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In this paper, we prove some embedding theorems for LTL (linear-time temporal logic) and

its variants: viz. some generalisations, extensions and fragments of LTL. Using these

embedding theorems, we give uniform proofs of the completeness, cut-elimination and/or

decidability theorems for LTL and its variants. The proposed embedding theorems clarify the

relationships between some LTL-variations (for example, LTL, a dynamic topological logic,

a fixpoint logic, a spatial logic, Prior’s logic, Davies’ logic and an NP-complete LTL) and

some traditional logics (for example, classical logic, intuitionistic logic and infinitary logic).

1. Introduction

1.1. Proposed embedding theorems

In this paper, we prove some theorems for embedding linear-time temporal logic (LTL) and

its variants into infinitary logic (IL), classical logic and intuitionistic logic. We will then

use these embedding theorems to give uniform proofs of the completeness, cut-elimination

and/or decidability theorems for some LTL-variations. The LTL-variations studied in this

paper include:

— a generalised first-order LTL – see Section 4;

— two infinitary extensions that subsume some dynamic topological logics – see Section 5;

— a 3-dimensional spatial logic – see Section 6.1;

— some next-time only fragments, which include Prior’s logic and Davies’ logic – see

Section 6.2;

— an NP-complete fragment with a bounded time domain – see Section 6.3.

In the following explanation of the embedding theorems, we will just focus on two

theorems for syntactically and semantically embedding LTL into IL (see Sections 2

and 3).

LTL has the temporal operators X (next), G (globally) and F (eventually) and is

considered to be one of the most useful temporal logics in Computer Science (Clarke

et al. 1999; Emerson 1990; Holzmann 2006; Kröger 1977; Pnueli 1977), while IL has

the connectives of infinitary conjunction
∧

and infinitary disjunction
∨

, and has been

† Sections 2, 4, 5, 6.1 and 6.3 in the current paper are based on some refinements of technical parts of the

conference presentations Kamide (2009; 2010b; 2010d; 2010e; 2011).
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studied by many logicians (Feferman 1968; Lorenzen 1951; Novikov 1961; Takeuti 1985).

However, the research fields concerned with LTL and IL have evolved independently, so

the relationship between them is still to be discovered. Hence, one of the aims of the current

paper is to clarify the relationship between them by giving two theorems for syntactically

and semantically embedding LTL into IL. These embedding theorems show that G and

F in LTL can be represented by
∧

and
∨

, respectively, in IL. The syntactical embedding

theorem is based on Gentzen-type sequent calculi, and the semantical embedding theorem

is based on Kripke semantics. We go on to prove the cut-elimination theorem for Kawai’s

sequent calculus LTω (Kawai 1987) for LTL using the syntactical embedding theorem,

and the completeness theorem for LTω using the syntactical and semantical embedding

theorems together.

The syntactical embedding theorem says that ‘a sequent ⇒ α is provable in LTω if

and only if the sequent ⇒ f(α) is provable in a sequent calculus LKω for IL, where

f is a certain mapping’. The essential idea of f is to represent the following informal

interpretations:

f(p) = p

f(Xip) = pi

f(XiGα) =
∧

{f(Xi+jα) | j ∈ ω}

f(XiFα) =
∨

{f(Xi+jα) | j ∈ ω}

for any propositional variable p of LTL.

Although the syntactical embedding theorem gives a proof-theoretical interpretation

of the connection between LTL and IL, we cannot get a direct semantic interpretation

of the same connection. On the other hand, LTL is usually defined semantically. Indeed,

the model checking methods using LTL are based on a purely semantic expression.

Moreover, most LTL users are unfamiliar with Gentzen-type proof theory. Thus, a

semantic interpretation of the connection between LTL and IL is required. In order to

obtain such an interpretation, we will present a semantical version of the syntactical

embedding theorem, which we call the semantical embedding theorem.

We will discuss the syntactical and semantical embedding theorems of LTL into IL

in Section 2. We begin by introducing LTω and LKω , and then prove the syntactical

embedding theorem of LTω into LKω . The cut-elimination theorem for LTω is then

derived from this syntactical embedding theorem. We then introduce the semantics of LTL

and IL, and prove the semantical embedding theorem of LTL into IL. The completeness

theorem with respect to the semantics for LTL is proved for LTω using both the syntactical

and semantical embedding theorems. We conclude Section 2 by presenting an indexed

formulation 2Sω of LTL, which is Baratella and Masini’s 2-sequent calculus for LTL, and

show that LTω and 2Sω are equivalent.

In Section 3, we present the syntactical and semantical embedding theorems of first-

order LTL into first-order IL using a similar approach to Section 2.
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1.2. Generalised first-order LTL

We will introduce a Gentzen-type sequent calculus GLTω for a generalised first-order

LTL (GLTL) in Section 4, and we will prove cut-elimination and completeness theorems

for GLTω using some embedding theorems. GLTω has modal operators

♥i (i ∈ {1, 2, . . . , n})
♥G (generalised G)

♥F (generalised F),

and it includes (first-order) LTω as a special case.

In the following, we will explain that the proposed new modal operators ♥i, ♥G and

♥F can be regarded as generalisations of X, G and F. These operators are intended to

characterise the axiom scheme

♥Gα ↔
∧

{ια | ι ∈ K∗}

where K∗ is the set of all words of finite length of the alphabet

K := {♥i | i ∈ {1, 2, . . . , n}}.

We now suppose that for any formula α, we have fα is a mapping on the set of formulas

such that

fα(x) :=
∧

{♥i(x ∧ α) | i ∈ ω}.
♥Gα then becomes a fixpoint of fα. This axiom scheme just corresponds to the so-called

iterative interpretation of common knowledge. On the other hand, if we take

K := {♥1},

we can understand ♥1 and ♥G, respectively, as the temporal operators X and G in LTL.

The corresponding axiom scheme for the singleton case represents the LTL-axiom scheme

Gα ↔
∧

{Xiα | i ∈ ω}.

So the operator ♥G can be regarded as a natural generalisation of G. Similarly, ♥F can

be regarded as a generalisation of F.

1.3. Infinitary extensions of LTL

In Section 5, we will introduce two Gentzen-type sequent calcului Lω and L−
ω , which are

infinitary extensions of LTL:

— Lω includes a variant of dynamic topological logics;

— L−
ω , which is a subsystem of Lω , is an integration of both LTω and LKω .

We will then prove cut-elimination theorems for Lω and L−
ω and a completeness theorem

for L−
ω . There is no completeness theorem for Lω since a subsystem S4ω of Lω is known to

be Kripke-incomplete. S4ω is an extension of both IL and the normal modal logic S4, and

has been used as a base logic for formalising game theory (Kaneko and Nagashima 1997).
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We will also introduce the X-only fragment Lx
ω of L−

ω , and prove an equivalence between

Lx
ω and L−

ω based on some appropriate interpretations of G and F.

We will now briefly review some previous work on dynamic topological logic (DTL).

DTL is a combination of S4 and temporal logic and has been studied recently by several

researchers (Artemov et al. 1997; Kremer and Mints 2005; Konev et al. 2006; Mints 2006)†.

DTL provides a context for studying the confluence of the topological semantics for S4,

topological dynamics and temporal logic (Kremer and Mints 2005). Two bimodal (next-

interior) fragments of DTL, which are called S4F (functional) and S4C (continuous), were

first introduced in Artemov et al. (1997). Some Gentzen-type cut-free sequent calculi and

Hilbert-type axiom schemes were introduced in Artemov et al. (1997) for S4F and S4C,

and the complete topological and Kripke-type semantics were also obtained for S4F and

S4C. An alternative formulation of cut-free sequent calculus for S4C was presented in

Mints (2006). Trimodal DTLs were formalised semantically in Kremer and Mints (2005)

by combining the S4 modal operator ♥ (interior) and the temporal operators X and G.

Although sequent calculi for S4F and S4C have been studied, sequent calculi for trimodal

DTLs have not been. The reason may be that Konev et al. (2006) showed that the trimodal

DTL of homeomorphism is not recursively axiomatisable, and that this logic requires the

infinitary axiom scheme

Gα ↔ α ∧ Xα ∧ XXα ∧ XXXα ∧ · · · ∞,

which is also an axiom scheme of Lω and L−
ω .

1.4. Spatial extensions of LTL

In Section 6.1, we will introduce a spatial logic as a Gentzen-type sequent calculus.

This logic is called 3-dimensional spatial logic (3SL) and it can be used to give an

appropriate representation of the 3-Cartesian product ω3 of the set ω of natural numbers.

We will prove completeness and cut-elimination theorems for 3SL using some embedding

theorems.

We will now give some motivation for studying 3SL. A central issue for spatial reasoning

in practice is to formalise reasoning about 3-dimensional space. It is known that time

can be appropriately modelled by ω, and, similarly, in a very simple case, space can be

naturally modelled by the 3-Cartesian product ω3 of ω. Although temporal logics based

on ω have been studied successfully, spatial logics based on ω3 have not yet been studied

in detail. The aim of introducing 3SL is thus to obtain a sound, complete and cut-free

sequent calculus for reasoning about ω3.

The proposed semantics for 3SL has 3-dimensional satisfaction relations

|=ix;iy;iz

where ix, iy and iz represent points on the x-axis, y-axis and z-axis, respectively. Intuitively,

|=ix;iy;iz α

† See also http://individual.utoronto.ca/philipkremer/DynamicTopologicalLogic.html.
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means ‘α is true at the point (ix, iy, iz) ∈ ω3’. The spatial operators Px (position in x-axis),

Py (position in y-axis), Pz (position in z-axis), A (anywhere) and A− (converse anywhere)

are then defined semantically by:

(1) |=ix;iy;iz Pxα if and only if |=ix+1;iy;iz α;

(2) |=ix;iy;iz Pyα if and only if |=ix;iy+1;iz α;

(3) |=ix;iy;iz Pzα if and only if |=ix;iy;iz+1 α;

(4) |=ix;iy;iz Aα if and only if |=jx;jy;jz α for any jx, jy, jz ∈ ω with

jx � ix

jy � iy

jz � iz;

(5) |=ix;iy;iz A−α if and only if |=jx;jy;jz α for any jx, jy, jz ∈ ω with

0 � jx � ix

0 � jy � iy

0 � jz � iz .

1.5. Next-time only fragments of LTL

In Section 6.2, we present a Gentzen-type sequent calculus SDL for an extension of Davies’

logic (Davies 1996) from the point of view of embedding theorems. SDL is regarded as

an intuitionistic (or constructive) version of a Gentzen-type sequent calculus for Prior’s

tomorrow tense logic (Prior 1957), which is just the next-time only part of LTL. We obtain

the cut-elimination and Kripke-completeness theorems for SDL using two theorems for

embedding SDL into intuitionistic logic.

We will now briefly review some previous work on Davies’ logic. Davies (1996)

introduced a constructive temporal logic, which is defined as a judgement system based

on the connectives X and →. He pointed out that this logic can be related to a type

system for binding-time analysis. Kojima and Igarashi (2008) studied logical aspects of

Davies’ logic by adding the connectives ∧ and ∨, and obtained a Kripke-complete natural

deduction system, NJ◦, and a cut-free sequent calculus, LJ◦, as proof systems for such

an extended logic. Kamide (2010c) introduced an alternative to Kojima and Igarashi’s

logic, and obtained a cut-free and Kripke-complete sequent calculus, SDL, and a strongly

normalisable and confluent natural deduction system, NDL, as proof systems. Kamide’s

logic is almost the same as Kojima and Igarashi’s logic, the difference being that Kamide’s

logic has the axiom scheme

X(α ∨ β) → Xα ∨ Xβ,

while Kojima and Igarashi’s logic has no such axiom scheme. Kamide (2010c) gave a direct

proof of the Kripke-completeness theorem for SDL without using embedding theorems.
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1.6. NP-complete fragments of LTL

In Section 6.3, we obtain an NP-complete fragment of LTL, called bounded linear-time

temporal logic (BLTL), by restricting the time domain of temporal operators. We show that

BLTL is NP-complete using a theorem for semantically embedding BLTL into classical

logic. This semantical embedding theorem can also be justified through the bounded model

checking technique (Biere et al. 2003), which uses a propositional satisfiability checking

method.

The satisfiability problems for LTL fragments are known to be an important issue

for constructing efficiently executable temporal logics. The satisfiability problem for LTL

is PSPACE-complete (Sistla and Clarke 1985), and finding NP-complete fragments of

LTL has been the subject of considerable study (Demri and Schnoebelen 2002; Etessami

et al. 1997; Muscholl and Walukiewicz 2005; Walukiewicz 1998). We try to construct an

alternative to such an NP-complete fragment by restricting the time domain of temporal

operators. Although the standard LTL temporal operators have an infinite (unbounded)

time domain, that is, the set ω of natural numbers, the bounded operators we consider

have a bounded time domain, which is restricted by a fixed positive integer l, that is, the

set

ωl := {x ∈ ω | x � l}.
Despite this restriction, these bounded operators can derive almost all of the typical LTL

axioms, including the temporal induction axiom.

We will now give a brief review of some related work on LTL fragments. Sistla and

Clarke (1985) showed that the LTL fragment endowed with the standard operators X,

G and F are PSPACE-complete and that satisfiability for the fragments endowed with

either X or (F and G) is NP-complete. As mentioned above, some NP-complete fragments

of LTL have been well studied. In particular, Demri and Schnoebelen (2002) proposed

some restrictions on the nesting of operators and on the number of propositions. Also,

Muscholl and Walukiewicz (2005) suggested restricting X to operators Xa (a ∈ Σ) that

enforce the current letter to be a, where the formula Xα is expressed in the form
∨
a∈Σ

Xaα

where Σ is the alphabet. They then proved that the satisfiability problem for the LTL

fragment with Xa (a ∈ Σ), F and G is NP-complete.

