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The unsteady dynamics of wall-mounted flexible plates under inclined flows was
fundamentally described using theoretical arguments and experiments under various
Cauchy numbers Ca= ρf bL3U2

0/(EI) ∈ [7, 81] (where ρf is the fluid density, b and L
are the plate width and length, U0 is the incoming velocity, E is Young’s modulus
and I is the second moment of the area) and inclination angles α. Three-dimensional
particle tracking velocimetry and a high-resolution force sensor were used to
characterize the evolution of the plate dynamics and aerodynamic force. We show the
existence of three distinctive, dominant modes of tip oscillations, which are modulated
by the structure dynamic and flow instability. The first mode is characterized by
small-amplitude, planar fluttering-like motions occurring under a critical Cauchy
number, Ca = Cac. Past this condition, the motions are dominated by the second
mode consisting of unsteady twisting superimposed onto the fluttering patterns. The
onset of this mode is characterized by a sharp increase of the force fluctuation
intensity. At sufficiently high Ca and α, the plate may undergo a third mode given
by large-scale tip orbits about the mean bending. Using the equation of motion and
first-order approximations, we propose a formulation to estimate Cac as a function of
α; it exhibits solid agreement with experiments.

Key words: flow–structure interactions

1. Introduction
Flow-induced, unsteady dynamics of flexible objects is a ubiquitous phenomenon.

Characterization and quantification of the dominant modes of oscillation and the
distinctive coupling between flow and structures remain as longstanding open
problems. Substantial investigations have focused on understanding the mechanisms
modulating the mean bending and drag reduction of wall-mounted elastic structures.
Body deformation modifies the drag scaling F ∝ U2 common in rigid counterparts
to ∝U2+V , where U is the flow velocity and V is the so-called Vogel exponent. For
large flow velocity, V =−2/3, and slender structures typically exhibit quasi-parabolic

† Email address for correspondence: lpchamo@illinois.edu
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deformation (Alben, Shelley & Zhang 2002, 2004). The effects of other factors,
including buoyancy (Luhar & Nepf 2011), skin friction (Bhati et al. 2018) and
mean shear of incoming velocity (Leclercq & De Langre 2016), have also been
explored recently to estimate structure reconfiguration. Schouveiler & Boudaoud
(2006) investigated the deformation of a radially cut disk and formulated a model that
matched very well the disk drag; it predicts V =−4/3 under sufficient deformation.

Flow instability may modulate body oscillations around the equilibrium bending.
Such phenomenon has been extensively explored for the cases of flexible filaments
parallel to uniform flows; distinctive, high-amplitude flapping motions may be
triggered in individual and tandem configurations (Alben & Shelley 2008; Jia &
Yin 2008; Ristroph & Zhang 2008; Kim, Huang & Sung 2010; Uddin, Huang &
Sung 2013). Comparatively, flow-induced oscillations of wall-mounted elastic plates
facing a flow are usually less distinctive. Despite the fact that wake fluctuations may
induce unsteady force on bent structures, the unsteady force is usually a relatively
small fraction of the mean drag (Luhar & Nepf 2011) and a secondary factor in
determining the structure posture. In those configurations, the plate oscillations may
be strongly dominated by the natural frequency, whereas distinctive Kármán vortex
shedding may modulate the wake fluctuations (Jin, Kim & Chamorro 2018a; Jin et al.
2018b).

In nature and engineering applications, structures can often be inclined with
respect to the incoming flow. Aero/hydrodynamic loads and wake characteristics
are significantly influenced by the angle of attack (Fage & Johansen 1927; Modi
et al. 1992; Amandolese, Michelin & Choquel 2013). Experimental investigations
by Lam (1996) and Lam & Leung (2005) showed the distinctive vortex shedding
from inclined rigid plates. Trailing-edge vortices were found to induce more fluid
circulation and production of Reynolds stress compared to the leading-edge vortices.
Inclined structures produce asymmetric wakes and net aero/hydrodynamic torque on
the plate, which may trigger complex rotation or pitching motions dependent on the
incoming velocity, plate geometry and structure stiffness (Iversen 1979; Mirzaeisefat
& Fernandes 2013; Onoue et al. 2015; Jin et al. 2016). A recent study by Onoue
et al. (2015) reported that the pitching amplitude of a rigid flat plate may exhibit
hysteresis and abrupt changes as a function of structure torsional stiffness. Despite
this common scenario, the physics modulating the dynamics of wall-mounted inclined
flexible plates has not been uncovered.

