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SUMMARY
This paper presents a novel system for human–robot interaction in object-grasping applications.
Consisting of an RGB-D camera, a projector and a robot manipulator, the proposed system provides
intuitive information to the human by analyzing the scene, detecting graspable objects and directly
projecting numbers or symbols in front of objects. Objects are detected using a visual attention
model that incorporates color, shape and depth information. The positions and orientations of the
projected numbers are based on the shapes, positions and orientations of the corresponding objects.
Users select a grasping target by indicating the corresponding number. Projected arrows are then
created on the fly to guide a robotic arm to grasp the selected object using visual servoing and deliver
the object to the human user. Experimental results are presented to demonstrate how the system is
used in robot grasping tasks.
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1. Introduction
Robots are increasingly used to assist daily activities in home or workplace environments. There are
many advantages to using robots in applications such as home service, rehabilitation and assistant
living, etc.1,2,3. By definition, these assistive applications require human–robot interaction or human-
in-the-loop systems, including methods to pass information between the robot and human. Human
input can help robots visually locate objects4, select grasping targets5, plan motions,6 etc.

Object grasping and retrieval is one key assistive-robot task, and vision sensors are commonly
used for guidance and planning in object grasping. Visual sensors can observe human operators7

and recognize gestures8 to accept commands. For example, a robot can obtain information about
the grasping target from human input (e.g. object location, grasping directions, etc.). Alternately,
vision-based robotic systems can analyze an environment to independently detect, recognize and
localize objects. Therefore, less input about the grasping targets is needed from the users, assuming
that the scene analysis is reliable. In this work, a vision system is used to detect and locate objects
that are possibly desired grasping targets.

Vision-based object detection varies depending on the application. If the object model is known
beforehand, object detection is usually done by matching features using key point-based methods such
as SIFT9, or using region-based feature comparison10 and template matching11 methods. Alternately,
the system looks for any object in the scene that satisfies certain criterion. For example, ref. [12]
presents a system that looks for visually attractive object in the environment using a visual attention
model based on the visual criteria human observers find stimulating. The saliency model proposed
by Itti13 is one of the most widely used visual attention models.

Accurate depth information is often critical for vision-guided robotic grasping. Algorithms have
been developed for 3D reconstruction based on stereo depth maps14 or structured light15. In recent
years, low-cost RGB-Depth (RGB-D) cameras (such as the Microsoft Kinect) have become prevalent.
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Fig. 1. Structure of the RGB-D camera–projector system.

Several robotic systems have used RGB-D cameras for interpreting the target scenes, human motions
and human intentions16, 17, 18.

In human–robot interaction, it is critical that the robot can indicate its understanding of the user’s
commands or convey its knowledge on the operating environments. Despite many interfaces that have
been developed, enabling robots to give intuitive feedback to the human remains an open problem.
Computer monitors may be not convenient for the users to observe, as they may need to move, or the
monitor can block their vision. Moreover, it may not be feasible to have a monitor for some mobile
robotic platforms. Therefore, other interfaces may be better. In ref. [19], a robot avatar can provide
gesture feedback to inform the user that he/she needs to repeat a command due to classification
failure. In ref. [20], a “smart table” is presented that can highlight detected objects from underneath.
However, this requires special hardware, and the only information the system provides is the position
of the objects.

In this work, we propose a novel system consisting of an RGB-D camera and a Digital Light
Processing (DLP) projector to provide interactive robot-to-human feedback information by projecting
patterns in front of the detected objects. The structure of the proposed system is shown in Fig. 1.
Assumptions are made that the objects are all located on a flat table surface in an indoor environment.
The system first detects visually attractive objects using a modified saliency model with depth added
as a feature. After the objects are detected, the shape, position and orientation of the objects are
estimated from the RGB-D image. Then, the system projects a number onto the table in front of each
object, the size and orientation of which is determined according to the size and orientation of the
corresponding object. The projected numbers for all the detected objects are displayed simultaneously
on the table. The human can then inform the robot of the desired grasping target, such as by pressing
a numbered key or speaking to a speech recognition system.

Having selected a desired target for the robot to grasp and retrieve, visual servoing based on a
projected pattern is used to control the robot arm to reach its grasping position. The goal pose of
the camera is determined by the desired grasping direction and the eye-to-hand transformation. The
goal image is generated by predicting what the pattern should look like in the camera view at its goal
pose. The novel contribution of this method lies in that the projected pattern for visual servoing is
generated according to the desired grasping pose.

Projectors have previously been used to allow users to interact with computers or robots. For
example, in ref. [21], users can control a web browser or desktop applications by pointing toward
a projected computer screen. A similar system is proposed in ref. [22], where users interact with
computers by touching the items projected on the screen. The robotic system equipped with two
RGB-D cameras and a projector in ref. [23] can adjust the projection according to human gestures.
The system here is unique in that it focuses on allowing the robot to communicate with the human.

