each connected component has
order at least n/400. SinceG′ is connected, we may choose a set E⊆ E(G′) with |E|� 400 such that
the graph R′ := ([n], E(R)∪ E) is connected, and thus is a spanning 3-expander.

Lemma 4.7. For every ε > 0 and 0� δ � 10−5, there exists D> 0 such that, for any D< d� log2 n,
we have that a.a.s. the random graph G=Gn,d has the following property. Let H ∈H1/2−ε(G) and
let G′ :=G \H. Then there exists a spanning 3-expander R⊆G′ with �(R)< δd.

Proof. Let 1/D� δ, ε and condition on the statements of Propositions 4.5 and 4.6 both holding
with δ/2 playing the role of δ, which happens a.a.s. By Proposition 4.5 we may find a span-
ning subgraph R′ ⊆G′ with �(R′)< δd/2 and such that, for all S⊆ [n] with |S|� n/400, we
have |NR′(S)|� 3|S|. Then, by Proposition 4.6, we may find a spanning 3-expander R⊆G′ with
�(R)< �(R′)+ 400< δd.
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5. Finding many boosters
The following proposition provides an upper bound on the expected number of ‘thin’ subgraphs
that Gn,d contains.

Proposition 5.1. Let 1/n� 1/d, δ � 1, where n, d ∈N, and let G=Gn,d. Let R be a family of
graphs on vertex set [n] with e(R)� δdn for all R ∈R. Then∑

R∈R
P[R⊆G]� e2δdn log (1/δ).

Proof. For each R ∈R, let XR be an indicator random variable where XR(G)= 1 if and only if
R⊆G. LetXR :=∑

R∈R XR. ThenE[XR]=∑
R∈R P[R⊆G]. Moreover, note that we always have

XR �
δdn∑
i=1

(
dn/2
i

)
� e2δdn log (1/δ),

and therefore ∑
R∈R

P[R⊆G]=E[XR]� e2δdn log (1/δ),

as desired.

The following result can easily be proved using ‘Pósa rotations’ (see e.g. [24]).

Lemma 5.2. Let R be a 3-expander and let P be a longest path in R, with end-point v. Then there
exists a set A⊆V(P) with |A| > n/104 such that, for each a ∈A, there exists a path Pa in R with
end-points v and a, and such that V(Pa)=V(P).

Definition 5.1 (booster). Let H be a graph and let E⊆V(H)(2). Let F := (V(H), E). We call E a
booster for H if the graph H + F contains a longer path than H does, or if H + F is Hamiltonian.

We will often be interested in the case where E consists of a single edge e /∈ E(H). In this case
we refer to e as a booster for H.

Given any path P with end-points u and v, assume an orientation on its edges (from u to v, say).
Given any vertex x ∈V(P) \ {v}, we call the vertex that follows x in this orientation its successor,
and we denote this by sucP(x).

Lemma 5.3. For all 0< ε < 1/105 there exist δ,D> 0 such that, for D� d� log2 n, the random
graph G=Gn,d a.a.s. satisfies the following.

Let H ∈H1/2−ε(G) and let G′ :=G \H. Let R⊆G′ be a spanning 3-expander with �(R)� 2δd,
and let S⊆ [n] with |S|� δn. Then there exists a set VR ⊆ [n] with |VR|� n/104 with the following
property. For each v ∈VR, there exists a set Uv ⊆ [n] with |Uv|� (1/2+ ε/8)n such that, for each
u ∈Uv, there exists a set Ev,u as follows:

(a) Ev,u ⊆ E((G′ \ R)[[n] \ S]) with |Ev,u|� 50/(εδ),
(b) {uv, e} is a booster for R for every e ∈ Ev,u,
(c) Ev,u1 ∩ Ev,u2 =∅ for all u1 �= u2.

