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In this paper, we prove some embedding theorems for LTL (linear-time temporal logic) and
its variants: viz. some generalisations, extensions and fragments of LTL. Using these
embedding theorems, we give uniform proofs of the completeness, cut-elimination and/or
decidability theorems for LTL and its variants. The proposed embedding theorems clarify the
relationships between some LTL-variations (for example, LTL, a dynamic topological logic,
a fixpoint logic, a spatial logic, Prior’s logic, Davies’ logic and an NP-complete LTL) and
some traditional logics (for example, classical logic, intuitionistic logic and infinitary logic).

1. Introduction
1.1. Proposed embedding theorems

In this paper, we prove some theorems for embedding linear-time temporal logic (LTL) and
its variants into infinitary logic (IL), classical logic and intuitionistic logic. We will then
use these embedding theorems to give uniform proofs of the completeness, cut-elimination
and/or decidability theorems for some LTL-variations. The LTL-variations studied in this
paper include:

— a generalised first-order LTL — see Section 4;

— two infinitary extensions that subsume some dynamic topological logics — see Section 5;

— a 3-dimensional spatial logic — see Section 6.1;

— some next-time only fragments, which include Prior’s logic and Davies’ logic — see
Section 6.2;

— an NP-complete fragment with a bounded time domain — see Section 6.3.

In the following explanation of the embedding theorems, we will just focus on two
theorems for syntactically and semantically embedding LTL into IL (see Sections 2
and 3).

LTL has the temporal operators X (next), G (globally) and F (eventually) and is
considered to be one of the most useful temporal logics in Computer Science (Clarke
et al. 1999; Emerson 1990; Holzmann 2006; Kroger 1977; Pnueli 1977), while IL has
the connectives of infinitary conjunction A and infinitary disjunction \/, and has been

 Sections 2, 4, 5, 6.1 and 6.3 in the current paper are based on some refinements of technical parts of the
conference presentations Kamide (2009; 2010b; 2010d; 2010e; 2011).
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studied by many logicians (Feferman 1968; Lorenzen 1951; Novikov 1961; Takeuti 1985).
However, the research fields concerned with LTL and IL have evolved independently, so
the relationship between them is still to be discovered. Hence, one of the aims of the current
paper is to clarify the relationship between them by giving two theorems for syntactically
and semantically embedding LTL into IL. These embedding theorems show that G and
F in LTL can be represented by A and \/, respectively, in IL. The syntactical embedding
theorem is based on Gentzen-type sequent calculi, and the semantical embedding theorem
is based on Kripke semantics. We go on to prove the cut-elimination theorem for Kawai’s
sequent calculus LT, (Kawai 1987) for LTL using the syntactical embedding theorem,
and the completeness theorem for LT, using the syntactical and semantical embedding
theorems together.

The syntactical embedding theorem says that ‘a sequent = o is provable in LT, if
and only if the sequent = f(«) is provable in a sequent calculus LK, for IL, where
f is a certain mapping’. The essential idea of f is to represent the following informal
interpretations:

fp)=rp

f(X'p) = p;
fXIGa) = N{f(XHa) | j € w}
fXFa) = \/{f(XHa) | j € w}

for any propositional variable p of LTL.

Although the syntactical embedding theorem gives a proof-theoretical interpretation
of the connection between LTL and IL, we cannot get a direct semantic interpretation
of the same connection. On the other hand, LTL is usually defined semantically. Indeed,
the model checking methods using LTL are based on a purely semantic expression.
Moreover, most LTL users are unfamiliar with Gentzen-type proof theory. Thus, a
semantic interpretation of the connection between LTL and IL is required. In order to
obtain such an interpretation, we will present a semantical version of the syntactical
embedding theorem, which we call the semantical embedding theorem.

We will discuss the syntactical and semantical embedding theorems of LTL into IL
in Section 2. We begin by introducing LT, and LK,, and then prove the syntactical
embedding theorem of LT, into LK,. The cut-elimination theorem for LT, is then
derived from this syntactical embedding theorem. We then introduce the semantics of LTL
and IL, and prove the semantical embedding theorem of LTL into IL. The completeness
theorem with respect to the semantics for LTL is proved for LT, using both the syntactical
and semantical embedding theorems. We conclude Section 2 by presenting an indexed
formulation 2S,, of LTL, which is Baratella and Masini’s 2-sequent calculus for LTL, and
show that LT, and 2S,, are equivalent.

In Section 3, we present the syntactical and semantical embedding theorems of first-
order LTL into first-order IL using a similar approach to Section 2.
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1.2. Generalised first-order LTL

We will introduce a Gentzen-type sequent calculus GLT,, for a generalised first-order
LTL (GLTL) in Section 4, and we will prove cut-elimination and completeness theorems
for GLT,, using some embedding theorems. GLT,, has modal operators

Q?i (i € {1,2,,1’1})
Qg (generalised G)
QOF (generalised F),

and it includes (first-order) LT,, as a special case.

In the following, we will explain that the proposed new modal operators ;, Qg and
QF can be regarded as generalisations of X, G and F. These operators are intended to
characterise the axiom scheme

Vg /\{m |1e K"}
where K™ is the set of all words of finite length of the alphabet
K ={Q; |ie{l,2,...,n}}.
We now suppose that for any formula o, we have f, is a mapping on the set of formulas

such that

fux) = /\{Q?i(x/\oc) | i€ wl.
Qgo then becomes a fixpoint of f,. This axiom scheme just corresponds to the so-called
iterative interpretation of common knowledge. On the other hand, if we take

K = {@1},

we can understand ; and Og, respectively, as the temporal operators X and G in LTL.
The corresponding axiom scheme for the singleton case represents the LTL-axiom scheme

Go < /\{X’d i€ w}.

So the operator Qg can be regarded as a natural generalisation of G. Similarly, Qg can
be regarded as a generalisation of F.

1.3. Infinitary extensions of LTL

In Section 5, we will introduce two Gentzen-type sequent calcului L, and L, which are
infinitary extensions of LTL:

— L, includes a variant of dynamic topological logics;
— L, which is a subsystem of L,,, is an integration of both LT, and LK,,.

We will then prove cut-elimination theorems for L, and L, and a completeness theorem
for L,,. There is no completeness theorem for L,, since a subsystem S4,, of L,, is known to
be Kripke-incomplete. S4,, is an extension of both IL and the normal modal logic S4, and
has been used as a base logic for formalising game theory (Kaneko and Nagashima 1997).
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We will also introduce the X-only fragment L} of L, and prove an equivalence between
LY and L, based on some appropriate interpretations of G and F.

We will now briefly review some previous work on dynamic topological logic (DTL).
DTL is a combination of S4 and temporal logic and has been studied recently by several
researchers (Artemov et al. 1997; Kremer and Mints 2005; Konev et al. 2006; Mints 2006)".
DTL provides a context for studying the confluence of the topological semantics for S4,
topological dynamics and temporal logic (Kremer and Mints 2005). Two bimodal (next-
interior) fragments of DTL, which are called S4F (functional) and S4C (continuous), were
first introduced in Artemov et al. (1997). Some Gentzen-type cut-free sequent calculi and
Hilbert-type axiom schemes were introduced in Artemov et al. (1997) for S4F and S4C,
and the complete topological and Kripke-type semantics were also obtained for S4F and
S4C. An alternative formulation of cut-free sequent calculus for S4C was presented in
Mints (2006). Trimodal DTLs were formalised semantically in Kremer and Mints (2005)
by combining the S4 modal operator <V (interior) and the temporal operators X and G.
Although sequent calculi for S4F and S4C have been studied, sequent calculi for trimodal
DTLs have not been. The reason may be that Konev et al. (2006) showed that the trimodal
DTL of homeomorphism is not recursively axiomatisable, and that this logic requires the
infinitary axiom scheme

Go — a A Xo A XX A XXXo A -+ oo,

which is also an axiom scheme of L, and L.

1.4. Spatial extensions of LTL

In Section 6.1, we will introduce a spatial logic as a Gentzen-type sequent calculus.
This logic is called 3-dimensional spatial logic (3SL) and it can be used to give an
appropriate representation of the 3-Cartesian product o> of the set @ of natural numbers.
We will prove completeness and cut-elimination theorems for 3SL using some embedding
theorems.

We will now give some motivation for studying 3SL. A central issue for spatial reasoning
in practice is to formalise reasoning about 3-dimensional space. It is known that time
can be appropriately modelled by w, and, similarly, in a very simple case, space can be
naturally modelled by the 3-Cartesian product o> of w. Although temporal logics based
on o have been studied successfully, spatial logics based on w? have not yet been studied
in detail. The aim of introducing 3SL is thus to obtain a sound, complete and cut-free
sequent calculus for reasoning about o?.

The proposed semantics for 3SL has 3-dimensional satisfaction relations

Ficiy .
where iy,i, and i, represent points on the x-axis, y-axis and z-axis, respectively. Intuitively,

iy O

T See also http://individual.utoronto. ca/philipkremer/DynamicTopologicalLogic.html.
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means ‘o is true at the point (iy, iy,i;) € ¥, The spatial operators P, (position in x-axis),
P, (position in y-axis), P. (position in z-axis), A (anywhere) and A~ (converse anywhere)
are then defined semantically by:

(1) Fiyiys. Pyoe if and only if =i 4y o5

(2) Fiiyi. Py ifand only if b= i o

(3) Eigiyu. Pooo ifand only if 41 o5

(4) Eiiyi. Ao if and only if ;.5 o for any jy, jy, j. € @ with

N
=

~
N

pRES
ARVARY;
2

(5) Eiyiyi. A”o if and only if | ;. o for any j, jy, j. € o with
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~=
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o o o
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1.5. Next-time only fragments of LTL

In Section 6.2, we present a Gentzen-type sequent calculus SDL for an extension of Davies’
logic (Davies 1996) from the point of view of embedding theorems. SDL is regarded as
an intuitionistic (or constructive) version of a Gentzen-type sequent calculus for Prior’s
tomorrow tense logic (Prior 1957), which is just the next-time only part of LTL. We obtain
the cut-elimination and Kripke-completeness theorems for SDL using two theorems for
embedding SDL into intuitionistic logic.

