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A direct numerical simulation is performed for a supersonic turbulent boundary layer
interacting with a compression/expansion ramp at an angle o = 24°, matching the same
operating conditions of the direct numerical simulation by Priebe & Martin (J. Fluid
Mech., vol. 699, 2012, pp. 1-49). The adopted numerical method relies on the high-order
spectral difference scheme coupled with a bulk-based, low-dissipative, artificial viscosity
for shock-capturing purposes (Tonicello et al., Comput. Fluids, vol. 197, 2020, 104357).
Filtered and averaged fields are evaluated to study total kinetic energy transfers in
the presence of non-negligible compressibility effects. The compression motions are
shown to promote forward transfer of kinetic energy down the energy cascade, whereas
expansion regions are more likely to experience backscatter of kinetic energy. A standard
decomposition of the subgrid scale tensor in deviatoric and spherical parts is proposed
to study the compressible and incompressible contributions in the total kinetic energy
transfers across scales. On average, the correlation between subgrid scale dissipation and
large-scale dilatation is shown to be caused entirely by the spherical part of the Reynolds
stresses (i.e. the turbulent kinetic energy). On the other hand, subtracting the spherical
contribution, a mild correlation is still noticeable in the filtered fields. For compressible
flows, it seems reasonable to assume that the eddy-viscosity approximation can be a
suitable model for the deviatoric part of the subgrid scale tensor, which is exclusively
causing forward kinetic energy cascade on average. Instead, more complex models are
likely to be needed for the spherical part, which, even in statistical average, provides an
important mechanism for backscatter.
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1. Introduction

Shock-wave—turbulence interaction (SWTI) is a major challenge in many different
applications of aerospace engineering, varying from external flows around supersonic/
hypersonic vehicles to rocket nozzles and scramjet engines. The intrinsic unsteadiness of
SWTI problems often imposes severe thermal and mechanical loads, which can affect
strongly the structural integrity and efficiency of high-speed vehicles, thus playing a
fundamental role in the aeronautical design process. The first attempts to study the mutual
interaction between shock waves and laminar or turbulent boundary layers started with
the experimental works by Ackeret, Feldmann & Rott (1947) and Liepmann (1946). In
the following decades, most of the research on SWTI advanced by virtue of experimental
data of both compression ramps and impinging shocks (see Dolling (2001) and references
therein for an extensive overview). More recently, the increase of computational power
allowed us to tackle the flow physics of the compression ramp via direct numerical
simulation (DNS) for reasonably low Reynolds numbers (Adams 2000; Wu & Martin
2007, 2008; Wang et al. 2015).

The interaction between a large-scale structure, such as a shock wave, and the
small-scale turbulence contained in an incoming boundary layer triggers a wide range
of length and time scales characterising the physics of the problem. The capability of
accurately representing the intricate dynamics of such scales is a fundamental step in the
development of high-fidelity computational fluid dynamics (CFD) simulations of turbulent
flows.

The effect of compressibility alone can be particularly challenging in terms of
turbulence modelling. It is commonly conjectured that for incompressible flows, in
statistical mean, the influence of the smallest scales on the large scales can be represented
as a fully-dissipative process, justifying the widespread use of eddy-viscosity models.
In practical applications to compressible turbulent flows, the use of fully-dissipative
models can be controversial, specifically when the Reynolds-averaging operator adopted
in Reynolds-averaged Navier—Stokes (RANS) equations is replaced by the filtering
operator of large-eddy simulation (LES). The general assumption of similarity between
incompressible and compressible turbulence has led to a series of generalisations of
popular turbulence models for the subgrid scale (SGS) tensor (in LES) and Reynolds
stresses (in RANS). Nevertheless, with the Navier—Stokes equations in their compressible
form, a new set of unclosed SGS terms arises from both the RANS and LES formalisms.
Some previous works addressed the importance of such terms in a priori DNS analyses
(see, for instance, Vreman, Geurts & Kuerten (1995) and references therein); however,
modelling can still be considered significantly underdeveloped for most of those unclosed
terms. Furthermore, even for incompressible contributions, such as the kinetic energy SGS
dissipation term, their dependency on compressibility and thermodynamics remains, at
this date, in great measure unknown.