In this study, we explore such phenomena using theoretical arguments and carefully
designed laboratory experiments. We describe three dominant, distinctive modes of
plate oscillations, namely, fluttering, twisting and orbital motions. We also show that
the intensity of force fluctuations increases significantly past a critical condition,
which coincides with the transition from small-amplitude fluttering to twisting. The
experimental results and theoretical formulation offer a framework to characterize
complex structure motions under flows with arbitrary direction, and insight on the
aerodynamic load of elastic structures under a variety of flow fields. The paper is
organized as follows: the experimental set-up is elaborated in § 2, the results and
analysis are discussed in § 3, and conclusions are provided in § 4.

2. Experimental set-up

Selected laboratory experiments were conducted in the free-stream region of the
Talbot wind tunnel at the University of Illinois. The wind tunnel has a test section 6 m
long, 0.46 m high and 0.914 m wide; see details of the facility in Adrian, Meinhart
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FIGURE 1. (Colour online) (a) Schematic of the experimental set-up illustrating the force
sensor, rotary table and PTV system. (b) Basic definitions; the origin of the coordinate
system is fixed at the centre of the plate base, the black and red fiducial points denote
the tips used in other figures, and α is the inclination angle at the plate base with respect
to the mean flow U0.

& Tomkins (2000). A flexible flat plate made of acrylic was mounted over a Velmex
rotary table and vertically hung from the top wall of the wind tunnel as a cantilever
beam (figure 1a). The elastic plate was fixed near the entrance of the wind tunnel,
at 0.7 m from the inlet, where the boundary layer effects are negligible. The plate
has a height L= 240 mm, width b= 60 mm, thickness c= 0.5 mm, Young’s modulus
E= 2.4 GPa and density ρm= 1180 kg m−3. The high mass ratio ρm/ρf ≈ 103 ensured
minor influence of the added mass in the structure dynamics. The unsteady dynamics
of the plate was characterized at 35 incoming velocities U0 ∈ [3.2, 11.1] m s−1 every
1U0 ≈ 0.23 m s−1, resulting in Reynolds numbers Re = U0b/ν ∈ [1.3, 4.4] × 104,
or Cauchy numbers Ca = ρf bL3U2

0/(EI) ∈ [7, 81] (Lu et al. 2016); here I = bc3/12.
For each velocity, the plate was placed at an inclination angle α = 0◦, 30◦ and 45◦
controlled by the rotary table with an accuracy of 100 arcsec. The angle α= 0◦ refers
to the plate facing the incoming flow (see figure 1b).

The instantaneous flow-induced force acting on the elastic plate was measured
at a frequency of 1 kHz for periods of 30 s using a high-resolution ATI Gamma
load cell connected at the plate base, which was mounted outside of the test section
(Jin & Chamorro 2017; Jin, Hayat & Chamorro 2017). The dynamics of the plate
tips was tracked using a three-dimensional (3D) particle tracking velocimetry (PTV)
system at a frequency of 300 Hz for periods of 30 s with camera views at the
bottom and one side of the plate to track instantaneous 3D motions (figure 1a). The
plate was illuminated with two Stanley lithium ion halogen spotlights and captured
within an investigation volume of 240 mm × 160 mm × 160 mm using two 4 MP
Mikrotron EoSens 4CXP MC4082 high-speed cameras. Nikon AF Micro-Nikkor
50 mm lens with a focal ratio f /2.8 were used to maximize the focus on the selected
investigation volume. The centroid of illuminated fiducial points was detected at
subpixel level and tracked using the Hungarian algorithm and linked by performing a
three-frame gap closing to obtain linked trajectories. A robust calibration is required
to minimize the position error of detected points. The investigation volume was
calibrated using a 200 mm × 200 mm planar target containing 342 fiducial points
placed 10 mm apart. The root mean square (r.m.s.) of the recognized calibration
points was ≈2 × 10−4 L. The calibration process was performed for each case by
carefully placing the calibration target in the vicinity of the plate oscillation centre
to account for the change in pixel/millimetre ratio along the camera view. To further
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FIGURE 2. (Colour online) (a) The normal-force coefficient (CN) for various Ca and α.
(b) Intensity of the normal-force fluctuations (IN) across various Ca and α. (c,d) Sample
time series of the normal force FN at the plate base right below (Ca= 20.5 for panel c)
and above (Ca = 24 for panel d) Cac at α = 45◦. (e–g) Snapshots of plate dynamics at
α= 45◦ and various Ca: (e) Ca= 9, ( f ) Ca= 32 and (g) Ca= 68. Here (i), (ii) and (iii)
are instants highlighting dominant modes of tip motion.