Proof. Let 1/D� δ � ε < 1/105. Let R be the set of all n-vertex 3-expander graphs R on [n]
with �(R)� 2δd. It follows by Lemma 5.2 that, for each R ∈R, there exists a set VR ⊆ [n] of size
|VR|� n/104 such that for every v ∈VR there exists a longest path in R terminating at v.
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For each R ∈R, v ∈VR and S⊆ [n] with |S|� δn, let f (R, S, v) be the event that, for every
H ∈H1/2−ε(G) such that R⊆G′, there exists a set of vertices Uv ⊆ [n] with |Uv|� (1/2+ ε/8)n
and such that for each u ∈Uv there exists a set Ev,u satisfying (a)–(c). With this definition, the
probability p∗ that the assertion in the lemma fails is bounded by

p∗ �
∑

S⊆[n] : |S|�δn

∑
R∈R

∑
v∈VR

P[f (R, S, v) | R⊆G] P[R⊆G]. (5.1)

For fixed R ∈R, v ∈VR and S⊆ [n] with |S|� δn, we shall now estimate P[f (R, S, v) | R⊆G].
Let P be a longest path in R with end-point v. As R is a 3-expander, by Lemma 5.2 there must
exist a set A⊆V(P) \ S of size |A| = εn/20 such that, for each a ∈A, there is a longest path Pa in
R starting at v and ending at a with V(Pa)=V(P) (if there is more than one such path, fix one
arbitrarily). Assume that each Pa is oriented from v to a. Let B := [n] \ (A∪ S∪ {v}). For each u ∈
B∩V(P), let Xu := {ab : a ∈A, b ∈ B, u= sucPa(b)}. Observe that {uv, ab} is a booster for R for any
ab ∈ Xu. Clearly |Xu|� |A| and Xu ∩ Xu′ =∅ for all distinct u, u′ ∈ B∩V(P). Furthermore, for
each u ∈ B \V(P), let Xu := {au : a ∈A}. Note that au ∈ Xu is a booster since its inclusion would
result in a longer path in R. We shall now show that, for most vertices u ∈ B, there is a ‘large’ set of
boosters, that is, Xu is ‘large’. We will then use this to show that many of these boosters must lie in
G′ \ R.

For every a ∈A, there are at least |V(P)| − 2|A| − 2|S| − 2 vertices b ∈V(P) such that neither
b nor its successor on Pa belong to A∪ S∪ {v}. It follows that∣∣∣∣∣∣

⋃
u∈B∩V(P)

Xu

∣∣∣∣∣∣� |A|(|V(P)| − 2|A| − 2|S| − 2).

We also have ∣∣∣∣∣∣
⋃

u∈B\V(P)
Xu

∣∣∣∣∣∣= |A|(n− |V(P)∪ S|).

Therefore the following holds:∣∣∣∣∣
⋃
u∈B

Xu

∣∣∣∣∣� |A|(|V(P)| − 2|A| − 2|S| − 2)+ |A|(n− |V(P)∪ S|)

� |A|(n− 2|A| − 3|S| − 2)
� (1− ε/9)|A|n.

For each u ∈ B, let Yu := Xu \ E(R). It follows that∣∣∣∣∣
⋃
u∈B

Yu

∣∣∣∣∣� (1− ε/9)|A|n− e(R)� (1− ε/8)|A|n.

For each a ∈A, let Za be the set of edges in
⋃

u∈B Yu with a as an end-point. It is easy to see that
∑
a∈A

|Za| =
∣∣∣∣∣
⋃
a∈A

Za

∣∣∣∣∣=
∣∣∣∣∣
⋃
u∈B

Yu

∣∣∣∣∣� (1− ε/8)|A|n.

Now consider the following events.

(F1) ∣∣∣∣∣
⋃
a∈A

(Za ∩ E(G))

∣∣∣∣∣� (1− ε/4)|A|d.
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(F2) For any U ⊆ B with |U|� (1/2+ ε/8)n we have∣∣∣∣∣
⋃
u∈U

Yu ∩ E(G)

∣∣∣∣∣< (1/2+ ε/4)|A|d.

From two applications of Proposition 4.2 we obtain

P[F1 ∧F2 | R⊆G]� 1− e−(ε/500)4dn.
To finish the proof we must show that if F1 ∧F2 holds, then f (R, S, v) also holds. Consider any
G ∈ Gn,d which satisfies both F1 and F2 and such that R⊆G. Fix any H ∈H1/2−ε(G) such that
R⊆G′ =G \H. For each u ∈ B, let Eu := Yu ∩ E(G′). As we have seen above, for each e ∈ Eu, the
set {uv, e} is a booster for R. Furthermore, none of the end-vertices of e lies in S, by construction.
Let U ⊆ B be the set of vertices u ∈ B for which |Eu|� 50/(εδ). Observe that, by F2, if∣∣∣∣∣

⋃
u∈U

Yu ∩ E(G)