We will now briefly review some previous work on Davies’ logic. Davies (1996)
introduced a constructive temporal logic, which is defined as a judgement system based
on the connectives X and —. He pointed out that this logic can be related to a type
system for binding-time analysis. Kojima and Igarashi (2008) studied logical aspects of
Davies’ logic by adding the connectives A and V, and obtained a Kripke-complete natural
deduction system, NJ°, and a cut-free sequent calculus, LJ°, as proof systems for such
an extended logic. Kamide (2010c) introduced an alternative to Kojima and Igarashi’s
logic, and obtained a cut-free and Kripke-complete sequent calculus, SDL, and a strongly
normalisable and confluent natural deduction system, NDL, as proof systems. Kamide’s
logic is almost the same as Kojima and Igarashi’s logic, the difference being that Kamide’s
logic has the axiom scheme

XV ) = Xo VvV X8B,

while Kojima and Igarashi’s logic has no such axiom scheme. Kamide (2010c) gave a direct
proof of the Kripke-completeness theorem for SDL without using embedding theorems.
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1.6. NP-complete fragments of LTL

In Section 6.3, we obtain an NP-complete fragment of LTL, called bounded linear-time
temporal logic (BLTL), by restricting the time domain of temporal operators. We show that
BLTL is NP-complete using a theorem for semantically embedding BLTL into classical
logic. This semantical embedding theorem can also be justified through the bounded model
checking technique (Biere et al. 2003), which uses a propositional satisfiability checking
method.

The satisfiability problems for LTL fragments are known to be an important issue
for constructing efficiently executable temporal logics. The satisfiability problem for LTL
is PSPACE-complete (Sistla and Clarke 1985), and finding NP-complete fragments of
LTL has been the subject of considerable study (Demri and Schnoebelen 2002; Etessami
et al. 1997; Muscholl and Walukiewicz 2005; Walukiewicz 1998). We try to construct an
alternative to such an NP-complete fragment by restricting the time domain of temporal
operators. Although the standard LTL temporal operators have an infinite (unbounded)
time domain, that is, the set @ of natural numbers, the bounded operators we consider
have a bounded time domain, which is restricted by a fixed positive integer [, that is, the
set

w ={x€ew|x<I}.
Despite this restriction, these bounded operators can derive almost all of the typical LTL
axioms, including the temporal induction axiom.

We will now give a brief review of some related work on LTL fragments. Sistla and
Clarke (1985) showed that the LTL fragment endowed with the standard operators X,
G and F are PSPACE-complete and that satisfiability for the fragments endowed with
either X or (F and G) is NP-complete. As mentioned above, some NP-complete fragments
of LTL have been well studied. In particular, Demri and Schnoebelen (2002) proposed
some restrictions on the nesting of operators and on the number of propositions. Also,
Muscholl and Walukiewicz (2005) suggested restricting X to operators X, (a € X) that
enforce the current letter to be a, where the formula Xo is expressed in the form

\/ X0

aex

where X is the alphabet. They then proved that the satisfiability problem for the LTL
fragment with X, (a € ), F and G is NP-complete.

2. LTL
2.1. Syntactical embedding

The formulas of propositional linear-time temporal logic (LTL) are constructed from
countably many propositional variables, — (implication), A (conjunction), V (disjunction),
- (negation), G (globally), F (eventually) and X (next). We use:

— lower-case letters p, g, ... to denote propositional variables;
— Greek lower-case letters o, f3,... to denote formulas;
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— Greek capital letters I', A,... to denote finite (possibly empty) sets of formulas;
— for any # € {G, F, X}, the expression £I" to denote the set {7 | y € I'};

— the symbol = to denote the equality of sets of symbols;

— the symbol o to represent the set of natural numbers;

— lower-case letters i, j and k to denote any natural numbers.

An expression X'o for any i € w is defined inductively by
X% =«
X"y = X"Xo.
An expression of the form I' = A is called a sequent, and we write L - S to denote the

fact that a sequent S is provable in a sequent calculus L. An inference rule R is said to be
admissible in a sequent calculus L if for any instance

S -+ S,
S

of R, if L+ S; for all i, then L I S.
We will now give a brief presentation of Kawai’s LT,, for LTL.

Definition 2.1 (LT, ). The initial sequents of LT,, are of the form
Xip = Xip

for any propositional variable p.
The structural rules of LT,, are of the form

I'=Ao o,2=11

rr=Aam (W
I'=A I'=A .
OC,I—‘TA (We-left) FTA,OC (We-rlght).

The logical inference rules of LT, are of the form

=3 Xa XBA=TI X, T = A, X
=2 Xa XPA=T e Xl = AXP , tight)
X (a—p), A= 2,11 I'= A X' (a—pf)
Xa,T = A XBT=A
2% TR (Neftl) _XBU=A e
X(aAp),I'=A X(aAp),I'=A
I'=AXae I'=>AX XoaI'=A XBIT =A
= AXa T=AXE | ioht) kg BL=4 e
= AX(@Ap) X(aVvpB), T =A
I=AX I'=AX
T 22% (rightl) _T=AXE ight)
I'=AX(aVp) = AX(axVp)
I=AX Xa,T = A
T RE left) 282 =2 (Gright)
X' =, = A I'= A, X'—u
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XH_k F A F = As Xi+j(x jew
S5 T2 (Glefy) { : e (Gright)
X'Go, I’ = A I' = A, X'Ga
XitJ ,T Alico i+k
{ o T2 (Flefy) w (Fright).
XFo, T = A I = A XFu

Note that (Gright) and (Fleft) have an infinite number of premises. The fact that
sequents of the form X'o = X'o for any formula o are provable in LT,, can be proved by
induction on the complexity of «.

Kawai (1987) proved the cut-elimination theorem for LT, ; we will give an alternative
embedding-based proof of this theorem.

The following propositions give some examples of admissible rules and provable
sequents. We will write the expression o < f to mean we have both the sequents
o= f and ff = o

Proposition 2.2. The following rule is admissible in cut-free LT,,:

I'=A

Xr = xa (Xregw)

Proof. We use induction on the proof P of I' = A in cut-free LT,,. We distinguish the
cases according to the last inference of P. We will only show the case for (—left) as an
example.

— Case (—left):
The last inference of P is of the form
M= Xa XpI=A
X(a—p), 1,2 = A

(—left).

By the induction hypothesis, we get

XIT = XXz XX, XZ = XA
: (—lef).
XX (a—f), XII, XE = XA ]

Proposition 2.3. For any formulas o and f and any i € w, the following sequents are
provable in cut-free LT,,:
(1) X'(x o B) = X'oo X' where o € {—,A, V],
(2) X!(m2) = =(X'a),
(3) Go = Xa,
(4) Go = XGao,
(5) Ga = GQeuo,
)

(6) o, G(x—Xa) = Go (temporal induction).
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Proof. We will only show (6) as an example. So we have

{ 0,.Gle—Xa) = X¥a Juco
o, G(a—Xa) = Gu

(Gright)

where
LT, + o, G(a—Xa) = XKo,

for any k € w, can be shown by mathematical induction on k. The base step is obvious,
and the induction step can be shown by

. induction hypothesis
o, G(o—Xo) = Xk Xty = Xy
o, G(o—Xa), XK (00— Xar) = ka+lloc (Gleft)
o, G(a—Xa), Gla—Xo) = Xy U]

(—left)

The formulas of propositional infinitary logic (1L ) are constructed from countably many
propositional variables, —, =, A\ (infinitary conjunction) and \/ (infinitary disjunction). If
® is a countable non-empty set of formulas of IL, then A ® and \/ ® are also formulas
of IL. Note that A{a} and \/{a} are equivalent to o, and that the standard binary
connectives A (conjunction) and V (disjunction) are regarded as special cases of A and
\/, which are assumed here to be a countable infinitary conjunction and a countable
infinitary disjunction, respectively.

We will now define the sequent calculus LK, for IL.

Definition 2.4 (LK, ). The initial sequents of LK,, are of the form
p=7Dp

for any propositional variable p.
The structural rules for LK, are (cut), (we-left) and (we-right) as in Definition 2.1.
The logical inference rules of LK,, are of the form

I'=2Za pA=1TI 0 ol =Ap .0
BT A= (i) T = A op (7right)
I'=Au« 0 o= A 0
“aT = A (left) T = A, - (right)

0, I = A (x € 0) (T =Aua o .

left L L ES ht

AOT=A (/\ left) WY (/\ right)
{o,T = A }yeo I'= Ao (o€ 0) .

Lo TR/ left ht

Voroa (Vi = ave (Vg

where ® denotes a non-empty countable set of formulas.
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The superscript ‘0’ in some of the rule names in LK, means that these rules are the
special cases of the corresponding LT,, rules, that is, the case where i in X' is 0.

It is well known that LK, enjoys cut-elimination — see, for example, Feferman (1968),
Tanaka (1999), Tanaka (2001) and Takeuti (1985).