reduce the error of velocity estimation, the PTV data were smoothed by using the
least-squares spline method. More details about the PTV set-up can be found in Kim
et al. (2016). To minimize any initial transient effect, the force fluctuations and tip
motions were sampled after the steady state was reached (waiting time of at least
60 s).

3. Results
3.1. Aerodynamic force fluctuations and plate dynamics

Characterization of the plate motions and fluctuations of the aerodynamic force
across Ca and α revealed distinctive patterns. First, quantification of the normal-force
coefficient CN = 2FN/(ρf U2

0bL) is illustrated in figure 2(a); here, FN is the force
component normal to the plate base. Despite the large variation of the inclination
angle α, the trends of CN as a function of Ca are comparable. For Ca . 20 one has
CN ∝Ca−1/3 and for Ca& 20 one has CN ∝Ca−2/3, corresponding to Vogel exponents
of V = −2/3 and −4/3. Similar results were noted by Gosselin, De Langre &
Machado-Almeida (2010) on flexible rectangular plates (their figure 5), indicating
that strong plate deformation may alter the interaction mechanism between the plate
and flow. Bulk quantification of the plate dynamics can be obtained with the intensity
of the force fluctuations. In particular, distributions of the component normal to the
base of the plate IN (= 2σN/(ρf U2

0bL), where σN is the standard deviation of FN) as a
function of Ca are illustrated in figure 2(b). It shows negligible differences between
plate inclinations for sufficiently low Ca, and abrupt increase of the force fluctuations
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past a critical Ca = Cac threshold that depended on the inclination angle. Such a
critical condition occurred at Cac = 34 and 22 for α = 30◦ and 45◦ cases, but it was
absent at α= 0◦. To highlight the sharp change on the force fluctuations, figure 2(c,d)
illustrates a sample time series of the normal force at the plate base FN for the
case α = 45◦ right before (Ca = 20.5) and after (Ca = 24) Cac. Despite the similar
averaged values, distinctive high-amplitude periodic oscillations occurred right within
Ca > Cac implying the onset of a different oscillation mode. This is also consistent
with recent work by Leclercq, Peake & de Langre (2018), where plate motions had
a minor influence on the time-averaged flow-induced loads.

The instantaneous snapshots shown in figure 2(e–g) provide a basic linkage of the
force fluctuation and distinctive dynamics of the plate motions for the particular case
with α = 45◦. At Ca< Cac (figure 2e), the plate exhibited small-amplitude fluttering
around the bending equilibrium. The increase of Ca over Cac (figure 2f ) resulted in
twisting oscillations around a relatively larger bending. At sufficiently high Ca, the
plate tips exhibited comparatively large-scale orbital motions; this condition happened
at Ca & 43 (α = 45◦). There, the tip was dominated by anticlockwise orbits coupled
with twisting oscillations, as illustrated in figure 2(g). See additional details in the
supplementary movies available at https://doi.org/10.1017/jfm.2019.40.

The trajectories of the tip motions for various Ca and α illustrate the dominant
modes of oscillation. Indeed, figure 3(a–c) shows minor fluttering corresponding to
low IN around the bending equilibrium for α = 0◦. Such a mode is also observed
under α=30◦ and 45◦ within Ca<Cac (figure 3d,g). At Cac, the plate experienced the
onset of twisting oscillations. This resulted in stronger tip motions and, consequently,
increased IN (figure 3e, f,h,i). As expected, the intensity of tip oscillations increased
with Ca and α. Dominant 3D orbital motions occurred at a specific threshold, which
is the case in figure 3(i) at Ca = 68 and α = 45◦. It is worth noting that such 3D
dynamics led to significant deviations of the plate tips from the bending equilibrium;
in this case the orbits from each tip overlapped.