We previously developed a stereo camera–projector system that projects “spotlight” patterns on
objects detected with a salience model that includes a disparity map24, 25. Based on human feedback,
a robot will then grasp a desired object. The trifocal tensor constraints are used to match the detected
objects in two views and map the feedback patterns to the projector view. The system was limited
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to projecting spotlights on one object at a time, and the spotlight patterns only indicated the position
and estimated size of the objects. The system presented in this work is simpler in design and is
capable of projecting unique patterns for each detected object, simultaneously. Furthermore, the
system presented here provides more information about the detected objects, such as their positions,
sizes and orientations. Last, the projected patterns are used to guide a vision-based controller, which
improves the accuracy of the grasping task.

This work uses Simultaneous Image and Position Visual Servoing (SIPVS), which we proposed
in ref. [26], to control the robot. Like Position-Based Visual Servoing (PBVS), Image-Based Visual
Servoing (IBVS)27 and combined methods (e.g. ref. [28]), SIPVS requires a goal image and depends
on matching and tracking image features. However, the accuracy and efficiency of feature matching
and tracking algorithms is poor in cluttered environments. The system proposed here can use the
projector to create targets in the environment with known appearance at the goal configuration.

In ref. [29], a projector displays patterns on non-textured objects to aid visual servoing. However,
the method can only position the camera at a predefined position to the object, and the features tend to
leave the camera field of view when the robot gets too close to the object. In the method proposed in
this work, the pattern is projected on the table near the target object, so the features are independent of
the object appearance. Since the shapes and structures of the projected patterns are fully controlled,
image features can be easily extracted and matched.

The paper is organized as follows. In Section 2, a brief background is provided. In Section 3, we
discuss object detection and feedback pattern projection using the proposed RGB-D camera–projector
system. Grasping by visual servoing with respect to projected patterns is investigated in Section 4.
Experimental results are represented in Section 5. Finally, Section 6 concludes the paper and proposes
future works.

2. Background

2.1. Camera and projector models
Define an inertial world Cartesian reference frame Fw and camera frame Fc. The coordinates of
a 3D point are defined as M = [X, Y, Z, 1]T using homogeneous coordinates measured in Fw. Its
corresponding image plane projection is defined as m = [x, y, 1]T as measured in Fc. Under the
pinhole camera model, the projection relation between M and m is given by

m = PM =

⎡
⎢⎣

1
Zc

0 0 0

0 1
Zc

0 0

0 0 1
Zc

0

⎤
⎥⎦ [

R T
0 1

]
M,

where R ∈ SO(3) and T ∈ R3 are rotation and translation of Fc with respect to Fw, P ∈ R3×4 is
the projection or camera matrix, and Zc is the Z coordinate of the point as measured in Fc. The
homogeneous coordinates m is mapped to pixel coordinates in the image by

p = Km,

where K ∈ R3×3 is the calibration matrix of the camera.
A projector can be modeled as a dual of a pinhole camera. For a camera, a point on a 3D surface in

space projects to a 2D image point. While for a projector, a 2D image point m is projected as a line
L in 3D space (i.e. L is the pre-image of m). The intersection of the line L with a surface results in a
point of light on the surface. To distinguish between the directions of projection, we define projecting
from 3D space to 2D image plane to be “projecting in” (i.e. projection of camera), and projecting
from 2D image to 3D space to be “projecting out” (i.e. projection of projector).

2.2. Visual attention models and the saliency model
Visual attention models simulate the selective visual attention of human beings. So called top-down
models consider the effect of cognitive factors on visual attention (e.g. knowledge). Bottom-up
models simulate only the spontaneous visual cortex response. Visual attention models have been used
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in robotic applications such as object manipulation30, object tracking31 and simultaneous localization
and mapping32.

A popular bottom-up model is Itti’s saliency model13. The model represents the attractiveness of
visual stimuli as a gray-scale image called a saliency map. Regions of likely interest to a human will
receive a high intensity in the saliency map. A saliency map is typically the combination of different
feature maps, depending on the specific applications. In ref. [13], the three features used to generate
the saliency map are intensity, color and orientation. Other features have been used in visual attention
models such as entropy33 and depth34. A normalization step is often applied to convert all feature
maps to the same scale.

An adaptive feature map weighting scheme based on information theory was proposed in ref. [35].
Such a weighting scheme is good for analyzing dynamic scenes. The method defines the probability
that an event is observed from a feature map M as

p(M) =
∑

i,j Mτ (i, j )∑
i,j M(i, j )

,

where M(i, j ) is the value of the i–j th pixel in M and Mτ (i, j ) is the pixel value if higher than a
threshold τ (else 0). The weight of the feature map is decided by the amount of information obtained
from the map

W (M) = −log(p(M)).

