cambridge.org/aie

Cite this article: Gui F, Chen Y (2021). A
scenario-integrated approach for functional
design of smart systems. Artificial Intelligence
for Engineering Design, Analysis and
Manufacturing 35, 165-179. https://doi.org/
10.1017/S0890060420000487

Received: 30 May 2020

Revised: 10 September 2020
Accepted: 16 September 2020

First published online: 5 January 2021

Key words:

Functional design; functional modeling;
Model-Based Systems Engineering; scenario;
smart systems; SysML

Author for correspondence:
Yong Chen, E-mail: mechenyong@sjtu.edu.cn

© The Author(s), 2021. Published by
Cambridge University Press

CAMBRIDGE

UNIVERSITY PRESS

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Fajun Guit(and Yong Chen?
!School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China and 2School of
Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China

Abstract

Functional design is regarded as a design activity primarily aimed at clarifying customer
needs, and developing the functional architecture and solution concepts for a system under
development. Existing functional design approaches are mainly focused on how to assist
designers in searching for solution principles for desired products, which, however, do not ade-
quately take into account the interactions between a smart system under development and its
environment, and cannot explicitly represent the complex functional logic of the system, result-
ing in that they cannot effectively assist designers in the functional design of smart systems.
Therefore, this paper proposes a scenario-integrated approach for functional design of smart
systems to address the above issues. Based on the concept of scenario in software engineering,
the proposed approach explicitly elaborates how to employ scenarios to express subjective cus-
tomer needs and how to generate the functional architectures and the corresponding solution
concepts through a structured process. The functional design of the automated doors-unlocking
system of a smart vehicle is employed to illustrate the proposed approach, which also demon-
strates that the proposed approach is suitable for functional design of smart systems.

As a significant activity of system development, functional design is primarily responsible for
analyzing customer needs and developing possible solution concepts for a desired system.
Since functional design can provide a systematic approach for transforming functions into
technical solutions, many engineering design researchers in engineering design community
have carried out considerable functional design research, with the development of many valu-
able approaches (Cole, 1998; Suh, 2001; Pahl and Beitz, 2007; Erden et al., 2008; Aurisicchio
et al., 2013; Booth et al., 2015).

Although the existing functional design approaches have some merits, they still cannot
effectively assist designers in the function design of smart systems. Hereby, a smart system
often refers to the system that can interact with human users and systems in the environment,
and adapt its behavior to achieve users’ goals or expectations, which means that the function-
ality of a smart system not only depends on its internal solution principles, but also the inter-
actions with human users and external systems in the environment.

However, most of the existing functional design approaches mainly focus on generating
solution principles for desired functions, and thus do not adequately take into consideration
the complex interactions between a system under development, human users and its environ-
ment. Another limitation lies in that the functional design process is usually simplified as the
functional decomposition process in the traditional design theories (Pahl and Beitz, 2007;
Erden et al., 2008), which, however, do not take into consideration the complex functional
logic between different subfunctions, and can make it difficult for designers to employ these
approaches to address the functional design of smart systems. Therefore, it is becoming
increasingly necessary to develop an effective functional design approach that can take into
account not only the solution principles of system under development, but also the interac-
tions between human users, objects in the environment, and the system under development.

Since scenario is a concept that is often used to document interaction sequences that are
indispensable to achieve a specific goal in software engineering (Pohl, 2010), this paper
attempts to develop a scenario-integrated approach for functional design of smart systems.
This paper is organized as follows. The next section reviews the related work. In the section
“Scenario and Its Representation,” the concept of scenario is introduced and how to represent
a scenario in a structured manner is elaborated. Subsequently, a scenario-integrated approach
for the functional design of smart systems is proposed in the section “A Scenario-Integrated
Approach for Functional Design.” With an automated doors-unlocking system of a smart
vehicle as an example, the section “Case Study” illustrates how the proposed approach can
be employed to achieve the functional design of smart systems, followed by a discussion in
the section “Discussion.” Finally, the last section concludes this paper.

g

@ CrossMark

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060420000487
https://doi.org/10.1017/S0890060420000487
mailto:mechenyong@sjtu.edu.cn
https://orcid.org/0000-0002-5737-8165
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0890060420000487&domain=pdf
https://doi.org/10.1017/S0890060420000487

166

Since functional design is a crucial stage for system development,
there has been a lot of research on the theory or methodology of
functional design. Due to limited space, a brief review is given as
below to illustrate the related work.

Among the various existing functional design approaches, the
most significant one is the systematic design approach proposed
by Pahl and Beitz (2007), which regards functional design as a
process of decomposing an overall function into subfunctions,
searching suitable solution principles for the subfunctions, and
combining the solutions of subfunctions into a whole technical
solution to achieve the desired function. Based on the functional
decomposition idea, researchers have also developed some auto-
mated approaches for functional design. For example,
Chakrabarti and Bligh (1996) have developed a function-based
approach for generating principle solutions of mechanical devices;
Campbell et al. (2003) have proposed the A-design approach to
achieve the functional design of electromechanical systems,
which has combined multiobjective optimization, multiagent sys-
tems, and automated design synthesis; Chen et al. (2012) have
developed a knowledge-based framework for the functional
design of multidisciplinary systems; Yuan et al. (2016) have pro-
posed a hybrid approach to automate the process of functional
decomposition of complex mechatronic systems to obtain func-
tion structure and solutions.

In addition to the above functional decomposition approaches,
researchers have also developed some other functional design
approaches. For example, Suh (2001) has proposed the axiomatic
approach for functional design, where functional design is
regarded as a zigzag mapping process between functional require-
ments and design parameters of solution concepts; Umeda et al.
(1990, 1996) have proposed the Function-Behavior-State
model, where the functions are decomposed into subfunctions
until they can be associated with physical features, and knowledge
of the decomposition of functions and alternative solutions can be
retrieved from a knowledge base; Kitamura et al. (2004) have
developed a knowledge-based function decomposition system
named “function way server,” which can support designers to
decompose the function based on providing various decomposi-
tion solutions that will realize the goal; Mhenni et al. (2014)
have proposed a Systems Modeling Language (SysML)-based
methodology for mechatronic system architectural design,
which can assist designers to collect requirements and identify
candidate solutions and select the final physical architecture of
the system.

It can be found that most of the existing functional design
approaches deal with how to generate solution principles for a
system under development, and do not involve interactions
between a system under development and the environmental
objects in the design process. Therefore, such approaches cannot
effectively support the functional design of smart systems, which
often involves various interactions.

Since smart systems are becoming more and more popular,
there are also some research on the design of smart systems in
recent years. A typical stream of such research is the
context-aware design (e.g., Hong et al., 2009; Engelenburg et al.,
2019). However, such context-aware design approaches are
focused more on the context of systems and do not pay much
attention to the functional design process. Therefore, it is still
valuable to develop a comprehensive approach for the functional
design of smart systems.

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Fajun Gui and Yong Chen

The term scenario is a concept that is commonly used in software
engineering, which software engineers often employ to describe the
interactions between various users and software systems (Carroll,
2000; Kaindl, 2000; Alexander and Stevens, 2002). Since smart sys-
tems also involve complex interactions between systems, human
users, and environments, this research attempts to import the con-
cept of scenario into the approach for the functional design of
smart systems. In this section, the concept of scenario will be intro-
duced, together with the approach for representing scenarios.