Specific insight on the distinctive modes of oscillation is obtained by examining the
representative trajectories and spectra of the tip velocity. In the fluttering-like mode,
the bending deformation dominates the reconfiguration of the elastic plate where the
tip is nearly parallel to the base. As noted in figure 4(a), the streamwise velocity
spectrum Φ∗ of one of the tip edges evidences the modulation of the first- and second-
order natural frequencies of the bending; these are given by fb,r = ( jr/L2)

√
EI/(ρmbc),

where j1= 0.56 and j2= 3.51. As reported in previous works (Fage & Johansen 1927;
Modi et al. 1992; Onoue et al. 2015; Liu et al. 2017), for a thin flat plate inclined
with respect to the mean flow, the aerodynamic load produces a torque M that tends to
twist the frontal surface perpendicular to the free-stream flow. Its magnitude is given
by

M = 1
2 CM(α)ρf U2

e Ab, (3.1)

where CM(α) is the moment coefficient, Ue is the effective wind speed and A
represents a characteristic area of the structure. An increase of the velocity results
in an increment of the torque and the likelihood of tip twisting, which is controlled
by the body stiffness. Such modulation, however, is continuously disturbed by the
wake fluctuations resulting in twisting oscillations (figure 4b). The height difference
between the tips (1z∗t ) leads to the tip not being parallel to the base. In such cases,
the tip velocity was substantially higher than the fluttering-like mode and exhibited
semi-periodic variations. This is reflected by the dominating frequency component ft

in the spectral domain. It is worth noting that ft remains nearly constant within all
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FIGURE 3. (Colour online) Trajectories of the tips for various α and Ca: (a–c) α = 0◦
with Ca = 7, 41 and 68; (d–f ) same as (a–c) with α = 30◦; (g–i) same as (a–c) with
α = 45◦. Here x∗ = x/L, y∗ = y/L and z∗ = z/L denote the normalized tip locations. The
blue lines represent the location of the plate base.

the twisting configurations, indicating that it is determined only by the characteristics
of the structure.

Unlike the abrupt occurrence of the twisting mode from fluttering with Ca, the
transition from twisting to 3D orbits is comparatively a gradual process, where
IN remains approximately constant. Indeed, the gradual development of the orbital
motions may be noted from the changes on the normalized spectra Φ∗N of the base
normal force FN with Ca (figure 5). Within the transition between twisting and
orbital modes, the twisting mode ft dominates the force fluctuations, whereas the
signature of the orbital motions, fr, exhibits a monotonic increase with Ca. In such
a process, the force fluctuation intensity σ 2

N =
∫
Φ df does not show abrupt changes

due to the very similar Φ distributions across Ca. The corresponding tip dynamics
in the transition to orbital motions is illustrated with tip trajectories in figure 4(c) at
Ca = 41 and α = 45◦. It is characterized by twisting and 3D orbital motions. The
associated tip velocity spectrum also reveals a dominant effect of the twisting mode
( ft) and the orbital motion fr. The distinctive mode of orbital motions is observed
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FIGURE 4. (Colour online) Sampled tip trajectories and normalized streamwise velocity
spectra Φ∗ = Φ/max{Φ} of a tip under (a) Ca = 7 and α = 0◦, (b) Ca = 41 and α =
30◦, (c) Ca = 41 and α = 45◦, and (d) Ca = 68 and α = 45◦. The colour bar indicates
the normalized height difference between the tips (1z∗t ). The two-headed blue arrow in
(b) denotes the twisting oscillations, whereas the anticlockwise arrow in (d) indicates the
3D orbital motion of the tips composed of three stages. The insets show the (red) tip
streamwise velocity ut.