The final saliency map S is given by

S =
n∑

i=1

W (Mi)Mi ,

where n is the number of features used in the model.

2.3. Visual servoing
Visual servoing is feedback control of a mechanical system using information from visual sensors.
The two basic visual servoing methods are PBVS and IBVS27. In PBVS, the feedback control is
established using the pose error (i.e. the difference between the current position and orientation and
the goal position and orientation of a camera). The homography matrix or essential matrix36 can be
used to estimate the pose error between current and goal pose from current and goal images. In IBVS,
the feedback control law is derived in the image space. For each feature point, the image error is
given by the differences between its coordinates in the current frame and in the goal frame.

PBVS and IBVS each have advantages and drawbacks. In PBVS, the image error is not controlled.
Therefore, it is possible for the feature points to move out of the camera field of view, which can
cause visual servoing to fail. Conversely, the pose error is not controlled in IBVS so that the robot
may reach its joint limit. To overcome the problems of PBVS and IBVS, a number of hybrid and
switching control methods were developed, e.g. refs. [28, 37, 38, 39].

We proposed SIPVS in ref. [26]. SIPVS combines the control laws of PBVS and IBVS and
stabilizes the pose and image error at the same time. Adaptive depth estimation eliminates the need
for prior knowledge of depth or the need to measure it. In this work, SIPVS is used in object grasping
operations to guarantee that the desired grasping pose can be achieved.

3. Robot-to-human Feedback Using the RGB-D Camera–Projector System
The proposed system detects visually salient objects using a modified saliency model with depth
map as a feature and provides intuitive robot-to-human feedback information by directly projecting
patterns in front of detected objects. Numbers are projected in front of each of the detected objects
to indicate what objects the system has detected and determined may be of interest to a human user.
Positions and directions of the projected numbers specify the detected positions and facing directions
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Fig. 2. Calculating the table plane parameters.

of the corresponding objects. The projected patterns are updated repeatedly to adjust to changes in
the scene.

3.1. System calibration
A calibration step is first performed. The proposed RGB-D camera–projector system has four “views”:
the Kinect RGB camera view, the Kinect IR camera view, the Kinect IR projector view and the DLP
projector view. The extrinsic parameters must be accurately determined between each pair of views,
and intrinsic parameters must be determined for the RGB and IR cameras and the DLP. The extrinsic
parameters between the Kinect RGB and IR camera are determined using the calibration library in
ref. [40]. RGB camera intrinsic calibration is done using the Matlab Camera Calibration Toolbox41.
DLP intrinsic calibration is done using the method of Falcao et al.42, which is also based on ref. [41].
Extrinsic calibration between the DLP and the RGB camera is also similar to ref. [41], and achieved
by projecting a checkerboard pattern in view of the camera.

3.2. Recovering the position of the table surface
The proposed system projects feedback patterns on the table in front of the detected objects. The
coefficients of the table plane with respect to the system need to be determined. We assume that
the RGB-D camera–projector system is located at a fixed position in front of the table, as illustrated
in Fig. 2. The world frame Fw is chosen to be coincident with the Kinect RGB camera frame. A
checkerboard image is projected on the table, and n inner corners mi = [xi, yi, 1]T ∈ R3, i = {1 . . . n}
are extracted in the camera view. The corresponding 3D points Mi in Fw , which are the intersections
of the pre-images of mi and the table plane, are given by

Mi = [xizi, yizi, zi, 1]T ∈ R4, i ∈ {1, . . . , n}, (1)

where the depth zi is obtained from the depth map generated by the Kinect sensor. Since all points
Mi , i ∈ {1, . . . , n}, are located in the same plane, they satisfy the equation

MT
i πππ = 0,

where πππ = [π1, π2, π3, π4]T ∈ R4 is the coefficients of the table surface plane. The normal vector of
the table plane is given by the first three elements in πππ as Nπ = [π1, π2, π3]T ∈ R3. Define a matrix
P = [M1 . . . Mn]T , then the equation

Pπππ = 0

holds. The null space of P estimates the coefficients πππ of the table plane up to a scale factor. A
least squares solution can be found via singular value decomposition of P. Note that the same set
of feature points Mi , i ∈ 1, . . . , n for calculating the table plane parameters can also be used for
extrinsic calibration between the Kinect RGB camera and the projector, so the two steps can be
combined.
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Fig. 3. Pre-processing on the disparity map and saliency map generation.