Definition 2.5. We fix a countable non-empty set @ of propositional variables, and define
the sets

O :={pilped} (icw)
of propositional variables where py := p, that is, ®y = ®. The language Ly of LTL is
defined using ®, —, A, V,~, X, G and F. The language £y of IL is defined using | J,.,, ®;
—, -, /\ and \/. For convenience, the binary versions of A and \/ are also denoted by /\
and V, respectively, and these binary symbols are included in the definition of Ly .
A mapping f from Ly to Ly is defined as follows:

f(X’ ) = (i€ w) for any p € @ (in particular, f(p) :=p € ©)
f(Xi(oo ﬁ)) = f(X’a) f(X'B) where o € {—, A, V}
F(X' =) = ~f (X'a)
fXIGa) == \{f(XHa) | j € 0} ()
fXFa) == \/{f(XM0) | j € w}. (#)

An expression f(I') denotes the result of replacing every occurrence of a formula o in I’
by an occurrence of f(«).
In Definition 2.5, conditions () and (f) correspond to the axiom schemes

respectively, which mean ‘G and F in LTL can be represented by A and \/, respectively,
in 1L,

Theorem 2.6 (syntactical embedding). Let I and A be sets of formulas in £y11, and f be
the mapping defined in Definition 2.5. Then:

(1) If
LT, FIT = A,
then
LK, F f(I') = f(A).
2)If
LK, — (cut) = f(I') = f(A),
then

LT, — (cut) - T = A.
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Proof.

(1) We use induction on the proof P of I' = A in LT, distinguishing the cases according
to the last inference of P. We will just show some example cases:

— Case (X'p = X'p):
In this case, we obtain
LK, F f(X'p) = f(X'p),
that is,
LK, Fpi=pi (pi € D),
by the definition of f.
— Case (—left):
So the last inference of P has the form
I'=XXoa XpA=TI
X(a—p),T,A =X, 11

(—left).

By the induction hypothesis, we have
LK, F f(I) = f(Z), f(X'®)
and
LK, F f(X'B), f(A) = f(I0),
so we get
f(0) = £(2).f(X')_f(XB).F(A) = £
fX'o)—f(X'B), f(T), f(A) = f(Z), f(IT)
where f(X'a)—f(X'B) coincides with f(X'(x—f)) by the definition of f.
— Case (Gleft):
So the last inference of P has the form
Xi+/‘oc,r = A
XiGo, T = A

(—>left0)

(Gleft).

By the induction hypothesis, we have
LK, b f(X*a), f(I) = f(A),
and hence obtain

fXTa), (D) = f(A)  (F(XHa) € (f(Xa) | j € w))
NFX ) | j € o}, f(I) = f(A)

(A left)

where
NFX )| j e w}
coincides with f(X'Ga) by the definition of f.
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— Case (Gright):
So the last inference of P has the form

{(T=AXVg e,
I = A X'Ga

(Gright).

By the induction hypothesis, we have
LK, = f(I) = f(A), f(X ")
for all j € . Let ® be
(f(XHa) | j € w}.

So we have

{FD) = F(A), FX0) e
X720 (A right)
f@) = fA),\NO
where A @ coincides with f(X'Ga) by the definition of f.
(2) We use induction on the proof Q of f(I') = f(A) in LK,,, distinguishing the cases

according to the last inference of Q. We will just show one case as an example:
— Case (Aright):

Let @ be

(fXMa) | je o).
The last inference of Q has the form
LAY = FALFXH0) iy
f)=f(A),\N®

where A ® coincides with f(X'Ga) by the definition of f. By the induction
hypothesis, we have

? (Aright)

LT, FT = A X"y

for all j € w, so

{ I = A, XiJrjO( }jew
I' = A X'Ga

(Gright).

This completes the proof. ]

Note that we cannot give a direct proof of the converse of Theorem 2.6 (1) in a similar
way. In order to prove the converse, we have to consider induction on the proofs Q of
f(I') = f(A) in LK,,. Hence, we must consider the case where the last inference of Q has
the form

f) = f(A), B B, f(T) = f(As)
FI), f(I) = f(Ay), f(A2)

(cut)

https://doi.org/10.1017/50960129514000048 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129514000048

Embedding theorems for LTL and its variants 95

where f is unknown if it can be expressed as f = f(y) for a formula y, and the condition
‘B can be expressed as f = f(y) is required to apply the induction’.

Theorem 2.7 (cut-elimination). The rule (cut) is admissible in cut-free LT,,.
Proof. Suppose
LT, T = A.
Then we have
LK, F f(I) = f(A)
by Theorem 2.6 (1), and hence
LK, — (cut) F f(I') = f(A)
by the cut-elimination theorem for LK. By Theorem 2.6 (2), we then obtain
LT, —(cut) T = A,
which completes the proof. L]

Note that because of the cut-elimination theorem for LK., we can strengthen the
statements of Theorem 2.6 by replacing ‘if ... then’ with ‘if and only if”, so we have

LT, FI'=A ifand onlyif LK, F f(I')= f(A).

This fact will be used to prove the completeness theorem for LT,,.

2.2. Semantical embedding

The symbol > or < is used to represent a linear order on w. In the following, we will
define LTL semantically as a satisfaction relation.
Let I" be a set
{o1y. ooyt (m=0)
of formulas. Then:
— I means oy V- -V, if m > 1, and —(p—p), where p is a fixed propositional variable,
otherwise.

— I'. means oy A -+ Aay, if m > 1, and p—p, where p is a fixed propositional variable,
otherwise.

Definition 2.8 (LTL). Let S be a non-empty set of states. A structure (¢,1) is a model if:

(1) o is an infinite sequence sy, s1, 52,... of states in §;
(2) I is a mapping from the set @ of propositional variables to the power set of S.

In this definition, ¢ is called a computation, and I is called an interpretation.
A satisfaction relation (o,1,i) =7, o for any formula «, where (o,1) is a model, and i
(€ w) represents some position within o, is defined inductively by:

f The proof of the syntactical embedding theorem (of LT,, into LK,,) given in Kamide (2009) has such an
error, which is corrected here.
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(1
(2
3
(4
(5
(6

(0,1,i) =pr p if and only if s; € I(p) for any p € @.
(O',I,i) ':LTL OC/\ﬁ if and only if (O’,I,i) ':LTL o and (G,I,i) ’:LTL ﬂ
(O',I,i) ':LTL OC\/ﬁ if and only if (O’,I,i) ':LTL o or (O',I,i) ':LTL ﬁ
(0,1,i) =L o—f if and only if not-[(o,1,i) =Lt @] or (o,1,i) =Lt f-
(0,1,i) =L —o if and only if not-[(a,1,i) =Lr7L o].
(0,1,i) =L Xoo if and only if (o,1,i+ 1) =L .
(7) (0,1,i) =Lrr Go if and only if (0,1, ) =prp o for any j > i
(8) (0,1,1) =L Fo if and only if (0,1, j) F=rrp o« for some j > i.

A formula « is said to be LTL-valid if

(0,1,0) FrLrL o

for any model (o,1). A sequent I' = A is said to be LTL-valid if the formula I'.—A" is
LTL-valid.

— O = N O

The following definition gives a semantics for IL.

Definition 2.9 (IL). Let ® be a countable (non-empty) set of formulas. V' is a mapping
from the set @ of propositional variables to the set {z,f} of truth values. V' is called a
valuation. A valuation V is extended to a mapping from the set of formulas to {t,f} by:
(1) V(e—p) =t if and only if V(a) =f or V(f) =t
(2) V(—a) =t if and only if V(x) = f.
3)V(A®) =t if and only if V(x) =1t for all x € ®.
4) V(\/O®)=1t if and only if V(x) =t for some o € ©.

In order to make a comparison between LTL and IL, a satisfaction relation V = o
for any formula « is inductively defined by
(1) V =i p if and only if V(p)=t for any p € @.
(2) V =L a—p if and only if not-[V = ] or V =1 f.
(3) V =qL —a if and only if not-[V ;. af.
4)V = AO if and only if V =, o for any « € ©.
5)V =L VO if and only if V = « for some o € ©.

A formula o is said to be IL-valid if V = o (or equivalently V(x) = t) for any
valuation V. A sequent I' = A is said to be IL-valid if the formula ['.—A" is IL-valid.

It is well known that the completeness theorem with respect to the semantics of IL
is true for LK,, (see, for example, Feferman (1968), Tanaka (1999), Tanaka (2001) and
Takeuti (1985)).

We will need the following lemma for our proof of the semantical embedding theorem.

Lemma 2.10. Let @, ®@; (i € ) and f be the same as those in Definition 2.5. We suppose:

— V is a valuation from (J,,, @; to {t,f}.

— S is a non-empty set of states.

— (0,1) 1s a model such that ¢ is a computation sy, sq,$2,... (s; € S,i € w), and [ is an
interpretation from @ to the power set of S satisfying

View,Vpe ® [s; € I(p) ifand onlyif V(p;) =1].
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Then, for any formula o in Ly,

(0,1,i) =pr o if and only if V=1 f(X'a).

Proof. We use induction on «, and to simplify the notation, we will omit the V' when
we write V' =, here.

— Base case a = p € O
We have

(o,1,i) ELrep it s € 1(p)
ift Vip)=t
il =i pi
iff = f(X'p).

— Induction step:
We will only show some cases as examples.