In software engineering, the concept of scenario is proposed to
express the interactions between user activities and a software sys-
tem (Carroll, 2000; Kaindl, 2000; Alexander and Stevens, 2002).
According to Pohl (2010), a scenario can be defined as a set of
concrete interaction sequences of satisfying or failing to satisfy a
goal (or set of goals). Therefore, a scenario is typically composed
of a sequence of interaction steps executed to meet a goal and thus
can illustrate the value of the system for its users. It is evident that
a scenario can establish a link between the customer needs and
the relevant context; therefore, a scenario can refine a customer
need into more detailed description.

According to software engineering, a scenario can be repre-
sented with a set of interaction sequences, together with some
contextual elements. Interaction sequences can refer to human
operations that are exerted on a system of interest, the responsive
events and activities of the system, and the interactions between
the objects in the related environment and the system. The con-
textual elements of a scenario include actors, goals, time, location,
preconditions, and postconditions. Hereby, an actor refers to a
human user or an external system that will interact with the sys-
tem of interest in the execution of the scenario; the element goal is
an intention regarding an objective or usage of a system, which
should be satisfied by the scenario; the element time tells when
the scenario occurs; the element location defines the information
about where it takes place; finally, a precondition refers to a state
or condition that the system of interest should be in before a sce-
nario is performed, while a postcondition indicates a state or con-
dition that the system should be in after the execution of the
scenario is completed. It should be noted that not all elements
mentioned above is indispensable in a scenario, since some ele-
ments can be omitted when the scenario can be understood by
engineers.

Based on the above analysis, the scenario, braking control in a
car, can be described as below:

A driver was driving a car on the motorway. When the driver noticed that
the car in front of him was braking, and the distance between the front car
and his own car was rapidly shortening, the driver stepped on the brake
pedal, so that the safety distance between the two cars could be main-
tained to avoid a rear-end collision.

In the above scenario, the driver is an actor. The goal is to main-
tain the safety distance. Since the time element is not necessary for
this scenario, it is omitted. The element location is defined as on
the motorway. A precondition of the scenario is that the car in
front of the driver was braking and the distance between the two
cars was rapidly shortening, and a postcondition refers to the
state that the safety distance between the two cars is maintained.

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 167

Since a goal can be satisfied by different means, multiple sce-
narios may exist for the same goal. These scenarios can often be
classified into three types, that is, main scenario, alternative sce-
narios, and exception scenarios (Pohl, 2010). They can all achieve
the same goal. To be specific, a main scenario describes the inter-
action sequences that are normally executed in order to satisfy a
specific goal. An alternative scenario documents the interaction
sequences that can replace the main scenario for satisfying the
goal. An exception scenario documents an interaction sequence
that is executed when an exceptional event occurs.

Generally, a scenario is often informally described in natural lan-
guage (Rumbaugh et al, 1991; Jacobson, 1993; Alexander and
Stevens, 2002). Although such natural language-based descrip-
tions are convenient for designers to elicit and describe scenarios
(Liu et al., 2012), it is difficult for computers to understand and
process them. Therefore, this research will employ a model-based
approach for representing scenarios, which can be much easier for
computers to process the scenario information. Since a sequence
diagram in SysML (Friedenthal et al, 2006, 2014) usually
describes a sequence of message exchanges between the related
actors and the system of interest, the sequence diagram is
employed to represent the interactions in a scenario.

To represent a scenario with a sequence diagram model, the
first task that should be fulfilled is to extract the contextual ele-
ments from the context of a scenario. As mentioned before, the
contextual elements of a scenario primarily include actors, goals,
time, preconditions, and postconditions. For example, in the sce-
nario, fo navigate a car to destination, the actor elements can be
extracted as the driver, the global positioning system (GPS), and
so on. A list of objects can be adopted to express the actors in
the above scenario, that is, Actors = {driver, GPS, ...}. The goal
of this scenario is that the navigation system can guide the driver
to drive his/her car to destination. Hereby, some contextual ele-
ments (e.g., the time element in this case) can be omitted since
they are not necessary for engineers to understand the scenario.
A complete set of the contextual elements of the above scenario
can be represented in Figure 1.

After the contextual elements of a scenario are extracted, it is
then necessary for designers to identify the interaction sequences
in the scenario. To model each interaction in sequence diagram,
the actors of each interaction step in the execution process should
be specified, including the actors who invokes the interaction
activities and those who are influenced by the actions of others.
Then, all actors identified before can be represented as lifelines
in a sequence diagram model. After the actors related to a system
under development have been defined, designers should then
determine the activity or behavior of each interaction step, that
is, how the actors operate the system or how the system responds
to the actors. For example, in the above scenario, to navigate a car
to destination, one of the interaction steps can be identified as: the
driver inputs the destination, which can be modeled as a message
that points to the navigation system from the driver, as shown in
Figure 2a.

Figure 2a shows the sequence diagram model of the main sce-
nario, to navigate a car to destination, which represents the nor-
mal interaction sequence that is executed to satisfy the goal. As
stated above, the goal can also be satisfied by other alternative sce-
narios (i.e., alternative interaction sequences). For example, for
the interaction activity, the driver inputs the destination with

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

hand, alternative solutions can be voice inputs, keyboard inputs,
and so on, as illustrated in Figure 2b. As seen in the model, a com-
bined fragment with an alt interaction operator is used to repre-
sent an alternative scenario. In addition, a combined fragment
with a break interaction operator can be employed to illustrate
an exception scenario. For brevity, examples of exception scenar-
ios are not given in this section.

From the above example, it can be found that the scenario of
navigating a car to destination can be explicitly represented with
the sequence diagram models, each interaction step or activity
between the driver, the navigation system, and the GPS is clearly
defined.

Since complex interactions between a smart system, human
users, and the external systems in the context are quite common
when the smart system implements its functions, it is essential to
take into account the interactions for the functional design pro-
cess. Based on the above analysis, it can be found that the concept
of scenario and its representation are very suitable for document-
ing and modeling the contextual information and interaction
sequences of a smart system.

Since most of the existing functional design approaches do not
address the complex interaction issue, they cannot provide effec-
tive support for the functional design of smart systems, which
usually involves complex interactions and functional logic.
Therefore, it is necessary to develop a suitable approach for sup-
porting the functional design of the smart systems.

Based on the model-based method for representing a scenario,
a scenario-integrated approach for functional design is proposed
here, which mainly involves four stages, that is, scenario analysis,
functional synthesis, solution analysis, and logic development, as
shown in Figure 3. This section will illustrate each stage in details
as below.

In the scenario analysis stage, customer needs are refined with
scenarios, so that the interactions of a smart system with human
users and the surrounding environment can be clarified. At the
functional synthesis stage, the general functions will be identified
and be decomposed into subfunctions or even sub-subfunctions,
followed by the solution generation process for the identified
functions. After completing the functional synthesis process,
designers are required to analyze various enabling conditions,
performance, and side effects of the solution concepts, which
are necessary for evaluating the feasibility of the proposed solu-
tion concepts in the solution analysis stage. The final stage, that
is, the logic development stage, is responsible for logic develop-
ment, which illustrates how functional logic can be employed to
integrate various subsystems into a whole smart system for achiev-
ing desired functionalities.

Generally, functional design activities start from customer needs.
However, since customer needs are usually verbally described and
are often subjective and ambiguous, it is then necessary to trans-
form such customer needs into technical functions, which often
involve explicit inputs and outputs (Chen et al., 2015). For exam-
ple, the customer need, a car can achieve intelligent navigation, is
very ambiguous and subjective, since the description not only fails

https://doi.org/10.1017/S0890060420000487

168

Fajun Gui and Yong Chen

Scenario Name:

To navigate a car to destination

{

Fig. 1. The contextual elements of the destination-
navigating scenario.