2. LTL

2.1. Syntactical embedding

The formulas of propositional linear-time temporal logic (LTL) are constructed from

countably many propositional variables, → (implication), ∧ (conjunction), ∨ (disjunction),

¬ (negation), G (globally), F (eventually) and X (next). We use:

— lower-case letters p, q, . . . to denote propositional variables;

— Greek lower-case letters α, β, . . . to denote formulas;
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— Greek capital letters Γ,Δ, . . . to denote finite (possibly empty) sets of formulas;

— for any � ∈ {G,F,X}, the expression �Γ to denote the set {�γ | γ ∈ Γ};
— the symbol ≡ to denote the equality of sets of symbols;

— the symbol ω to represent the set of natural numbers;

— lower-case letters i, j and k to denote any natural numbers.

An expression Xiα for any i ∈ ω is defined inductively by

X0α ≡ α

Xn+1α ≡ XnXα.

An expression of the form Γ ⇒ Δ is called a sequent, and we write L � S to denote the

fact that a sequent S is provable in a sequent calculus L. An inference rule R is said to be

admissible in a sequent calculus L if for any instance

S1 · · · Sn

S

of R, if L � Si for all i, then L � S .

We will now give a brief presentation of Kawai’s LTω for LTL.

Definition 2.1 (LTω). The initial sequents of LTω are of the form

Xip ⇒ Xip

for any propositional variable p.

The structural rules of LTω are of the form

Γ ⇒ Δ, α α,Σ ⇒ Π

Γ,Σ ⇒ Δ,Π
(cut)

Γ ⇒ Δ
α,Γ ⇒ Δ

(we-left)
Γ ⇒ Δ

Γ ⇒ Δ, α
(we-right).

The logical inference rules of LTω are of the form

Γ ⇒ Σ,Xiα Xiβ,Δ ⇒ Π

Xi(α→β),Γ,Δ ⇒ Σ,Π
(→left)

Xiα,Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α→β)
(→right)

Xiα,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left1)

Xiβ,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left2)

Γ ⇒ Δ,Xiα Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α ∧ β)
(∧right)

Xiα,Γ ⇒ Δ Xiβ,Γ ⇒ Δ

Xi(α ∨ β),Γ ⇒ Δ
(∨left)

Γ ⇒ Δ,Xiα

Γ ⇒ Δ,Xi(α ∨ β)
(∨right1)

Γ ⇒ Δ,Xiβ

Γ ⇒ Δ,Xi(α ∨ β)
(∨right2)

Γ ⇒ Δ,Xiα

Xi¬α,Γ ⇒ Δ
(¬left)

Xiα,Γ ⇒ Δ

Γ ⇒ Δ,Xi¬α
(¬right)
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Xi+kα,Γ ⇒ Δ

XiGα,Γ ⇒ Δ
(Gleft)

{ Γ ⇒ Δ,Xi+jα }j∈ω
Γ ⇒ Δ,XiGα

(Gright)

{ Xi+jα,Γ ⇒ Δ }j∈ω
XiFα,Γ ⇒ Δ

(Fleft)
Γ ⇒ Δ,Xi+kα

Γ ⇒ Δ,XiFα
(Fright).

Note that (Gright) and (Fleft) have an infinite number of premises. The fact that

sequents of the form Xiα ⇒ Xiα for any formula α are provable in LTω can be proved by

induction on the complexity of α.

Kawai (1987) proved the cut-elimination theorem for LTω; we will give an alternative

embedding-based proof of this theorem.

The following propositions give some examples of admissible rules and provable

sequents. We will write the expression α ⇔ β to mean we have both the sequents

α ⇒ β and β ⇒ α.

Proposition 2.2. The following rule is admissible in cut-free LTω:

Γ ⇒ Δ
XΓ ⇒ XΔ

(Xregu).

Proof. We use induction on the proof P of Γ ⇒ Δ in cut-free LTω . We distinguish the

cases according to the last inference of P . We will only show the case for (→left) as an

example.

— Case (→left):

The last inference of P is of the form

Π ⇒ Xiα Xiβ,Σ ⇒ Δ

Xi(α→β),Π,Σ ⇒ Δ
(→left).

By the induction hypothesis, we get

....
XΠ ⇒ XXiα

....
XXiβ,XΣ ⇒ XΔ

XXi(α→β),XΠ,XΣ ⇒ XΔ
(→left).

Proposition 2.3. For any formulas α and β and any i ∈ ω, the following sequents are

provable in cut-free LTω:

(1) Xi(α ◦ β) ⇔ Xiα ◦ Xiβ where ◦ ∈ {→,∧,∨},
(2) Xi(¬α) ⇔ ¬(Xiα),

(3) Gα ⇒ Xα,

(4) Gα ⇒ XGα,

(5) Gα ⇒ GGα,

(6) α,G(α→Xα) ⇒ Gα (temporal induction).
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Proof. We will only show (6) as an example. So we have

....
{ α,G(α→Xα) ⇒ Xkα }k∈ω

α,G(α→Xα) ⇒ Gα
(Gright)

where

LTω � α,G(α→Xα) ⇒ Xkα,

for any k ∈ ω, can be shown by mathematical induction on k. The base step is obvious,

and the induction step can be shown by

.... induction hypothesis

α,G(α→Xα) ⇒ Xkα Xk+1α ⇒ Xk+1α

α,G(α→Xα),Xk(α→Xα) ⇒ Xk+1α
(→left)

α,G(α→Xα),G(α→Xα) ⇒ Xk+1α
(Gleft)

The formulas of propositional infinitary logic (IL) are constructed from countably many

propositional variables, →, ¬,
∧

(infinitary conjunction) and
∨

(infinitary disjunction). If

Φ is a countable non-empty set of formulas of IL, then
∧

Φ and
∨

Φ are also formulas

of IL. Note that
∧

{α} and
∨

{α} are equivalent to α, and that the standard binary

connectives ∧ (conjunction) and ∨ (disjunction) are regarded as special cases of
∧

and∨
, which are assumed here to be a countable infinitary conjunction and a countable

infinitary disjunction, respectively.

We will now define the sequent calculus LKω for IL.

Definition 2.4 (LKω). The initial sequents of LKω are of the form

p ⇒ p

for any propositional variable p.

The structural rules for LKω are (cut), (we-left) and (we-right) as in Definition 2.1.

The logical inference rules of LKω are of the form

Γ ⇒ Σ, α β,Δ ⇒ Π

α→β,Γ,Δ ⇒ Σ,Π
(→left0)

α,Γ ⇒ Δ, β

Γ ⇒ Δ, α→β
(→right0)

Γ ⇒ Δ, α

¬α,Γ ⇒ Δ
(¬left0)

α,Γ ⇒ Δ

Γ ⇒ Δ,¬α
(¬right0)

α,Γ ⇒ Δ (α ∈ Θ)∧
Θ,Γ ⇒ Δ

(
∧

left)
{ Γ ⇒ Δ, α }α∈Θ

Γ ⇒ Δ,
∧

Θ
(
∧

right)

{ α,Γ ⇒ Δ }α∈Θ∨
Θ,Γ ⇒ Δ

(
∨

left)
Γ ⇒ Δ, α (α ∈ Θ)

Γ ⇒ Δ,
∨

Θ
(
∨

right)

where Θ denotes a non-empty countable set of formulas.
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The superscript ‘0’ in some of the rule names in LKω means that these rules are the

special cases of the corresponding LTω rules, that is, the case where i in Xi is 0.

It is well known that LKω enjoys cut-elimination – see, for example, Feferman (1968),

Tanaka (1999), Tanaka (2001) and Takeuti (1985).

Definition 2.5. We fix a countable non-empty set Φ of propositional variables, and define

the sets

Φi := {pi | p ∈ Φ} (i ∈ ω)

of propositional variables where p0 := p, that is, Φ0 = Φ. The language LLTL of LTL is

defined using Φ, →,∧,∨,¬, X, G and F. The language LIL of IL is defined using
⋃

i∈ω Φi,

→,¬,
∧

and
∨

. For convenience, the binary versions of
∧

and
∨

are also denoted by ∧
and ∨, respectively, and these binary symbols are included in the definition of LIL.

A mapping f from LLTL to LIL is defined as follows:

f(Xip) := pi ∈ Φi (i ∈ ω) for any p ∈ Φ (in particular, f(p) := p ∈ Φ)

f(Xi(α ◦ β)) := f(Xiα) ◦ f(Xiβ) where ◦ ∈ {→,∧,∨}
f(Xi¬α) := ¬f(Xiα)

f(XiGα) :=
∧

{f(Xi+jα) | j ∈ ω} (†)

f(XiFα) :=
∨

{f(Xi+jα) | j ∈ ω}. (‡)

An expression f(Γ) denotes the result of replacing every occurrence of a formula α in Γ

by an occurrence of f(α).

In Definition 2.5, conditions (†) and (‡) correspond to the axiom schemes

Gα ↔
∧
i∈ω

Xiα

Fα ↔
∨
i∈ω

Xiα,

respectively, which mean ‘G and F in LTL can be represented by
∧

and
∨

, respectively,

in IL’.

Theorem 2.6 (syntactical embedding). Let Γ and Δ be sets of formulas in LLTL, and f be

the mapping defined in Definition 2.5. Then:

(1) If

LTω � Γ ⇒ Δ,

then

LKω � f(Γ) ⇒ f(Δ).

(2) If

LKω − (cut) � f(Γ) ⇒ f(Δ),

then

LTω − (cut) � Γ ⇒ Δ.
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Proof.

(1) We use induction on the proof P of Γ ⇒ Δ in LTω , distinguishing the cases according

to the last inference of P . We will just show some example cases:

— Case
(
Xip ⇒ Xip

)
:

In this case, we obtain

LKω � f(Xip) ⇒ f(Xip),

that is,

LKω � pi ⇒ pi (pi ∈ Φi),

by the definition of f.

— Case (→left):

So the last inference of P has the form

Γ ⇒ Σ,Xiα Xiβ,Δ ⇒ Π

Xi(α→β),Γ,Δ ⇒ Σ,Π
(→left).

By the induction hypothesis, we have

LKω � f(Γ) ⇒ f(Σ), f(Xiα)

and

LKω � f(Xiβ), f(Δ) ⇒ f(Π),

so we get
....

f(Γ) ⇒ f(Σ), f(Xiα)

....
f(Xiβ), f(Δ) ⇒ f(Π)

f(Xiα)→f(Xiβ), f(Γ), f(Δ) ⇒ f(Σ), f(Π)
(→left0)

where f(Xiα)→f(Xiβ) coincides with f(Xi(α→β)) by the definition of f.

— Case (Gleft):

So the last inference of P has the form

Xi+kα,Γ ⇒ Δ

XiGα,Γ ⇒ Δ
(Gleft).

By the induction hypothesis, we have

LKω � f(Xi+kα), f(Γ) ⇒ f(Δ),

and hence obtain
....

f(Xi+kα), f(Γ) ⇒ f(Δ) (f(Xi+kα) ∈ {f(Xi+jα) | j ∈ ω})∧
{f(Xi+jα) | j ∈ ω}, f(Γ) ⇒ f(Δ)

(
∧

left)

where ∧
{f(Xi+jα) | j ∈ ω}

coincides with f(XiGα) by the definition of f.
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— Case (Gright):

So the last inference of P has the form

{ Γ ⇒ Δ,Xi+jα }j∈ω
Γ ⇒ Δ,XiGα

(Gright).

By the induction hypothesis, we have

LKω � f(Γ) ⇒ f(Δ), f(Xi+jα)

for all j ∈ ω. Let Φ be

{f(Xi+jα) | j ∈ ω}.
So we have

....
{ f(Γ) ⇒ f(Δ), f(Xi+jα) }

f(Xi+jα)∈Φ

f(Γ) ⇒ f(Δ),
∧

Φ
(
∧

right)

where
∧

Φ coincides with f(XiGα) by the definition of f.

(2) We use induction on the proof Q of f(Γ) ⇒ f(Δ) in LKω , distinguishing the cases

according to the last inference of Q. We will just show one case as an example:

— Case (
∧

right):

Let Φ be

{f(Xi+jα) | j ∈ ω}.
The last inference of Q has the form

{ f(Γ) ⇒ f(Δ), f(Xi+jα) }
f(Xi+jα)∈Φ

f(Γ) ⇒ f(Δ),
∧

Φ
(
∧

right)

where
∧

Φ coincides with f(XiGα) by the definition of f. By the induction

hypothesis, we have

LTω � Γ ⇒ Δ,Xi+jα

for all j ∈ ω, so
....

{ Γ ⇒ Δ,Xi+jα }j∈ω
Γ ⇒ Δ,XiGα

(Gright).

This completes the proof.

Note that we cannot give a direct proof of the converse of Theorem 2.6 (1) in a similar

way. In order to prove the converse, we have to consider induction on the proofs Q of

f(Γ) ⇒ f(Δ) in LKω . Hence, we must consider the case where the last inference of Q has

the form
f(Γ1) ⇒ f(Δ1), β β, f(Γ2) ⇒ f(Δ2)

f(Γ1), f(Γ2) ⇒ f(Δ1), f(Δ2)
(cut)
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where β is unknown if it can be expressed as β = f(γ) for a formula γ, and the condition

‘β can be expressed as β = f(γ)’ is required to apply the induction†.

Theorem 2.7 (cut-elimination). The rule (cut) is admissible in cut-free LTω .

Proof. Suppose

LTω � Γ ⇒ Δ.

Then we have

LKω � f(Γ) ⇒ f(Δ)

by Theorem 2.6 (1), and hence

LKω − (cut) � f(Γ) ⇒ f(Δ)

by the cut-elimination theorem for LKω . By Theorem 2.6 (2), we then obtain

LTω − (cut) � Γ ⇒ Δ,

which completes the proof.

Note that because of the cut-elimination theorem for LKω , we can strengthen the

statements of Theorem 2.6 by replacing ‘if . . . then’ with ‘if and only if’, so we have

LTω � Γ ⇒ Δ if and only if LKω � f(Γ) ⇒ f(Δ).

This fact will be used to prove the completeness theorem for LTω .

2.2. Semantical embedding

The symbol � or � is used to represent a linear order on ω. In the following, we will

define LTL semantically as a satisfaction relation.

Let Γ be a set

{α1, . . . , αm} (m � 0)

of formulas. Then:

— Γ∗ means α1 ∨ · · · ∨ αm if m � 1, and ¬(p→p), where p is a fixed propositional variable,

otherwise.

