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We present the formal geometric derivation of a non-equilibrium growth model that takes the

form of a parabolic partial differential equation. Subsequently, we study its stationary radial

solutions by means of variational techniques. Our results depend on the size of a parameter

that plays the role of the strength of forcing. For small forcing we prove the existence and

multiplicity of solutions to the elliptic problem. We discuss our results in the context of

non-equilibrium statistical mechanics.
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1 Introduction

Epitaxial growth is characterized by the deposition of new material on existing layers of

the same material under high vacuum conditions. This technique is used in the semicon-

ductor industry for the growth of thin films [5]. The crystals grown may be composed of

a pure chemical element like silicon or germanium, or may either be an alloy like gallium

arsenide or indium phosphide. In case of molecular beam epitaxy the deposition takes

place at a very slow rate and almost atom by atom. The goal in most situations of thin film

growth is growing an ordered crystal structure with flat surface. But in epitaxial growth

it is quite usual finding a mounded structure generated along the surface evolution [19].

The actual origin of this mounded structure is to a large extent unknown, although some

mechanisms (like energy barriers) have already been proposed. Attempting to perform

ab initio quantum mechanical calculations in this system is computationally too demand-

ing, which opens the way to the introduction of simplified models. These have been

usually developed within the realm of non-equilibrium statistical mechanics, and can be

of a discrete probabilistic nature or have the form of a differential equation [5]. Discrete
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models usually represent adatoms (the atoms deposited on the surfaces) as occupying

lattice sites. They are placed randomly at one such site and then are allowed to move

according to some rules that characterize different models. A different modelling possib-

ility is using partial differential equations, which in this field are frequently provided with

stochastic forcing terms. In this work we will focus on rigorous and numerical analyses

of ordinary differential equations related to models which have been introduced in the

context of epitaxial growth. We hope that a systematic mathematical study will contribute

to the understanding of this sort of processes, which are relevant both in pure physics

and its industrial applications in the long term.

The mathematical description of epitaxial growth uses the function

u : Ω ⊂ �2 × �+ → �, (1.1)

which describes the height of the growing interface in the spatial point x ∈ Ω ⊂ �2

at time t ∈ �+. Although this theoretical framework can be extended to any spatial

dimension N, we will concentrate here on the physical situation, N = 2. A basic modelling

assumption is of course that u is a univalued function, a fact that holds in a reasonably

large number of cases [5]. The macroscopic description of the growing interface is given by

a partial differential equation for u, which is usually postulated using phenomenological

and symmetry arguments [5, 20]. A prominent example of such a theory is given by the

Kardar–Parisi–Zhang equation [17]:

ut = νΔu+ γ|∇u|2 + η(x, t), (1.2)

which has been extensively studied in the physical literature and it is currently being

investigated for its interesting mathematical properties [1, 2]. It has been argued however

that epitaxial growth processes should be described by some equations coming from a

conservation law and, in particular, that the term |∇u|2 should not be present in such

an equation [5]. To this end, among others, the conservative counterpart of the Kardar–

Parisi–Zhang equation was introduced [18, 21, 22]:

ut = −μΔ2u+ κΔ|∇u|2 + ζ(x, t). (1.3)

This equation is conservative in the sense that the first moment
∫
Ω
u dx is constant if

the appropriate boundary conditions are used. It can be considered as a higher order

counterpart of the Kardar–Parisi–Zhang equation, and it poses as well a number of

fundamental mathematical questions [6–8].

In this work, we will focus on a variation of the last equation. Its formal derivation

will be presented in the following section. The remainder of this work will be devoted

to clarify the analytical properties of the radial stationary solutions to the model under

consideration.

2 Formal derivation of the model

Herein, we will adopt a variational formulation of the surface growth equation, which

has been postulated as a simple and yet physically relevant way of developing growth

models [20]. In order to proceed with our formal derivation, we will assume that the
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height function obeys a gradient flow equation with a forcing term

ut =
√

1 + (∇u)2
[

−δJ(u)

δu
+ ξ(x, t)

]
. (2.1)

The functional J denotes a potential that describes the microscopic properties of the

interface and, at the macroscopic scale, it is assumed that it can be expressed as a function

of the surface mean curvature only [20]

J(u) =

∫
Ω

F(H)
√

1 + (∇u)2 dx, (2.2)

where the presence of the square root terms models growth along the normal to the

surface, H denotes the mean curvature and F is an unknown function of H . We will

furthermore assume that this function can be expanded in a power series

F(H) = K0 +K1H +
K2

2
H2 +

K3

6
H3 + · · · , (2.3)

and subsequently formally apply the small gradient expansion, which assumes |∇u| � 1.