Contextual Elements:

(Actors: [driver, global positioning system (GPS), ---]),
(Goal: "guide the driver to drive his/her car to destination")
!INIII(A"),

(Location: "normal motorway"),

(Time:
(Preconditions: "the destination is clear"),
(Postconditions: "the driver arrives at the destination after

navigating')

sd [Interaction] To navigate o destination)

: Driver 1, | sblocks] J

sblocks] |
: Navigation System

: Global Positioning System

1: start up

7] 2: send the position data of satellites

3: calculate the current position of pavigation system

4 request destination

5 input destination

6: request route selection

T: select desired route N
> | 8: calculate route

9, inform the route calculation completed

10: create a list of waypoints

11: display waypoints

4 [ieracton] To Aavigate 1o destnaton 1]

bioci

< Driver 3, | o
T . : Navigation System

sgiochs [=]
: Global Positioning System

1 stan up
m= 2 send the position data of satelites

3: calculate the current position of havigation system
-—
. 4. request destination
——i
{al |

[voice input &= tusls: veice input destination

[else] 6 key in destination

T request route selection

71 | 9 calculate route
10 inform the route calculation completed

11. create a list of waypoints
-

12 display waypoints

(a) The Sequence Diagram model of the main scenario

to navigate a car to destination

Fig. 2. The Sequence diagram models of the scenario to navigate a car to destination.

to include all actors, but also leaves a wide space for designers to
explain what “intelligent navigation” means. Therefore, such sub-
jective and ambiguous descriptions of customer needs should be
represented in an explicit and unambiguous manner, so that it
can be used for functional design. As mentioned before, a model-
based representation of scenarios, that is, a sequence diagram
model in SysML, can be employed to further clarify and express
customer needs. Therefore, this research will develop a sequence
diagram-based approach for scenario analysis to refine customer
needs.

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

(b) The Sequence Diagram model of an alternative

scenario fo navigate a car to destination

As mentioned before, a scenario can be represented with the
sequence diagram model. As a result, ambiguous customer
needs could then be translated into a series of interaction activ-
ities, which are easier for system designers to understand what
the customer needs are. The general process of scenario analysis
is elaborated as below.

First, designers should extract the contextual elements of a sce-
nario, including actors (which involves both human users and
external systems), goals, time, location, preconditions, and postcon-
ditions. Every contextual element should be specified according to

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

o mm e
I
customer / _ _ _ Scenario L
Needs Analysis
i
Interaction P s o Functional s e
Activities Synthesis
g
somtion / Solution
Concepts .
Analysis
i
Functions & Logic
Actions & Solutions/ — — — — T e
Development

the method that has been stated previously. For example, in the
scenario, fo navigate a car intelligently, which corresponds to
the aforementioned customer need, a car can achieve intelligent
navigation, the element actors that can be identified includes a
driver, a real-time traffic data system, a GPS, and so forth.
Therefore, the actors can be defined in a list of objects, that is,
Actors = {driver, real-time traffic data system, GPS, ...}. The goal
is that a car can navigate intelligently. The complete set of the
contextual elements of this scenario is not given here, because it
is similar to that of the scenario in Figure 1.

Second, based on the actors that have been identified in the
first step, designers are required to specify the activities of each
actor in the execution of the scenario, including interaction activ-
ities between actors and the system of interest, as well as those
between different actors. For example, in the above scenario, fo
navigate a car intelligently, some of the driver’s activities can be
identified as follows, for example, starting up the navigation sys-
tem, inputting destination, and selecting a desirable route. In
addition, activities of the navigation system include requesting
the destination, requesting remote traffic data, calculating the
driving route, displaying the map of driving route, warning traffic
jams, and so on. Note that some complex activities could be prop-
erly decomposed and extended. For instance, the above activity
navigation system displays the map of driving route could be
decomposed into several subactivities, such as navigation system
identifies related section of the destination, navigation system cal-
culates the waypoints of the route, and navigation system displays
the related area of the waypoints.

Finally, as the interaction activities of the system under devel-
opment and those of the actors being specified, each interaction
step can be expressed with the element message in sequence dia-
gram. For brevity, only the interaction sequence in the main sce-
nario, to navigate a car intelligently, is shown in Figure 4. The
related alternative scenarios and exception scenarios are not mod-
eled here.

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

- Interaction
Activities

Solution Concepts
— — — — */ &New Customerf— —
Needs

169

Functions &
Solution Concepts

Functional
Logic

\
\
|
|
1
|

Fig. 3. The framework of the scenario-integrated
approach for functional design.

The above example illustrates how a subjective and abstract
customer need can be transformed into a detail interaction
sequence through a scenario analysis process to represent the cor-
responding scenario. The interaction activities specified in this
stage are basic inputs of the subsequent functional design stages.

After a sequence of explicit interaction activities has been gener-
ated in the previous stage, it is then necessary to carry out the
functional synthesis process for functional design. During the
functional synthesis process, the general functions of a system
will be identified from the interaction activities and then be
decomposed into subfunctions or even sub-subfunctions, fol-
lowed by a synthesis process of searching for suitable solution
principles for the functions generated.

A general function can be identified from an interaction activ-
ity through extracting the basic inputs and outputs of the func-
tion. Hereby, since the subject of an interaction activity can be
the system under development or an actor (which can be a
human user or an external system), the process of identifying gen-
eral functions can be classified into two categories accordingly. In
the first category, where the subject of an interaction activity is the
system under development, the inputs and outputs can be
extracted to capture the corresponding function. For example,
in Figure 4, for the interaction activity, the navigation system
requests remote traffic data, the input is an information flow,
that is, a message of requesting remote traffic data; the output is
an information flow, that is, a request for remote traffic data;
therefore, the general function can be described as: the navigation
system shall request remote traffic data. In the second category, the
subject of an activity is a human user or an external system in the
context, which means that the activity is implemented by an actor,
rather than the system under development. In this situation, in
order to interact with the external executor, the system under

https://doi.org/10.1017/S0890060420000487

170

Fajun Gui and Yong Chen

sd [interaction] To navigate a car inteligentty ___I

: Driver 2,

: Navigation System

1: start up

ablocks abiocks | abilocks
: Global Positioning System : Real-time traffic data system

4: request destination

5: input destination

2 send the position data of salelhle_s

3: calculate the curent position of pavigation system

6 request route selection

T: select desirable route

9. inform the route calculation completed

@: calculate drving route

-

11: display waypoints

10: create a list of waypoints

-—

12: request remote traffic data

13: send ramote traffic data

[opt]

[trafficJam == trua]

14: wam of traffic jam

15: inform a better route

_ 16: ask whether to swich route

17 select the better route

18: recalculate driving route

-+

Fig. 4. The Sequence Diagram model of the main sce-

nario to navigate a car intelligently.

development should provide a related interface function, to
achieve the general function for receiving the external inputs.
Taking the activity, the driver selects the better route, as an exam-
ple (shown in Figure 4), the subject of the activity is the driver. In
order for the driver to fulfill the selecting operation, the naviga-
tion system should provide an interface function for the system
to receive the input from the driver. Here, the input for the
above general function of the navigation system can be extracted
as an information flow, that is, a message of route selection, and
the output is a message about the result of route selection.
Therefore, the general function of the navigation system can be
derived as: the navigation system shall receive the route selection
result from the driver.