— Γ∗ means α1 ∧ · · · ∧ αm if m � 1, and p→p, where p is a fixed propositional variable,

otherwise.

Definition 2.8 (LTL). Let S be a non-empty set of states. A structure (σ, I) is a model if:

(1) σ is an infinite sequence s0, s1, s2, . . . of states in S;

(2) I is a mapping from the set Φ of propositional variables to the power set of S .

In this definition, σ is called a computation, and I is called an interpretation.

A satisfaction relation (σ, I, i) |=LTL α for any formula α, where (σ, I) is a model, and i

(∈ ω) represents some position within σ, is defined inductively by:

† The proof of the syntactical embedding theorem (of LTω into LKω) given in Kamide (2009) has such an

error, which is corrected here.
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(1) (σ, I, i) |=LTL p if and only if si ∈ I(p) for any p ∈ Φ.

(2) (σ, I, i) |=LTL α ∧ β if and only if (σ, I, i) |=LTL α and (σ, I, i) |=LTL β.

(3) (σ, I, i) |=LTL α ∨ β if and only if (σ, I, i) |=LTL α or (σ, I, i) |=LTL β.

(4) (σ, I, i) |=LTL α→β if and only if not-[(σ, I, i) |=LTL α] or (σ, I, i) |=LTL β.

(5) (σ, I, i) |=LTL ¬α if and only if not-[(σ, I, i) |=LTL α].

(6) (σ, I, i) |=LTL Xα if and only if (σ, I, i + 1) |=LTL α.

(7) (σ, I, i) |=LTL Gα if and only if (σ, I, j) |=LTL α for any j � i.

(8) (σ, I, i) |=LTL Fα if and only if (σ, I, j) |=LTL α for some j � i.

A formula α is said to be LTL-valid if

(σ, I, 0) |=LTL α

for any model (σ, I). A sequent Γ ⇒ Δ is said to be LTL-valid if the formula Γ∗→Δ∗ is

LTL-valid.

The following definition gives a semantics for IL.

Definition 2.9 (IL). Let Θ be a countable (non-empty) set of formulas. V is a mapping

from the set Φ of propositional variables to the set {t, f} of truth values. V is called a

valuation. A valuation V is extended to a mapping from the set of formulas to {t, f} by:

(1) V (α→β) = t if and only if V (α) = f or V (β) = t.

(2) V (¬α) = t if and only if V (α) = f.

(3) V (
∧

Θ) = t if and only if V (α) = t for all α ∈ Θ.

(4) V (
∨

Θ) = t if and only if V (α) = t for some α ∈ Θ.

In order to make a comparison between LTL and IL, a satisfaction relation V |=IL α

for any formula α is inductively defined by

(1) V |=IL p if and only if V (p) = t for any p ∈ Φ.

(2) V |=IL α→β if and only if not-[V |=IL α] or V |=IL β.

(3) V |=IL ¬α if and only if not-[V |=IL α].

(4) V |=IL

∧
Θ if and only if V |=IL α for any α ∈ Θ.

(5) V |=IL

∨
Θ if and only if V |=IL α for some α ∈ Θ.

A formula α is said to be IL-valid if V |=IL α (or equivalently V (α) = t) for any

valuation V . A sequent Γ ⇒ Δ is said to be IL-valid if the formula Γ∗→Δ∗ is IL-valid.

It is well known that the completeness theorem with respect to the semantics of IL

is true for LKω (see, for example, Feferman (1968), Tanaka (1999), Tanaka (2001) and

Takeuti (1985)).

We will need the following lemma for our proof of the semantical embedding theorem.

Lemma 2.10. Let Φ, Φi (i ∈ ω) and f be the same as those in Definition 2.5. We suppose:

— V is a valuation from
⋃

i∈ω Φi to {t, f}.
— S is a non-empty set of states.

— (σ, I) is a model such that σ is a computation s0, s1, s2, . . . (si ∈ S, i ∈ ω), and I is an

interpretation from Φ to the power set of S satisfying

∀i ∈ ω, ∀p ∈ Φ [si ∈ I(p) if and only if V (pi) = t].
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Then, for any formula α in LLTL,

(σ, I, i) |=LTL α if and only if V |=IL f(Xiα).

Proof. We use induction on α, and to simplify the notation, we will omit the V when

we write V |=IL here.

— Base case α ≡ p ∈ Φ:

We have

(σ, I, i) |=LTL p iff si ∈ I(p)

iff V (pi) = t

iff |=IL pi

iff |=IL f(Xip).

— Induction step:

We will only show some cases as examples.

– Case α ≡ β ∧ γ:

(σ, I, i) |=LTL β ∧ γ iff (σ, I, i) |=LTL β and (σ, I, i) |=LTL γ

iff |=IL f(Xiβ) and |=IL f(Xiγ)

(by the induction hypothesis)

iff |=IL f(Xiβ) ∧ f(Xiγ)

iff |=IL f(Xi(β ∧ γ)) (by the definition of f)

– Case α ≡ ¬β:

(σ, I, i) |=LTL ¬β iff not-[(σ, I, i) |=LTL β]

iff not-[|=IL f(Xiβ)] (by the induction hypothesis)

iff |=IL ¬f(Xiβ)

iff |=IL f(Xi¬β) (by the definition of f)

– Case α ≡ Xβ:

(σ, I, i) |=LTL Xβ iff (σ, I, i + 1) |=LTL β

iff |=IL f(Xi+1β) (by the induction hypothesis)

iff |=IL f(Xi(Xβ)) (by the definition of f)
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– Case α ≡ Gβ:

(σ, I, i) |=LTL Gβ iff ∀j � i [(σ, I, j) |=LTL β]

iff ∀j � i [|=IL f(Xjβ)] (by the induction hypothesis)

iff ∀k ∈ ω [|=IL f(Xi+kβ)]

iff |=IL γ for all γ ∈ {f(Xi+kβ) | k ∈ ω}

iff |=IL

∧
{f(Xi+kβ) | k ∈ ω}

iff |=IL f(XiGβ). (by the definition of f)

We then obtain the following theorem as a special case.

Theorem 2.11 (semantical embedding). Let f be the mapping defined in Definition 2.5.

Then, for any formula α in LLTL,

α is LTL-valid if and only if f(α) is IL-valid.

Theorem 2.12 (completeness). For any sequent S ,

LTω � S if and only if S is LTL-valid.

Proof. Let S be Γ ⇒ Δ and α be Γ∗→Δ∗. Then:

LTω � S iff LTω � ⇒ α

iff LKω � ⇒ f(α)

(by Theorem 2.6 and the cut-elimination theorem for LKω)

iff f(α) is IL-valid (by the completeness theorem for LKω)

iff α is LTL-valid (by Theorem 2.11)

iff S is LTL-valid.

2.3. Indexed formulation

Baratella and Masini’s 2-sequent calculi 2Sω and 2SPω for the propositional and first-

order predicate LTLs were introduced in Baratella and Masini (2004), where they also

proved the cut-elimination and completeness theorems for these calculi, presenting an

analogy between LTL and Peano arithmetic with the ω-rule. Kamide (2006b) showed an

equivalence between Kawai’s LTω and Baratella and Masini’s 2Sω . We will now give an

alternative proof of the cut-elimination theorems for LTω and 2Sω using this equivalence.

The language of 2Sω and the notation used are almost the same as those of LTω .

Definition 2.13. An expression αi (α is a formula and i ∈ ω) is called an indexed formula.

An expression Γ ⇒2 Δ where Γ and Δ are finite (possibly empty) sets of indexed formulas

is called a 2-sequent.

Definition 2.14 (2Sω). The initial sequents of 2Sω have the form

αi ⇒2 αi.
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The structural rules of 2Sω have the form

Γ ⇒2 Δ, αi αi,Σ ⇒2 Π

Γ,Σ ⇒2 Δ,Π
(cut2)

Γ ⇒2 Δ

αi,Γ ⇒2 Δ
(we-left2)

Γ ⇒2 Δ

Γ ⇒2 Δ, αi
(we-right2).

The logical inference rules of 2Sω have the form

Γ ⇒2 Σ, αi βi,Δ ⇒2 Π

(α→β)i,Γ,Δ ⇒2 Σ,Π
(→left2)

αi,Γ ⇒2 Δ, βi

Γ ⇒2 Δ, (α→β)i
(→right2)

αi,Γ ⇒2 Δ

(α ∧ β)i,Γ ⇒2 Δ
(∧left12)

βi,Γ ⇒2 Δ

(α ∧ β)i,Γ ⇒2 Δ
(∧left22)

Γ ⇒2 Δ, αi Γ ⇒2 Δ, βi

Γ ⇒2 Δ, (α ∧ β)i
(∧right2)

αi,Γ ⇒2 Δ βi,Γ ⇒2 Δ

(α ∨ β)i,Γ ⇒2 Δ
(∨left2)

Γ ⇒2 Δ, αi

Γ ⇒2 Δ, (α ∨ β)i
(∨right12)

Γ ⇒2 Δ, βi

Γ ⇒2 Δ, (α ∨ β)i
(∨right22)

Γ ⇒2 Δ, αi

(¬α)i,Γ ⇒2 Δ
(¬left2)

αi,Γ ⇒2 Δ

Γ ⇒2 Δ, (¬α)i
(¬right2)

αi+1,Γ ⇒2 Δ

(Xα)i,Γ ⇒2 Δ
(Xleft)

Γ ⇒2 Δ, αi+1

Γ ⇒2 Δ, (Xα)i
(Xright)

αi+k,Γ ⇒2 Δ

(Gα)i,Γ ⇒2 Δ
(Gleft2)

{ Γ ⇒2 Δ, αi+j }j∈ω
Γ ⇒2 Δ, (Gα)i

(Gright2)

{ αi+j ,Γ ⇒2 Δ }j∈ω
(Fα)i,Γ ⇒2 Δ

(Fleft2)
Γ ⇒2 Δ, αi+k

Γ ⇒2 Δ, (Fα)i
(Fright2).

Definition 2.15. Let L1 be the set of formulas of LTω and L2 be the set of indexed

formulas of 2Sω . Then:

(1) A mapping f from L1 to L2 is defined by

f(Xiα) := αi

for any formula α.

(2) A mapping g from L2 to L1 is defined by

g(αi) := Xiα

for any formula α.

Note that

fg(αi) = αi

gf(Xiα) = Xiα

hold for any formula α.
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Theorem 2.16 (equivalence). We have:

(1) For any 2-sequent Γ ⇒2 Δ, if

2Sω � Γ ⇒2 Δ,

then

LTω � g(Γ) ⇒ g(Δ).

(2) For any sequent Γ ⇒ Δ, if

LTω-(cut) � Γ ⇒ Δ,

then

2Sω(-cut2) � f(Γ) ⇒2 f(Δ).

Proof. We will only show (1) as an example. We use induction on a cut-free proof P of

Γ ⇒2 Δ in 2Sω , and will only show one case as an example:

— Case (Xleft):

Hence, the last inference of P is of the form

αi+1,Σ ⇒2 Π

(Xα)i,Σ ⇒2 Π
(Xleft).

By the induction hypothesis, we obtain

LTω � g(αi+1), g(Σ) ⇒ g(Π),

and thus

LTω � g((Xα)i), g(Σ) ⇒ g(Π)

because

g(αi+1) = Xi+1α

= Xi(Xα)

= g((Xα)i).

Using the cut-elimination theorem for LTω and Theorem 2.16, we can now give an

alternative proof of the following theorem (Baratella and Masini 2004).

Theorem 2.17 (cut-elimination). The rule (cut2) is admissible in cut-free 2Sω .

Proof. Suppose

2Sω � Γ ⇒2 Δ

for an arbitrary 2-sequent Γ ⇒2 Δ. Then we have

LTω � g(Γ) ⇒ g(Δ)

by Theorem 2.16 (1). By the cut-elimination theorem for LTω , we obtain

LTω(-cut) � g(Γ) ⇒ g(Δ),
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and thus

2Sω(−cut2) � fg(Γ) ⇒2 fg(Δ)

by Theorem 2.16 (2). Hence, we have

2Sω(−cut2) � Γ ⇒2 Δ

as required.

Using Theorem 2.17 and an appropriate modification of Theorem 2.16, we can now get

an alternative proof of the cut-elimination theorem for LTω .

The equivalence and cut-elimination results for 2Sω and LTω given above can be

extended naturally to the first-order versions 2PSω and FLTω , so we will omit them from

the next section.

Baratella and Masini (2004) presented some extended results for some mathematical

theories (that is, a set of extra-logical axioms) over 2Sω and 2PSω . We can also obtain

some similar results over LTω and FLTω by using and extending the equivalence between

LTω and Sω and the equivalence between FLTω and 2PSω , respectively.

3. First-order LTL

3.1. Syntactical embedding

We use the following list of symbols for the language L of the underlying logic:

— a0, a1, . . . for free variables;

— x0, x1, . . . for bound variables;

— f0, f1, . . . for functions;

— p0, p1, . . . for predicates;

— →, ¬, ∧, ∨, ∀ (any), ∃ (exists), G (globally), F (eventually) and X (next) for the logical

connectives.

The numbers of free and bound variables are assumed to be countable, as are the numbers

of functions and predicates. We also assume that there is at least one predicate. A 0-ary

function is an individual constant, and a 0-ary predicate is a propositional variable. We

use lower case letters p, q, . . . to denote atomic formulas. We will continue to use a similar

notation to that used in the previous section for the current section.

A sequent calculus FLTω for first-order LTL (called FLTL) is given by the following

definition.

Definition 3.1. The initial sequents of FLTω are of the form

Xip ⇒ Xip

for any atomic formula p.

The structural rules of FLTω are (cut), (we-left) and (we-right) as in Definition 2.1.
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The logical inference rules of FLTω are obtained from those of LTω by adding logical

inference rules of the form

Xiα(t),Γ ⇒ Δ

Xi∀xα(x),Γ ⇒ Δ
(∀left)

Γ ⇒ Δ,Xiα(a)

Γ ⇒ Δ,Xi∀xα(x)
(∀right)

Xiα(a),Γ ⇒ Δ

Xi∃xα(x),Γ ⇒ Δ
(∃left)

Γ ⇒ Δ,Xiα(t)

Γ ⇒ Δ,Xi∃xα(x)
(∃right)

where a is a free variable that must not occur in the lower sequents of (∀right) and (∃left),

and t is an arbitrary term.