This is a classical approximation in this physical context [20] and it is basic in the

derivation of the Kardar–Parisi–Zhang equation [17] among others. In the resulting

equation, only linear and quadratic terms in the field u and its derivatives are retained, as

higher order non-linearities are assumed not to be relevant in the large-scale description

of a growing interface [5]. The final result reads

ut = K0 Δu+ 2K1 det(D2u) −K2 Δ2u− 1

2
K3 Δ (Δu)2 + ξ(x, t), (2.4)

which is, as well as (1.3), a conservative equation in the sense that
∫
Ω
u dx is constant if

appropriate boundary conditions are used. We note that powers of the mean curvature

higher than the cubic one in expansion (2.3) do not contribute to equation (2.4) as

they imply cubic or higher non-linearities of the field u or its derivatives. The terms

in equation (2.4) have a clear geometrical meaning. The term proportional to K0 is

the result of the minimization of the zeroth order of the mean curvature, that is, it

corresponds to the minimization of the surface area. Its functional form simply reduces

to standard diffusion. The term proportional to K1 comes from the minimization of the

mean curvature and actually it is the determinant of the Hessian matrix, which is nothing

but the small gradient approximation of the surface Gaussian curvature. So we see that,

through the small gradient approximation, a gradient flow pursuing the minimization of the

mean curvature leads to an evolution that favours the growth of the Gaussian curvature. The

term proportional to K2 comes from the minimization of the squared mean curvature. A

functional involving the squared mean curvature is known as Willmore functional and it

has its own status within differential geometry [23]. The bilaplacian accompanying K2 is

the corresponding linearized Euler–Lagrange equation of the Willmore functional when

looking for flat minimizers, and it has already appeared in the context of mathematical

elasticity [16]. Finally, the term proportional to K3 comes from the minimization of the

cubic power of the mean curvature and it involves a non-linear combination of Laplacians
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of the field. We note that from a more puristic geometrical viewpoint, one would retain only

even powers of the mean curvature in expansion (2.3), which would give rise to a symmetric

solution to the corresponding simplification of equation (2.4) (i.e. a solution invariant to the

transformation u → −u). However, from a physical viewpoint, we are seeking for a solution

to a partial differential equation which represents the interface between two different media

(solid structure and vacuum in the present case) so this symmetry is not guaranteed a

priori, and we need to retain the odd powers of the mean curvature in expansion (2.3).

For our current purposes, we will focus on the associated stationary problem to a

simplification of equation (2.4). Such an equation can be obtained employing well-known

facts from the theory of non-equilibrium surface growth. We may invoke classical scaling

arguments in the physical literature to disregard the last term as a higher order correction

which will not be present in the description of the largest scale properties of the evolving

surface [5]. This practically reduces to setting K3 = 0 in equation (2.4). In epitaxial growth,

one may phenomenologically set K0 = 0, and we will assume so for the rest of this work.

The underlying physical reason is that the diffusion proportional to K0 is triggered by the

effect of gravity on adatoms, and this effect is negligible in the case of epitaxial growth [5].

The resulting equation reads

ut = 2K1 det(D2u) −K2 Δ2u+ ξ(x, t). (2.5)

This partial differential equation can be thought of as being an analogue of equation (1.3).

Indeed, it has been shown that this equation might constitute a suitable description of

epitaxial growth in the same sense as equation (1.3), and it even shows more intuitive

geometric properties [11]. So, at the physical level, we can consider equation (2.5) as

a higher order conservative counterpart of the Kardar–Parisi–Zhang equation. At the

mathematical level, we can consider it as a sort of Gaussian curvature flow [4,9] which is

stabilized by means of a higher order viscosity term. Furthermore, this viscosity term, as

we have seen, has a clear geometrical meaning. As we explain above, in this work we are

concerned with the stationary version of (2.5), which reads{
Δ2u= det

(
D2u

)
+ λf, x ∈ Ω ⊂ �2,

boundary conditions,
(2.6)

after getting rid of the equation constant parameters by means of a trivial re-scaling

of field and coordinates. Our last assumption is that the forcing term f = f(x) is time

independent. This type of forcing is known in the physical literature as columnar disorder,

and it has an actual experimental meaning within the context of non-equilibrium statistical

mechanics [14]. The constant λ is a measure of the intensity of the rate at which new

particles are deposited, and for physical reasons we assume λ � 0 and f(x) � 0. We will

devote our efforts to rigorously and numerically clarify the existence and multiplicity of

solutions to this elliptic problem when set on a radially symmetric domain.

3 Radial problems

3.1 Dirichlet boundary conditions

We start looking for radially symmetric solutions of boundary-value problem (2.6) with

f = f(r), where r is the radial coordinate, and homogeneous Dirichlet boundary conditions.
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We set the problem on the unit disc. That is, we look for solutions of the form u = ũ(r),

where

r =

√
x2

1 + x2
2.