After a general function has been identified, a designer then
usually needs to decompose the function into subfunctions or
even sub-subfunctions of lower complexity for facilitating the sub-
sequent solution generation process. Hereby, the flow-based func-
tional decomposition method proposed by Pahl and Beitz (2007)
is employed to implement the decomposition task. In addition,
this research imports a graphical representation method called
activity diagram from SysML to represent the functional decom-
position process which specifies how the input flows of a general
function can be transformed into output flows. Specifically, each
subfunction or sub-subfunction can be represented with an action
node in an activity diagram and should be described in an active
mode. In addition, the elements activity parameter and pin can be

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

employed to represent the input and output flows of each func-
tion. With the above function, the navigation system shall request
remote traffic data, as an example, the functional decomposition
process can be specified with an activity diagram model that
established using a commercial functional modeling software, as
shown in Figure 5. As a result, the above general function is
decomposed into several subfunctions, including the navigation
system shall generate a request for accessing the communication
network, the navigation system shall access the communication sys-
tem, the navigation system shall send request for real-time traffic
data, and so on. It can be found that the activity diagram
model can explicitly show the functional decomposition process
with subfunctions, and the related inputs and outputs are clearly
defined. Note that the decomposition of a complex function
should be ended when the generated subfunctions can be
achieved by related components.

The final task of the functional synthesis stage is to search for
alternative solution principles for the generated subfunctions.
Hereby, the mapping relationship between functions and solu-
tions in the axiomatic design approach proposed by Suh (2001)
and the systematic approach proposed by Pahl and Beitz (2007)
can be imported for the solution generation process.
Specifically, a designer can compare the input and output flows
and the intended actions of a desired function with those of the
solution principles in his/her memory or in a functional design
catalog, and then choose some solution alternatives based on

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 171

(act [Activity] Reguest remote traffic data)

‘ The navigation system generates ‘

in message of requesting for traffic data

-L message

a request for accessing the
communication network

I‘ request
M reguest

The navigation system accesses |
‘ the communication network ‘

Itrue : Boolean

o 'itrue : Boolean
The navigatior; sttem sends
request for real-time traffic data ‘

Irequest for traffic data

| out request for trafficdata | —

Fig. 5. The Activity Diagram model of the remote traffic

the similarity of the inputs and outputs. For example, for the
function, the navigation system shall access the communication
network, the input and the output flows are both the information
flow, a message of accessing network, after searching in a func-
tional design catalog, some solution principles with similar inputs
and outputs can be found, such as cellular mobile network, wire-
less network, and satellite communication connection. In addition,
a knowledge-based approach proposed in our previous research
(Chen et al., 2012) can also be adopted to assist designers in
retrieving possible solution principles from a solution base, and
then integrating them into a whole solution for achieving a
desired function.

As seen above, through extracting the inputs and outputs from
interaction activities, the functions of a system under development
can be identified and then decomposed into subfunctions, and
some alternative solution principles can be generated based on
the mapping relationship between functions and solutions in the
functional synthesis stage. In addition, functions of an external sys-
tem can also be defined when they provide support for the smart
system under development to complete a task. Meanwhile, the
smart system also should provide corresponding interface functions
to receive the inputs. Therefore, our approach can not only generate
functions of the system of interest, but also can capture the func-
tions the external systems in the context should provide.

Solution analysis

After the solution concepts have been generated for a function, it
then comes into the solution analysis stage, where designers are
required to further analyze these solutions to determine whether

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

data-requesting function.

they can meet the functions and customer needs in all aspects,
such as enabling conditions, performance of the inputs and out-
puts, and side effects (Roozenburg and Eekels, 1995; Pahl and
Beitz, 2007).

If an enabling condition is necessary for a solution to work, a
new customer need can then be derived. For example, for the
solution concept of cellular mobile network, two enabling condi-
tions can be derived, that is, the enabling condition that the direct
current is prerequisite to power on the system, and that the system
should be able to receive cellular network signal. Therefore,
according to these two enabling conditions, two new customer
needs can be generated, that is, the navigation system needs direct
current to power on, and the system can receive cellular network
signal.

As to the side-effects analysis, if an unintended action is gen-
erated from a solution concept, designers should decide whether
the action can be acceptable or not. The acceptability of a side
effect depends on the results from the action on the system of
interest. More detailed analysis can be found in our previous
research (Chen et al., 2015). If a side effect is unacceptable, the
designer should either abandon the corresponding solution con-
cept or propose a new need to solve it. In addition, the perfor-
mance of a solution concept should also be analyzed, and a
new customer need can be derived to improve the performance
when it is unsatisfying.

Once a new customer need is derived, a new cycle of functional
design should be triggered. The iterative analysis process should
be continued until all new needs are satisfied.

Note that a state-based solution analysis process is clarified
here. According to our recent research, a system, especially a

https://doi.org/10.1017/S0890060420000487

172

smart system, may possess multiple different states in different sit-
uations, which means that the current state of a system can switch
to another one, depending on the changing environment.
Generally, a system can achieve different functions in different
states, and it usually should be in a certain state if it is required
to achieve a specific function. Otherwise, a new customer need
should be derived, that is, to transform the system into a
required working state. A typical example of a state transition
function is that the state of landing gear system of an aircraft
should change from the gear-up state into the gear-down state
when landing.

After a complete function architecture and the corresponding
solution concepts have been generated in the above stages, it
then comes to the final stage, that is, logic development stage,
which is responsible for designing suitable function logic to inte-
grate various subsystems into a whole smart system for fulfilling
desired functionalities.

During the functional design process, functional logic primar-
ily involves temporal logic and decision logic. Hereby, the tem-
poral logic can be further classified as two types, that is,
sequential logic and parallel logic. Sequential logic means that
multiple actions or functions should be carried out in an explicitly
sequential order. For example, the functional logic between the
action, a driver starts up the navigation system, and the action,
the navigation system displays a map of current location, should
be sequential logic, because they have to be executed one by
one. In contrast, parallel logic means that multiple actions do
not interfere with each other when performed simultaneously.
For instance, the action, the navigation system displays the current
driving route, and the action, the navigation system broadcasts the
current speed, can take place at the same time. Therefore, the par-
allel logic relation should be set between them.

Decision logic will appear in the situation where a decision
should be made. Different execution sequences can be triggered
under different decisions. For example, as for the action, the navi-
gation system asks the driver whether to switch route, two different
subsequent action sequences can be activated, that is, the
sequence of driving on the original route and that of a new chosen
route, according to the decision of the driver.

These two categories of functional logic allow designers to
combine all probable actions or functions in different situations,
to generate various functional architecture and solution concepts,
and then to integrate corresponding subsystems into a whole
smart system.

In this paper, the swim lane model (also known as activity par-
tition) in SysML is employed to illustrate the functional logic. The
swim lane model at least has two major advantages. On one hand,
such model can specify the necessary functional logic, which is
the primary concern in this stage. On the other hand, the
model can display the relationships between actions (or func-
tions) and actors or the system under development that will
implement the actions (or functions), which is convenient for
allocating functions to different actors or the system under devel-
opment. Specifically, in swim lane, control flows and object flows
can be used to represent the sequential logic between different
actions; fork nodes and join nodes are employed to specify the par-
allel logic; decision nodes can be adopted to define the decision
logic.

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Fajun Gui and Yong Chen

In this section, we will employ the functional design of a smart
vehicle to illustrate the proposed functional design approach.
The primary customer need here is related to a self-service func-
tion that allows a renter to unlock the doors of a vehicle with a
smartphone by himself or herself. Therefore, the primary function
here is related to an automated doors-unlocking system for a
smart vehicle. Based on the above customer need, the design pro-
cess of the automated doors-unlocking function is introduced as
follows.

According to the scenario-integrated approach proposed above,
the first stage is scenario analysis, where a designer is required
to refine a customer need into a scenario and transform it into
a series of explicit interaction activities in the scenario.