The fact that sequents of the form Xiα ⇒ Xiα for any formula α are provable in cut-free

FLTω can be proved by induction on the complexity of α.

A language of first-order IL (called FIL) is obtained from L by removing {∧,∨,G,

F,X} and adding
∧

and
∨

.

Definition 3.2. We assume that the notion of a term is defined in the usual way. Let F0

be the set of all formulas generated from the set of atomic formulas by the standard

finitely inductive definition with respect to {→,¬, ∀, ∃}. We now suppose that Ft is already

defined with respect to t = 0, 1, 2, . . .. A non-empty countable subset Θt of Ft is said to be

an allowable set if it contains a finite number of free variables. The expressions
∧

Θ and∨
Θ for an allowable set Θ are considered below. We define Ft+1 from

Ft ∪
{∧

Θ,
∨

Θ | Θ is an allowable set in Ft

}

by the standard finitely inductive definition with respect to {→,¬, ∀, ∃}. We define Fω ,

which is called the set of formulas, by
⋃

t<ω Ft, and an expression in Fω is called a formula.

A sequent calculus FLKω for FIL is given by the following definition.

Definition 3.3. The initial sequents of FLKω are of the form

p ⇒ p

for any atomic formula p.

The structural rules of FLKω are (cut), (we-left) and (we-right) as in Definition 2.1.

The logical inference rules of FLKω are obtained from those of LKω by adding logical

inference rules of the form

α(t),Γ ⇒ Δ

∀xα(x),Γ ⇒ Δ
(∀left0)

Γ ⇒ Δ, α(a)

Γ ⇒ Δ, ∀xα(x)
(∀right0)

α(a),Γ ⇒ Δ

∃xα(x),Γ ⇒ Δ
(∃left0)

Γ ⇒ Δ, α(t)

Γ ⇒ Δ, ∃xα(x)
(∃right0)
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where a is a free variable that must not occur in the lower sequents of (∀right0) and

(∃left0), and t is an arbitrary term, and

α,Γ ⇒ Δ (α ∈ Θ)∧
Θ,Γ ⇒ Δ

(
∧

leftf)
{ Γ ⇒ Δ, α }α∈Θ

Γ ⇒ Δ,
∧

Θ
(
∧

rightf)

{ α,Γ ⇒ Δ }α∈Θ∨
Θ,Γ ⇒ Δ

(
∨

leftf)
Γ ⇒ Δ, α (α ∈ Θ)

Γ ⇒ Δ,
∨

Θ
(
∨

rightf)

where Θ is an allowable set.

The superscript ‘0’ in some of the rule names in FLKω means that these rules are

the special cases of the corresponding rules of FLTω , that is, the case where i is 0.

The superscript ‘f’ in some of the rule names in FLKω distinguishes them from the

propositional case, that is, Θ in the rules is an allowable set. The sequents of the form

α ⇒ α for any formula α are provable in cut-free FLKω . It is well known that FLKω

enjoys cut-elimination.

Definition 3.4. We fix a countable non-empty set Φ of atomic formulas, and define the

sets

Φi := {pi | p ∈ Φ} (i ∈ ω)

of atomic formulas where p0 = p (that is, Φ0 = Φ). The language LFLTL (or the set of

formulas) of FLTL is defined using Φ, →,¬,∧,∨, ∀, ∃, X, G and F. The language LFIL of

FIL is defined using
⋃

i∈ω Φi, →,¬,
∧
,
∨
, ∀ and ∃ in a similar way to Definition 3.2. For

convenience, the binary versions of
∧

and
∨

are also denoted by ∧ and ∨, respectively,

and these binary symbols are assumed to be included in LFIL.

A mapping f from LFLTL to LFIL is obtained using the same conditions in Definition 2.5

with the addition of the following conditions:

f
(
XiQxα(x)

)
:= Qxf

(
Xiα(x)

)

where Q ∈ {∀, ∃}.

Theorem 3.5 (syntactical embedding). Let Γ and Δ be sets of formulas in LFLTL, and f

be the mapping defined in Definition 3.4.

(1) If

FLTω � Γ ⇒ Δ,

then

FLKω � f(Γ) ⇒ f(Δ).

(2) If

FLKω − (cut) � f(Γ) ⇒ f(Δ),

then

FLTω − (cut) � Γ ⇒ Δ.

Proof. The proof is similar to the proof of Theorem 2.6.
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Theorem 3.6 (cut-elimination). The rule (cut) is admissible in cut-free FLTω .

Proof. The statement follows from Theorem 3.5 and the cut-elimination theorem for

FLKω .

Note that we can strengthen the statements of Theorem 3.5 by replacing ‘if . . . then’ by

‘if and only if’. This fact will be used to prove the completeness theorem for FLTω .

3.2. Semantical embedding

We write α[y/x] to denote the formula obtained from a formula α by replacing all free

occurrences of an individual variable x in α by an arbitrary individual variable y, but

avoiding any clash of variable names. Let Γ be a set {α1, . . . , αm} (m � 0) of formulas.

Then:

— Γ∗ means α1 ∨ · · · ∨ αm if m � 1, and ¬(p→p) where p is a fixed atomic formula

otherwise.

— Γ∗ means α1 ∧ · · · ∧ αm if m � 1, and p→p where p is a fixed atomic formula otherwise.

For simplicity, we adopt a first-order language LFLTL without individual constants and

function symbols for FLTL.

Definition 3.7. A structure

A := 〈U, {Ii}i∈ω〉
is said to be an FLTL-model if the following conditions hold:

(1) U is a non-empty set;

(2) Ii (i ∈ ω) are mappings such that

pI
i ⊆ Un

(that is, pI
i

are n-ary relations on U) for each n-ary predicate symbol p.

We write u
¯

for the name of u ∈ U, and write LFLTL[A] to denote the language obtained

from LFLTL by adding the names of all the elements of U. A formula α is said to be a

closed formula if α has no free individual variables. A formula of the form ∀x1 · · · ∀xmα is

said to be the universal closure of α if the free variables of α are x1, . . . , xm. We write cl(α)

for the universal closure of α.

Definition 3.8. Let

A := 〈U, {Ii}i∈ω〉
be an FLTL-model. The satisfaction relations

A |=i α (i ∈ ω)

for any closed formula α of LFLTL[A] are defined inductively by:

(1) A |=i p(u
¯1, . . . , u¯n) if and only if (u1, . . . , un) ∈ pI

i

for each n-ary atomic formula

p(u
¯1, . . . , u¯n);

(2) A |=i α ∧ β if and only if A |=i α and A |=i β;

(3) A |=i α ∨ β if and only if A |=i α or A |=i β;

(4) A |=i α→β if and only if not-(A |=i α) or A |=i β;
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(5) A |=i ¬α if and only if not-(A |=i α);

(6) A |=i ∀xα if and only if A |=i α[u
¯
/x] for all u ∈ U;

(7) A |=i ∃xα if and only if A |=i α[u
¯
/x] for some u ∈ U;

(8) A |=i Xα if and only if A |=i+1 α;

(9) A |=i Gα if and only if A |=j α for any j � i;

(10) A |=i Fα if and only if A |=j α for some j � i.

The satisfaction relations

A |=i α (i ∈ ω)

for any formula α of LFLTL are defined by

A |=i α if and only if A |=i cl(α).

A formula α of LFLTL is said to be FLTL-valid if A |=0 α holds for each model A. A

sequent Γ ⇒ Δ of LFLTL is said to be FLTL-valid if the formula Γ∗→Δ∗ is FLTL-valid.

In the following, we adopt a first-order language LFIL without individual constants and

function symbols for FIL. We also assume that LFIL has uncountably many individual

variables. This assumption is known to be necessary to get a completeness theorem for

FIL, and is used to rename bound variables in the completeness proof.

Definition 3.9. A structure B := 〈U, I〉 is said to be an FIL-model if the following

conditions hold:

(1) U is a non-empty set;

(2) I is a mapping such that pI ⊆ Un (that is, pI is a n-ary relation on U) for each n-ary

predicate symbol p.

We write LFIL[B ] to denote the language obtained from LFIL by adding the names of all

the elements of U.

Definition 3.10. Let Θ be an allowable set and B := 〈U, I〉 be an FIL-model. The

satisfaction relation B |= α for any closed formula α of LFIL[B ] is defined inductively by

(1) B |= p(u
¯1, . . . , u¯n) if and only if

(u1, . . . , un) ∈ pI

for each n-ary atomic formula p(u
¯1, . . . , u¯n),

(2) B |=
∧

Θ if and only if B |= α for all α ∈ Θ;

(3) B |=
∨

Θ if and only if B |= α for some α ∈ Θ;

(4) B |= α→β if and only if not-(B |= α) or B |= β;

(5) B |= ¬α if and only if not-(B |= α);

(6) B |= ∀xα if and only if B |= α[u
¯
/x] for all u ∈ U;

(7) B |= ∃xα if and only if B |= α[u
¯
/x] for some u ∈ U.

The satisfaction relation B |= α for any formula α of LFIL is defined by

B |= α if and only if B |= cl(α).

A formula α of LFIL is said to be FIL-valid if B |= α holds for each FIL-model B . A

sequent Γ ⇒ Δ of LFIL is said to be FIL-valid if the formula Γ∗→Δ∗ is FIL-valid.
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It is well known that the completeness theorem with respect to the FIL-model holds

for FLKω .

In the following, we will use the same languages LFLTL and LFIL as in the previous

discussion (that is, they have no individual constants or function symbols), and, for

compatibility between LFIL and LFLTL, we will also assume that LFLTL has uncountably

many individual variables. In order to apply the mapping f in Definition 3.4, we assume

the languages LFLTL and LFIL based on Φ and
⋃

i∈ω Φi, respectively.

Lemma 3.11. Let f be the mapping defined in Definition 3.4. For any FLTL-model

A = 〈U, {Ii}i∈ω〉,

we can construct an FIL-model

B = 〈U, I〉
such that for any formula α in LFLTL,

A |=i α if and only if B |= f(Xiα).

Proof. Let Φ be a set of atomic formulas and Φi be the set {pi | p ∈ Φ} of atomic

formulas with p0 := p. Let U be given (that is, U is common in A and B). We now

suppose that A is an FLTL-model

〈U, {Ii}i∈ω〉
such that Ii (i ∈ ω) are mappings satisfying

pI
i ⊆ Un

for all p ∈ Φ. Let B be an FIL-model 〈U, I〉 such that I is a mapping satisfying

pI ⊆ Un

for all

p ∈
⋃
i∈ω

Φi

and that

(x1, x2, . . . , xn) ∈ pI
i

if and only if

(x1, x2, . . . , xn) ∈ pIi .

The claim then follows by induction on the complexity of α.

Lemma 3.12. Let f be the mapping defined in Definition 3.4. For any FIL-model

B = 〈U, I〉,

we can construct an FLTL-model

A = 〈U, {Ii}i∈ω〉

https://doi.org/10.1017/S0960129514000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000048


Embedding theorems for LTL and its variants 107

such that for any formula α in LFLTL,

B |= f(Xiα) if and only if A |=i α.

Proof. The proof is similar to the proof of Lemma 3.11.

Theorem 3.13 (semantical embedding). Let f be the mapping defined in Definition 3.4.

For any formula α in LFLTL, α is FLTL-valid if and only if f(α) is FIL-valid.

Proof. The statement follows from Lemmas 3.11 and 3.12.

Theorem 3.14 (completeness). For any sequent S ,

FLTω � S

if and only if S is FLTL-valid.

Proof. Let S be Γ ⇒ Δ and α be Γ∗→Δ∗. Then,

FLTω � S iff FLTω � ⇒ α

iff FLKω � ⇒ f(α)

(by Theorem 3.5 and the cut-elimination theorem for FLKω)

iff f(α) is FIL-valid (by the completeness theorem for FLKω)

iff α is FLTL-valid. (by Theorem 3.13)

4. Generalised first-order LTL

4.1. Syntactical embedding

Let n be a fixed positive integer. We use the symbol N to represent the set {1, 2, . . . , n} of

indexes of modal operators. We use the following list of symbols for the language L of

the underlying logic:

— a0, a1, . . . for free variables;

— x0, x1, . . . for bound variables;

— f0, f1, . . . for functions;

— p0, p1, . . . for predicates;

— →, ¬, ∧, ∨, ∀ (any), ∃ (exists) for the logical connectives;

— ♥i (i ∈ N), ♥G (generalised G) and ♥F (generalised F) for the modal operators.

We assume the numbers of free and bound variables are countable, and that the numbers

of functions and predicates are also countable. We also assume that there is at least

one predicate. A 0-ary function is an individual constant, and a 0-ary predicate is a

propositional variable. We use lower case letters p, q, . . . to denote atomic formulas. We

use ♥Γ where

♥ ∈ {♥i | i ∈ N} ∪ {♥G,♥F}
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to denote the set

{♥γ | γ ∈ Γ}.

We use the symbol K to represent the set

{♥i | i ∈ N},

and the symbol K∗ to represent the set of all words of finite length of the alphabet K .

Note that K∗ includes �, so {ια | ι ∈ K∗} includes α. We use the lower-case Greek letters

ι and κ to denote any members of K∗.

A sequent calculus GLTω for a generalised first-order LTL (called GLTL) is given by

the following definition.

Definition 4.1. The initial sequents of GLTω are of the form

ιp ⇒ ιp

for any atomic formula p.

The structural rules of GLTω are (cut), (we-left) and (we-right) as in Definition 2.1.