By means of a direct substitution, we find

1

r

{
r

[
1

r

(
rũ′)′

]′}′

=
1

r
ũ′ũ′′ + λf(r), (3.1)

where ′ = d/dr, and the conditions ũ′(0) = 0, ũ(1) = 0, ũ′(1) = 0, and limr→0 ru
′′′(r) = 0;

the first condition imposes the existence of an extremum at the origin and the second

and third conditions are the actual boundary conditions. The fourth boundary condition

is technical and imposes higher regularity at the origin. If this condition were removed,

this would open the possibility of constructing functions u(r) whose second derivative had

a peak at the origin. This would in turn imply the presence of a measure at the origin

when calculating the fourth derivative of such an u(r), so this type of function cannot be

considered as an acceptable solution of (3.1) whenever f(r) is a function. Throughout this

section, we will assume f ∈ L1([0, 1], r dr), that is f is an absolutely integrable function

against measure r dr on the unit interval, and we drop the tilde on ũ in order to simplify

the notation.

Now we proceed to prove the existence of at least two solutions to this boundary-value

problem. From now on, we will employ the functional space W̊ 2,2([0, 1], r dr), which is the

closure of the space of radially symmetric smooth functions compactly supported inside

the unit ball of �2 with the norm of W 2,2([0, 1], r dr). We will look for solutions to our

problem within this functional space.

Lemma 3.1 Differential equation (3.1) subjected to Dirichlet boundary conditions is the

Euler–Lagrange equation of functional

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Jλ : W̊ 2,2([0, 1], r dr) → �

u → Jλ (u) =
1

2

∫ 1

0

[(
u′′)2

+

(
u′)2

r2

]
r dr

+
1

6

∫ 1

0

(
u′)3

dr − λ

∫ 1

0

f u r dr.

(3.2)

Proof We consider Euler first variation of functional (3.2):

d

dt
Jλ(u+ tφ)

∣∣∣∣
t=0

= (3.3)

=

∫ 1

0

[
u′′φ′′ +

u′φ′

r2

]
r dr +

1

2

∫ 1

0

(
u′)2

φ′dr − λ

∫ 1

0

f φ r dr

=

∫ 1

0

(
1

r

{
r

[
1

r

(
r u′)′

]′}′

− 1

r
u′ u′′ − λf

)
φ r dr,

where the last equality is obtained by means of integration by parts and application
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of the boundary conditions, and φ belongs to W̊ 2,2([0, 1], r dr) but it is otherwise

arbitrary. �

The existence and multiplicity of solutions to our boundary-value problem will be ob-

tained by searching critical points of functional (3.2). We start proving a result concerning

the geometry of this functional.

Lemma 3.2 Functional (3.2) admits the following radial (in the Sobolev space) lower

bound:

Jλ(u) � g(||u′′||L2(μ)), where g(x) =
1

2
x2 − C1 x

3 − C2 λ ||f||L1(μ) x, (3.4)

C1, C2 > 0 and μ stands for the radial two-dimensional measure.

Proof We have the following chain of inequalities:

Jλ (u) �
1

2

∫ 1

0

(
u′′)2

r dr +
1

2

∫ 1

0

(
u′)2

dr +
1

6

∫ 1

0

(
u′)3

dr − λ ||f||L1(μ) ||u||L∞(μ)

�
1

2

∫ 1

0

(
u′′)2

r dr +
1

2

∫ 1

0

(
u′)2

dr +
1

6

∫ 1

0

(
u′)3

dr − C λ ||f||L1(μ)

[∫ 1

0

(
u′)2

dr

]1/2

�
1

2

∫ 1

0

(
u′′)2

r dr − C1

[∫ 1

0

(
u′′)2

r dr

]3/2

− C2 λ ||f||L1(μ)

[∫ 1

0

(
u′′)2

r dr

]1/2

=
1

2
||u′′||2L2(μ) − C1 ||u′′||3L2(μ) − C2 λ ||f||L1(μ) ||u′′||L2(μ), (3.5)

where we have used that r ∈ [0, 1] together with Hölder inequality in the first inequality,

a one-dimensional Sobolev embedding together with the fact that ||u||L∞(μ) � ||u||L∞([0,1])

in the second inequality, while in the third inequality we have disregarded a non-negative

quantity, we have employed two-dimensional Sobolev embeddings and the auxiliary

inequalities

∫ 1

0

(
u′)2

dr�

(∫ 1

0

(u′)6 r dr

)1/3 (∫ 1

0

dr√
r

)2/3

,

∫ 1

0

(
u′)3

dr�

(∫ 1

0

|u′|9 r dr
)1/3 (∫ 1

0

dr√
r

)2/3

,

resulting from the application of Hölder inequality. �

It is clear that for 0 < λ < λc small enough, the function g(x) has a negative local min-

imum and a positive local maximum. It is also clear that there exist ϕ,ψ ∈ W̊ 2,2([0, 1], r dr)

such that the following properties are fulfilled:

(a)

∫ 1

0

f ϕ r dr > 0,
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(b)

∫ 1

0

(ψ′)3 dr < 0.