only under α = 45◦ and Ca & 43, which is a result of the coupling between plate
twisting and bending as a three-stage process illustrated in figure 4(d) and figure 6
with instantaneous tip heights. The flow-induced torque at sufficiently high Ca and
α leads to distinctive twisting of the plate near the tip such that the local projected
area to the incoming flow increases (stage 1); this induces an abrupt increase of
the aerodynamic load in the vicinity of the tip and substantial structure bending as
highlighted by the decrease of z∗ of both tips (stage 2). As depicted in figure 2( f,ii),
relatively high load can substantially deform the elastic plate; local bending angle of
the plate near the tip relative to the vertical axis can reach or even be larger than
90◦. In this scenario (stage 3), the tip aerodynamic load drops significantly due to
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FIGURE 5. (Colour online) Normalized base normal-force spectra Φ∗N =Φ/max{Φ} at α=
45◦ and (a) Ca = 36.3, (b) Ca = 38.6 and (c) Ca = 41. The dashed arrows indicate the
gradual increase of the frequency component corresponding to the orbital motions.
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FIGURE 6. (Colour online) Instantaneous tip heights z∗ = z/L during one representative
orbital cycle under Ca= 68 and α = 45◦; here Tr = 1/fr is the period of orbital motion.
The black and red points denote each tip.

the reduced projected area. The structure restoring force governs the motion of the
plate, pushing the tip back to the posture at stage 1, which completes an orbital
cycle. Similar to the twisting mode, fr is independent of Ca within the inspected
configurations, despite the significant variation of the intensity of the orbital motions.

3.2. Theoretical estimation of the critical Ca or Cac

An uncovered key quantity is the threshold Cac that defines the condition of abrupt
increase of force fluctuations leading to substantial unsteady loading. The aerodynamic
load of an elastic structure undergoing simultaneous bending and twisting involves a
number of physical processes. To tackle this problem quantitatively, we consider that
the plate experiences minor deformation in a portion close to the tip. This assumption
is well supported by the tracking of plate postures under Ca < Cac (figure 2d) and
previous studies (Schouveiler, Eloy & Le Gal 2005). Also, the plate dynamics shows
that the plate remains nearly parallel to its base before the occurrence of the twisting
mode. Hence, as a first-order approximation, we focus our analysis on the plate tip
region with a constant local bending angle (θ ) and inclination angle α relative to
the free-stream flow at equilibrium, as illustrated in figure 7(a). There, the governing
equation of the twisting dynamics of the plate can be characterized by

Iw
d2α̂

dt2
+ cw

dα̂
dt
+ kwα̂ =−

1
2

CM

∣∣∣
α̂e

ρf U2
e Ab, (3.2)
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FIGURE 7. (Colour online) (a) Schematic illustrating parameters near plate tip region
with bending angle θ . (b) Schematic of the cross-section of the plate undergoing twisting
motion under the influence of instantaneous angular velocity. The ‘+’ symbol denotes the
plate centre. (c) Distribution of the plate tips projected in the x–z plane under Ca= 7 and
(i) α = 0◦, (ii) α = 30◦ and (iii) α = 45◦. (d) Distribution of CM = 2M/(ρf U2

0b2L) with α
of a rigid plate with the same geometry.

where α̂ is the modified inclination angle due to plate bending, Iw, cw and kw represent
the polar moment of inertia, damping coefficient and torsional stiffness corresponding
to the section under inspection, and α̂e is the effective inclination angle modulated
by the plate angular velocity. Here, the positive M is defined to induce a decrease
of α̂. For an inclined bent plate, the effective wind speed Ue is taken as the velocity
component normal to the plate span (figure 7a), whereas the modified inclination angle
at the equilibrium (α̂s) is defined between Ue and the normal vector n of the plate
surface at the equilibrium bending position, as follows:

Ue =U0

√
1− cos2 α sin2 θ,

sin α̂s =
sin α√

1− cos2 α sin2 θ
.

 (3.3)

The effective inclination angle α̂e is influenced by the instantaneous angular velocity
of the plate. Following the linear quasi-steady analysis characterizing the torsional
instability (Païdoussis, Price & De Langre 2010), we consider an instant where the
plate is in a given α̂ with an instantaneous angular velocity dα̂/dt (figure 7b). To
represent the varying relative flow velocity along the width, we define a reference
radius bξ such that the plate velocity is considered as v = (dα̂/dt)bξ of the cross-
section (Slater 1969; Blevins 1990) and assumed to undergo minor variations within
the investigated inclination angles (Tadrist et al. 2015). This leads to the relative wind
velocity (Urel) and effective inclination angle as

Urel =Ue − v,

α̂e = α̂ − γ .