The logical inference rules of GLTω are of the form

Γ ⇒ Σ, ια ιβ,Δ ⇒ Π

ι(α→β),Γ,Δ ⇒ Σ,Π
(→leftg)

ια,Γ ⇒ Δ, ιβ

Γ ⇒ Δ, ι(α→β)
(→rightg)

ια,Γ ⇒ Δ

ι(α ∧ β),Γ ⇒ Δ
(∧left1g)

ιβ,Γ ⇒ Δ

ι(α ∧ β),Γ ⇒ Δ
(∧left2g)

Γ ⇒ Δ, ια Γ ⇒ Δ, ιβ

Γ ⇒ Δ, ι(α ∧ β)
(∧rightg)

ια,Γ ⇒ Δ ιβ,Γ ⇒ Δ

ι(α ∨ β),Γ ⇒ Δ
(∨leftg)

Γ ⇒ Δ, ια

Γ ⇒ Δ, ι(α ∨ β)
(∨right1g)

Γ ⇒ Δ, ιβ

Γ ⇒ Δ, ι(α ∨ β)
(∨right2g)

Γ ⇒ Δ, ια

ι¬α,Γ ⇒ Δ
(¬leftg)

ια,Γ ⇒ Δ

Γ ⇒ Δ, ι¬α
(¬rightg)

ια(t),Γ ⇒ Δ

ι∀xα(x),Γ ⇒ Δ
(∀leftg)

Γ ⇒ Δ, ια(a)

Γ ⇒ Δ, ι∀xα(x)
(∀rightg)

ια(a),Γ ⇒ Δ

ι∃xα(x),Γ ⇒ Δ
(∃leftg)

Γ ⇒ Δ, ια(t)

Γ ⇒ Δ, ι∃xα(x)
(∃rightg)

where a is a free variable that must not occur in the lower sequents of (∀rightg) and

(∃leftg), and t is an arbitrary term, and

ικα,Γ ⇒ Δ

ι♥Gα,Γ ⇒ Δ
(♥Gleft)

{ Γ ⇒ Δ, ικα }κ∈K∗

Γ ⇒ Δ, ι♥Gα
(♥Gright)

{ ικα,Γ ⇒ Δ }κ∈K∗

ι♥Fα,Γ ⇒ Δ
(♥Fleft)

Γ ⇒ Δ, ικα

Γ ⇒ Δ, ι♥Fα
(♥Fright).
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The fact that sequents of the form ια ⇒ ια for any formula α are provable in cut-free

GLTω can be proved by induction on the complexity of α. Note that GLTω includes

FLTω as a special case.

The inference rules (♥Gleft) and (♥Gright) are intended to imply the axiom scheme

♥Gα ↔
∧

{ια | ι ∈ K∗}.

We now suppose that for any formula α, we have fα is a mapping on the set of formulas

such that

fα(x) :=
∧

{♥i(x ∧ α) | i ∈ ω}.
♥Gα then becomes a fixpoint of fα. The axiom scheme presented above just corresponds

to the so-called iterative interpretation of common knowledge. On the other hand, if we

take K := {♥1}, we can understand ♥1 and ♥G, respectively, as the temporal operators

X and G in LTL. The corresponding axiom scheme for the singleton case represents the

LTL-axiom scheme

Gα ↔
∧

{Xiα | i ∈ ω}.
The operator ♥G can thus be regarded as a natural generalisation of G. Similarly, ♥F

can be regarded as a generalisation of F.

The language of FIL and the sequent calculus FLKω follow from Definitions 3.2

and 3.3.

Definition 4.2. We fix a countable non-empty set Φ of atomic formulas, and define the

sets

Φκ := {pκ | p ∈ Φ} (κ ∈ K∗)

of atomic formulas where p� = p (that is, Φ� := Φ). The language LGLTL (or the set

of formulas) of GLTL is defined using Φ, →,¬,∧,∨, ∀, ∃, ♥i (i ∈ N), ♥G and ♥F. The

language LFIL of FIL is defined using
⋃

κ∈K∗ Φκ, →,¬,
∧
,
∨
, ∀ and ∃ in a similar way to

Definition 3.2. For convenience, the binary versions of
∧

and
∨

are also denoted by ∧
and ∨, respectively, and these binary symbols are assumed to be included in LFIL.

A mapping f from LGLTL to LFIL is defined as follows:

f(ιp) := pι ∈ Φι (ι ∈ K∗) for any p ∈ Φ (in particular, f(p) := p ∈ Φ�)

f(ι(α ◦ β)) := f(ια) ◦ f(ιβ) where ◦ ∈ {→,∧,∨}
f(ι¬α) := ¬f(ια)

f(ιQxα(x)) := Qxf(ια(x)) where Q ∈ {∀, ∃}

f(ι♥Gα) :=
∧

{f(ικα) | κ ∈ K∗}

f(ι♥Fα) :=
∨

{f(ικα) | κ ∈ K∗}.

Theorem 4.3 (syntactical embedding). Let Γ and Δ be sets of formulas in LGLTL, and f

be the mapping defined in Definition 4.2. Then:

(1) If

GLTω � Γ ⇒ Δ,
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then

FLKω � f(Γ) ⇒ f(Δ).

(2) If

FLKω − (cut) � f(Γ) ⇒ f(Δ),

then

GLTω − (cut) � Γ ⇒ Δ.

Proof. We can show part (1) by induction on the proof P of Γ ⇒ Δ in GLTω . We can

show part (2) by induction on the proof Q of f(Γ) ⇒ f(Δ) in FLKω − (cut).

We will just show the following case for (1) as an example.

— The last inference of P is of the form

{ Γ ⇒ Δ, ικα }κ∈K∗

Γ ⇒ Δ, ι♥Gα
(♥Gright).

By the induction hypothesis, we have

FLKω � f(Γ) ⇒ f(Δ), f(ικα)

for all κ ∈ K∗. Let Φ be {f(ικα) | κ ∈ K∗}. We then get the required result

....
{ f(Γ) ⇒ f(Δ), f(ικα) }

f(ικα)∈Φ

f(Γ) ⇒ f(Δ),
∧

Φ
(
∧

rightf)

where
∧

Φ coincides with f(ι♥Gα) by the definition of f.

Theorem 4.4 (cut-elimination). The rule (cut) is admissible in cut-free GLTω .

Proof. The statement follows from Theorem 4.3 and the cut-elimination theorem for

FLKω .

Note that we can strengthen the statements of Theorem 4.3 by replacing ‘if . . . then’ by

‘if and only if’. This fact will be used to prove the completeness theorem for GLTω .

4.2. Semantical embedding

In this section we will use similar notation to that used in the previous section, such as

α[y/x]. For simplicity, we adopt a first-order language LGLTL for GLTL without individual

constants and function symbols. We write ι̂ for i1i2 · · · ik if

ι = ♥i1♥i2 · · · ♥ik

and � if ι = �.

Definition 4.5. A structure

A :=
〈
U,

{
I ι̂
}
ι∈K∗

〉
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is said to be a GLTL-model if the following conditions hold:

(1) U is a non-empty set;

(2) I ι̂ (ι ∈ K∗) are mappings such that

pI
ι̂ ⊆ Un

(that is, pI
ι̂

are n-ary relations on U) for each n-ary predicate symbol p.

We write u
¯

for the name of u ∈ U, and write LGLTL[A] to denote the language obtained

from LGLTL by adding the names of all the elements of U. A formula α is said to be a

closed formula if α has no free individual variable. A formula of the form ∀x1 · · · ∀xmα is

said to be the universal closure of α if the free variables of α are x1, . . . , xm. We write cl(α)

for the universal closure of α.

Definition 4.6. Let

A := 〈U, {I ι̂}ι∈K∗ 〉
be a GLTL-model. The satisfaction relations

A |=ι̂ α (ι ∈ K∗)

for any closed formula α of LGLTL[A] are defined inductively by:

(1) A |=ι̂ p(u
¯1, . . . , u¯n) if and only if (u1, . . . , un) ∈ pI

ι̂

for each n-ary atomic formula

p(u
¯1, . . . , u¯n),

(2) A |=ι̂ α ∧ β if and only if A |=ι̂ α and A |=ι̂ β;

(3) A |=ι̂ α ∨ β if and only if A |=ι̂ α or A |=ι̂ β;

(4) A |=ι̂ α→β if and only if not-(A |=ι̂ α) or A |=ι̂ β;

(5) A |=ι̂ ¬α if and only if not-(A |=ι̂ α);

(6) A |=ι̂ ∀xα if and only if A |=ι̂ α[u
¯
/x] for all u ∈ U;

(7) A |=ι̂ ∃xα if and only if A |=ι̂ α[u
¯
/x] for some u ∈ U;

(8) for any k ∈ N, A |=ι̂ ♥kα if and only if A |=ι̂k α;

(9) A |=ι̂ ♥Gα if and only if A |=ι̂κ̂ α for all κ ∈ K∗;

(10) A |=ι̂ ♥Fα if and only if A |=ι̂κ̂ α for some κ ∈ K∗.

The satisfaction relations

A |=ι̂ α (ι ∈ K∗)

for any formula α of LGLTL are defined by

A |=ι̂ α if and only if A |=ι̂ cl(α).

A formula α of LGLTL is called GLTL-valid if A |=� α holds for each model A. A sequent

Γ ⇒ Δ of LGLTL is called GLTL-valid if so is the formula Γ∗→Δ∗.

Note that

A |=ι̂ κα if and only if A |=ι̂κ̂ α

holds for any satisfaction relation |=ι̂, any formula α and any κ ∈ K∗.

In the following, we use the same languages LGLTL and LFIL as in the previous

discussion (that is, they have no individual constants or function symbols), and also

assume for compatibility between LFIL and LGLTL that LGLTL has uncountably many
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individual variables. In order to apply the mapping f in Definition 4.2, we assume the

languages LGLTL and LFIL based on Φ and
⋃

κ∈K∗ Φκ, respectively.

Lemma 4.7. Let f be the mapping defined in Definition 4.2. For any GLTL-model

A = 〈U, {I ι̂}ι∈K∗ 〉,

we can construct an FIL-model B = 〈U, I〉 such that for any formula α in LGLTL,

A |=ι̂ α if and only if B |= f(ια).

Proof. Let Φ be a set of atomic formulas and Φκ be the set {pκ | p ∈ Φ} of atomic

formulas with p� := p. Let U be given (that is, U is common in A and B). Suppose that

A is a GLTL-model

〈U, {I ι̂}ι∈K∗ 〉
such that I ι̂ (ι ∈ K∗) are mappings satisfying

pI
ι̂ ⊆ Un

for all p ∈ Φ. Let B be an FIL-model 〈U, I〉 such that I is a mapping satisfying

pI ⊆ Un

for all

p ∈
⋃
κ∈K∗

Φκ

and that

(x1, x2, . . . , xn) ∈ pI
ι̂

if and only if

(x1, x2, . . . , xn) ∈ pIι .

The proof then follows by induction on the complexity of α:

— Base step:

– Case (α ≡ p(x
¯1, . . . , x¯n

) ∈ Φ):

A |=ι̂ p(x
¯1, . . . , x¯n

) iff (x1, x2, . . . , xn) ∈ pI
ι̂

iff (x1, x2, . . . , xn) ∈ pIι

iff B |= pι

iff B |= f(ιp(x
¯1, . . . , x¯n

)). (by the definition of f)

— Induction step:

We will only show the following cases as examples:

– Case (α ≡ ♥iβ):

A |=ι̂ ♥iβ iff A |=ι̂i β

iff B |= f(ι♥iβ). (by the induction hypothesis)
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– Case (α ≡ ♥Gβ):

A |=ι̂ ♥Gβ iff A |=ι̂κ̂ β for all κ ∈ K∗

iff B |= f(ικβ) for all κ ∈ K∗ (by the induction hypothesis)

iff B |=
∧

{f(ικβ) | κ ∈ K∗}

iff B |= f(ι♥Gβ). (by the definition of f)

Lemma 4.8. Let f be the mapping defined in Definition 4.2. For any FIL-model

B = 〈U, I〉,

we can construct a GLTL-model

A = 〈U, {I ι̂}ι∈K∗ 〉

such that for any formula α in LGLTL,

B |= f(ια) if and only if A |=ι̂ α.

Proof. The proof is similar to the proof of Lemma 4.7.

Theorem 4.9 (semantical embedding). Let f be the mapping defined in Definition 4.2. For

any formula α in LGLTL,

α is GLTL-valid if and only if f(α) is FIL-valid.

Proof. The statement follows from Lemmas 4.7 and 4.8.

Theorem 4.10 (completeness). For any sequent S ,

GLTω � S if and only if S is GLTL-valid.

Proof. The statement follows from Theorems 4.3 and 4.9 and the completeness theorem

for FLKω .

5. Infinitary extensions of LTL

We adopt the following list of symbols for the language of the underlying logic: countably

many propositional variables p0, p1, . . ., →, ¬,
∧

,
∨

, X, G, F and ♥ (interior).

Definition 5.1 (Lω and L−
ω). The initial sequents of Lω are of the form

Xip ⇒ Xip

for any propositional variable p.

The structural rules of Lω are (cut), (we-left) and (we-right) as in Definition 2.1.
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The logical inference rules of Lω are (→left), (→right), (¬left), (¬right), (Gleft), (Gright),

(Fleft), (Fright) as in Definition 2.1 and the inference rules are of the form

Xiα,Γ ⇒ Δ (α ∈ Θ)

Xi(
∧

Θ),Γ ⇒ Δ
(
∧

leftl)
{ Γ ⇒ Δ,Xiα }α∈Θ

Γ ⇒ Δ,Xi(
∧

Θ)
(
∧

rightl)

{ Xiα,Γ ⇒ Δ }α∈Θ

Xi(
∨

Θ),Γ ⇒ Δ
(
∨

leftl)
Γ ⇒ Δ,Xiα (α ∈ Θ)

Γ ⇒ Δ,Xi(
∨

Θ)
(
∨

rightl)

where Θ denotes a non-empty countable set of formulas, and

Xiα,Γ ⇒ Δ

Xi♥α,Γ ⇒ Δ
(♥left)

Xi♥Γ ⇒ Xkα

Xi♥Γ ⇒ Xk♥α
(♥right).

where L−
ω is obtained from Lω by deleting {(♥left), (♥right)}.