Therefore, we find Jλ(s ϕ) < 0 for s small enough and Jλ(s ψ) < 0 for s large enough.

Consequently, the geometric requirements of the mountain pass theorem are fulfilled [3].

Now we move on to prove the compactness requirements. We start verifying a local

Palais–Smale condition for our functional Jλ.

Definition 3.1 We say {un}n∈� ⊂ W̊ 2,2([0, 1], r dr) is a Palais–Smale sequence for Jλ at the

level L if the following two properties are fulfilled:

(1) Jλ(un) → L when n → ∞,

(2) J ′
λ(un) → 0 in {W̊ 2,2([0, 1], r dr)}∗.

Now we prove the following compactness result for Jλ:

Proposition 3.1 Every bounded Palais–Smale sequence for Jλ at the level L admits a strongly

convergent subsequence in W̊ 2,2([0, 1], r dr).

Proof Since {un}n∈� ⊂ W̊ 2,2([0, 1], r dr) is bounded we find that, up to passing to a

subsequence, the following properties hold:

I. un ⇀ u weakly in W̊ 2,2([0, 1], r dr),

II. u′
n → u′ strongly in Lp([0, 1], r dr) for every 1 � p < ∞,

III. un → u uniformly in [0, 1].

We write the convergence condition J ′
λ(un) → 0 in {W̊ 2,2([0, 1], r dr)}∗ as follows:

1

r

{
r

[
1

r

(
ru′
n

)′
]′}′

=
1

r
u′
nu

′′
n + λf + wn,

un ∈ W̊ 2,2([0, 1], r dr), wn → 0 in {W̊ 2,2([0, 1], r dr)}∗,

where the wn’s are the error terms. Now we multiply this equation by un − u and integrate

over the unit interval with the appropriate measure to get

∫ 1

0

[
u′′
n(u

′′
n − u′′) +

u′
n(u

′
n − u′)

r2

]
r dr =

=

∫ 1

0

u′
nu

′′
n(un − u) dr + λ

∫ 1

0

f(un − u)r dr + 〈wn, un − u〉, (3.6)

after integration by parts on the first line. The three summands on the second line

converge to zero in the limit n → ∞ by the above listed properties I (the third summand)
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and III (the first and second summands). On the other hand, we have

∫ 1

0

[
(u′′
n − u′′)

u′
n

r
− (u′′

n − u′′)

(
u′′ +

u′

r

)
− u′

n − u′

r

(
u′′ +

u′

r

)
+
u′
n − u′

r
u′′
n

]
r dr → 0 (3.7)

as n → ∞ due to convergence property I and the facts

∫ 1

0

u′′
nu

′
n dr =

1

2
(u′
n)

2
∣∣1
0

= 0,

∫ 1

0

u′′u′ dr =
1

2
(u′)2

∣∣1
0

= 0,

due to the boundary conditions. Now, if we sum expression (3.7) to the first line of (3.6),

we obtain ∫ 1

0

|Δ(un − u)|2 r dr → 0 as n → ∞, (3.8)

where Δ = ∂rr + r−1∂r is the radial Laplacian, and thus the desired conclusion. �

Before moving to the main result of this section, we need one last technical lemma. We

introduce the cut-off function Υ which is assumed to be non-increasing, smooth and given

by Υ (t) = 1 if t � � and Υ (t) = 0 if t � �∗ for two given real numbers �∗ > � > 0.

Lemma 3.3 The functional defined as

J0
λ (u) =

1

2

∫ 1

0

[(
u′′)2

+

(
u′)2

r2

]
r dr +

1

6

∫ 1

0

(
u′)3

Υ
(
||Δu||2

)
dr − λ

∫ 1

0

f u r dr, (3.9)

fulfils the following properties for suitable values of �, �∗ and λ:

i. If ||Δu||2 < � then J0
λ = Jλ.

ii. If J0
λ < 0 then ||Δu||2 < �.

iii. If m = infu∈W̊ 2,2([0,1],r dr) J
0
λ (u) then Jλ verifies a local Palais–Smale condition at the

level m.

Proof Property i is obvious. For λc > 0 small enough, the lower radial bound g of Jλ
attains a maximum at a positive level of ‘energy’ for 0 < λ < λc. We denote as x0 the

smaller root of g(x) and as xm the location of the maximum. Now we choose � = x0 and

�∗ = xm. Functional J0
λ admits the following radial lower bound:

J0
λ (u) � h(||u′′||L2(μ)), where h(x) =

1

2
x2 − C1 x

3 Υ (x) − C2 λ ||f||L1(μ) x,

where C1 and C2 are the same constants as in Lemma 3.2. So this functional is bounded

from below and positive for x > x0. Thus, property ii is fulfilled.