3.3. Saliency-based object detection
The system provides feedback information for robot–human interaction. The system first detects
objects that are likely to attract the attention of human users based on a modified saliency model.
In addition to the commonly used intensity, color and orientation features, a disparity map from the
RGB-D camera is added as a feature to generate the saliency map. The disparity map helps isolate
objects that are out of the plane of the table and can be grasped by the robot. The information theory-
based weighting scheme described in Section 2.2 is used to determine the weight of each feature map,
and the object locations are estimated by the conspicuous regions in the thresholded saliency map.

Since the feedback patterns are projected on the table surface in front of the detected objects, both
the Kinect and the projector need to be tilted toward the table. However, this will cause the table
surface to have relatively large values in the disparity feature map. The example given in Fig. 3 shows
the effect of the table surface on the disparity map and the saliency map. A scene with three objects
and the corresponding disparity map is given in Fig. 3(a) and (b), respectively. It can be seen from
Fig. 3(b) that the objects on the table have similar disparity values to the table surface.

To extract useful information from the disparity map, a pre-processing step is applied to remove the
table surface and the background before adding the disparity map to the saliency model. Table surface
removal is achieved by setting equal to zero each point md in the disparity map with a corresponding
3D point Mi satisfying

MT
i πππ <= 0,

where πππ is the coefficients of the table plane representation found in Section 3.2. After removing the
table surface, the background wall is also removed by finding the maximum value in the histogram
of the disparity map. Alternately, the maximum range of the projector and/or the reachable space of
the robot can be used to define a disparity value threshold.

Again consider the example given in Fig. 3. Figure 3(c) and (d) show the disparity map after
the table surface and the background wall is removed, respectively. The disparity map in Fig. 3(d)
better indicates the salient objects in the scene, compared to the original disparity map. The saliency
map built with the disparity map in Fig. 3(d) is given in Fig. 3(e). Figure 3(f) shows the thresholded
saliency map. After segmentation, the segments in the disparity map with areas larger than a threshold
represents the estimated object locations.
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Fig. 4. Determining the orientation of the projected pattern for an object.

3.4. Projecting feedback patterns on the table
There are two purposes for projecting patterns in front of the detected objects: (1) to provide intuitive
information to the human users about the robot’s knowledge of the detected objects; (2) to provide
visible features to match and track during the grasping operations. The position, size and direction of
the patterns are decided by analyzing the 3D shape information of the detected objects.

A point cloud of the scene is first obtained from the Kinect. The objects are segmented from
the point cloud using the saliency map segmentation result as a mask. Define a set of 3D points in
homogenous coordinates

O = {Mi |Mi ∈ R4 belongs to a detected object}

and a set of 2D points in the saliency map

o = {mi |mi ∈ R3 is in the region representing the object}.

For a 3D point Mj , we have Mj ∈ O if the corresponding 2D point mj ∈ o. Since the saliency model
is a coarse estimation of the object region, the point cloud segmentation typically contains outliers.
A refined estimate Ō of the object is given by removing the outliers in O using the Mahalanobis
distance. The estimate Ō is defined as a set of points

Ō = {Mi |Mi ∈ O, Dm(Mi) < T },

where Dm(Mi) is the Mahalanobis distance of Mi to the set of points O, and T is a tunable threshold.
Note that Ō does not reflect the complete shape of the object, since the point cloud is only available
for the side of the object that is visible to the Kinect.

We assign a Cartesian frame Fo to the object, with the origin at the mean of the points in Ō. The
axes of Fo, denoted as unit vectors x1, x2, x3, are the major axes of object and are determined as
the eigenvectors of the covariance matrix of the points in Ō (i.e., we perform principal component
analysis). The axis x3 is assigned as the axis vector with the smallest inner product with the table
surface normal. Note that this process works without modification for symmetric point objects such
as cylinders and spheres.

To locate the position of the projected feedback pattern with respect to the object, a reference point
pπ where the object contacts the table is determined by projecting the origin of Fo into the table
plane πππ . The orientation of the projected pattern is determined by projecting Fo axes x1 and x2 into
the table plane to give vectors xπ1 and xπ2 by

xπi = Nπ × (xi × Nπ ), i = 1, 2
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Fig. 5. An arrow projected in front of a graspable object.

as illustrated in Fig. 4. The facing direction w of the object is chosen as either xπ1 and xπ2 according
to

w =
{

xπ1 if pT
π ( xπ1

||xπ1|| ) >= pT
π ( xπ2

||xπ2|| )

xπ2 if pT
π1( xπ1

||xπ1|| ) < pT
π ( xπ2

||xπ2|| ).
(2)

The coordinates of the reference point pπ gives a vector from Fw to pπ . Therefore, the condition
in Eq. (2) means that the vector w is chosen to be either xπ1 or xπ2, whichever points closer to the
direction of the RGB camera. Assume w = xπ1 in the case of Fig. 4. The vectors xπ1(i.e., w) and xπ2

are generally not orthogonal to each other. A vector w′ which is orthogonal to w can be found by the
cross product of Nπ and w. Define a Cartesian coordinate frame Fπ with origin pπ and two axes w
and w′ in the plane of the table. The third axis is given by w × w′.