}
(3.4)

For relatively small γ (small plate velocity compared to Ue) and low-amplitude
twisting around the equilibrium,

Urel 'Ue,

γ '
v

Ue
sin α̂ '

v

Ue
sin α̂s,

}
(3.5)
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and, therefore,

α̂e = α̂ −
ξb
Ue

dα̂
dt

sin α̂s. (3.6)

Then, using Taylor’s expansion, the moment coefficient can be approximated as

CM

∣∣∣
α̂e

=CM

∣∣∣
α̂s

+
∂CM

∂α

∣∣∣∣
α̂s

(α̂e − α̂s). (3.7)

The condition leading to the sudden increase of twisting motion denotes the loss of
the system stability, which occurs when damping vanishes, i.e. the terms in dα̂/dt
(combining (3.2), (3.6) and (3.7)) are zero:

∂CM

∂α

∣∣∣∣
α̂s

Ue sin α̂s =
2cw

ξb2ρf A
=C, (3.8)

where C is a constant. Key for evaluating the model is the estimation of the plate tip
bending angle θ and, thus, α̂s at each Cac. Despite the variation of α, the equilibrium
tip height resulted very close at a given Ca within Ca < Cac (see example in
figure 7c), indicating similar plate bending; therefore, θ can be inferred from the
case with α = 0 at each Cac directly from the PTV measurements. To determine
∂CM/∂α|α̂s , the aerodynamic torque of a rigid metallic plate with the same geometry
of the elastic counterpart was measured across various α as shown in figure 7(d),
where the distribution of CM follows a power-law function with α (see dashed line
with power 1/2). Noting that Ca ∝ U2

0 for a given structure and combing (3.3) and
(3.8), we can then define a dimensionless quantity Ct characterizing the threshold of
Cac:

Ct =
∂CM

∂α

∣∣∣∣
α̂s

√
Cac sin α. (3.9)

Additional experiments were conducted to test equation (3.9), with the plate under
various α. As shown in figure 8, Cac decreased monotonically with α; remarkably,
Ct ≈ 0.2± 0.005 across all investigated α. It is worth pointing out that, compared to
previous studies with rigid structures (Larsen 2002; Païdoussis et al. 2010; Fernandes
& Armandei 2014), α̂s accounts for the influence of plate flexibility on the onset of
twisting motions. As indicated in (3.3), strong plate deformation (i.e. large bending
angle θ ) leads to significant deviation of α̂s from the base inclination angle α, and
therefore different local ∂CM/∂α due to the nonlinear dependence of CM with α
(figure 7d). Also, it should be noted that, for flexible plates with different geometry
and material, the parameters on the right-hand side of (3.8) may vary and lead to
different Ct; however, the critical Cac should still follow (3.9) for a given structure.
That is, the abrupt force fluctuations are triggered by instability mechanisms in an
inclined bent plate relative to the mean flow.

4. Conclusions
Overall, we have shown the distinctive force fluctuations and dynamics of inclined

flexible plates under various flows. Our experiments revealed a sharp increase of the
unsteady force, where the plate tip motions shifted from small-amplitude fluttering
to twisting oscillations past a critical Ca. Further increase of the incoming velocity
or Ca under sufficiently large α led to distinctive 3D orbital dynamics induced
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FIGURE 8. (Colour online) Cac and dimensionless quantity Ct (3.9) characterizing the
threshold of twisting motions; the dashed line marks the averaged value of Ct across α.

by the coupled twisting and bending deformations. The agreement between our
theoretical arguments and experiments demonstrates the dominating role of the
dynamic instability in triggering twisting oscillations. These findings provide novel
insights for examining the reconfiguration and, particularly, the large-amplitude 3D
orbital motions of elastic structures under complex flow fields. Theoretical inspection
of the onset of abrupt force fluctuations may be used to determine conditions for
structure fatigue and design various engineering structures and processes exposed to
flows. Future work will focus on the effects of mass ratio, plate geometry and other
parameters in the structure dynamics and induced flow.
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