Definition 5.2 (S4ω). A sequent calculus S4ω for an infinitary version of the modal logic

S4 can be obtained from Lω by deleting (Gleft), (Gright), (Fleft), (Fright) and replacing

i and k by 0 (that is, we delete every occurrence of X). The modified inference obtained

rules for S4ω by replacing i and k by 0 are denoted by a ‘0’ superscript.

It is well known that S4ω enjoys the cut-elimination property – see, for example, Kaneko

and Nagashima (1997).

It can be shown by induction on the complexity of α that sequents of the form

Xiα ⇒ Xiα for any formula α are provable in cut-free Lω and cut-free L−
ω .

Proposition 5.3. Let L be Lω or L−
ω . The rule (Xregu) is admissible in cut-free L.

Proposition 5.4. For any formulas α and β, any non-empty countable set Θ of formulas

and any i ∈ ω, the following sequents are provable in cut-free Lω and cut-free L−
ω:

(1) Xi(α→β) ⇔ Xiα→Xiβ,

(2) Xi¬α ⇔ ¬Xiα,

(3) Xi(�Θ) ⇔ �(XiΘ) where � ∈ {
∧
,
∨

},
(4) Gα ⇔

∧
{Xiα | i ∈ ω},

(5) Fα ⇔
∨

{Xiα | i ∈ ω}.

And for any formula α and any i ∈ ω, the following sequents are provable in cut-free Lω:

(6) Xi♥α ⇔ ♥Xiα.

Proof. We will just show (4) and (6) as examples.

(4) (⇒)

{ Xiα ⇒ Xiα }Xiα∈{Xiα | i∈ω}

{ Gα ⇒ Xiα }Xiα∈{Xiα | i∈ω}
(Gleft)

Gα ⇒
∧

{Xiα | i ∈ ω}
(
∧

rightl)
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(⇐)

{ Xjα ⇒ Xjα }j∈ω
{
∧

{Xiα | i ∈ ω} ⇒ Xjα }j∈ω
(
∧

leftl)

∧
{Xiα | i ∈ ω} ⇒ Gα

(Gright).

(6) (⇒)

Xiα ⇒ Xiα

Xi♥α ⇒ Xiα
(♥left)

Xi♥α ⇒ ♥Xiα
(♥right)

(⇐)

Xiα ⇒ Xiα

♥Xiα ⇒ Xiα
(♥left)

♥Xiα ⇒ Xi♥α
(♥right).

Remarks 5.5 (on Proposition 5.4).

(i) The sequents listed in (1), (2), (3) and (6) correspond to the characteristic axioms for

some next-interior fragments of DTL. In fact, a Hilbert-style axiomatisation of S4C

can be obtained from that of S4 by adding the axiom schemes

(a) X(α ◦ β) ↔ Xα ◦ Xβ where ◦ ∈ {→,∧,∨},
(b) X¬α ↔ ¬Xα,

(c) X♥α→♥Xα,

and the inference rule
α

Xα
.

(ii) In particular, the sequents of the forms X♥α ⇒ ♥Xα and ♥Xα ⇒ X♥α listed in (6)

correspond, respectively, to the continuous axiom, which characterises the continuity

property of the function f on the topological space X of the underlying dynamic

topological system (X, f), and the homeomorphism axiom, which characterises the open

mapping property of f in (X, f). If a function is a continuous open bijection, the

function is called a homeomorphism.

(iii) In order to prove the sequents listed in (6), we need the fact that the parameters i

and k in (♥right) and (♥left) can be different from each other.

(iv) The sequents listed in (4) and (5) correspond to the characteristic axioms for a full

DTL with a homeomorphism f on a topological space X. Intuitively, (4) and (5) are

interpreted (Konev et al. 2006), for a given subset V of X, by

GV :=
⋂

{f−i(V ) | i ∈ ω}

and

FV :=
⋃

{f−i(V ) | i ∈ ω},

respectively, where f−i means the i-times iteration of the inverse mapping of f.
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Remarks 5.6 (comparison with other sequent systems).

(i) A sequent calculus S4FG (Artemov et al. 1997) for S4F can be obtained from a

standard sequent system for S4 by adding (Xregu). The rules (→right), (→left) and

(♥left) have been shown to be admissible in cut-free S4FG (Artemov et al. 1997).

(ii) A sequent calculus S4CG (Artemov et al. 1997) for S4C can be obtained from S4FG

by adding a rule of the form

♥X♥α,Γ ⇒ Δ

X♥α,Γ ⇒ Δ
.

(iii) Mints’ sequent calculus for S4C (Mints 2006) is similar to S4CG, and uses a rule of

the form
B ⇒ α

B ⇒ ♥α

where B is a set of formulas of the form Xi♥α. Note that this rule does not allow us

to derive the sequent ♥Xα ⇒ X♥α of homeomorphisms. In order to derive such a

sequent, we require the rule (♥right) proposed in this paper.

(iv) A sequent calculus for a bimodal version of DTL with a homeomorphism, called

S4H on Kremer’s Dynamic Topological Logic web page†, can then be regarded as the

{→,∧,∨,♥,X}-fragment of Lω .

Definition 5.7. We fix a countable non-empty set Φ of propositional variables, and define

the sets

Φi := {pi | p ∈ Φ} (1 � i ∈ ω)

Φ0 := Φ

of propositional variables where p0 = p. The language LLω
of Lω is defined using Φ,

→,¬,
∧
,
∨

, ♥, X, G and F. The language LS4ω of S4ω is defined using
⋃

i∈ω Φi, →,¬,
∧
,
∨

and ♥.

A mapping f from LLω
to LS4ω is defined as follows:

f(Xip) := pi ∈ Φi (i ∈ ω) for any p ∈ Φ (in particular, f(p) := p ∈ Φ)

f(Xi(α→β)) := f(Xiα)→f(Xiβ)

f(Xi¬α) := ¬f(Xiα)

f(Xi(�Θ)) := �f(XiΘ) where Θ is a non-empty countable

set of formulas, and � ∈
{∧

,
∨}

f(Xi♥α) := ♥f(Xiα) (†)

f(XiGα) :=
∧

{f(Xi+jα) | j ∈ ω}

f(XiFα) :=
∨

{f(Xi+jα) | j ∈ ω}.

We also define the languages LL−
ω

(for L−
ω) and LLKω

(for LKω) as the ♥-less

sublanguages of LLω
and LS4ω , respectively. A mapping f from LL−

ω
to LLKω

is then

† See http://individual.utoronto.ca/philipkremer/DynamicTopologicalLogic.html.

https://doi.org/10.1017/S0960129514000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000048


Embedding theorems for LTL and its variants 117

obtained from the above mapping by deleting the condition (†). We will also use the same

name f for this mapping.

Theorem 5.8 (syntactical embedding). Let Γ and Δ be sets of formulas in LLω
, and f be

the mapping defined in Definition 5.7.

(1) If

Lω � Γ ⇒ Δ,

then

S4ω � f(Γ) ⇒ f(Δ).

(2) If

S4ω − (cut) � f(Γ) ⇒ f(Δ),

then

Lω − (cut) � Γ ⇒ Δ.

Let Γ and Δ be sets of formulas in LL−
ω
, and f be the mapping defined secondly in

Definition 5.7.

(1) If L−
ω � Γ ⇒ Δ, then LKω � f(Γ) ⇒ f(Δ).

(2) If LKω − (cut) � f(Γ) ⇒ f(Δ), then L−
ω − (cut) � Γ ⇒ Δ.

Proof. We will only give the proof for the Lω case as an example.

(1) We use induction on the proof P of Γ ⇒ Δ in Lω . We distinguish the cases according

to the last inference of P , and will only show the following case as an example:

— Case (♥right):

So the final inference of P is of the form

Xi♥Γ ⇒ Xkα

Xi♥Γ ⇒ Xk♥α
(♥right).

By the induction hypothesis, we have

ω � f(Xi♥Γ) ⇒ f(Xkα),

that is,

ω � ♥f(XiΓ) ⇒ f(Xkα).

So we obtain
....

♥f(XiΓ) ⇒ f(Xkα)

♥f(XiΓ) ⇒ ♥f(Xkα)
(♥left0)

where

♥f(XiΓ) ⇒ ♥f(Xkα)

coincides with

f(Xi♥Γ) ⇒ f(Xk♥α)

by the definition of f.
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(2) We use induction on the proof Q of f(Γ) ⇒ f(Δ) in S4ω − (cut). We distinguish the

cases according to the last inference of Q and will only show the following case as an

example:

— Case (
∧

right0):

We consider two subcases:

(a) The last inference of Q is of the form

{ f(Γ) ⇒ f(Δ), f(Xiα) }
f(Xiα)∈f(Xi

Θ)

f(Γ) ⇒ f(Δ),
∧
f(XiΘ)

(
∧

right0)

where
∧
f(XiΘ) coincides with f(Xi(

∧
Θ)) by the definition of f.

By the induction hypothesis, we have

Lω � Γ ⇒ Δ,Xiα

for all Xiα ∈ XiΘ, that is, for all α ∈ Θ. We then obtain

....
{ Γ ⇒ Δ,Xiα }α∈Θ

Γ ⇒ Δ,Xi(
∧

Θ)
(
∧

rightl).

(b) The last inference of Q is of the form

{ f(Γ) ⇒ f(Δ), f(Xi+jα) }
f(Xi+jα)∈{f(Xi+jα) | j∈ω}

f(Γ) ⇒ f(Δ),
∧

{f(Xi+jα) | j ∈ ω}
(
∧

right0)

where ∧
{f(Xi+jα) | j ∈ ω}

coincides with f(XiGα) by the definition of f. By the induction hypothesis,

we have

Lω � Γ ⇒ Δ,Xi+jα

for all

Xi+jα ∈ {Xi+jα | j ∈ ω},
that is, for all j ∈ ω. So we obtain

....
{ Γ ⇒ Δ,Xi+jα }j∈ω

Γ ⇒ Δ,XiGα
(Gright).

Theorem 5.9 (cut-elimination). Let L be Lω or L−
ω . The rule (cut) is admissible in cut-free

L.
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Proof. We will only show the case for Lω as an example. Suppose

Lω � Γ ⇒ Δ.

Then, we have

S4ω � f(Γ) ⇒ f(Δ)

by Theorem 5.8 (1), and hence

S4ω − (cut) � f(Γ) ⇒ f(Δ)

by the cut-elimination theorem for S4ω . By Theorem 5.8 (2), we then obtain

Lω − (cut) � Γ ⇒ Δ,

to complete the proof.

We now define a semantics for L−
ω .

Definition 5.10. Let Θ be a non-empty countable set of formulas. Timed valuations Ii

(i ∈ ω) are mappings from the set of all propositional variables to the set {t, f} of truth

values. Then, timed satisfaction relations |=i α (i ∈ ω) for any formula α are defined

inductively by

(1) |=i p if and only if Ii(p) = t for any propositional variable p.

(2) |=i

∧
Θ if and only if |=i α for any α ∈ Θ.

(3) |=i

∨
Θ if and only if |=i α for some α ∈ Θ.

(4) |=i α→β if and only if not-(|=i α) or |=i β.

(5) |=i ¬α if and only if not-(|=i α).

(6) |=i Xα if and only if |=i+1 α.

(7) |=i Gα if and only if |=j α for any j � i.

(8) |=i Fα if and only if |=j α for some j � i.

A formula α is said to be L−
ω-valid if |=0 α holds for any timed satisfaction relations

|=i (i ∈ ω).

A sequent Γ ⇒ Δ is said to be L−
ω-valid if the formula Γ∗→Δ∗ is L−

ω-valid.

In the following, we use Definition 6.7 as a semantics for LKω .

In order to apply the embedding function f in Definition 5.7, we assume the languages

based on LL−
ω

and LLKω
by constructing Φ and

⋃
i∈ω Φi, respectively.

Lemma 5.11. Let f be the mapping defined in Definition 5.7. For any timed satisfaction

relation |=i (i ∈ ω), we can construct a satisfaction relation |= such that for any formula α

in LL−
ω
, we have

|=i α if and only if |= f(Xiα).

Proof. The proof is similar to the proof of Lemma 4.7.
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Lemma 5.12. Let f be the mapping defined in Definition 5.7. For any satisfaction relation

|= and any i ∈ ω, we can construct a timed satisfaction relation |=i such that for any

formula α in LL−
ω
,

|= f(Xiα) if and only if |=i α.

Proof. The proof is similar to the proof of Lemma 5.11.

Theorem 5.13 (semantical embedding). Let f be the mapping defined in Definition 5.7.

For any formula α in LL−
ω
,

α is L−
ω-valid if and only if f(α) is LKω-valid.

Proof. The statement follows from Lemmas 5.11 and 5.12, where we take 0 for i.

Theorem 5.14 (completeness). For any sequent S ,

L−
ω � S if and only if S is L−

ω-valid.

Proof. The statement follows from Theorems 5.8 and 5.13.

We will now show that the {G,F}-free fragment (that is, X-only fragment) of L−
ω is

equivalent to L−
ω under some appropriate interpretations of G and F.

Definition 5.15 (Lx
ω). A system Lx

ω is defined as the {G,F}-free fragment of L−
ω .

Theorem 5.16 (equivalence). Let G and F in L−
ω be interpreted in Lx

ω by

Gα :=
∧

{Xiα | i ∈ ω}

Fα :=
∨

{Xiα | i ∈ ω}.

L−
ω and Lx

ω are theorem equivalent under this interpretation.

Proof. It is sufficient to show that the rules (Gleft), (Gright), (Fleft) and (Fright) in L−
ω

are derivable in Lx
ω under the interpretations of G and F.

We will only show the case of

{ Γ ⇒ Δ,Xi+jα }j∈ω
Γ ⇒ Δ,XiGα

(Gright).

as an example. Let Θ be {Xjα | j ∈ ω}. Then the set

{ Γ ⇒ Δ,Xi+jα }j∈ω

means the set

{ Γ ⇒ Δ,Xiβ }β∈Θ
.