As stated above, the customer need in this case is that a cus-
tomer can unlock the doors of a smart vehicle for renting by himself
or herself. Here, the scenario, to unlock the doors of a smart vehicle
with self-service, is used to refine the above need. According to our
approach, first, we should extract the contextual elements of the
scenario. To achieve the complex function of automated
doors-unlocking, a smart vehicle alone is not sufficient, it is
obvious that some external systems in the context are necessary
to provide support, such as a smartphone, a remote vehicle infor-
mation management system (which will be abbreviated as VIMS),
a global positioning system (abbreviated as GPS). Therefore, the
actor elements of the scenario can be specified as an object set,
that is, Actors = {customer, smartphone, VIMS, GPS, ...}. The ele-
ment goal can be described as: the doors of a rental smart vehicle
can be automatically unlocked by a customer via a smartphone.
After all elements have been extracted, the complete set of con-
textual elements of the above scenario can be depicted in Figure 6.

Thereafter, the possible activities of each actor and the system
under development should be clarified according to the imple-
mentation of the scenario, and the interactions between different
actors should also be involved. For example, an activity of the cus-
tomer can be described as: the customer creates a request message
of doors-unlocking for a smart vehicle with a smartphone, and an
activity of the smart vehicle can be clarified as: the smart vehicle
unlocks the electronic locks, and so forth. Then, the interaction
activities identified before should be represented in a sequence
diagram model. The interaction sequences of the aforementioned
scenario, to unlock the doors of a smart vehicle with self-service, are
illustrated in Figure 7. Note that only the main successful sce-
nario, that is, the doors of a smart vehicle can be unlocked success-
fully, is taken into consideration in this case for brevity. If some
related alternative scenarios and exception scenarios are created,
more interaction sequences will be generated.

In the second stage, that is, the functional synthesis stage,
designers should extract the inputs and outputs from the interac-
tion activities specified before to identify general functions,
decompose the general functions into subfunctions, and search
for alternative solution concepts for the subfunctions.

Since there are two categories of functional identifying process,
two examples will be given here to illustrate the functional synthe-
sis. One example is the interaction activity, the VIMS sends a

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

173

Scenario Name: To unlock the doors of a smart vehicle with self-service

Contextual Elements:

System (VIMS), Global Positionin

(Time: "N/A"),

(Location: "acar park"),

(Postconditions: "the customer successfully

{ (Actors: [customer, smartphone, Vehicle Information Management

(Goals: "the doors of a rental smart vehicle can be automatically

unlocked by a customer via a smartphone"),

(Preconditions: "the customer is near the reserved smart vehicle"),

of the vehicle with self-service")

g System (GPS), ***]),

unlocks the doors

Fig. 6. The contextual elements of the doors-unlocking
scenario.

sd [nteraction] To unlock the doors of a sman vehicle with salf-service J

cblocks
: Smartphone

[: customer 3]

sblacks =2
: Vehivle Information Management System

<blacks ebiccis [=]
| : Global Positioning System

: Smart Vehicle

1: create a request message of doors-unlocking

-3 request the position of the custome

| 2 send a request for doors-unlocking

|

| 4. send the position data of satellites

-

5: calculate the position of the customer (or smartphone)

|6: send the position of the customer

[_7: send the position data of saiellltes

8: cakculate the position of the renlcle

_9: send the position of the smart vehicle

10: process the positions of the customer and the vehicle

(opt]

[CustomerishearVenicle == true]

14' send the prompt about the

11° send a message of doors-unlocking

12° uniock the electronic lock

13: generate a prompt about the result of unlocking

$

result of unlocking

15: pull to open the doors

Fig. 7. The Sequence Diagram model of the doors-unlocking scenario.

message of doors-unlocking to the smart vehicle, in which the sub-
ject of the activity is an external system in the context, rather than
the smart vehicle. The inputs of the above activity are information
flows, that is, a position data of the customer and a position data of

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

the smart vehicle; the output is an information flow, that is, a
doors-unlocking message, which will be an input of the next activ-
ity. Therefore, the general function of the VIMS can be identified
as, the VIMS shall send a message of doors-unlocking to the smart

https://doi.org/10.1017/S0890060420000487

174

vehicle. As stated in the section “functional synthesis,” in order to
interact with the VIMS, the smart vehicle should provide an inter-
face function to receive the inputs from VIMS; therefore, the gen-
eral function of smart vehicle corresponding to the above function
can be identified as, the smart vehicle shall receive the message of
doors-unlocking from the VIMS. The other example corresponds
to the other category of function identifying that the system
under development is the subject of an interaction activity, that
is, the smart vehicle unlocks the electronic lock. For this activity,
the input can be extracted as an information flow, that is, a mes-
sage of doors-unlocking; the output is also an information flow,
that is, a message about the result of the doors-unlocking action.
As a result, the general function can be identified as: the smart
vehicle shall unlock the electronic lock.

After some general functions have been identified, designers
should manage to decompose the complex general functions to
subfunctions according to the flow-based functional decomposi-
tion approach, and represent the decomposition results with
activity diagrams. For example, for the function, the VIMS shall
send a message of doors-unlocking to the smart vehicle, the func-
tional decomposition process can be represented with the activity
diagram in Figure 8a based on the transformation of the input
flow, that is, a position data of the customer and a position data
of the smart vehicle. Therefore, the above function can be decom-
posed into some subfunctions, including the VIMS shall calculate
the distance between the customer and the smart vehicle, the VIMS
shall check the distance between the customer and the smart vehi-
cle, the VIMS shall generate a message of doors-unlocking for the
smart vehicle (or the VIMS shall reject the request for unlocking
doors from the customer), and the VIMS shall send the message
of doors-unlocking to the smart vehicle. For another function,
the smart vehicle shall unlock the electronic lock, which transforms
the input flow, a message of doors-unlocking, to the output flow, a
message about the result of the doors-unlocking action, can be
decomposed into several subfunctions as shown in Figure 8b.

Due to the limited space, it is impossible to illustrate all activity
diagram models for the functional decomposition process here.
Figure 9 illustrates the relationship between some typical interac-
tion activities and the subfunctions identified. Note that the gen-
eral functions that can be identified from the interaction activities
are not listed in the figure for brevity. It can be found that not
only the functions of the smart system, but also the supporting
functions of external systems can be identified in our approach.

After the complex general functions have been decomposed
into subfunctions, designers should then search for some alterna-
tive solution concepts for each subfunction. As stated before, an
approach similar to the combination of the axiomatic design
approach by Suh (2001) and the systematic design approach by
Pahl and Beitz (2007) is employed for generating solutions; there-
fore, several solution concepts can be found for a function
through comparing the inputs and outputs of them. In this
case, taking the function, the smartphone shall receive a message
for starting up the rental app, as an example, the input flow of
the desired function can be a message for starting up the app,
and the output flow should be a starting-up message. The designer
can search for solution concepts in his/her memory and compare
the input and output flows of the function with those of the solu-
tions, multiple solution alternatives with similar inputs and out-
puts can then be found, such as pressure sensing technology of
touch screen, speech recognition technology, cellphone keypads,
and external device. For another function, the smartphone shall
send the position data of the customer to the VIMS, the input

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Fajun Gui and Yong Chen

flow of this function can be position data of the customer, and
the output flow should also be the position data of the customer.
After comparing the input and output flows of the desired func-
tion with those of the technical solutions in a designer’s memory
or in a functional design catalog, some alternative solutions can be
generated, such as GPS module and Bluetooth.

The third stage is solution analysis, which is responsible for further
analyzing the solution concepts generated in the previous stage for
choosing suitable ones. Specifically, the enabling conditions, perfor-
mance of the inputs and outputs, and side effects of the solutions
should be evaluated to determine the feasibility of them.