- Casea=pfAvy:

(0,1,i) ELre B Ay it (o,1,i) FErre B and  (0,1,0) Frrry

iff = f(XB) and = f(XTy)
(by the induction hypothesis)

iff = fXB) AF(XTy)
iff = fX(BAY)) (by the definition of f)

- Casea=—f:

(G,I, Z) ’:LTL _'ﬁ iff nOt'[(Galr l) ':LTL ﬁ]

iff not-[=L f(X'B)] (by the induction hypothesis)
iff = —f(X'B)
iff =L f(XT-p) (by the definition of f)

— Casea=Xf:

(o,1,i) Erre XB il (o, 1,i+1) Frre B
iff = fXTR) (by the induction hypothesis)
iff = f(X(XB)) (by the definition of f)
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— Case a=Gp:

(Galai) ':LTL Gﬁ iff V] =i [(Gala.j) ':LTL ﬁ]
iff Vj>i[=m fXIB)] (by the induction hypothesis)
iff k€ o [ fXTP)]
iff =y forall ye {(f(XThB) | kew)
it ANFXHB) Tk € o}

iff = f(X'GP). (by the definition of f)
L]

We then obtain the following theorem as a special case.

Theorem 2.11 (semantical embedding). Let f be the mapping defined in Definition 2.5.
Then, for any formula o in Ly,

o is LTL-valid if and only if f(«) is IL-valid.

Theorem 2.12 (completeness). For any sequent S,

LT, S ifand onlyif S is LTL-valid.

Proof. Let S be I' = A and o be T'.—A". Then:

LT, S iff LT,+F =«
iff LK, F= f(«)

(by Theorem 2.6 and the cut-elimination theorem for LK,,)
iff  f(a) is IL-valid (by the completeness theorem for LK,,)
iff o is LTL-valid (by Theorem 2.11)
iff S is LTL-valid. 0

2.3. Indexed formulation

Baratella and Masini’s 2-sequent calculi 2S, and 2SP,, for the propositional and first-

order predicate LTLs were introduced in Baratella and Masini (2004), where they also

proved the cut-elimination and completeness theorems for these calculi, presenting an

analogy between LTL and Peano arithmetic with the w-rule. Kamide (2006b) showed an

equivalence between Kawai’s LT, and Baratella and Masini’s 2S,,. We will now give an

alternative proof of the cut-elimination theorems for LT,, and 2S,, using this equivalence.
The language of 2S,, and the notation used are almost the same as those of LT,,.

Definition 2.13. An expression o ( is a formula and i € w) is called an indexed formula.
An expression I' =2 A where I" and A are finite (possibly empty) sets of indexed formulas
is called a 2-sequent.

Definition 2.14 (2S,,). The initial sequents of 2S, have the form

OCi :2 OCi.

https://doi.org/10.1017/50960129514000048 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129514000048

Embedding theorems for LTL and its variants

The structural rules of 2S, have the form

I=2Acd o =211

99

)
s =2AT (cut2)
2 2
ﬁ (we-left2) % (we-right2).
The logical inference rules of 2S,, have the form
I=2%o pLA=2T1 T =2 A, B

=X PA=I ) U= AR eht2)

(0—p), I, A =2 2,11 I =2 A, (a—p)

IT=2A T =2A
T D (Nleft12) ﬁ—:z (Aleft22)
(anp), T == A (N PB), I == A
2 i 2 i i 2 i 2

P="40 U= AF [ eho) wU =78 B =8 o)
I =2A(xAp) (aV B, T =2A
2 i 2 i
=AY ient2) _P=TAF right)
L =2A,(xVp) =2 A (aV p)
r=2A0 iT=2A
ST 2% (Cef2) D TR (Gright2)
(o), T =2 A I =2A, (—o)!
i+1 T 2 A I 2 A i+1
2 T2 (Xlefy) — = =% (Xright)
Xa), I’ == A I'=" A, (Xa)
itk =2 A (T =2A,0t
2L TR (Gleft2) L VSO (Gright2)
(Ga), T =2 A I =2 A, (Go)
i+j,1" 2 Al o 2 i+k
T =T A e ) P="A27  pright)
(Fo), T =2 A I' =2 A, (Fa)!

Definition 2.15. Let £; be the set of formulas of LT, and £, be the set of indexed
formulas of 2S,,. Then:

(1) A mapping f from L; to £, is defined by
fX'a) == o

for any formula o.
(2) A mapping g from £, to £; is defined by

g(o) == X'
for any formula o.
Note that
fe(d) = o
gf(X'0) = X'

hold for any formula o.
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Theorem 2.16 (equivalence). We have:
(1) For any 2-sequent I' =2 A, if
2S, FT =2 A,
then
LT, F g(I') = g(A).
(2) For any sequent I' = A, if
LT,-(cut) FT' = A,
then
2S,(-cut2) F f(I') =2 f(A).

Proof. We will only show (1) as an example. We use induction on a cut-free proof P of
I' =2 A in 2S,,, and will only show one case as an example:

— Case (Xleft):

Hence, the last inference of P is of the form
i+1 > 2 I
X =T (Xleft),

(Xo), 2 =211

By the induction hypothesis, we obtain
LT, F g(e*"),g(Z) = g(ID),
and thus
LT, I g((Xa)), g(X) = g(IT)
because
(o) = Xty
= X(Xa)
= g((Xa)). O

Using the cut-elimination theorem for LT, and Theorem 2.16, we can now give an
alternative proof of the following theorem (Baratella and Masini 2004).

Theorem 2.17 (cut-elimination). The rule (cut2) is admissible in cut-free 2S,,.

Proof. Suppose
2S, FT=2A

for an arbitrary 2-sequent I' =2 A. Then we have
LT, - g(I') = g(A)
by Theorem 2.16 (1). By the cut-elimination theorem for LT,,, we obtain

LT, (-cut) + g(I') = g(A),
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and thus
28, (—cut2) - fg(T) =2 fg(A)
by Theorem 2.16 (2). Hence, we have

2Su(—cut2) FT =2 A

as required. L]

Using Theorem 2.17 and an appropriate modification of Theorem 2.16, we can now get
an alternative proof of the cut-elimination theorem for LT,,.

The equivalence and cut-elimination results for 2S, and LT, given above can be
extended naturally to the first-order versions 2PS,, and FLT,,, so we will omit them from
the next section.

Baratella and Masini (2004) presented some extended results for some mathematical
theories (that is, a set of extra-logical axioms) over 2S, and 2PS,. We can also obtain
some similar results over LT, and FLT,, by using and extending the equivalence between
LT, and S, and the equivalence between FLT,, and 2PS,,, respectively.

3. First-order LTL
3.1. Syntactical embedding
We use the following list of symbols for the language £ of the underlying logic:

— g, dy, ... for free variables;
— Xp, X1,... for bound variables;
— fo,f1,... for functions;

— Do, P1,-.. for predicates;

— —, 7, A\, V, V (any), 3 (exists), G (globally), F (eventually) and X (next) for the logical
connectives.

The numbers of free and bound variables are assumed to be countable, as are the numbers
of functions and predicates. We also assume that there is at least one predicate. A O-ary
function is an individual constant, and a O-ary predicate is a propositional variable. We
use lower case letters p,q, ... to denote atomic formulas. We will continue to use a similar
notation to that used in the previous section for the current section.

A sequent calculus FLT,, for first-order LTL (called FLTL) is given by the following
definition.

Definition 3.1. The initial sequents of FLT,, are of the form
X'p=Xp

for any atomic formula p.
The structural rules of FLT,, are (cut), (we-left) and (we-right) as in Definition 2.1.
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The logical inference rules of FLT,, are obtained from those of LT, by adding logical
inference rules of the form

X'o(1),I = A r=AX
L (Vleft) ﬂ (Vright)
X'Wxa(x), I = A I'= A X'Vxo(x)

X'o(a), I = A (3left) I'= A X'a(t) (3right)

X'3Ixa(x),T = A I = A, X' 3xo(x)

where a is a free variable that must not occur in the lower sequents of (Vright) and (3left),
and t is an arbitrary term.

The fact that sequents of the form X'« = X' for any formula « are provable in cut-free
FLT,, can be proved by induction on the complexity of o.

A language of first-order IL (called FIL) is obtained from £ by removing {A,V,G,
F,X} and adding A and /.

Definition 3.2. We assume that the notion of a term is defined in the usual way. Let Fy
be the set of all formulas generated from the set of atomic formulas by the standard
finitely inductive definition with respect to {—, —,V, 3}. We now suppose that F, is already
defined with respect to t =0,1,2,.... A non-empty countable subset ®, of F; is said to be
an allowable set if it contains a finite number of free variables. The expressions A ® and
\/ © for an allowable set ® are considered below. We define F, ;| from

F.u{/\®,\/© | ©is an allowable set in F, |

by the standard finitely inductive definition with respect to {—,—,V,3}. We define F,,
which is called the set of formulas, by | J,_,, F;, and an expression in F,, is called a formula.

A sequent calculus FLK,, for FIL is given by the following definition.

Definition 3.3. The initial sequents of FLK,, are of the form
p=r

for any atomic formula p.
The structural rules of FLK,, are (cut), (we-left) and (we-right) as in Definition 2.1.
The logical inference rules of FLK,, are obtained from those of LK, by adding logical
inference rules of the form

a(t), = A eft? I'= A a(a) _
Vxo(x), ' = A (Vleft?) I'= A, Vxa(x) (Vright?)
wa), ' = A eft? I'= A () . .0
Ixo(x), I’ = A (Jleft?) I' = A, 3xo(x) (3right’)
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where a is a free variable that must not occur in the lower sequents of (Vright’) and
(Fleft®), and ¢ is an arbitrary term, and
owl'=A (x€0O
ANO, T =A

{ o, = A }yco I'=Aoa (z€0) .
Veorma (Ve r=aye (Vg

{F:>A,OC }g(e@

) (Aleft!) F=ANG (A right!)

where ® is an allowable set.