We assume that the sequents in

{ Γ ⇒ Δ,Xiβ }β∈Θ
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are provable in Lx
ω . We then have a proof in Lx

ω with

....
{ Γ ⇒ Δ,Xiβ }β∈Θ

Γ ⇒ Δ,Xi(
∧

Θ)
(
∧

rightl)

where the sequent

Γ ⇒ Δ,Xi(
∧

Θ)

means the required sequent

Γ ⇒ Δ,XiGα

by the interpretation of G.

6. Other LTL-variations

6.1. Spatial extensions of LTL

We adopt the following for the language of the underlying logic:

— countably many propositional variables;

— →, ¬, ∧, ∨;

— Px (position in x-axis);

— Py (position in y-axis);

— Pz (position in z-axis);

— A (anywhere);

— S (somewhere);

— A− (converse anywhere);

— S− (converse somewhere).

An expression ◦Γ where

◦ ∈ {Px,Py,Pz ,A, S,A−, S−}
is used to denote the set

{◦γ | γ ∈ Γ}.
We use the symbol P to represent

{Px,Py,Pz},
and the symbol P ∗ to represent the set of all words of finite length of the alphabet P .

Note that P ∗ includes �. We use the Greek lower-case letter ι to denote any member

of P ∗.

ι′ (∈ P ∗) is called a permutation of ι (∈ P ∗) if ι′ is obtained from ι by a permutation of the

symbols in ι. For example, ι′ ≡ PxPyPx is a permutation of ι ≡ PxPxPy , but ι′′ ≡ PxPyPy

is not a permutation of ι. Note that ι is itself a permutation of ι. We sometimes use

lower-case letters i, j, k, ix, iy, iz , . . . to denote any natural numbers. An expression Pi
mα with

m ∈ {x, y, z} for any i ∈ ω is defined inductively by

P0
mα ≡ α

Pi+1
m α ≡ PmPi

mα.
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Definition 6.1 (3SL). The initial sequents of 3SL are of the form

ιp ⇒ ιp

for any propositional variable p.

The structural inference rules of 3SL are the same as (cut), (we-left) and (we-right) in

Definition 2.1.

The logical inference rules of 3SL are of the form for any m, n ∈ {x, y, z},

Γ ⇒ Δ, ια ιβ,Σ ⇒ Π

ι(α→β),Γ,Σ ⇒ Δ,Π
(→left3)

ια,Γ ⇒ Δ, ιβ

Γ ⇒ Δ, ι(α→β)
(→right3)

ια, ιβ,Γ ⇒ Δ

ι(α ∧ β),Γ ⇒ Δ
(∧left3)

Γ ⇒ Δ, ια Γ ⇒ Δ, ιβ

Γ ⇒ Δ, ι(α ∧ β)
(∧right3)

ια,Γ ⇒ Δ ιβ,Γ ⇒ Δ

ι(α ∨ β),Γ ⇒ Δ
(∨left3)

Γ ⇒ Δ, ια, ιβ

Γ ⇒ Δ, ι(α ∨ β)
(∨right3)

Γ ⇒ Δ, ια

ι¬α,Γ ⇒ Δ
(¬left3)

ια,Γ ⇒ Δ

Γ ⇒ Δ, ι¬α
(¬right3)

ιPmPnα,Γ ⇒ Δ

ιPnPmα,Γ ⇒ Δ
(Pleft)

Γ ⇒ Δ, ιPmPnα

Γ ⇒ Δ, ιPnPmα
(Pright)

ιPkx
x P

ky
y Pkz

z α,Γ ⇒ Δ

ιAα,Γ ⇒ Δ
(Aleft)

{ Γ ⇒ Δ, ιPjx
x P

jy
y Pjz

z α | jx, jy, jz ∈ ω }
Γ ⇒ Δ, ιAα

(Aright)

{ ιPjx
x P

jy
y Pjz

z α,Γ ⇒ Δ | jx, jy, jz ∈ ω }
ιSα,Γ ⇒ Δ

(Sleft)

Γ ⇒ Δ, ιPkx
x P

ky
y Pkz

z α

Γ ⇒ Δ, ιSα
(Sright)

ιPjx
x P

jy
y Pjz

z α,Γ ⇒ Δ

ιPix
x P

iy
y Piz

z A−α,Γ ⇒ Δ
(A−left)

with the conditions

0 � jx � ix

0 � jy � iy

0 � jz � iz ,

and

{ Γ ⇒ Δ, ιPjx
x P

jy
y Pjz

z α | 0 � jx � ix, 0 � jy � iy, 0 � jz � iz }
Γ ⇒ Δ, ιPix

x P
iy
y Piz

z A−α
(A−right)

{ ιPjx
x P

jy
y Pjz

z α,Γ ⇒ Δ | 0 � jx � ix, 0 � jy � iy, 0 � jz � iz }
ιPix

x P
iy
y Piz

z S−α,Γ ⇒ Δ
(S−left)

Γ ⇒ Δ, ιPjx
x P

jy
y Pjz

z α

Γ ⇒ Δ, ιPix
x P

iy
y Piz

z S−α
(S−right)
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with the conditions

0 � jx � ix

0 � jy � iy

0 � jz � iz .

Note that (Aright) and (Sleft) have infinite premises.

Proposition 6.2. The rules of the form

Γ ⇒ Δ
PmΓ ⇒ PmΔ

(Pmregu)

for any m ∈ {x, y, z} are admissible in cut-free 3SL.

We can prove by induction on the complexity of α that sequents of the form ια ⇒ ια

for any formula α are provable in cut-free 3SL – we have to use Proposition 6.2 in the

proof of this fact.

Definition 6.3. We fix a countable non-empty set Φ of propositional variables, and define

the sets

Φι := {pι | p ∈ Φ} (ι ∈ P ∗)

of propositional variables where p� = p (that is, Φ� := Φ). The language L3SL (or the

set of formulas) of 3SL is defined using Φ, →,¬,∧,∨, Px, Py , Pz , A, S, A− and S−. The

language LIL of LKω is defined using
⋃

ι∈P ∗ Φι, →,¬,
∧

and
∨

. For convenience, the

binary versions of
∧

and
∨

are also denoted by ∧ and ∨, respectively, and these binary

symbols are assumed to be included in LIL. For any permutations ι1 and ι2 of ι (∈ P ∗)

and any p ∈ Φ, we assume pι1 = pι2 , that is, Φι1 = Φι2 .

A mapping f from L3SL to LIL is defined as follows.

f(ιp) := pι ∈ Φι (ι ∈ P ∗) for any p ∈ Φ

(in particular, f(p) := p ∈ Φ�)

f(ι(α ◦ β)) := f(ια) ◦ f(ιβ) where ◦ ∈ {→,∧,∨}
f(ι¬α) := ¬f(ια)

f(ιPlPmα) := f(ιPmPlα) for any l, m ∈ {x, y, z}

f(ιAα) :=
∧

{f(ιPjx
x P

jy
y Pjz

z α) | jx, jy, jz ∈ ω}

f(ιSα) :=
∨

{f(ιPjx
x P

jy
y Pjz

z α) | jx, jy, jz ∈ ω}

f(ιPix
x P

iy
y Piz

z A−α) :=
∧

{f(ιPjx
x P

jy
y Pjz

z α) | 0 � jx � ix, 0 � jy � iy, 0 � jz � iz}

for any ix, iy, iz ∈ ω

f(ιPix
x P

iy
y Piz

z S−α) :=
∨

{f(ιPjx
x P

jy
y Pjz

z α) | 0 � jx � ix, 0 � jy � iy, 0 � jz � iz}

for any ix, iy, iz ∈ ω.
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Theorem 6.4 (syntactical embedding). Let Γ and Δ be sets of formulas in L3SL, and f be

the mapping defined in Definition 6.3. Then:

(1) If

3SL � Γ ⇒ Δ,

then

LKω � f(Γ) ⇒ f(Δ).

(2) If

LKω − (cut) � f(Γ) ⇒ f(Δ),

then

3SL − (cut) � Γ ⇒ Δ.

Theorem 6.5 (cut-elimination). The rule (cut) is admissible in cut-free 3SL.

The following definition gives a semantics for 3SL.

Definition 6.6. Space-indexed valuations Iix;iy;iz (ix, iy, iz ∈ ω) are mappings from the set of

all propositional variables to the set {t, f} of truth values. Then, space-indexed satisfaction

relations |=ix;iy;iz α (ix, iy, iz ∈ ω) for any formula α are defined inductively by:

(1) |=ix;iy;iz p if and only if Iix;iy;iz (p) = t for any propositional variable p.

(2) |=ix;iy;iz α ∧ β if and only if |=ix;iy;iz α and |=ix;iy;iz β.

(3) |=ix;iy;iz α ∨ β if and only if |=ix;iy;iz α or |=ix;iy;iz β.

(4) |=ix;iy;iz α→β if and only if not-(|=ix;iy;iz α) or |=ix;iy;iz β.

(5) |=ix;iy;iz ¬α if and only if not-(|=ix;iy;iz α).

(6) |=ix;iy;iz Pxα if and only if |=ix+1;iy;iz α.

(7) |=ix;iy;iz Pyα if and only if |=ix;iy+1;iz α.

(8) |=ix;iy;iz Pzα if and only if |=ix;iy;iz+1 α.

(9) |=ix;iy;iz Aα if and only if |=ix+jx;iy+jy;iz+jz α for any jx, jy, jz ∈ ω.

(10) |=ix;iy;iz Sα if and only if |=ix+jx;iy+jy;iz+jz α for some jx, jy, jz ∈ ω.

(11) |=ix;iy;iz A−α if and only if |=jx;jy;jz α for any jx, jy, jz ∈ ω with

0 � jx � ix

0 � jy � iy

0 � jz � iz .

(12) |=ix;iy;iz S−α if and only if |=jx;jy;jz α for some jx, jy, jz ∈ ω with

0 � jx � ix

0 � jy � iy

0 � jz � iz .

A formula α is said to be 3SL-valid if |=0;0;0 α holds for any space-indexed satisfaction

relations |=ix;iy;iz (ix, iy, iz ∈ ω). A sequent Γ ⇒ Δ is said to be 3SL-valid if the formula

Γ∗→Δ∗ is 3SL-valid.
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To ensure compatibility of proofs, we will now redefine a semantics for LKω . This

semantics is essentially the same as the semantics of IL defined in Definition 2.9.

Definition 6.7. Let Θ be a countable non-empty set of formulas. A valuation I is a

mapping from the set of all propositional variables to the set {t, f} of truth values. A

satisfaction relation |= α for any formula α is defined inductively by:

(1) |= p if and only if I(p) = t for any propositional variable p.

(2) |=
∧

Θ if and only if |= α for any α ∈ Θ.

(3) |=
∨

Θ if and only if |= α for some α ∈ Θ.

(4) |= α→β if and only if not-(|= α) or |= β.

(5) |= ¬α if and only if not-(|= α).

A formula α is said to be LKω-valid if |= α holds for any satisfaction relation |=. A

sequent Γ ⇒ Δ is said to be LKω-valid if the formula Γ∗→Δ∗ is LKω-valid.

Lemma 6.8. Let f be the mapping defined in Definition 6.3. For any space-indexed

satisfaction relation |=ix;iy;iz (ix, iy, iz ∈ ω), we can construct a satisfaction relation |= such

that for any formula α in L3SL,

|=ix;iy;iz α if and only if |= f(Pix
x P

iy
y Piz

z α).

Lemma 6.9. Let f be the mapping defined in Definition 6.3. For any satisfaction relation

|=, we can construct a space-indexed satisfaction relation |=ix;iy;iz such that for any formula

α in L3SL,

|= f(Pix
x P

iy
y Piz

z α) if and only if |=ix;iy;iz α.

Theorem 6.10 (semantical embedding). Let f be the mapping defined in Definition 6.3.

For any formula α in L3SL,

α is 3SL-valid if and only if f(α) is LKω-valid.

Proof. The statement follows from Lemmas 6.8 and 6.9, where we take 0 for ix, iy and

iz .

Theorem 6.11 (completeness). For any sequent S ,

3SL � S if and only if S is 3SL-valid.

Proof. The statement follows from Theorems 6.4, 6.5 and 6.10.

6.2. Next-time only fragments of LTL

The formulas of SDL are constructed from countably many propositional variables, ⊥
(falsity constant), →, ∧, ∨ and X. In Kamide (2010c), the constant ⊥ was used to help give

a direct proof (that is, without using embedding) of the Kripke-completeness theorem for

SDL. We use Greek capital letters Γ,Δ, . . . to represent finite (possibly empty) sequences of

formulas, and an expression XΓ to denote the sequence 〈Xγ | γ ∈ Γ〉. We use the symbol
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≡ to denote the equality of sequences of symbols and the symbol N to represent the set of

natural numbers. An expression of the form Γ ⇒ Δ where Δ is empty or a single formula

is called an intuitionistic sequent (or just sequent for short).

We will now define SDL, where without risk of confusion, we will use the same rule

names as we used for LTω .

Definition 6.12 (SDL). In the following definition, Δ represents the empty sequence or a

single formula.

The initial sequents of SDL are of the form

Xip ⇒ Xip

Xi⊥ ⇒

for any propositional variable p.

The structural rules of SDL are of the form

Γ ⇒ α α,Σ ⇒ Δ

Γ,Σ ⇒ Δ
(cut)

Γ ⇒ Δ
α,Γ ⇒ Δ

(we-left)
Γ ⇒

Γ ⇒ α
(we-right)

α, α,Γ ⇒ Δ

α,Γ ⇒ Δ
(co)

Γ, α, β,Σ ⇒ Δ

Γ, β, α,Σ ⇒ Δ
(ex).

The logical inference rules of SDL are of the form

Γ ⇒ Xiα Xiβ,Σ ⇒ Δ

Xi(α→β),Γ,Σ ⇒ Δ
(→left)

Xiα,Γ ⇒ Xiβ

Γ ⇒ Xi(α→β)
(→right)

Xiα,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left1)

Xiβ,Γ ⇒ Δ

Xi(α ∧ β),Γ ⇒ Δ
(∧left2)

Γ ⇒ Xiα Γ ⇒ Xiβ

Γ ⇒ Xi(α ∧ β)
(∧right)

Xiα,Γ ⇒ Δ Xiβ,Γ ⇒ Δ

Xi(α ∨ β),Γ ⇒ Δ
(∨left)

Γ ⇒ Xiα

Γ ⇒ Xi(α ∨ β)
(∨right1)

Γ ⇒ Xiβ

Γ ⇒ Xi(α ∨ β)
(∨right2).