Assume that the previous functional synthesis process has gen-
erated the following solution concepts: pressure sensing technology
of touch screen, speech recognition technology, cellphone keypads,
and external device. The solution analysis process can be carried
out as follows. In this case, due to the limited space of a cellphone,
it is almost impossible for a cellphone to employ a keypad to receive
inputs, resulting in that the keypad solution has to be abandoned. It
is also impossible to employ an external device for receiving infor-
mation inputs, since such a device is often inconvenient for users to
carry. For the solution, speech recognition technology, it can be
employed to realize some simple functions, but cannot be used
to implement multiple complex commands continually at present.
For the solution, pressure sensing technology of touch screen, it now
has been widely utilized by smartphones and can satisfy the
demand for reacting to continuous operations. Therefore, touch
screen technology and speech recognition technology can both be
employed and integrated into a smartphone.

Another example for analyzing enabling conditions or perfor-
mance of a solution concept is stated as below. In this case, the
solutions, GPS module and Bluetooth, are employed to achieve
the function, the smartphone shall send the position data of the
customer to the VIMS. As for the solution concept GPS module,
in order to achieve the position data-sending function, an enabling
condition that the smartphone should access the communication
network is needed. Therefore, a new customer need is derived
here, that is, the smartphone needs to access the network. To satisfy
this new need, a new cycle of functional design process should be
started. Since this need is relatively simple, it is not necessary to
establish a sequence diagram model and activity diagram models.
Therefore, the alternative solutions can be directly generated, such
as cellular network technology and WiFi network technology. Note
that if the cellular network cannot be accessed at a location (e.g.,
an underground car park) for sending the position information to
the VIMS, the Bluetooth solution can then be employed to fulfill
the function of sending the position information. Therefore, these
two solution concepts can be integrated into a smartphone to
ensure that the function above can be achieved. It should be
noted that if a new customer need derived is complex enough,
a complete functional design process as above should be carried
out to generate the technical solutions, including establishing
sequence diagram models and activity diagram models.

The above design cycles should be iteratively implemented
until all customer needs have been addressed. Due to the limited
space, it is impossible to analyze all solutions here. In a similar
way, solution concepts corresponding to each function can be
obtained. Some solution analysis results are illustrated in
Figure 10. It should be noted that several different subfunctions
or sub-subfunctions are likely to be realized by the same technical

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

(‘act [Activity] Send a message for uniocking doors J |

in position data of customer }—\

T)
in position data of vehicle *—l
position data of vehicle .

[1 W

between the customer and the vehicle

LT caicutation
VIMS - Vehicle Information | l
Management System [calculation

The VIMS calculates the distance J

The VIMS checks the distance
between the customer and vehicle J

Boolean
[customerisNear == true] /l [customerisNear ==

position data of customer

false]

J[true : Boolean

The VIMS generates a doors-unlocki J

message for the smart vehicle

doors-unlocking message

[] false : Boolean

The VIMS rejects the request for
unlocking doors from the customer J

| doors-unlocking message

| 'The VIMS sends the doors-unlocking J é

message to the vehicle

(é i ;:Innns—unlucking message

out doors-unlocki ! A

= il

175

(a) The activity diagram model ofthe function for sending doors-unlocking message

(‘act [Activity] Unlock the electronic lock J

[
in doors-unlocking message I

l‘Ll duors'—unlocking‘l’n';essage
" The smart vehicle generaté-é_;
| command for unlocking doors J

=

doors-unlocking command

%Ioo rs-unlocking command

lj

The smart vehicle sends the
command to the motor of the lock J

doors-unlocking command

Z‘ioa rs-unlocking command

| The motor unlocks the lock catch J

-

sult of doors-unlocking

émessage about

| out message about result of :ioor;-u;'llo-:.:king.]/

(b) The activity diagram model of the electronic lock unlocking function

solution, which means that there can be a one-to-many mapping
relationship between solution concepts and functions, as shown in
Figure 10.

Developing functional logic

The last stage is functional logic development, where a system
engineer is required to figure out the functional logic among all

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Fig. 8. The Activity Diagram models of two general
functions identified from activities.

the functions or actions. Specifically, the temporal logic is
employed when the execution sequence in an activity diagram
should be determined between different actions. In contrast, the
decision logic should be defined if a decision is necessary to be
made, and different results will be generated according to differ-
ent decisions.

Taking the interaction activity, the VIMS sends a
doors-unlocking message to the smart vehicle, as an example, the

https://doi.org/10.1017/S0890060420000487

176

Fajun Gui and Yong Chen

Interaction Activities of the System Functions Identified from the Interaction
Scenario Activities
A " i S ® The tpl shall receive a for starting up the rental app
customer creates a request message
d locking for S 1t vehicle with :> ® The smartphone shall provide an interface for external operation
oorsu g ora smanventewt ® The smartphone shall generate a request for unlocking doors for the vehicle
a smartphone .
Th 1 ds i ® The smartphone shall access the communication network
7 mrt: S mﬂ:,e :?:ﬁ] :> ® The VIMS shall access the communication network
?m “‘g cors 10 taeycucte ® The smartphone shall send arequest for unlocking doors to the VIMS
information management system (VIMS) .
C- | — > o -
® The smatphone shall access the commumnication network
The smartphone calculates the position :> ® The smartphone shall receive the postion data from GPS
of the customer (or smartphone) ® The smartphone shall generate a position data for the customer
. e
® The VIMS shall recave the position data of the customer
The VIMS processes the position data of :> ® The VIMS shall receive the position data of the smart vehicle
the customer and the smart vehicle ® The VIMS shall process the received position data
. e
® The VIMS shall caleulate the distance between the customer and velide
The VIMS sends a message for ® The VIMS shall generate a doors-unlocking message for the vehicle
unlocking doors to the smart vehicle :’; ® The smart vehide shall receive the doors-unlocking message
. e
® The smart vehide shall ad locking d
The smart vehicle unlocks the electronic :> ® The smart vehicle shall send the command to the motor ofthelock
lock ® Themotor (of the lock) shall unlock the lock catch
. e
5 e Th rehicle shall check the result of doors-unlocki
The smart vehicle generates a prompt for :> . ﬁ:mm\&idcmc et i ::— e:‘ “:.gd ok
e smart vehide enerate a prompt for the result of doors-unlo
the result of doors-unlocking a E PO e
Fig. 9. The system functions identified from the inter-
action activities in the scenario to unlock the doors of a I I :> .
smart vehicle with self-service.

System Functions

® F1: The smariphone shal recave a message for staning up the remal 3pp
® FI: The smartphone shall provide an interface for external operation

F1: The hone shall access the ication network
2: The VIMS shall access the commurs cation network
The smartphone shall send a request for unlocking doors 1o VIMS

L B
B
o

® The smatphone shall send the position data of the customer to VIMS

® Thesmant vehide shall generate a docrs-unlodking command
® The smart vehide shall send the command to the motor ofthe lock

® The smat vehide shall generate a promipt for the result of doors-umlocking

Alternative Solution Concepts

Pressare sensing technelogy of touch screen
Speech recogmition technelogy

: Celphone keypads

External device

-~

: Cdlular mobile network technology
: WiFi network technology

Radio commumnication technelogy
Electromagnetic wave technology

(-

: GPS module
: Bluetooth
 Infrared sensor

-

52

51

Electronic control unit

: Computer system

(51 Lighting fickering prompt

Whistle prompt

-

Fig. 10. The mapping relationship between systemfunctions and solution concepts.