The superscript ‘0’ in some of the rule names in FLK, means that these rules are
the special cases of the corresponding rules of FLT,, that is, the case where i is O.
The superscript ‘f” in some of the rule names in FLK,, distinguishes them from the
propositional case, that is, ® in the rules is an allowable set. The sequents of the form
o = o for any formula o are provable in cut-free FLK,,. It is well known that FLK,,
enjoys cut-elimination.

Definition 3.4. We fix a countable non-empty set ® of atomic formulas, and define the
sets
O :={pi|pe® (icw)

of atomic formulas where py = p (that is, ®y = ®@). The language Lpi 1L (or the set of
formulas) of FLTL is defined using ®, —, -, A,V,V,3, X, G and F. The language Lgyp of
FIL is defined using (J,c,, @i, —,—, A.,V.V and 3 in a similar way to Definition 3.2. For
convenience, the binary versions of A and \/ are also denoted by A and V, respectively,
and these binary symbols are assumed to be included in Lgyp.

A mapping f from Lgp 1 to Ly is obtained using the same conditions in Definition 2.5
with the addition of the following conditions:

f (Xierx(x)) = QOxf (Xiot(x))
where Q € {V,3}.

Theorem 3.5 (syntactical embedding). Let I' and A be sets of formulas in Lgp1p, and f
be the mapping defined in Definition 3.4.

(1) If
FLT, - T = A,
then
FLK, F f(I') = f(A).
(2) If
FLK,, — (cut) - f(T') = f(A),
then
FLT, —(cut) F ' = A.
Proof. The proof is similar to the proof of Theorem 2.6. L]
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Theorem 3.6 (cut-elimination). The rule (cut) is admissible in cut-free FLT,,.

Proof. The statement follows from Theorem 3.5 and the cut-elimination theorem for
FLK,,. O

Note that we can strengthen the statements of Theorem 3.5 by replacing ‘if ... then’ by
‘if and only if”. This fact will be used to prove the completeness theorem for FLT,,.

3.2. Semantical embedding

We write a[y/x] to denote the formula obtained from a formula o by replacing all free
occurrences of an individual variable x in « by an arbitrary individual variable y, but

avoiding any clash of variable names. Let I be a set {oy,...,a,} (m = 0) of formulas.

Then:

— I'" means o V- Vo, if m > 1, and —(p—p) where p is a fixed atomic formula
otherwise.

— I means oy A-- - Aay, if m > 1, and p—p where p is a fixed atomic formula otherwise.

For simplicity, we adopt a first-order language L1 without individual constants and
function symbols for FLTL.
Definition 3.7. A structure

A= (U, {Ii}iew>
is said to be an FLTL-model if the following conditions hold:
(1) U is a non-empty set;
(2) I' (i € ) are mappings such that
plf c U
(that is, p" are n-ary relations on U) for each n-ary predicate symbol p.

We write u for the name of u € U, and write Lg 7 [A4] to denote the language obtained
from Lprrp by adding the names of all the elements of U. A formula « is said to be a
closed formula if o has no free individual variables. A formula of the form Vx; - - - Vx,u is
said to be the universal closure of o if the free variables of o are xi,..., x,,. We write c¢l(x)
for the universal closure of o.

Definition 3.8. Let
A= <Ua '{Ii}i€w>

be an FLTL-model. The satisfaction relations

AEia (i€w)
for any closed formula o of Lgi11[A] are defined inductively by:
(1) A = p(uy,...,u,) if and only if (uy,...,u,) € p'" for each n-ary atomic formula
p(uy,...,u,);

2)A=janp ifand onlyif A= o and A4 = f;
B)AE=javp ifandonlyif A= o or A= f;
(4) A = a—p if and only if not-(4 = ) or A =i ff;
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(5) A = —o if and only if not-(4 =; o);
(6) A =; Vxo if and only if A =; a[u/x] for all u € U;
(7) A =; 3xo if and only if A4 =; «[u/x] for some u € U,
(8) A = Xoo if and only if A =i o
(9) A =i Go if and only if A4 ;o for any j>i;
(10) A =; Fo if and only if A =; « for some j > i.
The satisfaction relations
AEo (i€ew)
for any formula o of Lp p are defined by

Ao ifand only if A = cl(a).

A formula o of Lgprp is said to be FLTL-valid if A = o holds for each model 4. A
sequent I' = A of LgrrL is said to be FLTL-valid if the formula I'.—A" is FLTL-valid.

In the following, we adopt a first-order language Lg;p without individual constants and
function symbols for FIL. We also assume that L has uncountably many individual
variables. This assumption is known to be necessary to get a completeness theorem for
FIL, and is used to rename bound variables in the completeness proof.

Definition 3.9. A structure B := (U,I) is said to be an FIL-model if the following

conditions hold:

(1) U is a non-empty set;

(2) I is a mapping such that p! = U" (that is, p' is a n-ary relation on U) for each n-ary
predicate symbol p.

We write Lg[B] to denote the language obtained from Ly by adding the names of all

the elements of U.

Definition 3.10. Let ® be an allowable set and B := (U,I) be an FIL-model. The
satisfaction relation B |= o for any closed formula o of Ly [B] is defined inductively by

(1) B = p(uy,...,u,) if and only if

(ula"‘aun) € pl

for each n-ary atomic formula p(uy,...,u,),
(2)B=AO® ifand onlyif B =a forall o€ Q;
(3)B =V 0O ifand onlyif B =a for some o€ @;
(4) B =a—p if and only if not-(B o) or B = f;
(5) B = —a if and only if not-(B = a);
(6) B =Vxo if and only if B = afu/x] for all ue U;
(7) B =3xa if and only if B = afu/x] for some u € U.

The satisfaction relation B = o for any formula a of Lgyp is defined by
B =o ifand onlyif B = cl(«).

A formula o of Lgy is said to be FIL-valid if B = « holds for each FIL-model B. A
sequent I' = A of Lgy is said to be FIL-valid if the formula I'.—A" is FIL-valid.
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It is well known that the completeness theorem with respect to the FIL-model holds
for FLK,,.

In the following, we will use the same languages Lpip and Ly as in the previous
discussion (that is, they have no individual constants or function symbols), and, for
compatibility between Lgp and Lgprr, we will also assume that Lpprp has uncountably
many individual variables. In order to apply the mapping f in Definition 3.4, we assume
the languages Lrrrr. and Lgp based on @ and (J,., ®;, respectively.

Lemma 3.11. Let f be the mapping defined in Definition 3.4. For any FLTL-model
A = <U7 '{Ii}i€w>5
we can construct an FIL-model
B =(U,I)
such that for any formula « in Lgr7p,

Ao ifand only if Bk f(X'a).

Proof. Let @ be a set of atomic formulas and ®@; be the set {p; | p € ®} of atomic
formulas with py := p. Let U be given (that is, U is common in 4 and B). We now
suppose that 4 is an FLTL-model

<U, {Ii}iew>
such that I' (i € w) are mappings satisfying

i

pI EU"

for all p € @. Let B be an FIL-model (U,I) such that I is a mapping satisfying

pI c Un
for all
S U o;
icw
and that
(XI;XL---,xn) € pli
if and only if
(xlsxza"'>xl‘l) E pll
The claim then follows by induction on the complexity of . L]

Lemma 3.12. Let f be the mapping defined in Definition 3.4. For any FIL-model
B =(U,I),
we can construct an FLTL-model

A= (U{I'}ico)
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such that for any formula o in Lgr7p,

B = f(X'a) ifand onlyif Ao

Proof. The proof is similar to the proof of Lemma 3.11. L]

Theorem 3.13 (semantical embedding). Let f be the mapping defined in Definition 3.4.
For any formula o in Lgr7, o is FLTL-valid if and only if f(«) is FIL-valid.

Proof. The statement follows from Lemmas 3.11 and 3.12. |
Theorem 3.14 (completeness). For any sequent S,
FLT, S
if and only if S is FLTL-valid.
Proof. Let S be I' = A and o be I'.—A". Then,

FLT,FS iff FLT,F =«
iff FLK, F = f(«)
(by Theorem 3.5 and the cut-elimination theorem for FLK,,)

iff  f(o) is FIL-valid (by the completeness theorem for FLK,,))
iff o is FLTL-valid. (by Theorem 3.13)
L]

4. Generalised first-order LTL
4.1. Syntactical embedding

Let n be a fixed positive integer. We use the symbol N to represent the set {1,2,...,n} of
indexes of modal operators. We use the following list of symbols for the language £ of
the underlying logic:

— g, dy, ... for free variables;

— Xg,X1,... for bound variables;

— fo,f1,... for functions;

— po, P1, ... for predicates;

— —, 7, A\, V, V (any), 3 (exists) for the logical connectives;

— Qi (i € N), Og (generalised G) and O (generalised F) for the modal operators.

We assume the numbers of free and bound variables are countable, and that the numbers
of functions and predicates are also countable. We also assume that there is at least
one predicate. A O-ary function is an individual constant, and a 0-ary predicate is a
propositional variable. We use lower case letters p,q,... to denote atomic formulas. We
use OI" where

O e {@, | iEN}U{@G,QQF}
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to denote the set

{OylyeT}
We use the symbol K to represent the set

{@i ‘ i€ N},

and the symbol K* to represent the set of all words of finite length of the alphabet K.
Note that K* includes ¥, so {io | 1 € K"} includes «. We use the lower-case Greek letters
1 and x to denote any members of K*.

A sequent calculus GLT,, for a generalised first-order LTL (called GLTL) is given by
the following definition.