When there is a single detected object, an arrow pattern is then projected on the table. The arrow
consists of three line segments. The tip of the arrow head is set to be a distance d away from the
reference point pπ along the direction w. The end point of the shaft line segment is set to be of the
length of the longest principle axis of the object (i.e. the largest eigenvalue of the covariance matrix
of Ō) from the tip vertex along the direction w. We set d to one-half the arrow length. The end points
of the line segments of the arrow head are chosen to be symmetric about the arrow shaft, e.g. at a
length of one half the shaft length and making an angle ±30◦ with the shaft line segment.

Having designed the desired positions of the endpoints in the coordinate frame Fπ , their 3D
positions Mci ∈ R4 expressed in the camera frame can be calculated, since the 3D coordinates of the
reference point pπ is given by Eq. (1), and the two vectors w and w′ in the camera frame are known.
Let the translation and rotation of the projector with respect to the Kinect RGB camera be Tp ∈ R3

and Rp ∈ SO(3), which is found in the extrinsic calibration step in Section 3.1. The vertices are
mapped to the corresponding points mpi in the projector view by

Mpi =
[

Rp Tp

0 1

]
Mci ,

mpi =

⎡
⎢⎣

1
Zpi

0 0 0

0 1
Zpi

0 0

0 0 1
Zpi

0

⎤
⎥⎦ Mpi,

where Zpi is the third element in Mpi = [Xpi, Ypi, Zpi, 1] ∈ R4. A bitmap is generated with a black
background and white line segments with the desired end points. Displaying this image from the
projector results in the desired appearance of the arrow projected on the table. An example is shown
in Fig. 5, with an arrow oriented to point at an eraser.
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Fig. 6. Projecting a number in front of a detected object.

Fig. 7. Projecting numbers for multiple detected objects simultaneously.

When there are multiple objects detected by the attention model, we project numeric symbols.
Each numeric symbol is rectangular and consists of several line segments. The end points of each
segment can be calculated according to the coordinates of pπ , the direction w, distance d and the
size of the pattern, similar to the way the arrow line segments were determined. This is illustrated
in in Fig. 6. Figure 7(a) shows a scene with four objects of different shapes, sizes and orientations.
Different numbers are projected on the table, whose appearances are adaptive to the corresponding
objects using the method described in this section. Figure 7(b) shows the bitmap that is displayed by
the projector to give the desired placement on the table.

To define a grasping target, the system only needs to receive the corresponding number as input
from the human user. In our implementation, the user strikes the desired number on a computer
keyboard, but it would be straightforward to use a specialized keypad, hand-held device or speech
recognition. Then object grasping can be carried using a visual servoing algorithm with respect to the
projected pattern.

4. Object Grasping by SIPVS Control
Once a grasping target is specified by the human user, object grasping operations are conducted using
SIPVS control. In SIPVS, the image error and the pose error converge simultaneously. By using the
eye-in-hand configuration for visual servoing, SIPVS ensures that the image features remain in the
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Fig. 8. Visual servoing with respect to a projected pattern.

field of view of the camera and the robot arm does not reach its joint limits when approaching the
desired goal pose.

The projected pattern corresponding to a selected grasping target is used to provide image features
for visual servoing. Since the position of the projected pattern on the table can be determined by the
system, the patterns can be generated automatically to ensure that the features are in the camera view
as the robot arm approaches the goal pose. The problem addressed in this section is how to generate
the proper goal image that will guide the robot to its grasping position. Note that the goal image and
goal end effector pose are defined without the need for knowledge of the robot base frame in the
world frame, which is an important contribution of this approach.

4.1. Definitions and notations
As illustrated in Fig. 8, a camera and a gripper are attached rigidly to the robot end-effector. This
camera on the robot wrist will be used to guide the tool to the desired position with respect to the
object. The world frame Fw is defined as the Kinect RGB camera frame. A tool frame Ft is assigned
to the gripper, with its origin located between the two fingers. The camera frame and the end-effector
frame are defined as Fc and Fe, respectively. The target object frame Fo is determined as described
in Section 3.4. In this section, the notation yHx is used for any homogenous transformation H from
the reference frame at pose y to the frame at pose x.

Like PBVS and IBVS, the pose error and image error measurements in SIPVS rely on the accuracy
of feature matching and tracking in the camera view. In the proposed the system, features are obtained
from the projected pattern on the table, which eliminates the dependency of feature extraction on
the appearance of the target object. With the camera-gripper configuration shown in Fig. 8, the tool
frame Ft is chosen to be aligned with the object frame Fo with an additional rotation of 180◦about
the x-axis, given by the rotation matrix

oRt =
⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ .

This results in the gripper being aligned with the object axes and approaching the object along the
axis of Fo that is closest to vertical. Furthermore, this keeps the camera positioned and oriented to
view the pattern in front of the object. As discussed in Section 3.4, the position, size and shape of
the projected pattern with respect to the object is fully controlled. In an object grasping task, the
projected pattern should be generated such that it can be seen by the wrist camera at all times during
visual servoing until the robot end-effector reach its goal pose.
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4.2. Automatic generation of goal pose and goal image
Recall that the object frame Fo had axes x1, x2, x3 given by the major axes of the object. The pose of
an object in Fw is described by a homogenous rigid body motion wHo as

wHo =
[

wRo
wXo

0 1

]
∈ R4×4,

where wRo = [x1, x2, x3] ∈ SO(3), and wXo ∈ R3 is the origin of Fo in Fw. Then the desired goal
pose of the tool frame wHt ∈ R4×4 is obtained by

wHt =w Ho
oHt =

[
wRo

oRt
wXo

0 1

]
. (3)

Knowing the desired goal pose of the tool frame wHt , the next step is to generate the goal pose
of the camera frame wHc and a goal image such that the desired wHt is achieved when the visual
servoing converges. The homogenous transformation eHt between Fe and Ft is determined via a
CAD model of the gripper. Eye-to-hand calibration is done using Tsai’s method43, which produces
the homogenous transformation eHc between Fe and Fc. Therefore, the transformation tHc between
Ft and Fc is given by

tHc =t He
eHc = (eHt )

−1eHc. (4)

The goal pose of the camera frame with respect to the world frame wHc is given by

wHc =w Ht
tHc. (5)

Substituting Eqs. (3) and (4) into Eq. (5), the goal pose of the camera wHc can be solved.
Let the 3D homogenous coordinates of the ith feature point on the projected pattern be wXi ∈ R4.

When the camera is at the goal pose, the feature point can be represented in Fc as

cXi =c Hw
wXi = (wHc)−1wXi ∈ R4.

Finally, cXi is projected into the image plane at the camera goal pose as

cxi = Kc

⎡
⎢⎣

1
czi

0 0 0
0 1

czi
0 0

0 0 1
czi

0

⎤
⎥⎦ cXi ∈ R3,

where Kc is the calibration matrix of the camera, and czi is the depth element in cXi when the camera
is at the goal pose. The set of feature points cxi defines the goal image that guides the tool frame Ft

to the desired grasping position.

4.3. Feature extraction and matching
One advantage of using a projected pattern to guide visual servoing is that the structure of the pattern
is fully controlled and the feature extraction is independent from the appearance of the target object.
Therefore, the pattern can be designed in a way such that the features can be extracted and matched
easily. An arrow shape is used in this section, which is shown in Fig. 5 and illustrated in Fig. 9. The
goal arrow image when the camera is at the desired goal pose F∗

c is automatically generated using
the method given in Section 4.2. A sample goal image is illustrated in Fig. 9(a). The four endpoints
of the arrow are extracted as feature points.

After a grasping target is specified, a corresponding arrow pattern is generated and projected on
the table. An image of the scene is captured by the camera just before the pattern is projected. The
arrow is then easily recovered as the difference between the two images.

In the initial and goal images, the line segments ab, ac, ad, a′b′, a′c′, a′d′ are detected using the
Hough transform44. As seen in Fig. 9(a) and (b), the three line segments intersect at the top vertex, so
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Fig. 9. Matching features on a projected arrow.

Fig. 10. Experimental environment and a typical system setup.

the feature points a and a′ can be easily matched. Next, the angle between the each pair of the three
line segments is calculated. In the goal image, we have

{
� bac < � bad
� cad < � bad.

(6)

Note that the inequalities in Eq. (6) are preserved in the image taken at any camera pose Fc(0).
Therefore, the middle line segments ac and a′c′ can be located, and points c and c′ can be matched.
Points b and b′ and d and d′ can also be matched based on the extracted line segments and positive
or negative angle with respect to ac and a′c′.

During visual servoing, the feature points are tracked in the camera view Fc(t) as the camera
moves toward the goal pose. Using the matched features in the goal image at F∗

c and the current
camera image at Fc(t), the image error and pose error for SIPVS can be calculated.