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

T T S

Feasible Solutions After Analyzing

* 51 Pressure sensing technolegy oftouch screm

51 Speech recognition technology

* 1. Celdar mobile network technology
* S2° WiFi network technology

* 51: GPS module

¥ 52: Bluetooth

¥ $1: Electronic control umt

S1: Lighting flickering
+ §2: Whistle prompe

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

‘act [Actty] Send a doors-unincing message 1o smart vehicie |

aslocates

aalocstes

walocates

ealocates

The smartphone calculates the
position of the customer

| posiion data
4 posaion data

The smartphone generates a
position data for the customer

| position data
¥ position data

The smartphone sends the
position data of the customer

[pasivon data

Smartphone Global Positioning System Vehicle Information Management System (VIMS) Smart Vehicle
The Global position system
{GPS) sends position data
position data
e
;Ssﬁﬁn_ﬁ 1 i |positiion data

positon data
The VIMS receives the
position data of the customer
[positon data
P positon data

The VIMS receives the pesition
data of the smart vehicle

positon data

¥ position data

The VIMS calculates the distance
between customer and vehicle

The smart vehicle calculates
the position of its own

position data
! position data

The smart vehicle generates
a position data of its own

| position data
¥ position data

The smart vehicle sends the
pesition data of its own

position data

177

The VIMS checks the distance
between customer and vehicle

caicutation

¥ calculation

Boolean

fatse] « [customerishear == true]

T
&

@

Fig. 11. The swim lane model of sending a doors-unlocking message to smart vehicle.

relevant execution sequence and functional logic are illustrated in
the swim lane model in Figure 11. To create a relatively complete
functional logic, an exceptional execution sequence is also consid-
ered in the model.

As seen in Figure 11, a fork node is created before the action,
the smartphone calculates the position of the customer (or smart-
phone), and the action, the smart vehicle calculates the position
of its own, which means that the two actions can take place at
the same time and the order of completion of them is nondeter-
ministic. The object flow between the action, the smartphone sends
the position data of the customer, and the action, the VIMS
receives the position data of the customer, represents that these
two actions should be executed in a sequential order. The output
flow of the former action will be transferred to the latter one as the
input flow. In addition, a decision node has been defined after the
action, the VIMS checks the distance between the customer and the
smart vehicle, to specify a decision logic. Specifically, if the output
of the above action is false, which means the VIMS judges that the
customer is not within an effective distance from the smart vehicle,
then the request for unlocking doors will be rejected. Thereafter, a
corresponding prompt will be sent to the customer, which is not
defined in the model for brevity. If the result true is generated
from the action, which means the customer is standing near the
smart vehicle, then the other action sequence will be triggered,
that is, a doors-unlocking message will be generated and sent to

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

v faise . Boolean

The VIMS rejects the request for
unlecking doors from the customer

Jirue - Boolean
The VIMS generates a doors-
unlocking message
| doors-uniocking message
¥ doors-uniocking message

The VIMS sends the doors-
unlecking message to the vehicle

doors-uniocking message

~jdoors-uniocking message

The smart vehicle receives the
doors-unlocking message
1 T
doors-uniogking message 4
&)

out deors-unlocking message

the smart vehicle. It can be found that the result of functional allo-
cation is also explicitly specified in the swim lane model, since each
action is clearly appointed to its executor in a single swim lane. For
example, the action, the smart vehicle receives the doors-unlocking
message, is assigned to the swim lane smart vehicle.

In a similar way, the complete logic development process can
be accomplished. The functional logic generated here can then be
used to integrate various actions or functions together. As a result,
based on the functional allocation, the system under development
and some external systems can be integrated into an entire smart
system to fulfill desired functions.

Discussion

Based on the above case study, it can be found that the proposed
scenario-integrated approach for functional design can assist sys-
tem engineers to generate the functional architecture, solution
concepts, and complex functional logic of a smart system. The
approach can also be supported with various diagram models of
SysML, which is a standard methodology for Model-Based
Systems Engineering. To better explain our scenario-integrated
approach for functional design, several influential functional
design approaches are analyzed here for comparison.

The first one is the systematic design approach proposed by
Pahl and Beitz (2007), where the functional design is simplified

https://doi.org/10.1017/S0890060420000487

178

as a functional decomposition based on input and output flows.
However, the decomposition approach is only suitable for the tra-
ditional mechanical systems, especially on the device-level pro-
ducts, where only the internal functions of a product are
analyzed. When used for the functional design of smart systems,
the functional decomposition approach would have two major
drawbacks. On one hand, it does not fully address the interactions
between the system under development and the external systems
in the environment, which the functional design of a smart system
must deal with. On the other hand, the functional decomposition
approach does not support the modeling of complex functional
logic (e.g., decision logic), which is very common in smart sys-
tems. In contrast, our scenario-integrated approach for functional
design can not only deal with the interactions related to a smart
system, but also the complex functional logic involved in a
smart system.

The second one is axiomatic design approach proposed by Suh
(2001), in which a functional design process is considered as a
zigzag mapping process between the customer domain, the func-
tion domain, and the physical domain. Similar to the functional
decomposition approach, the zigzag mapping model also does
not take into consideration the interactions between systems
under development, human users, and the environment, which
is important for capturing the supporting functions of external
systems and the corresponding functional interfaces of system
under development. The zigzag mapping model also does not
include functional logic development, which, therefore, is not
suitable for the functional design of a smart system. As mentioned
above, since scenario models and activity diagram models have
been integrated in our approach, both the interactions and the
functional logic of a smart system can be well addressed in our
functional design approach.

The third one is Harmony for Systems Engineering approach
(abbreviated as Harmony SE) (Hoffmann, 2011), which aims at
developing a SysML-based design methodology for the develop-
ment of cyber-physical systems. In Harmony SE, the concept of
use case is used to describe a specific operational aspect of a sys-
tem, which is similar to the concept of scenario in our approach.
However, compared with our approach, Harmony SE does not
explicitly elaborate how functions can be identified and decom-
posed, and does not take into consideration the supporting func-
tions of external systems. Another limitation is that Harmony SE
lacks a detailed understanding about the solution analysis process,
where engineers are required to analyze the enabling conditions,
performance, and side effects of a solution alternative, and to
derive new customer needs if necessary.

Based on the above discussion, it can be demonstrated that our
approach can support the functional design of smart systems in a
more comprehensive way. It should be noted that with the advent
of new generation information technologies (IT) in industry and
product design, such as big data and cloud, Internet of Things, the
manner of functional design can also be affected and enriched. By
integrating such technologies into smart systems, systems can
become more intelligent and can interact with users and its envi-
ronment in a more effective manner.

As smart systems are becoming ubiquitous, it is increasingly sig-
nificant to have a systematic approach for guiding designers to
achieve the functional design of smart systems, which is vital
for reducing the development cycle and enhancing the design

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Fajun Gui and Yong Chen

quality. Since the traditional functional design approaches often
do not deal with the interactions and functional logic, they are
not suitable for guiding the functional design of smart systems.
Therefore, this paper is devoted to the development of a scenario-
integrated approach for functional design of smart systems.