∣∣∣∣∣� (1/2+ ε/4)|A|d,

then |U|� (1/2+ ε/8)n. But∣∣∣∣∣
⋃
u∈U

Yu ∩ E(G)

∣∣∣∣∣�
∣∣∣∣∣
⋃
u∈U

Eu

∣∣∣∣∣
=
∣∣∣∣∣
⋃
u∈B

Yu ∩ E(G)

∣∣∣∣∣−
∣∣∣∣∣
⋃
u∈B

Yu ∩ E(H)

∣∣∣∣∣−
∑

u∈B\U
|Eu|

�
∣∣∣∣∣
⋃
a∈A

Za ∩ E(G)

∣∣∣∣∣−
∣∣∣∣∣
⋃
a∈A

Za ∩ E(H)

∣∣∣∣∣− 50
εδ

|B \U|

(F1)
�
(
1− ε

4

)
|A|d −

∑
a∈A

(
1
2

− ε

)
dG(a)− 50

εδ
n

�
(
1− ε

4

)
|A|d −

(
1
2

− ε

)
|A|d − 103

|A|d
ε2dδ

�
(
1
2

+ ε

4

)
|A|d.

Hence, by F2 we have that |U|� (1/2+ ε/8)n, as we wanted to show. Since H was arbitrary, it
follows that f (R, S, v) holds. Thus

P[f (R, S, v) | R⊆G]� P[F1 ∧F2 | R⊆G]� 1− e−(ε/500)4dn.
We can now use this bound in equation (5.1) to obtain

p∗ � 2nne−(ε/500)4dn
∑
R∈R

P[R⊆G]� 2nne−(ε/500)4dne2δdn log (1/δ) = o(1),

where the second inequality follows from Proposition 5.1. This shows that the statement in the
lemma holds a.a.s.

Definition 5.2. Given graphs H and H′ with V(H)=V(H′)=V and E(H)∩ E(H′)=∅, we say
H has ε-many boosters with help from H′ if there are at least ε|V| vertices v ∈V for which there
exists a set Uv ⊆V \ {v} of size at least (1/2+ ε)|V| with the property that for every u ∈Uv there
exists e ∈ E(H′) so that {uv, e} is a booster for H. We call uv the primary edge and we call e the
secondary edge.
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Corollary 5.4. For all 0< ε < 1/105 there exist δ,D> 0 such that, for D� d� log2 n, the random
graph G=Gn,d a.a.s. satisfies the following.

Let H ∈H1/2−ε(G) and let G′ :=G \H. Let R⊆G′ be a spanning 3-expander with �(R)� 2δd,
and let S⊆ [n] with |S|� δn. Then there exists some subgraph F ⊆G′ \ R satisfying �(F)� 2δd,
such that R has ε/16-many boosters with help from F, with the property that the set of secondary
edges is vertex-disjoint from S.

Proof. Let 1/D� δ � ε < 1/105. Condition on the event that G satisfies all the properties in the
statement of Lemma 5.3, which happens a.a.s. LetH,G′, R, S be as in the statement of Corollary 5.4.
By Lemma 5.3, we may find a set VR ⊆ [n] of size |VR|� n/104 such that, for each v ∈VR, there
exists a set Uv ⊆ [n] with |Uv|� (1/2+ ε/8)n such that, for each u ∈Uv, there exists a set Ev,u ⊆
E((G′ \ R)[[n] \ S]) with |Ev,u|� 50/(εδ) and such that, for every e ∈ Ev,u, {uv, e} is a booster for R,
and such that Ev,u1 ∩ Ev,u2 =∅ for all u1 �= u2. Note that each such edge e is vertex-disjoint from
S, by construction.

Let F be a random subgraph of G′ \ R where every edge in G′ \ R is chosen independently at
random with probability δ/2. For each v ∈VR, let U ′

v ⊆Uv be the set of vertices u ∈Uv for which
Ev,u ∩ E(F) �=∅. For every u ∈Uv, we have

P[u /∈U ′
v]� (1− δ/2)50/(εδ) � e−25/ε � ε/32.

Let A be the event that |U ′
v|� (1/2+ ε/16)n for every v ∈VR. Since for different u ∈Uv the sets

Ev,u are disjoint, by Lemma 3.1 we have

P[|U ′
v|� (1/2+ ε/16)n]� P[|U ′

v|� (1− ε/16)|Uv|]� e−ε2n/106

for each v ∈VR. Therefore

P[A]� ne−ε2n/106 � e−ε3n.
Now, let B be the event that �(F)� 2δd. For each v ∈ [n], let Bv be the event that dF(v)> 2δd.