5. Experimental Results
The experiments are conducted in a typical indoor environment. Several objects are placed on a flat
table surface. A six-degree-of-freedom Staubli TX90 robot arm is used, with a two-finger gripper and
a digital camera attached rigidly to the end-effector. The camera used in the experiments is a Matrix
Vision mvBlueFOX camera with 1024 × 768 resolution. The resolution of the Kinect RGB camera
view is 640 × 480. The objects are all located in the workspace of the robot arm. The experiment
environment and a typical setup of the RGB-D camera–projector system is shown in Fig. 10. It can
be seen that the Kinect is attached to the top of the projector. The system tilt toward the table surface
to observe the objects in the scene and project patterns on the table. Note that the Kinect does not
have to be attached to the projector, as long as their relative pose is fixed.
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Fig. 11. The top rows shows examples of the direction and orientation of the projected arrow changed according
to the different poses of the object. The bottom row shows the corresponding images being displayed by the
projector, such that the arrow projects to the tabletop at the desired position and orientation.

5.1. Feedback pattern projection
Figure 11 illustrates the projection of an arrow pattern for an object placed at different locations.
The first row shows the scenes in which a black eraser was placed with different poses and the
corresponding projected arrows. It can be seen that the arrow was always displayed at the desired
position and oriented along the facing direction of the object as described in Section 3.4. The generated
arrow patterns in the projector view are illustrated in the second row. The arrow shapes were warped
in the projector view so that the projected patterns on the table appear to be the desired shapes and
sizes.

Projections of number patterns are shown in Fig. 12. The first row shows the scenes with the
objects at different locations and the projected numbers. The black eraser was placed at three different
locations with different poses. The number 1 was always projected in front of the eraser and oriented
according to the facing direction of the eraser. The stuffed toy was at the static position in the
three scenes, therefore, the number 2 was projected at the same position. The second row shows the
number patterns generated according to the object poses in the projector view. This is the image that
the projector draws. The numbers were warped so that they appeared to be the desired shapes and
sizes on the table.

5.2. Quantitative analysis of object detection
We evaluate the performance of the object detection method by testing whether it generates the
feedback patterns in the desired way as described in Section 3.4. The object detection is considered to
be successful if the generated pattern is aligned with the center of the object and orientated along the
side close to the direction of the multi-view system. If no pattern is projected or a badly positioned
projected pattern means that the object detection fails. The proposed method was evaluated for both
scenes with a single object and scenes with multiple objects.

Experiments were performed for single-object scenes using 20 different objects with different
shapes, colors and sizes. Each object was tested at five different poses with respect to the system. The
experiment was repeated three times for each pose of the object. Figure 13 shows all of the objects
used.

Some successful detection results are given in Fig. 14. The first row shows five scenes and
the generated projected patterns as the results of object detection. The second row shows the
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Fig. 12. The top rows shows examples of the directions and orientations of the projected numbers changed
according to the different poses of the objects. The bottom row shows the corresponding images being displayed
by the projector, such that the numbers project to the tabletop at the desired position and orientation.

Fig. 13. Objects used in the object detection experiments.

corresponding thresholded saliency maps. It is can be seen that in every example, the feedback
pattern is aligned with the center of the object and oriented along the side facing the system. The
results show that the saliency-based object detection method is robust against the variation in color,
size, shape and lighting conditions.

For all the 300 single-object experiments, the feedback patterns were successfully projected in
front of the corresponding objects for 93.6% of the trials. Detection failures were caused mainly
by two reasons. One reason is a bad detection result in the saliency map. This is usually caused
by one or more poorly performed features in the saliency model such as non-uniform color of the
object or inaccurate disparity. The other possible reason is due to the shape of the object. Since the
mean of the point cloud and the major axes are used to determine the position and the orientation of
the projected pattern, an irregular shape or spatial visibility of the object in the camera view could
cause the pattern not projected at the desired location and orientation. Two examples are shown in
Fig. 15. The shape of the camera in column (a) was not completely reflected in the saliency map,
which caused a poorly positioned projected pattern. In column (b), the pose of the box with three
sides visible to the system led to a projected pattern aligned with one of its edges. In both cases in
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Fig. 14. Successful object detection causes a pattern with the desired appearance projected in front of the object.

Fig. 15. (a) Detection failure caused by incomplete shape in the saliency map; (b) Detection failure caused by
partial visibility in the camera view.

Fig. 15 (a) and (b), the position and direction of the projected patterns cannot be used to determine a
successful object-grasping operation.

Next, we evaluate the object detection method for scenes with multiple objects. A total of 20 scenes
are used, including 10 scenes with occlusions between objects and 10 scenes without occlusion. There
are three tofive objects in each scene. The experiment was repeated three times for each scene. The
detection success rates for scenes without occlusion, scenes with occlusion and all scenes are given in
Table 5.2. When there is no occlusion between objects, the detection rate is similar with the detection
rate for single-object scenes. However, in 3.1%, the projected patterns for different objects overlap,
which is not handled by the current pattern generation method. Such overlap can be detected and
avoided by adjusting the position, size and orientation of patterns, since the 3D structure of the scene
can be recovered by the multi-view system and the coordinates of the patterns on the table is known.
The overlap detection will be considered in the future work.