Definition 4.1. The initial sequents of GLT,, are of the form

Ip = 1p

for any atomic formula p.
The structural rules of GLT,, are (cut), (we-left) and (we-right) as in Definition 2.1.
The logical inference rules of GLT,, are of the form

z(oclz’/?)—,?iA (Aleft1#) l(ocl/li’/?)—,?iA (Aleft2?)
Sy ) e Ve
riz—m (Vright1®) I_LZ—% (Vright2®)
T o g () T (right)
Nlj&% (Vleft®) % (Vright?)
w(a),I" = A (left?) I'= A (1) (Iright?)

dAxa(x), I = A I' = A, 13xa(x)

where a is a free variable that must not occur in the lower sequents of (Vright®) and
(Fleftd), and ¢ is an arbitrary term, and

ko, I = A {T = A ko }rek: _
160, T = A (Veleft) I = A Qoo (Vgright)
{ = A }eeke I = A ko
L IKO, keK T = Ao .
1IQra, T = A (Vrleft) I = A O (WVEgright).
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The fact that sequents of the form 1o = 1o for any formula « are provable in cut-free
GLT, can be proved by induction on the complexity of a. Note that GLT, includes
FLT, as a special case.

The inference rules (Vgleft) and (Vgright) are intended to imply the axiom scheme

Voo« /\{loc | 1e K™}

We now suppose that for any formula o, we have f, is a mapping on the set of formulas
such that

fu(x) = /\{Q?,{x/\oc) | i€ wl.
Qo then becomes a fixpoint of f,. The axiom scheme presented above just corresponds
to the so-called iterative interpretation of common knowledge. On the other hand, if we
take K := {©;}, we can understand ©; and ©g, respectively, as the temporal operators
X and G in LTL. The corresponding axiom scheme for the singleton case represents the
LTL-axiom scheme

Go < /\{Xioc | i€ w}.
The operator Og can thus be regarded as a natural generalisation of G. Similarly, Vp
can be regarded as a generalisation of F.

The language of FIL and the sequent calculus FLK, follow from Definitions 3.2
and 3.3.

Definition 4.2. We fix a countable non-empty set @ of atomic formulas, and define the
sets
O, = {p: | p € D} (k€ K)
of atomic formulas where py = p (that is, @y := @). The language LgirL (or the set
of formulas) of GLTL is defined using ®, —,—,A,V,V,3, ©; (i € N), Og and Op. The
language Lerp of FIL is defined using | J,.cx- @, —.—, A, V.,V and 3 in a similar way to
Definition 3.2. For convenience, the binary versions of A and \/ are also denoted by A
and V, respectively, and these binary symbols are assumed to be included in Lpyy .
A mapping f from Lgrry to L is defined as follows:

fGap) =p, e® (€K for any p € @ (in particular, f(p) :=p € ®y)
f((xo p)) == f(1x) o f(1P) where o € {—, A, V}
flimo) == =f (1)
FOxa(x)) = Oxf(10(x)) where Q € {V,3}

F006a) = \{f(xa) | K € K}
f0r0) = \/{f(xa) | K € K7},

Theorem 4.3 (syntactical embedding). Let I and A be sets of formulas in Lgrrr, and f
be the mapping defined in Definition 4.2. Then:

(1) If
GLT, F I = A,
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then
FLK, F f(T') = f(A).
2)If
FLK, — (cut) - f(I') = f(A),
then

GLT, —(cut) FT' = A.

Proof. We can show part (1) by induction on the proof P of I' = A in GLT,,. We can
show part (2) by induction on the proof Q of f(I') = f(A) in FLK,, — (cut).

We will just show the following case for (1) as an example.
— The last inference of P is of the form

{ T = A Kol }yek-
I'= A, 1060

(Vgright).

By the induction hypothesis, we have
FLK,, E f(I') = f(A), f(ixx)
for all k € K*. Let ® be {f(ixka) | kK € K*}. We then get the required result

{FI0) = F(A).F(152) } e
fI) = f(AL\®
where A @ coincides with f(1Qga) by the definition of f. ]

° (A right!)

Theorem 4.4 (cut-elimination). The rule (cut) is admissible in cut-free GLT,,.

Proof. The statement follows from Theorem 4.3 and the cut-elimination theorem for
FLK,,. Ll

Note that we can strengthen the statements of Theorem 4.3 by replacing ‘if ... then’ by
‘if and only if”. This fact will be used to prove the completeness theorem for GLT,,.

4.2. Semantical embedding

In this section we will use similar notation to that used in the previous section, such as
afy/x]. For simplicity, we adopt a first-order language L1 for GLTL without individual
constants and function symbols. We write 7 for iji, - - - i if

1=0;,0;, 9,
and g if 1 = .
Definition 4.5. A structure

A= (UAI'} )
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is said to be a GLTL-model if the following conditions hold:
(1) U is a non-empty set;
(2)I' (1 € K*) are mappings such that
pI7 c Un

(that is, pﬁ are n-ary relations on U) for each n-ary predicate symbol p.
We write u for the name of u € U, and write Lgr1L[A] to denote the language obtained
from Lgrry by adding the names of all the elements of U. A formula o is said to be a
closed formula if o has no free individual variable. A formula of the form Vxi - - Vx,x is

said to be the universal closure of o if the free variables of o are xi,..., x,,. We write cl(«)
for the universal closure of o.

Definition 4.6. Let
A= (U {I"} k")
be a GLTL-model. The satisfaction relations
A= o (1€K")
for any closed formula o of Lgrrr[A] are defined inductively by:
(1)A =5 p(uy,...,u,) if and only if (uy,...,u,) € p’7 for each n-ary atomic formula
p(l_lla ceey l_ln)z
2)AEanp ifand only if A= and A4 = f;
B3)AE=ravp ifandonlyif A= a0 or A= f;
(4) A =y a—fp if and only if not-(4 = ) or A = f;
(5) A = —o if and only if not-(4 = o);
(6) A =; Vxo if and only if A }=; a[u/x] for all u e U;
(7) A = Ixa if and only if 4 |=; a[u/x] for some u € U;
(8) for any k € N, A =; Oy if and only if 4 =y o
(9) A4 = Oga if and only if A4 = o forall k € K¥;
(10) A =; Opa if and only if 4 =;; o for some k € K*.
The satisfaction relations
A a (1e K"
for any formula o of LgrrL are defined by
A=y o if and only if A = cl(@).

A formula o of Lgr1p is called GLTL-valid if A =g o holds for each model 4. A sequent
I' = A of Lgi7L 1s called GLTL-valid if so is the formula I'.—A".
Note that
Ay ke if and only if A =i o
holds for any satisfaction relation }=;, any formula « and any k € K*.
In the following, we use the same languages Lgirp and Lgp as in the previous

discussion (that is, they have no individual constants or function symbols), and also
assume for compatibility between Lg;p and Lgrrr that Lgrrp has uncountably many
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individual variables. In order to apply the mapping f in Definition 4.2, we assume the
languages LgrrL and Ly based on @ and (J, g @i, respectively.

Lemma 4.7. Let f be the mapping defined in Definition 4.2. For any GLTL-model
A = <U7 {17}16K5>3
we can construct an FIL-model B = (U,I) such that for any formula « in LgrTL,
Aty if and only if B E f(ix).
Proof. Let ® be a set of atomic formulas and @, be the set {p, | p € ®} of atomic

formulas with pg := p. Let U be given (that is, U is common in A and B). Suppose that
A is a GLTL-model

<U5 {I?}IEK*>
such that I' (1 € K*) are mappings satisfying

pﬁ c U

for all p € @. Let B be an FIL-model (U,I) such that I is a mapping satisfying

pI c Un
for all
pe |J o
KeK™
and that

(X1,X2,...,X,) € pﬁ
if and only if
(X1,X2,...,Xy) € pf.
The proof then follows by induction on the complexity of o:
— Base step:
— Case (= p(xq,-...,X,) € D):

A= p(%1- .0 %,) (X1, X2, x) € p!
iff (x1,X2,...,x,) € p!
iff B =p,
iff B = fGp(xy,-..,X,))- (by the definition of f)

— Induction step:
We will only show the following cases as examples:

— Case (= Qf):

A Opift A =i B
iff B = f(10:p). (by the induction hypothesis)
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— Case (= Dgp):

A= Ogp iff A =i B forall ke K™
iff B = f(ixB) for all k e K* (by the induction hypothesis)

iff B= A\{f(uep) | € K7}
iff B = f(19Qgp). (by the definition of f)
U]
Lemma 4.8. Let f be the mapping defined in Definition 4.2. For any FIL-model
B = (U,I),
we can construct a GLTL-model
A=(U, {I?}IEK*>

such that for any formula « in Ly,

B = f(iz) if and only if A ;.

Proof. The proof is similar to the proof of Lemma 4.7. U]

Theorem 4.9 (semantical embedding). Let f be the mapping defined in Definition 4.2. For
any formula o in Lgr1L,

o is GLTL-valid if and only if  f(«) is FIL-valid.

Proof. The statement follows from Lemmas 4.7 and 4.8. U]

Theorem 4.10 (completeness). For any sequent S,

GLT, F S if and only if S is GLTL-valid.