Sequents of the form Xiα ⇒ Xiα for any formula α are provable in cut-free SDL.

Proposition 6.13. Let Δ be the empty sequence or a single formula. The following rule is

admissible in cut-free SDL:
Γ ⇒ Δ

XΓ ⇒ XΔ
(Xregu).

Definition 6.14 (LJ). A sequent calculus LJ for propositional intuitionistic logic can be

obtained from SDL by replacing Xi with X0.
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Definition 6.15. We fix a countable non-empty set Φ of propositional variables and define

the sets

Φi := {pi | p ∈ Φ} (i ∈ ω)

of propositional variables where p0 := p, that is, Φ0 = Φ. The language LSDL of SDL

is defined using Φ, ⊥,→,∧,∨ and X. The language LLJ of LJ is defined using
⋃

i∈ω Φi,

⊥,→,∧ and ∨.

A mapping f from LSDL to LLJ is defined by

f(Xi⊥) := ⊥
f(Xip) := pi ∈ Φi for any p ∈ Φ (in particular, f(p) := p ∈ Φ)

f(Xi(α ◦ β)) := f(Xiα) ◦ f(Xiβ) where ◦ ∈ {→,∧,∨}.

Theorem 6.16 (syntactical embedding). Let Γ be a sequence of formulas in LSDL, Δ be the

empty sequence or a formula in LSDL, and f be the mapping defined in Definition 6.15.

Then:

(1) If

SDL � Γ ⇒ Δ,

then

LJ � f(Γ) ⇒ f(Δ).

(2) If

LJ − (cut) � f(Γ) ⇒ f(Δ),

then

SDL − (cut) � Γ ⇒ Δ.

Theorem 6.17 (cut-elimination). The rule (cut) is admissible in cut-free SDL.

Theorem 6.18 (decidability). SDL is decidable.

Proof. By Theorem 6.16 and the cut-elimination theorem for LJ, we have

SDL � Γ ⇒ Δ

if and only if

LJ � f(Γ) ⇒ f(Δ).

Hence, provability in SDL can be reduced to provability in LJ, and since LJ is decidable,

SDL is also decidable.

We will now introduce a Kripke semantics for SDL.

Definition 6.19. A timed Kripke frame is a structure 〈M,N,R〉 satisfying the following

conditions:

(1) M is a non-empty set.

(2) N is the set of natural numbers.

(3) R is a reflexive and transitive binary relation on M.
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The set M can be understood as a set of information states, and the set N as a set of

time points.

Definition 6.20. A timed valuation |= on a Kripke frame 〈M,N,R〉 is a mapping from the

set Ψ of all propositional variables to the power set 2M×N of the direct product M × N

such that for any p ∈ Ψ, any i ∈ N, and any x, y ∈ M, if (x, i) ∈ |= (p) and xRy, then (y, i)

∈ |= (p). We will write (x, i) |= p for (x, i) ∈ |= (p). Each timed valuation |= is extended to

a mapping from the set Φ of all formulas to 2M×N by the following clauses:

(1) (x, i) |= ⊥ does not hold.

(2) (x, i) |= α→β if and only if ∀y ∈ M [xRy and (y, i) |= α imply (y, i) |= β].

(3) (x, i) |= α ∧ β if and only if (x, i) |= α and (x, i) |= β.

(4) (x, i) |= α ∨ β if and only if (x, i) |= α or (x, i) |= β.

(5) (x, i) |= Xα if and only if (x, i + 1) |= α.

The statement (x, i) |= α can be read as ‘α is true at the information state x and the

time i’.

Proposition 6.21. Let |= be a timed valuation on a timed Kripke frame 〈M,N,R〉. For

any formula α, any i ∈ N and any x, y ∈ M, if (x, i) |= α and xRy, then (y, i) |= α.

An expression Γ∧ means γ1 ∧ γ2 ∧ · · · ∧ γn if Γ ≡ 〈γ1, γ2, . . . , γn〉 (0 � n). Let Δ be the

empty sequence or a sequence consisting of a single formula. An expression Δ∗ means α

or ⊥ if Δ ≡ 〈α〉 or �, respectively. An expression (Γ ⇒ Δ)∗ means Γ∧→Δ∗ if Γ is not

empty, and means Δ∗ if it is.

Definition 6.22. A timed Kripke model is a structure 〈M,N,R, |=〉 such that:

(1) 〈M,N,R〉 is a timed Kripke frame;

(2) |= is a timed valuation on 〈M,N,R〉.
A formula α is true in a timed Kripke model 〈M,N,R, |=〉 if

(x, 0) |= α

for any x ∈ M, and it is SDL-valid in a timed Kripke frame 〈M,N,R〉 if it is true for any

timed valuation |= on the timed Kripke frame. A sequent Γ ⇒ Δ is true in a timed Kripke

model 〈M,N,R, |=〉 if the formula (Γ ⇒ Δ)∗ is true in the timed Kripke model, and it is

SDL-valid in a timed Kripke frame 〈M,N,R〉 if it is true for any timed valuation |= on

the timed Kripke frame.

The (non-timed) Kripke semantics for LJ is defined as usual, that is, it is obtained from

that of SDL by deleting N. The notion of being LJ-valid for formulas and sequents are

also defined as usual.

We have the following theorems.

Theorem 6.23 (semantical embedding). Let f be the mapping defined in Definition 6.15.

For any formula α in LSDL,

α is SDL-valid if and only if f(α) is LJ-valid.
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Theorem 6.24 (completeness). For any sequent S ,

SDL � S if and only if S is SDL-valid.

6.3. NP-complete fragments of LTL

In this section we introduce BLTL. The formulas of BLTL are constructed from countably

many propositional variables, →, ∧, ∨, ¬, X, G and F where X,G and F are bounded

versions of the standard operators of LTL (and we will use the same symbols). If l is

a fixed positive integer, we use the symbol ωl to denote the set {i ∈ ω | i � l}. In the

following discussion, l is fixed as a certain positive integer.

Definition 6.25 (BLTL). Let S be a non-empty set of states. A structure M := (σ, I) is a

model if:

(1) σ is an infinite sequence s0, s1, s2, . . . of states in S;

(2) I is a mapping from the set Φ of propositional variables to the power set of S .

A satisfaction relation (M, i) |= α for any formula α, where M is a model (σ, I) and i

(∈ ω) represents some position within σ, is defined inductively by

(1) (M, i) |= p if and only if si ∈ I(p), for any p ∈ Φ.

(2) (M, i) |= α ∧ β if and only if (M, i) |= α and (M, i) |= β.

(3) (M, i) |= α ∨ β if and only if (M, i) |= α or (M, i) |= β.

(4) (M, i) |= α→β if and only if (M, i) |= α implies (M, i) |= β.

(5) (M, i) |= ¬α if and only if not-[(M, i) |= α].

(6) (M, i) |= Xα if and only if (M, i + 1) |= α for any i � l − 1.

(7) (M, i) |= Xα if and only if (M, l) |= α for any i � l.

(8) (M, i) |= Gα if and only if ∀j � i with j ∈ ωl we have (M, j) |= α.

(9) (M, i) |= Fα if and only if ∃j � i with j ∈ ωl such that (M, j) |= α].

(10) (M, l + m) |= α if and only if (M, l) |= α for any m ∈ ω.

A formula α is said to be BLTL-valid (BLTL-satisfiable) if (M, 0) |= α for any (some)

model M := (σ, I).

In the following, an expression α ↔ β means (α→β) ∧ (β→α), and expressions
∧
C

and
∨
C are used to represent the finite conjunction and disjunction, respectively, of the

formulas in C .

Proposition 6.26. For any formulas α and β, the following formulas are BLTL-valid:

(1) X(α ◦ β) ↔ Xα ◦ Xβ where ◦ ∈ {→,∧,∨}.
(2) X(¬α) ↔ ¬(Xα).

(3) Gα→α.

(4) Gα → Xα.

(5) Gα → XGα.

(6) Gα → GGα.

(7) α ∧ G(α→Xα)→Gα (temporal induction).

(8) for any m ∈ ω, Xl+mα ↔ Xlα.
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(9) Gα ↔
∧

{Xiα | i ∈ ωl}.
(10) Fα ↔

∨
{Xiα | i ∈ ωl}.

Note that (8), (9) and (10) in Proposition 6.26 can be regarded as characteristic axioms

for the time bound l. Note also that (9) and (10) become the axioms of LTL if ωl is

replaced by ω. Thus, BLTL can be used quite naturally as a bounded time formalism.

The formulas of propositional classical logic (CL) are constructed from countably many

propositional variables, →, ¬,
∧

(finite conjunction) and
∨

(finite disjunction).

Definition 6.27 (CL). Let Θ be a finite (non-empty) set of formulas. V is a mapping from

the set Φ of propositional variables to the set {t, f} of truth values. V is called a valuation.

A satisfaction relation V |= α for any formula α is defined inductively by:

(1) V |= p if and only if V (p) = t for any p ∈ Φ.

(2) V |= ¬α if and only if not-(V |= α).

(3) V |= α→β if and only if V |= α implies V |= β.

(4) V |=
∧

Θ if and only if V |= α for any α ∈ Θ.

(5) V |=
∨

Θ if and only if V |= α for some α ∈ Θ.

A formula α is said to be CL-valid (CL-satisfiable) if V |= α for any (some) valuation V .

Definition 6.28. We fix a countable non-empty set Φ of propositional variables and define

the sets

Φi := {pi | p ∈ Φ} (1 � i ∈ ω)

Φ0 := Φ

of propositional variables where p0 = p. The language LBLTL of BLTL is defined using Φ,

→,∧,∨,¬, X, G and F. The language LCL of CL is defined using
⋃
i∈ω

Φi, →, ¬,
∧

and
∨

.

For convenience, the binary versions of
∧

and
∨

are also denoted by ∧ and ∨, respectively,

and these binary symbols are included in the definition of LCL.

A mapping f from Lb to L is defined by

f(Xip) := pi ∈ Φi for any p ∈ Φ, (in particular, f(p) := p ∈ Φ)

f(Xi(α ◦ β)) := f(Xiα) ◦ f(Xiβ) where ◦ ∈ {→,∧,∨}
f(Xi¬α) := ¬f(Xiα)

f(XmXα) := f(Xlα) for any m � l

f(XiGα) :=
∧

{f(Xi+jα) | j ∈ ωl}

f(XiFα) :=
∨

{f(Xi+jα) | j ∈ ωl}.

Lemma 6.29. Let f be the mapping defined in Definition 6.28, and S be a non-empty set

of states. For any model M := (σ, I) of BLTL, any satisfaction relation |= on M and any

state si in σ, we can construct a valuation V of CL and a satisfaction relation |= of CL
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such that for any formula α in LBLTL,

(M, i) |= α if and only if V |= f(Xiα).

Lemma 6.30. Let f be the mapping defined in Definition 6.28, and S be a non-empty

set of states. For any valuation V of CL and any satisfaction relation |= of CL, we can

construct a model M := (σ, I) of BLTL and satisfaction relation |= on M such that for

any formula α in LBLTL,

V |= f(Xiα) if and only if (M, i) |= α.

Theorem 6.31 (semantical embedding). Let f be the mapping defined in Definition 6.28.

For any formula α,

α is BLTL-valid (BLTL-satisfiable) if and only if f(α) is CL-valid (CL-satisfiable).

Proof. The statement follows from Lemmas 6.29 and 6.30.

Theorem 6.32 (NP-completeness). The validity and satisfiability problems of BLTL are

Co-NP-complete and NP-complete, respectively.

Proof. The validity and satisfiability problems of CL are known to be Co-NP-complete

and NP-complete, respectively. By the decidability of CL, it is possible to decide for each α

if f(α) is valid (satisfiable) in BLTL. Hence, by Theorem 6.31, the validity and satisfiability

problems of BLTL are decidable. Since f is a polynomial-time reduction, the validity and

satisfiability problems of BLTL are also Co-NP-complete and NP-complete, respectively.

7. Concluding remarks

In this paper, we have shown syntactical and/or semantical embedding theorems for:

— LTL;

— GLTL (a fixpoint generalisation of LTL);

— Lω (an extension of dynamic topological logic);

— L−
ω (a combination of LTL and infinitary logic);

— 3SL (a spatial extension of LTL);

— SDL (an extension of Davies’ logic); and

— BLTL (an NP-complete fragment of LTL).

Using these embedding theorems, the completeness, cut-elimination and/or decidability

theorems for these LTL-variations were obtained uniformly. The proposed embedding

theorems clarified the relationships between the LTL-variations and traditional logics

such as infinitary logic and classical logic.

We will now briefly review some recent closely related work. Kamide and Wans-

ing (2010) introduced a paraconsistent constructive bounded LTL, and proved some

syntactical embedding and related theorems for this logic. Kamide (2010a) proposed

a logic called linear-time computation tree logic (LCTL), which is a combination of a
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restricted version of LTL and computation tree logic, and showed the decidability of LCTL

through the semantical embedding theorem for LCTL. Kamide (2010f) and Kaneiwa and

Kamide (2010) introduced a logic called sequence-indexed LTL (SLTL), and obtained

some theorems using the syntactical and semantical embedding theorems for SLTL.

As future work, it may be interesting to apply the embedding theorem approach

to temporal substructural logics since proving the completeness, cut-elimination and/or

decidability theorems for some substructural logics is known (Kamide 2006a) to be rather

difficult. We also believe that the proposed embedding theorems are useful for proving and

disproving some important logical properties such as Craig interpolation, but studying

this issue remains for future work. We have seen that LTω has some inference rules that

have an infinite number of premises. This infinite formulation just corresponds to LKω

for infinitary logic. On the other hand, LTL is known to be finitely axiomatisable. Thus,

we would like to obtain a theorem for embedding a finitely Gentzen-type formulation

(sequent-style or natural deduction-style) of LTL into a standard logic. However, we have

not obtained such a result yet.
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