Since scenarios are often used in software engineering to cap-
ture and document interaction sequences between human users
and software, the concept of scenario is introduced in this
research, to describe the complex interactions between a smart
system and its actors, which include both human users and exter-
nal systems. After elaborating the concept of scenario, a model-
based method for representing the scenario is elaborated, which
employs sequence diagram models to explicitly describe the inter-
action sequences for satisfying a specific goal. Thereafter, a
scenario-integrated approach for functional design is proposed
based on the model-based scenario representation, which can
be regarded as a comprehensive methodology that combines the
software engineering methodology with the product design
methodology. A salient feature of the functional design approach
is that it can effectively assist designers in transforming a subjec-
tive customer need into interaction sequences, then into system
functions and ultimately into the solution concepts of a smart sys-
tem. The functional design of the automated doors-unlocking sys-
tem of a smart vehicle is employed as an example to demonstrate
that the proposed approach is suitable for the functional design of
smart systems. However, it should be acknowledged that our func-
tional design approach is more applicable to functional integra-
tion design, where a solution concept is generated through the
integration of various functional components, compared with
an original or creative design task. For an original or creative
design task, it is often difficult to employ our functional design
approach, since the contextual information and the solution prin-
ciples are often unknown to designers, which makes it impossible
to carry out the scenario analysis work.

Based on our functional design research, an important future
work is to develop a computer-based tool to support and manage
the functional design process of smart systems in a more effective
manner. It can be found that the scenario-integrated functional
design approach proposed here primarily deals with the qualita-
tive aspect of functional design, another future work that should
be done is to develop a structured approach for dealing with the
quantitative aspects of functional design. In addition, since the
smart systems discussed in this paper are still not smart enough,
for example, they do not possess some advanced artificial intelli-
gence (AI) skills (e.g., machine learning), it would be necessary to
develop a smarter design approach for the functional design of the
smart systems that can incorporate such advanced Al abilities.

The authors are grateful to the anonymous reviewers for
their constructive suggestions.

This research is supported by the Natural Science Foundation of
China (Grant No. 51875346) and the Ministry of Industry and Information
Technology of China.

Alexander IF and Stevens R (2002) Writing Better Requirements. London:
Pearson Education.

Aurisicchio M, Bracewell R and Armstrong G (2013) The function analysis
diagram: intended benefits and coexistence with other functional models.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing
27, 249-257.

https://doi.org/10.1017/S0890060420000487

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 179

Booth JW, Reid TN, Eckert C and Ramani K (2015) Comparing functional
analysis methods for product dissection tasks. Journal of Mechanical Design
137, 081101, 1-10.

Campbell MI, Cagan J and Kotovsky K (2003) The A-design approach to
managing automated design synthesis. Research in Engineering Design 14,
12-24.

Carroll JM (2000) Five reasons for scenario-based design. Proceedings of the
32nd Annual Hawaii International Conference on Systems Sciences,
HICSS-32. Hawaii: IEEE.

Chakrabarti A and Bligh TP (1996) An approach to functional synthesis of
mechanical design concepts: theory, applications and merging research
issues. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 10, 313-331.

Chen Y, Liu ZL and Xie YB (2012) A knowledge-based framework for creative
conceptual design of multi-disciplinary systems. Computer-Aided Design 44,
146-153.

Chen Y, Zhao M, Xie YB and Zhang ZN (2015) A new model of conceptual
design based on scientific ontology and intentionality theory. Part II: the
process model. Design Studies 38, 139-160.

Cole EL (1998) Functional analysis: a system conceptual design tool [and
application to ATC system]. IEEE Transactions on Aerospace and
Electronic Systems 34, 354-365.

Engelenburg S, Janssen M and Klievink B (2019) Designing context-aware
systems: a method for understanding and analysing context in practice.
Journal of Logical and Algebraic Methods in Programming 103, 79-104.

Erden MS, Komoto H, Van Beek TJ, D’Amelio V, Echavarria E and
Tomiyama T (2008) A review of function modeling: approaches and appli-
cations. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 22, 147-169.

Friedenthal S, Moore A and Steiner R (2006) OMG systems modeling
language (OMG SysML) tutorial. INCOSE Intl. Symp., 11 July 2006,
Orlando, Florida, Vol. 9, pp. 65-67.

Friedenthal S, Moore A and Steiner R (2014) A Practical Guide to SysML: the
Systems Modeling Language. Burlington: Morgan Kaufmann.

Hoffmann HP (2011) Model-basedsystems engineering with rational rhap-
sody and rational harmony for systems engineering. Deskbook Release 3.
Hong JY, Suh EH and Kim SJ (2009) Context-aware systems: a literature

review and classification. Expert Systems with Applications 36, 8509-8522.

Jacobson I (1993) Object-Oriented Software Engineering: A Use Case Driven
Approach. Bengaluru: Pearson Education India.

Kaindl H (2000) A design process based on a model combining scenarios with
goals and functions. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 30, 537-551.

Kitamura Y, Kashiwase M, Fuse M and Mizoguchi R (2004) Deployment of
ontological framework of functional design knowledge. Advanced
Engineering Informatics 18, 115-127.

https://doi.org/10.1017/50890060420000487 Published online by Cambridge University Press

Liu ZL, Zhang ZN and Chen Y (2012) A scenario-based approach for require-
ments management in engineering design. Concurrent Engineering:
Research and Applications 20, 99-109.

Mhenni F, Choley JY, Penas O, Plateaux R and Hammadi M (2014) A
SysML-based methodology for mechatronic systems architectural design.
Advanced Engineering Informatics 28, 218-231.

Pahl G and Beitz W (2007) Engineering Design: A Systematic Approach, 3rd
Edn. London: Springer-Verlag.

Pohl K (2010) Requirements Engineering: Fundamentals, Principles, and
Techniques. New York: Springer Publishing Company, Inc.

Roozenburg NFM and Eekels J (1995) Product Design: Fundamental and
Methods. West Sussex: John Wile & Sons.

Rumbaugh J, Blaha M, Premerlani W, Eddy F & Lorensen WE (1991)
Object-Oriented Modeling and Design, Vol. 199. Englewood Cliffs, NJ:
Prentice-Hall.

Suh NP (2001) Axiomatic Design: Advances and Applications. New York:
Oxford University Press.

Umeda Y, Takeda H and Tomiyama T (1990) Function, behaviour, and struc-
ture. In Gero JS (ed.), Applications of Artificial Intelligence in Engineering V,
Vol. 1. Berlin: Computational Mechanics Publications/Springer-Verlag.,
pp. 177-193.

Umeda Y, Ishii M, Yoshioka M, Shimomura Y and Tomiyama T (1996)
Supporting conceptual design based on the function-behavior-state
modeler. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 10, 275-288.

Yuan L, Liu YS, Sun ZF, Cao YL and Qamar A (2016) A hybrid approach for
the automation of functional decomposition in conceptual design. Journal
of Engineering Design 27, 333-360.

Fajun Gui is currently a PhD student in the School of Mechanical Engineering
at Shanghai Jiao Tong University. He received his bachelor and master
degrees from Chang’an University. His research interests include conceptual
design, computer-aided design, and systems engineering.

Yong Chen is a Professor of Engineering Design in the School of Aeronautics
and Astronautics at Shanghai Jiao Tong University. He received his bachelor
and PhD degrees from Zhejiang University. He joined Shanghai Jiao Tong
University as a postdoc in 2004. He was a visiting scholar in the IMPACT
Laboratory at the University of Southern California for 1 year. Dr. Chen’s
research interests include many aspects of engineering design research, in
particular, conceptual design, design innovation, design knowledge reuse,
computer-aided design, and systems engineering.

https://doi.org/10.1017/S0890060420000487

	A scenario-integrated approach for functional design of smart systems
	Introduction
	Related work
	Scenario and its representation
	Concept of scenario
	Scenario representation

	A scenario-integrated approach for functional design
	Method overview
	Scenario analysis
	Functional synthesis
	Solution analysis
	Logic development

	Case study
	Refining customer needs
	Synthesizing system functions
	Analyzing solution concepts
	Developing functional logic

	Discussion
	Conclusions
	Acknowledgments
	References