Proof. The statement follows from Theorems 4.3 and 4.9 and the completeness theorem
for FLK,,. L]

5. Infinitary extensions of LTL

We adopt the following list of symbols for the language of the underlying logic: countably
many propositional variables po, pi,..., =, =, A\, V, X, G, F and O (interior).
Definition 5.1 (L., and L_). The initial sequents of L, are of the form

Xip = Xip

for any propositional variable p.
The structural rules of L, are (cut), (we-left) and (we-right) as in Definition 2.1.
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The logical inference rules of L,, are (—left), (—right), (—left), (—right), (Gleft), (Gright),
(Fleft), (Fright) as in Definition 2.1 and the inference rules are of the form

Xo,I'=A (x€0) (T = AXa ) yeo

A left! : ight!
XANONT=a Neft) r=axi(phe At
{X'ae,I'=A} I=AX €0
L= J2<O \/ left)) = AXa (LE€O) /o)
X'(VO),I'=A I'=AX(\V0O)

where ® denotes a non-empty countable set of formulas, and
Xo, T = A i k .
BT ZR ODlefy) XL = X% right),
X' Qa, T = A X'OT = X*Qu

where L, is obtained from L, by deleting {(Dleft), (Pright)}.

w

Definition 5.2 (S4,,). A sequent calculus S4,, for an infinitary version of the modal logic
S4 can be obtained from L,, by deleting (Gleft), (Gright), (Fleft), (Fright) and replacing
i and k by O (that is, we delete every occurrence of X). The modified inference obtained
rules for S4,, by replacing i and k by 0 are denoted by a ‘0’ superscript.

It is well known that S4,, enjoys the cut-elimination property — see, for example, Kaneko
and Nagashima (1997).

It can be shown by induction on the complexity of a that sequents of the form
X'a = X'« for any formula o are provable in cut-free L,, and cut-free L.

Proposition 5.3. Let L be L,, or L. The rule (Xregu) is admissible in cut-free L.

Proposition 5.4. For any formulas o and f§, any non-empty countable set ® of formulas
and any i € w, the following sequents are provable in cut-free L,, and cut-free L;:

(1) Xi(a—p) = Xa—Xp,

(2) X'—o = X0,

(3) X'(£#0) <= £(X'®) where £ € {A, V},
4) Go = \{X'a | i€ w},

(5) Fu = \/{ X'« | i € w}.

~— — — —

And for any formula « and any i € w, the following sequents are provable in cut-free L,:

(6) X'Va = OX'a.

Proof. We will just show (4) and (6) as examples.
4 (=)

i i ) .
{ Xo = X'o }X’oce{X’oc | icw)}

(Gleft)

{ Ga = X'o }yi,eix
(A right)

o | icw}

Go= A{X'a|i€w)
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{ Xlo = Xo }jco

I
(ANX|i€w)=Xa}cn (Aleft)

A X |i€w} = Gu

M (Vleft)
K2 = X coright

Xy = OX'o

M (Vleft)
X = Xo crright)
OX'o = X'Qo

Remarks 5.5 (on Proposition 5.4).

(Gright).

115

(i) The sequents listed in (1), (2), (3) and (6) correspond to the characteristic axioms for
some next-interior fragments of DTL. In fact, a Hilbert-style axiomatisation of S4C
can be obtained from that of S4 by adding the axiom schemes

(a) X(2x o f) <> Xooo X where o € {—,A,V},

(b) X—o > =X,
(c) XVo—VXa,

and the inference rule

o
Xo

(i1) In particular, the sequents of the forms XQu = OXo and OXo = XOu listed in (6)
correspond, respectively, to the continuous axiom, which characterises the continuity
property of the function f on the topological space X of the underlying dynamic
topological system (X, f), and the homeomorphism axiom, which characterises the open
mapping property of f in (X, f). If a function is a continuous open bijection, the
function is called a homeomorphism.

(iii) In order to prove the sequents listed in (6), we need the fact that the parameters i
and k in (Vright) and (Vleft) can be different from each other.

(iv) The sequents listed in (4) and (5) correspond to the characteristic axioms for a full
DTL with a homeomorphism f on a topological space X. Intuitively, (4) and (5) are
interpreted (Konev et al. 2006), for a given subset V' of X, by

and

respectively, where f~ means the i-times iteration of the inverse mapping of f.

GV =({f7(V)licw}

Fv = J{f7 (V) i€ o)
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Remarks 5.6 (comparison with other sequent systems).

(i) A sequent calculus S4Fg (Artemov et al. 1997) for S4F can be obtained from a
standard sequent system for S4 by adding (Xregu). The rules (—right), (—left) and
(Dleft) have been shown to be admissible in cut-free S4Fg (Artemov et al. 1997).

(i1) A sequent calculus S4Cg; (Artemov et al. 1997) for S4C can be obtained from S4Fg
by adding a rule of the form

OXQDo, T’ = A
XQu, I = A .
(iii) Mints’ sequent calculus for S4C (Mints 2006) is similar to S4Cg, and uses a rule of
the form
B=u
B= Ux

where B is a set of formulas of the form X'Qu. Note that this rule does not allow us
to derive the sequent OXo = XWu of homeomorphisms. In order to derive such a
sequent, we require the rule (Vright) proposed in this paper.

(iv) A sequent calculus for a bimodal version of DTL with a homeomorphism, called
S4H on Kremer’s Dynamic Topological Logic web page', can then be regarded as the
{—=, AV, O, X}-fragment of L,,.

Definition 5.7. We fix a countable non-empty set ® of propositional variables, and define
the sets

of propositional variables where py = p. The language L1, of L, is defined using @,
—,~, A\, V., ©, X, G and F. The language Lg4, of S4,, is defined using (., @i, =, A,V
and .

A mapping f from L1, to Ls4, is defined as follows:

f(X'p) :==p; € ¥; (i€ w) for any p € @ (in particular, f(p) :=p € ©)
fX!(@=p)) = f(X'0)—f(X'B)
f(X'=0) = ~f (X'w)
f(X{(£09)) = £f(X'®) where @ is a non-empty countable
set of formulas, and £ € {/\,\/}

f(X'Va) = Of (X'a) (f)
f(X'Ga) = \{f(XHa) | j € o}
fXFa) == \/{f(Xa) | j € ).

We also define the languages L£i- (for L7) and Lig, (for LK,) as the O-less
sublanguages of £, and Lg4,, respectively. A mapping f from L;- to Lik, is then

?

T See http://individual .utoronto. ca/philipkremer/DynamicTopologicallogic.html.
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obtained from the above mapping by deleting the condition (1). We will also use the same
name f for this mapping.

Theorem 5.8 (syntactical embedding). Let I and A be sets of formulas in £y
the mapping defined in Definition 5.7.

and f be

w?

(1) If
L, FT'=A,
then
S4, F () = f(A).
(2) If
S4,, — (cut) = f(I') = f(A),
then

L, —(cut) FT'= A
Let I" and A be sets of formulas in L1, and f be the mapping defined secondly in
Definition 5.7.
(D If L, F T = A, then LK, - f(I') = f(A).
(2) If LK,, — (cut) - f(I') = f(A), then L, — (cut) - I' = A.
Proof. We will only give the proof for the L, case as an example.

(1) We use induction on the proof P of I' = A in L,,. We distinguish the cases according
to the last inference of P, and will only show the following case as an example:

— Case (Uright):

So the final inference of P is of the form
i k
XL = X9 right).
X'OT = X*Qu

By the induction hypothesis, we have

o FFXIOT) = f(Xra),
that is,

o F QF(XT) = f(Xra).

So we obtain

DFXT) = f(Xka)
Vf(XT) = Vf (X a)

(Vleft?)

where

Vf(XT) = Vf (X a)
coincides with

F(X'OT) = f(X'Vu)
by the definition of f.

https://doi.org/10.1017/50960129514000048 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129514000048

N. Kamide 118

(2) We use induction on the proof Q of f(I') = f(A) in S4,, — (cut). We distinguish the
cases according to the last inference of Q and will only show the following case as an
example:

— Case (Aright®):
We consider two subcases:

(a) The last inference of Q is of the form
{ (D) = f(A), f(X'ar) }fX'ot)ef(X(D)
f(0) = f(A)L A\ f(X'®)

where A f(X'®) coincides with f(X'(A ©)) by the definition of f.
By the induction hypothesis, we have

(A right®)

L, T = A Xo

for all X'« € X'®, that is, for all & € ®. We then obtain

(T =AXa }yeo
I'=AX(A\O)

(A right').

(b) The last inference of Q is of the form
{ f(F) = f(A),f(XH'j(x) }f(XiJrjx)E{f(XHja) | jew

) o
i+ h
f(0) = f(A A (X Ha) | jew) (A right”)

where
NFX )| j € w}

coincides with f(X'Ga) by the definition of f. By the induction hypothesis,
we have

L, T = A X%y
for all
XMy e {XHo | j € o},

that is, for all j € w. So we obtain

{ I'= A, XH_J.OC }jew
I = A, X'Ga

(Gright).

Theorem 5.9 (cut-elimination). Let L be L, or L. The rule (cut) is admissible in cut-free
L.
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Proof. We will only show the case for L, as an example. Suppose
L,FT =A.

Then, we have
S4, = f(I') = f(A)
by Theorem 5.8 (1), and hence

S4, — (cut) F f(I') = f(A)
by the cut-elimination theorem for S4,. By Theorem 5.8 (2), we then obtain
Ly, —(cut) F T = A,
to complete the proof. U]

We now define a semantics for L.

Definition 5.10. Let ® be a non-empty countable set of formulas. Timed valuations I
(i € w) are mappings from the set of all propositional variables to the set {t,f} of truth
values. Then, timed satisfaction relations =; o (i € w) for any formula o are defined
inductively by

(1) =i p if and only if I(p) =t for any propositional variable p.
(2) =i A© if and only if | o for any o € @©.

(3) =i VO if and only if =; « for some o € ©.

(4) =i a—p if and only if not-(=; o) or = f.