Property iii follows from the fact that all Palais–Smale sequences of minimizers of this

functional are bounded since m < 0 together with an application of Proposition 3.1. �

Now we state the main result of this section.
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Theorem 3.1 There exists a positive real number λc such that for 0 < λ < λc Dirichlet

problem (3.1) has at least two solutions.

Proof The functional Jλ is well defined in W̊ 2,2([0, 1], r dr) as the Sobolev inequalities

immediately reveal. One of the key points of our proof is the application of Ekeland’s

version of the mountain pass theorem. Our functional fulfils the regularity required to this

end, that is, continuity, Gateaux differentiability and weak−∗ continuity of its derivative.

We will prove the existence of two solutions to our boundary-value problem by finding

two critical points of functional Jλ, one of them is a negative local minimum and another

is a positive mountain pass critical point.

We start proving the existence of the local minimum at a negative level of ‘energy’. Our

proof will be based on the arguments in [13] for solving problems with concave–convex

semi-linear non-linearities. For λc > 0 small enough, the lower radial estimate g attains a

maximum at a positive level of ‘energy’ for 0 < λ < λc. In the proof of Lemma 3.3, we have

shown that functional J0
λ is bounded from below and positive for x > x0. Accordingly, m

is a negative critical value of J0
λ , and thus of Jλ, from where we conclude the existence of

a local minimum.

Next, we move to prove the existence of a positive mountain pass critical point. We have

already proved the existence of a negative local minimum, which will be denoted as u(0)

from now on. We know Jλ(u
(0)) < 0 and we know that there exists u(2) with

∣∣∣∣[u(2)]′′∣∣∣∣
L2(μ)

large enough such that Jλ(u
(2)) < Jλ(u

(0)). We introduce the set of paths in the Banach

space

Θ = {θ ∈ C([0, 1], W̊ 2,2([0, 1], r dr))| θ(0) = u(0), θ(1) = u(2)}.

We introduce as well the value

℘ = inf
θ∈Θ

max
s∈[0,1]

Jλ[θ(s)],

and apply Ekeland’s variational principle [10] to prove the existence of a Palais–Smale

sequence at it. This means there exists a sequence {un}n∈� ⊂ W̊ 2,2([0, 1], r dr), such that

Jλ(un) → ℘ as n → ∞ and J ′
λ(un) → 0 in {W̊ 2,2([0, 1], r dr)}∗.

We must now prove that this Palais–Smale sequence is bounded. For u ∈ W̊ 2,2([0, 1], r dr),

the following equality holds:

−
∫ 1

0

u′ u′′ u dr = − 1

2
(u′)2 u

∣∣∣∣
1

0

+
1

2

∫ 1

0

(u′)3 dr =
1

2

∫ 1

0

(u′)3 dr.

We select {un}n∈� ⊂ W̊ 2,2([0, 1], r dr) Palais–Smale sequence for Jλ at level ℘ and denote

〈zn, un〉 = 〈J ′
λ(un), un〉 to find

℘+ o(1) = Jλ(un) − 1

3
〈J ′
λ(un), un〉 +

1

3
〈zn, un〉

�
1

6

∫ 1

0

[
(u′′
n)

2 +
(u′
n)

2

r2

]
r dr − 2

3
C2 λ ||f||L1(μ) ||u′′

n ||L2(μ) +
1

3
〈zn, un〉

�C ||u′′
n ||L2(μ),
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for a suitable positive constant C , large enough n and small enough λ. In consequence,

the sequence is bounded in W̊ 2,2([0, 1], r dr).

We know, by Proposition 3.1, that Jλ satisfy a local Palais–Smale condition at the level

℘, so we have Jλ(u
(1)) = limn→∞ Jλ(un) = ℘ > 0. Also, u(1) is a mountain pass critical point,

and in consequence J ′
λ(u

(1)) = 0, so our differential equation is fulfilled in W̊ 2,2([0, 1], r dr).

�

3.2 Navier boundary conditions

In this section, we consider again problem (3.1) on the unit interval but this time subjected

to Navier boundary conditions. In the radial setting, these conditions translate to u(1) = 0

and u′′(1) + u′(1) = 0, and we also assume the extremum condition u′(0) = 0 at the origin

for symmetry reasons. We again assume f ∈ L1([0, 1], r dr).