By Lemma 3.2, we have

P[Bv]< e−δd/8

for all v ∈ [n]. Now observe that G′ \ R is itself a dependency graph for {Bv}v∈[n], and every vertex
in this graph has degree at most d. It follows by Lemma 3.4 that

P[B]= P
⎡
⎣∧
v∈[n]

Bv

⎤
⎦� (1− e1−δd/8)n � e−ε4n > P[A].

Therefore the probability that both events A and B occur is strictly positive, implying that there
exists some F ⊆G′ \ R satisfying the required properties.

We have now shown that a.a.s. if the random graphGn,d contains a sparse 3-expander subgraph
R after deleting some H ∈H1/2−ε(Gn,d), then G′ =Gn,d \H must also have a sparse subgraph F
with the property that R has ‘many’ boosters with help from F. Our next goal is to prove that some
primary edge of these boosters must actually be present in G′.

Lemma 5.5. For all 0< ε < 1/105 there exist δ,D> 0 such that, for D� d� log2 n, the ran-
dom graph G=Gn,d satisfies the following a.a.s. Let S⊆ [n] with |S|� δn and let R, F ⊆G be two
spanning edge-disjoint subgraphs such that

(P1) �(R),�(F)� 2δd,
(P2) R has ε-many boosters with help from F, such that every secondary edge is vertex-disjoint

from S.
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Then, for any H ∈H1/2(G), the graph G′ :=G \H contains an edge e for which there exists some
edge e′ ∈ E(F) with the property that {e, e′} is a booster for R, and such that V({e, e′})∩ S=∅.

Proof. Let 1/D� δ � ε < 1/105. Let P be the set of all triples (R, F, S) where R and F are edge-
disjoint graphs on [n] which satisfy (P1) and (P2) and S⊆ [n] with |S|� δn.

Fix a triple (R, F, S) ∈P . For every x ∈ [n], let Vx be the set of vertices v ∈ [n] \ (S∪ {x}) for
which there exists some edge e ∈ E(F) such that none of the end-vertices of e lies in S and {xv, e} is
a booster for R. Let

X′ := {x ∈ [n] : |Vx|� (1/2+ 3ε/4)n}.
By assumption on the triple (R, F, S) and using Definition 5.2, we must have that |X′|� εn.

Let X := X′ \ S. Let f (R, F, S) be the event that∑
x∈X

eG\(R+F)(x,Vx)� (1+ ε)d|X|/2.

It follows by Proposition 4.2 that

P[f (R, F, S) | R+ F ⊆G]� e−(ε/30)4dn. (5.2)

It follows that the probability that (R+ F ⊆G)∧ f (R, F, S) for some triple (R, F, S) ∈P is at most∑
(R,F,S)∈P

P[f (R, F, S) | R+ F ⊆G] P[R+ F ⊆G]
(5.2)
� 2ne−(ε/30)4dn

∑
K⊆Kn

e(K)�2δdn

P[K ⊆G]

� 2ne−(ε/30)4dne4δdn log 1/(2δ)

� e−(ε/50)4dn,
where the second inequality follows by Proposition 5.1.

We conclude that a.a.s. for all (R, F, S) ∈P with R+ F ⊆G we have∑
x∈X

(
eG\(R+F)(x,Vx)− 1

2
dG(x)

)
� (1+ ε)

d|X|
2

− d|X|
2

> 0.

Hence there must exist some x ∈ X with eG\(R+F)(x,Vx)> d/2. Therefore, for any H ∈H1/2(G),
there is some vertex x ∈ X such that eG′(x,Vx)� eG(x,Vx)− dH(x)> 0. That is, there must be
some v ∈NG′(x)∩Vx. By the definition of Vx, there is some e ∈ E(F) such that {xv, e} is a booster
for R. Furthermore, by construction, we have V({xv, e})∩ S=∅, and this completes the proof of
the lemma.

Armed with the previous lemmas, we are now in a position to complete the proof of
Theorem 1.2.

Proof of Theorem 1.2. Let 1/D� δ � ε < 1/105 be such that Corollary 5.4 holds for ε,
Lemma 5.5 holds for ε/16 and Lemma 4.7 holds for ε. Condition on each of these holding.