(5) i —o if and only if not-(; «).

(6) = Xoo if and only if =iy .

(7) =i Go if and only if =; o for any j>1i.

(8) =i Fo if and only if |=; o for some j>i.

A formula o is said to be L, -valid if =9 o holds for any timed satisfaction relations
= (i€ w).
A sequent I' = A is said to be L -valid if the formula I'.—A" is L -valid.

In the following, we use Definition 6.7 as a semantics for LK,,.
In order to apply the embedding function f in Definition 5.7, we assume the languages
based on £y - and Ly, by constructing ® and (J,.,, @i, respectively.

icw

Lemma 5.11. Let f be the mapping defined in Definition 5.7. For any timed satisfaction
relation |=; (i € w), we can construct a satisfaction relation = such that for any formula o
in £y -, we have

= o if and only if = f(X'a).

Proof. The proof is similar to the proof of Lemma 4.7. L]
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Lemma 5.12. Let f be the mapping defined in Definition 5.7. For any satisfaction relation
= and any i € w, we can construct a timed satisfaction relation |=; such that for any
formula o in £ _,

= f(X'a) if and only if ;o

Proof. The proof is similar to the proof of Lemma 5.11. ]

Theorem 5.13 (semantical embedding). Let f be the mapping defined in Definition 5.7.
For any formula o in £y,

o is L -valid if and only if  f(«) is LK,,-valid.

Proof. The statement follows from Lemmas 5.11 and 5.12, where we take O for i. [

Theorem 5.14 (completeness). For any sequent S,

L, S ifandonlyif S isL_-valid.

Proof. The statement follows from Theorems 5.8 and 5.13. L]

We will now show that the {G, F}-free fragment (that is, X-only fragment) of L, is
equivalent to L, under some appropriate interpretations of G and F.

Definition 5.15 (L}). A system L} is defined as the {G, F}-free fragment of L.

Theorem 5.16 (equivalence). Let G and F in L, be interpreted in L, by
Go := /\{Xioc i€ w}
Fo == \/{Xioc | i€ w}.

L, and L} are theorem equivalent under this interpretation.

Proof. 1t is sufficient to show that the rules (Gleft), (Gright), (Fleft) and (Fright) in L,
are derivable in LY, under the interpretations of G and F.
We will only show the case of
{T=AXYa} ey
I = A X' Ga

(Gright).

as an example. Let © be {X/u | j € w}. Then the set
(T = AX"y e,

means the set

{T=AXB}geo
We assume that the sequents in

{T'=AX}gee
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are provable in LY. We then have a proof in L, with

(T=AX g0

roaxihe Nt
where the sequent
I'=AX(A\O)
means the required sequent
I' = A X'Ga
by the interpretation of G. U]

6. Other LTL-variations
6.1. Spatial extensions of LTL
We adopt the following for the language of the underlying logic:

— countably many propositional variables;
— =, 1, A\, V;

— P, (position in x-axis);

— P, (position in y-axis);

— P, (position in z-axis);

— A (anywhere);

— S (somewhere);

— A (converse anywhere);

— S7 (converse somewhere).

An expression oI" where
oe {P.,P,P.,A,S,A",S7}
is used to denote the set
{oylyeT}
We use the symbol P to represent
{P,P,,P.},

and the symbol P" to represent the set of all words of finite length of the alphabet P.
Note that P* includes . We use the Greek lower-case letter 1 to denote any member
of P*.

' (€ P")is called a permutation of 1 (€ P*)if /' is obtained from 1 by a permutation of the
symbols in 1. For example, " = PP, P, is a permutation of : = PP,P,, but i” = P,P,P,
is not a permutation of 1. Note that 1 is itself a permutation of 1. We sometimes use
lower-case letters i, j, k, i, i, i.,... to denote any natural numbers. An expression an(x with

m € {x,y,z} for any i € w is defined inductively by
0, —
Pma =a
Py =P, Pl o
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Definition 6.1 (3SL). The initial sequents of 3SL are of the form

Ip = 1p

for any propositional variable p.

The structural inference rules of 3SL are the same as (cut), (we-left) and (we-right) in
Definition 2.1.

The logical inference rules of 3SL are of the form for any m,n € {x,y,z},

I'=Aw 1f,Z=11 1w, I'= A, 1fp L
aop L= AT ) Fo R ) (right)
w, 1, = A N I'=Aiw T'=Ap 3
(oA BT = A (Neft) T = Aanp  \/right)
w,I'=A 1, =A 3 I'= Ao, . 3
oV B),I'=A (Vieft) I'=Ai(xVp) (Vright’)
I''= A, wx 3 w, I = A .3
1=o, = A (~left") I'=A1—a (-right’)
1P, P, I = A I = A, 1P,P,u .
PPl =A (Pleft) = A PP (Pright)
PPl Py T = A (T = APEP)PFa | jojpj- €0}
CAnT oA (Al F=A A (Aright)
{ IPFP)PFoa,T = A | jejpj: €0 )
SeT = A (Sleft)
K pky pk. IPFPIPEg, T = A
L=APh e (Sright) — - (A7 left)
I'= A, 1So 1IPYPIPEAT 0, ' = A
with the conditions
0< jx <y
0< jy <i
0< j: <,
and
I = A PP Plo | 0< )y < i 0< ), <i,,0< jo <.
{ y ‘ J — Jy sy J } (A~ right)
I = A PEPyP:A
IPEPIPEA,T = A | 0< jy <iy,0< j, <i,0< . <.
{ y | J Jy sty J } (S~ left)

PLPyPES o, T = A
I = A, iP}P) PFa
I = A, P'P}P:S ™«

(S right)
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with the conditions

0< jx <y
0< jy <iy
0< j: <l

Note that (Aright) and (Sleft) have infinite premises.

Proposition 6.2. The rules of the form

I'=A

_I=A p
P.T = p,A (Pnregw)

for any m € {x,y,z} are admissible in cut-free 3SL.

We can prove by induction on the complexity of o that sequents of the form 1o = 1
for any formula o are provable in cut-free 3SL — we have to use Proposition 6.2 in the
proof of this fact.

Definition 6.3. We fix a countable non-empty set @ of propositional variables, and define
the sets

@ ={p|pe® (€P)

of propositional variables where pg = p (that is, @y = ®@). The language L3, (or the
set of formulas) of 3SL is defined using ®, —, -, A,V, Py, P, P., A, S, A” and S™. The
language Ly of LK,, is defined using J,cp- ®,, —,—, A and \/. For convenience, the
binary versions of A and \/ are also denoted by A and V, respectively, and these binary
symbols are assumed to be included in Lj;. For any permutations 1; and 1, of 1 (¢ P¥)
and any p € @, we assume p,, = p,,, thatis, ®,, = ®,,.

A mapping f from Lsgp, to Ly is defined as follows.

fGp) =p, €e® (1€P) for any p € ®
(in particular, f(p) :==p € Oy)

f(aeo B)) = f12) o f(18) where o € {—, A, V}

f=2) == —f (1)
fGPPya) == f(iP,Pa) for any L,m € {x,y,z}

FA%) == NIfGPEPYPEa) | i, jy, je € o)

FSa) == \/{fGPEPIPEa) | juo jyn jo € o)

ﬂmﬁvAa)—Amm&ﬁ¢H0 <in0<j, <ip,0<j. <i)

for any iy, iy, i, € ®
FUPEPYPEST0) i= \/{f(PEPy PEa) | 0 < i < i, 0 < Jjy < i), 0 < o < iz}

for any iy, i,,i. € w.
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Theorem 6.4 (syntactical embedding). Let I' and A be sets of formulas in £351, and f be
the mapping defined in Definition 6.3. Then:

(1) If
3ISLET = A,
then
LK, - f(I') = f(A).
2)If
LK, — (cut) = f(I') = f(A),
then

3SL — (cut) F T’ = A.

Theorem 6.5 (cut-elimination). The rule (cut) is admissible in cut-free 3SL.
The following definition gives a semantics for 3SL.

Definition 6.6. Space-indexed valuations I (iy,iy,i. € w) are mappings from the set of
all propositional variables to the set {t, f} of truth values. Then, space-indexed satisfaction
relations F=; ;. ® (iv,iy,i; € @) for any formula o are defined inductively by:

(1) =i, p if and only if I (p) = ¢ for any propositional variable p.
(2) Eigiyi. o AP ifand only if = 5 o and =i B

(3) Fiiyi, oV B ifand only if = ;i o or i B

(4) Eiiyi o—f if and only if not-(;i 5. @) or =i B

(5) Eiiyi. o if and only if not-(F; ;i .. o).

(6) Fiiyi. P if and only if =i 415 o

(7) Eiiyi. Pyo if and only if = 415 o

(8) =iy Pooo if and only if = 041 o

9) Eiiyi. Ao if and only if = 1) i +j,i4 « forany j, jy, j: € o.
(10) i,y See if and only if i 1) +j,.+ « for some jy, jy, j: € .
(11) iy, A7 if and only if = ;.. o for any jy, jy, j. € @ with

0< ji<ic
0< jy <iy
0< j: <l

(12) iy, ST if and only if ;.. o for some jy, jiy, j. € o with

0< je<iy
Jy
Jz

o
N

ly

o
A
INCIN )

i.

A formula « is said to be 3SL-valid if =¢.00 o holds for any space-indexed satisfaction
relations = ;. (ix,iy,i: € ®). A sequent I' = A is said to be 3SL-valid if the formula
I'.—A" is 3SL-valid.
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To ensure compatibility of proofs, we will now redefine a semantics for LK. This
semantics is essentially the same as the semantics 