As in the previous section, we prove the existence of at least two solutions to

this boundary-value problem. Our functional framework will be given by the space

Ŵ 2,2([0, 1], r dr), which we define as the intersection W̊ 2,2([0, 1], r dr) ∩ W̊ 1,2([0, 1], r dr). We

will look for solutions to our problem belonging to this functional space and which fulfil

the boundary condition u′′(1) + u′(1) = 0. Note that, in principle, it is not clear how this

condition is fulfilled, because the second derivatives are just square integrable. However,

if we consider the linear problem

Δ2u = f,

u = 0, Δu = 0,

in Ω ∈ �2 open, bounded and provided with a smooth boundary, we find u ∈
W 3,p(Ω) ∀ 1 � p < 2 for f ∈ L1(Ω). Consequently, u ∈ W 3−1/p,p(∂Ω), and we can in-

terpret this boundary condition in the sense of traces.

In this case, the solutions to the differential equation correspond to critical points of a

slightly different functional.

Lemma 3.4 Differential equation (3.1) subjected to Navier boundary conditions is the

Euler–Lagrange equation of functional⎧⎨
⎩
Iλ : Ŵ 2,2([0, 1], r dr) → �

u → Iλ (u) = 1
2

∫ 1

0

(
u′′ + u′

r

)2

r dr + 1
6

∫ 1

0

(
u′)3

dr − λ
∫ 1

0
f u r dr.

(3.10)

Proof We consider Euler first variation of functional (3.10):

d

dt
Iλ(u+ tφ)

∣∣∣∣
t=0

=

=

∫ 1

0

(
u′′ +

u′

r

) (
φ′′ +

φ′

r

)
r dr +

1

2

∫ 1

0

(
u′)2

φ′dr − λ

∫ 1

0

f φ r dr

=

∫ 1

0

(
1

r

{
r

[
1

r

(
r u′)′

]′}′

− 1

r
u′ u′′ − λf

)
φ r dr, (3.11)
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where the last equality is obtained by means of integration by parts and application of

the boundary conditions, and φ belongs to Ŵ 2,2([0, 1], r dr) but it is otherwise arbitrary.

�

Now we prove a result concerning the geometry of Iλ. First, we note that both Jλ and

Iλ are well defined in W 2,2([0, 1], r dr), the space of all functions u : [0, 1] −→ � whose

second derivative (u′′) and first derivative normalized by the independent variable (u′/r)

are square integrable on the unit interval against measure r dr, as can be seen by means

of a direct application of the Sobolev inequalities.

Lemma 3.5 Let u ∈ W 2,2([0, 1], r dr). Then Iλ(u) � Jλ(u).

Proof We want to prove

Iλ (u) �
1

2

∫ 1

0

[(
u′′)2

+

(
u′)2

r2

]
r dr +

1

6

∫ 1

0

(
u′)3

dr − λ

∫ 1

0

f u r dr. (3.12)

This follows from

∫ 1

0

(
u′′ +

u′

r

)2

r dr =

∫ 1

0

[(
u′′)2

+

(
u′)2

r2
+ 2u′′ u

′

r

]
r dr, (3.13)

and ∫ 1

0

(
u′′ u

′

r

)
r dr =

∫ 1

0

u′′ u′ dr =
1

2

(
u′)2

∣∣∣∣
1

0

� 0, (3.14)

because u′(0) = 0. �

Remark 3.1 Note that this result implies that the geometry of Iλ corresponds to the same

mountain pass shape of Jλ.

In the following, we will prove the existence of at least two solutions in this case too.

The proofs run in parallel to those of the previous section, so we will simply adapt the

arguments and write exclusively those parts in which the differences are explicit.

Proposition 3.2 Every bounded Palais–Smale sequence for Iλ at the level L admits a strongly

convergent subsequence in Ŵ 2,2([0, 1], r dr).

Proof Since {un}n∈� ⊂ Ŵ 2,2([0, 1], r dr) is bounded we find that, up to passing to a

subsequence, the following properties hold:

I. un ⇀ u weakly in Ŵ 2,2([0, 1], r dr),

II. u′
n → u′ strongly in Lp([0, 1], r dr) for every 1 � p < ∞,

III. un → u uniformly in [0, 1].
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We write the convergence condition I ′
λ(un) → 0 in {Ŵ 2,2([0, 1], r dr)}∗ as follows:

1

r

{
r

[
1

r

(
ru′
n

)′
]′}′

=
1

r
u′
nu

′′
n + λf + wn,

un ∈ Ŵ 2,2([0, 1], r dr), wn → 0 in {Ŵ 2,2([0, 1], r dr)}∗,

where the wn’s are the error terms. Now we multiply this equation by un − u and integrate

over the unit interval with the appropriate measure to get

∫ 1

0

{(
u′′
n +

u′
n

r

) [
(un − u)′′ +

(un − u)′

r

]}
r dr

=

∫ 1

0

u′
nu

′′
n(un − u) dr + λ

∫ 1

0

f(un − u)r dr + 〈wn, un − u〉, (3.15)

after integration by parts on the first line. The three summands on the second line

converge to zero in the limit n → ∞ by the above listed properties I (the third summand)

and III (the first and second summands). On the other hand, we have

∫ 1

0

{(
u′′ +

u′

r

) [
(un − u)′′ +

(un − u)′

r

]}
r dr → 0 (3.16)

as n → ∞ due to convergence property I.