Let H ∈H1/2−ε(G) and let G′ :=G \H. By Lemma 4.7, there exists a subgraph R⊆G′ which is
a spanning 3-expander with �(R)� δd.

LetR0 := R.We now proceed recursively as follows: for each i ∈ [n], choose ei,1, ei,2 ∈ E(G′) such
that {ei,1, ei,2} is a booster for Ri−1, and let Ri := Ri−1 + ei,1 + ei,2. In order to show that there exist
such ei,1, ei,2 for all i ∈ [n], consider the following. Assume that Ri−1 satisfies �(Ri−1)� 2δd. Let
Si ⊆ [n] be the set of vertices v ∈ [n] with dRi−1 (v)� 2δd − 1. For all i ∈ [n] we have |Si|� 2e(Ri−1 \
R0)/(δd − 1)� 4n/(δd − 1)< δn. By applying Corollary 5.4 with Si, Ri−1 playing the roles of S
and R, respectively, there exists some subgraph Fi ⊆G′ \ Ri−1 such that Ri−1 has (ε/16)-many
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boosters with help from Fi, where each secondary edge is vertex-disjoint from Si. Furthermore,
we have �(Fi)� 2δd. Therefore, by applying Lemma 5.5, there are some ei,1, ei,2 ∈ E(G′) such that
{ei,1, ei,2} is a booster for Ri−1 and where V({ei,1, ei,2})∩ Si =∅. It follows that �(Ri)� 2δd.

By the end of this process, we have added n boosters to R to obtain Rn ⊆G′. Therefore Rn, and
hence G′, is Hamiltonian.

6. Graphs of small degree with low resilience
In this section we prove Theorem 1.3. For this, we will require a crude bound on the number of
edges spanned by any set of n/2 vertices inGn,d. To achieve this, we shall make use of the following
result, which follows from a theorem of McKay [28] (see e.g. [38]). We let α(G) denote the size of
a maximum independent set in G.

Theorem 6.1. For every fixed d� 3, a.a.s. we have that α(Gn,d)� 0.46n.

Lemma 6.1. For every fixed d� 3, a.a.s. we have that eGn,d (A)> n/100 for all A⊆ [n] with |A| =
�n/2�.

Proof. By Theorem 6.1, every set of size n/2 must span at least n/100 edges, as otherwise it would
contain an independent set of size n/2− n/50> 0.46n.

Alternatively, this lemma can be proved directly using a switching argument.
In order to prove Theorem 1.3 we will use a switching argument. Given a graph G ∈ Gn,d and

any integer 	 ∈ [d], let u ∈ [n] and let 
+
u,	 = (e1, . . . , e	, f1, . . . , f	) be an ordered set of 2	 edges

from E(G) such that ei = uvi with vi �= vj for all i �= j, and {fi : i ∈ [	]} is a set of independent edges
such that, for each i ∈ [	], the distance between fi and ei is at least 2. We call
+

u,	 a (u, 	)-switching
configuration. For each i ∈ [	], choose an orientation of fi and write fi = xiyi, where fi is oriented
from xi to yi. Let

λ+
u,	 := {e1, . . . , e	, f1, . . . , f	},


−
u,	 := (uy1, . . . , uy	, x1v1, . . . , x	v	),

λ−
u,	 := {uy1, . . . , uy	, x1v1, . . . , x	v	}.

We say that the graph

G′ := ([n], (E(G) \ λ+
u,	)∪ λ−

u,	) ∈ Gn,d
is obtained from G by a u-switching of type 	. Observe that, given such a setting, we also have that
G is obtained from G′ by a u-switching of type 	, interchanging the roles of 
+

u,	 and 
−
u,	.

Proof of Theorem 1.3. Fix any odd d > 2. Let Ĝn,d ⊆ Gn,d be the collection of graphs for which
the statement of Lemma 6.1 holds. We have by Lemma 6.1 that |Ĝn,d| = (1− o(1))|Gn,d|. Let
G′
n,d ⊆ Ĝn,d be the collection of all graphs G ∈ Ĝn,d which are not (d − 1)/2-resilient with respect

to Hamiltonicity. Let p := |G′
n,d|/|Ĝn,d|. We will prove that p is bounded from below by a positive

constant which does not depend on n.
For eachG ∈ Ĝn,d, consider a maximum cutM with partsAM and BM , where |AM|� |BM| (thus

M = EG(AM , BM)). By abusing notation, we also useM to denote the bipartite graph G[AM , BM].
Note that for all x ∈AM we have dM(x)> d/2, as otherwise we could move x from AG to BG to
obtain a larger cut; similarly, dM(y)> d/2 for all y ∈ BM .
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Given G ∈ Ĝn,d, suppose there exists a maximum cutM for G such that |AM| < |BM|. Let
H := ([n], EG(AM)∪ EG(BM)).