When occlusions exist in the scene, the detection success rate is lower, because occlusion detection
is not included in the current object detection method. However, since depth information is included
in the saliency-based object detection, in some cases, the system is able to separate the occluded
objects when they are at different depth. Some detection examples for scenes with multiple objects
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Table I. Success rate of object detection for scenes with multiple objects.

Object tested # Successful Success rate

No occlusion 117 106 90.5%
With occlusion 114 94 82.4%
All cases 231 200 86.5%

Fig. 16. Examples of object detection for scenes with multiple objects.

are given in Fig. 16. The examples include the scenarios when (a) all objects are detected when no
occlusion exists; (b)–(d) occlusion exists and both the occluded objects are detected; (e) occlusion
exists and only the object in the front is detected; (f) occlusion exists and neither of the occluded
objects is detected.

5.3. Object grasping by SIPVS control
We present an object-grasping task guided by the proposed RGB-D camera–projector system. A
human user selected the stuffed toy as the grasping target. After the grasping target is selected, an
arrow pattern is projected in front of stuffed toy, and the four features points are extracted and matched
in the initial camera view as described in Section 4.3. The feature points are tracked using KLT
tracker45 during the visual servoing. To ensure the accuracy of feature tracking, only the four vertices
of the arrow shape are projected after they are matched with the feature points in the goal image.

Visual servoing proceeds using the SIPVS control method, which guarantees simultaneous
convergence of the pose error and the image error. The object-grasping results are illustrated in
Fig. 17. The initial pose of the robot arm can be seen from the Kinect view in Fig. 17(a). The position
of the feature points as seen from the initial camera view at the initial pose is given in Fig. 17(c).
The green dots indicated the desired position of the feature points in the goal image as calculated in
Section 4. From Fig. 17(b) and (d), it can be seen that the gripper is arrived at the desired grasping
pose. The four projected feature points appear close to the desired positions in the goal image, which
shows that the image error also converged. As discussed in ref. [26], the final pose and image error
in SIPVS may not converge to zero due to image noise. However, the experimental results show that
the method is accurate enough to guide the gripper to the desired goal position.

Another object grasping experiment is illustrated in Fig. 18. The stuffed tiger was placed at a
similar position as in the previous experiment. Figure 18(a) and (b) show the initial pose and grasping
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Fig. 17. Object grasping by SIPVS control.

Fig. 18. Grasping direction of the robot is generated automatically according to the pose of the target object.

pose of the robot arm, respectively. It can be seen that, in this experiment, the robot arm grasped the
toy from a different direction compared to Fig. 17(b).

The error convergence of the SIPVS during the object-grasping operation is shown in Fig. 19. The
convergence of the pose error can be seen in Fig. 19(a). The top figure shows the trajectory of the
norm of the translational error, and the bottom figure shows the trajectory of the angular error. It can

https://doi.org/10.1017/S0263574717000339 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000339


258 Robot-to-human feedback and automatic object grasping

Fig. 19. Object grasping by SIPVS control.

be seen that both the translational error and the angular error approached zero monotonically. The
trajectory of the average image error of the four feature points is given in Fig. 19(b). Although the
image error decreased monotonically, it converged to a value around 5 pixels instead of 0. This result
was possibly due to the errors in the projection of the feature points when generating the goal image,
which caused the camera pose that minimized the image error to be slightly different from the goal
pose.

6. Conclusion
We explored the use of a RGB-D camera–projector system to provide robot-to-human feedback and
to control object-grasping operations. The system detects objects based on a saliency model. By
including an RGB-D camera, the system reconstructs the 3D information of the target scene in real
time. Feedback patterns are projected on the table in front of the detected objects. The use of numbers
and arrow patterns was explored to provide more information about the robot’s understanding of the
detected objects. Visual Servoing guides the robot to the grasping pose. An automatic goal pose and
goal image generation method was proposed.

The experimental results show that the system can detect salient objects in a typical lab environment
and project desired feedback patterns in front of them on the table surface. Automatic object grasping
of a selected target was successfully conducted by using SIPVS control with respect to a projected
arrow pattern. The error convergence results verified the simultaneous convergence of the pose error
and image error.

There are several open avenues for future development of the system. Occlusion detection is
needed for the system to work in more general scenarios. As already shown in the robotic vision
literature, efficient occlusion detection methods can be developed with the help of depth information
obtained from RGB-D cameras. Currently, in the SIPVS-based object grasping, the grasping direction
is determined according to a rough estimation of the object shape and pose. Advanced grasping
planning is needed to handle object grasping in more general cases. Finally, other projected patterns
can be explored to provide more information or enable more complicated interactions between the
human and the robots.
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