Now, if we subtract expression (3.16) from the first line of (3.15), we obtain

∫ 1

0

|Δ(un − u)|2 r dr → 0 as n → ∞, (3.17)

where Δ = ∂rr + r−1∂r is the radial Laplacian, and thus the desired conclusion. �

Theorem 3.2 There exist a positive real number λc such that for 0 < λ < λc the Navier

problem for (3.1) has at least two solutions.

Proof The functional Iλ is well defined in Ŵ 2,2([0, 1], r dr) as the Sobolev inequalities

immediately reveal. As in the previous section, we will prove the existence of two solutions

to our boundary-value problem by finding two critical points of the functional Iλ, one of

them is a negative local minimum and another is a positive mountain pass critical point.

The proof of the existence of the minimum is identical in both cases, so it will not be

reproduced herein.

Therefore, we concentrate in proving the existence of the positive mountain pass

critical point. We employ the same minimax technique as in the previous section and the

existence of a Palais–Smale sequence {un}n∈� ⊂ Ŵ 2,2([0, 1], r dr) such that Jλ(un) → ℘ and

J ′
λ(un) → 0 as n → ∞ in {Ŵ 2,2([0, 1], r dr)}∗, where ℘ is the critical mountain pass level.
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We must now prove that this Palais–Smale sequence is bounded. For u ∈ Ŵ 2,2([0, 1], r dr),

the following equality holds:

−
∫ 1

0

u′ u′′ u dr = − 1

2
(u′)2 u

∣∣∣∣
1

0

+
1

2

∫ 1

0

(u′)3 dr =
1

2

∫ 1

0

(u′)3 dr.

We select {un}n∈� ⊂ Ŵ 2,2([0, 1], r dr) Palais–Smale sequence for Iλ at the level ℘ and

denote 〈zn, un〉 = 〈I ′
λ(un), un〉 to find

℘+ o(1) = Iλ(un) − 1

3
〈I ′
λ(un), un〉 +

1

3
〈zn, un〉

�
1

6

∫ 1

0

(
u′′
n +

u′
n

r

)2

r dr − 2

3
C2 λ ||f||L1(μ) ||u′′

n ||L2(μ) +
1

3
〈zn, un〉

�C ||u′′
n ||L2(μ),

for a suitable positive constant C , large enough n and small enough λ. In consequence,

the sequence is bounded in Ŵ 2,2([0, 1], r dr).

We know, by Proposition 3.2, that Iλ satisfies a local Palais–Smale condition at the level

℘, so we have Iλ(u∗) = limn→∞ Iλ(un) = ℘ > 0. Also, u∗ is a mountain pass critical point,

so I ′
λ(u∗) = 0, and our differential equation is fulfilled in Ŵ 2,2([0, 1], r dr). �

4 Numerical results

So far we have proved the existence of at least two solutions to both Dirichlet and

Navier problems. In this section, we will clarify the nature of these solutions by means

of numerically solving the boundary-value problems employing a shooting method. Our

first step will be to transform differential equation (3.1) into a form more suitable for the

numerical treatment. To this end and from now on, we will assume f(r) ≡ 1.

Integrating once equation (3.1) against measure r dr and using boundary condition

limr→0 ru
′′′(r) = 0 yields

r

[
1

r

(
rũ′)′

]′
=

1

2
(ũ′)2 +

1

2
λr2. (4.1)

By changing variables w = ru′, we find the equation

w′′ − 1

r
w′ =

1

2

w2

r2
+

1

2
λ r2. (4.2)

We have performed some numerical simulations with the final-value problem for

this ordinary differential equation using a fourth-order Runge–Kutta method. We have

employed the final conditions w(1) = 0 and w′(1) arbitrary, which correspond to Dirichlet

boundary conditions, to check how big λ could be in order to have solutions. We have

solved this problem for r ∈ [0, 1] and looked for solutions such that limε→0+ w(ε)/ε = 0,

which corresponds to the extremum condition u′ = 0 for the original differential equation.

The results of the simulations are represented in Figure 1. One observes that for λ = 0

there are one trivial and one non-trivial solutions. For 0 < λ < λc, there are two non-trivial

solutions that approach each other for increasing λ. In particular, the smaller of these
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Figure 1. (Colour online) Radial solutions corresponding to Dirichlet boundary conditions calcu-

lated as explained in the text. Red (lower) line: minimum solution. Green (upper) line: mountain

pass solution. Panel (a): λ = 0; panel (b): λ = 100; panel (c): λ = 150; panel (d): λ = 165.

solutions corresponds to a minimum of the ‘energy’ functional and the larger solution

corresponds to a mountain pass critical point. In all the calculated cases, the minimum

solution is strictly smaller than the mountain pass solution for all 0 � r < 1. For λ > λc, no

more solutions were numerically found. The critical value of λ was numerically estimated

to be λc ≈ 169, and it is achieved when both critical points merge. These numerical

experiments suggest that no solutions exist for large enough λ.