It is then clear that M =G \H is not Hamiltonian, as it is an unbalanced bipartite graph.
Furthermore, we have that�(H)� (d − 1)/2, so we conclude thatG is not (d − 1)/2-resilient with
respect to Hamiltonicity and thus G ∈ G′

n,d. (Below we will use that the same conclusion holds if
there is any cut M of G such that |AM| < |BM|, dM(x)> d/2 for all x ∈AM , and dM(y)> d/2 for
all y ∈ BM .) Therefore, for every G ∈ Ĝn,d \ G′

n,d, we have that |AM| = |BM| for every maximum cut
M of G.

For each G ∈ Ĝn,d \ G′
n,d, fix a maximum cut MG of G which partitions [n] into AG and BG.

Then, for each x ∈AG, there exists k ∈ [
d/2�] such that dMG(x)= �d/2� + k. Let 	 ∈ [
d/2�] be
such that there exist at least (1− p)|Ĝn,d|/d graphs G ∈ Ĝn,d \ G′

n,d with the property that there are
at least n/(2d) vertices x ∈AG with dMG(x)= �d/2� + 	. LetD := �d/2� + 	. Denote the collection
of all such graphs G by �.

For eachG ∈ � and for each x ∈AG such that dMG(x)=D, we consider all possible x-switchings
of type D where the (x,D)-switching configuration 
+

x,D = (e1, . . . , eD, f1, . . . , fD) satisfies that
{e1, . . . , eD} = EMG(x, BG) and {f1, . . . , fD} ⊆ EG(AG). We say that any G′ ∈ Gn,d that can be
obtained from G by such an x-switching of type D is obtained by an out-switching from G, and
we call 
+

x,D an out-switching configuration. Let �′ denote the set of all graphs G′ ∈ Gn,d that
can be obtained by out-switchings from some graph G ∈ �. In particular, note that for each G′
obtained from G by an out-switching, we may define A′ :=AG \ {x} and B′ := [n] \A′, so that
|A′| < |B′|, eG′(u, B′)> d/2 for all u ∈A′, and eG′(v,A′)> d/2 for all v ∈ B′, which means, as
observed previously, that G′ is not (d − 1)/2-resilient with respect to Hamiltonicity. Therefore
�′ ⊆ (Gn,d \ Ĝn,d)∪ G′

n,d and � ∩ �′ =∅.
To show that �′ is large, we consider an auxiliary bipartite graph � with parts � and �′. We

place an edge between G ∈ � and G′ ∈ �′ if G′ is obtained from G by an out-switching. First let
G ∈ �. We will now provide a lower bound on the number of out-switchings fromG. SinceG ∈ �,
by construction there are at least n/(2d) vertices x ∈AG such that dMG(x)=D. For each such
x, the number of out-switching configurations is given by the different choices for the edges in
(e1, . . . , eD, f1, . . . , fD), chosen sequentially. There are D! choices for (e1, . . . , eD). For all i ∈ [D],
as each of the fi has to be independent from the previously chosen edges, at distance at least 2
from ei, and spanned by AG, by Lemma 6.1 we conclude that the number of choices for fi is at
least n/100− 4d2 Finally, once the out-switching configuration is given, there are 2D possible
switchings, one for each possible orientation of the set of edges {fi : i ∈ [D]}; on the other hand, D!
different out-switching configurations result in the same outcome G′. We conclude that

d�(G)�
n
2d

2D
( n
100

− 4d2
)D

. (6.1)

Now consider any G′ ∈ �′. It is easy to see that

d�(G′)� n2D
(
d
D

)(
nd
2

)D
. (6.2)

Therefore, by double-counting the edges in �, from (6.1) and (6.2), we have

|�|� 2d
(
d
D

)(
101d
2

)D
|�′|.

It follows that there exists a constant p which does not depend on n, for which a p fraction of the
graphs in Ĝn,d are not (d − 1)/2-resilient with respect to Hamiltonicity. The result follows.
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