Now, we move back to differential equation (3.1) but this time subjected to homogeneous

Navier boundary conditions. We start as above, with the equation

w′′ − 1

r
w′ =

1

2

w2

r2
+

1

2
λ r2, (4.3)

and w(1) = w′(1) arbitrary, what corresponds to homogeneous Navier boundary condi-

tions.

Also, in this case we have employed a fourth-order Runge–Kutta method. The results

of the numerical experiments are plotted in Figure 2. They run in parallel to the results of

the Dirichlet case. We have considered the Navier problem again for r ∈ [0, 1] and have

searched for solutions such that limε→0+ w(ε)/ε = 0, which corresponds to the extremum

condition u′ = 0 for the original differential equation. Using this shooting method, we
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Figure 2. (Colour online) Radial solutions corresponding to Navier boundary conditions calculated

as explained in the text. Red (lower) line: minimum solution. Green (upper) line: mountain pass

solution. Panel (a): λ = 0; panel (b): λ = 5; panel (c): λ = 10; panel (d): λ = 11.

have found two different solutions which fulfil these requirements. One observes that for

λ = 0 there are one trivial and one non-trivial solutions. For 0 < λ < λc, there are two

non-trivial solutions that approach each other for increasing λ. For λ > λc, no more

solutions were numerically found. The critical value of λ was numerically estimated to

be λc ≈ 11.34. Again, the smaller solution corresponds to a minimum of the ‘energy’

functional and the larger solution corresponds to a mountain pass critical point. In all

cases, the minimum solution is strictly smaller than the mountain pass solution for all

0 � r < 1.

5 Conclusions and outlook

We have analysed a differential equation appearing in the physical theory of epitaxial

growth. We have started formally introducing the corresponding partial differential equa-

tion and then we have focused on radial solutions to its stationary counterpart. The

resulting equation has been posed in the unit disc in the plane subjected to two different

sets of boundary conditions. We have proved the existence of at least two solutions to

both boundary-value problems for small enough data. In each problem, we have ob-

served both solutions numerically and identified one of them with the local minimum

of our ‘energy’ functional and another with a mountain pass critical point. Due to the
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qualitatively similar results in both cases, the following assertions, and in particular the

conjectures, refer to both boundary-value problems. Our numerical simulations revealed

that the solutions are ordered in the sense that the one corresponding to the minimum

lies strictly below (except for the boundary point r = 1) the one corresponding to the

mountain pass critical point. We found that the mountain pass solution is nontrivial for

0 � λ < λc and the minimum solution is nontrivial for 0 < λ < λc and trivial for λ = 0.

We also proved non-existence of solutions for large values of this parameter and found

rigorous bounds for the size of the data separating existence from non-existence, but the

proofs will be reported elsewhere [12].

We conjecture that the solution corresponding to the minimum is dynamically stable: if

we considered the full evolution problem we would find that this solution is locally stable

for it. We also conjecture that the mountain pass solution is dynamically unstable. We

have numerically observed both solutions become closer for λ approaching the critical

value separating existence from non-existence, so we conjecture that the transition from

existence to non-existence as we vary the parameter λ is a saddle-node bifurcation for the

corresponding evolution problem. We finally conjecture that there exists a unique solution,

that is dynamically unstable, for the critical value of λ, precisely the one that corresponds

to the bifurcation threshold.

On the physical side, our results can be interpreted within the theory of non-equilibrium

potentials [24]. The evolution problems correspond to gradient flows pursuing the min-

imization of our ‘energy’ functionals, which play the role of non-equilibrium potentials.

If both forcing term and initial condition are small, the system will evolve towards the

equilibrium state. If the forcing were stochastic the equilibrium state would become meta-

stable. For a large forcing term, there are no equilibrium states, so the system will keep on

evolving forever in a genuine non-equilibrium fashion. In the theory of non-equilibrium

growth, in which the forcing is normally assumed stochastic, it is known that these features

affect both morphology and dynamics of the evolving interface [5]. In the case of existence

of a local minimum, this would imply in turn the existence of transient behaviour, as

found in different models of epitaxial growth [15]. Non-existence of this state would mean

that the asymptotic state is rapidly achieved. Residence times could be estimated with the

help of the theory of non-equilibrium potentials [24]. Our results constitute a first step

towards the understanding of these phenomena, although more work is needed in order

to get their full understanding.
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