Since the very beginning of turbulence modelling, the kinetic energy dynamics has
always been identified as one of the primary driving forces of turbulent flows. A
comprehensive understanding of how kinetic energy is distributed along scales and how
turbulent structures interact with one another is of fundamental importance to understand
turbulent flow physics. In the context of LES, the phenomenon known as kinetic energy
backscatter (also known as inverse energy cascade) has been studied extensively in recent
decades (Piomelli et al. 1991; Domaradzki, Liu & Brachet 1993; Kerr, Domaradzki &
Barbier 1996; Piomelli, Yu & Adrian 1996). Based on explicitly filtered DNS data, it is in
fact possible to evaluate directly the kinetic energy transfer contributions associated with
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the unresolved scales of the flow. The main results presented by Piomelli e al. (1991)
highlighted the predominance of a forward energy cascade as the one first conjectured
by Richardson (1922) and later formalised by Kolmogorov (1941) for three-dimensional
turbulence. However, a large amount of the flow field is instead characterised by
backscatter events, i.e. an inverse energy cascade, where small scales contribute as a
source term for the large-scale kinetic energy. After these first results, the presence of
backscatter was observed in many different applications (Cabot, Schilling & Zhou 2004;
O’Brien et al. 2014; Khani & Waite 2016; Livescu & Li 2017; Wang et al. 2018a; Moitro,
Venkataraman & Poludnenko 2019). Both a posteriori and a priori analyses of turbulent
flows were soon applied to more complex conditions, such as reactive and compressible
flows. In such circumstances, thermodynamics plays a much more relevant role in the total
energy balance. Thus the description of total energy transfers in turbulence soon evolved
from the canonical formulation involving kinetic energy only to more generalised forms,
where the influence of internal energy can no longer be neglected. The interconnection
between kinetic and internal energy has been studied in depth subsequently, analysing the
role played by pressure-dilatation work as the predominant conversion mechanism between
the two forms of energy (Livescu, Jaberi & Madnia 2002; Aluie 2013; Lees & Aluie 2019;
Zhao & Aluie 2020; Zhao, Liu & Lu 2020).

Along these lines, shock waves represent a conventional process of energy redistribution
in compressible flows. Shock waves have been shown to have a major impact on turbulence
characteristics.

The first theoretical attempts to treat SWTI were formulated in the 1950s (Moore
1953; Ribner 1953, 1954; Kerrebrock 1956) and they were all based on the
classical decomposition of disturbances introduced by Kovasznay (1953). Only many
years later, as a result of increasing computational capabilities, DNS of isotropic-
turbulence—normal-shock-wave interaction was within reach for relatively weak shocks
(Lee, LELE & Moin 1991; Lee, Lele & Moin 1993). It was observed that the interaction
was characterised by an abrupt increase in turbulence anisotropy and intensity, triggering
strong energy transfers in proximity of the shock wave. A long series of works followed,
analysing the different aspects of SWTI, ranging from the effect of the shock strength
(Lee, Lele & Moin 1997) to the variations of the upstream turbulence (Mahesh & Lee
1995; Mahesh, Lele & Moin 1997; Jamme et al. 2002).

In wall-bounded supersonic flows, the interaction of turbulent boundary layers with
shocks and rarefaction waves is one of the most prevalent phenomena governing the overall
flow structure. Research on shock- wave—turbulent-boundary-layer interaction (SWTBLI)
is commonly based on two main canonical flow configurations: impinging normal/oblique
shocks (Green 1970; Pirozzoli & Grasso 2006; Priebe, Wu & Martin 2009; Pirozzoli,
Bernardini & Grasso 2010; Pirozzoli & Bernardini 2011a), and compression/expansion
ramps (Settles, Fitzpatrick & Bogdonoff 1979; Dolling & Murphy 1983). An extensive
literature has been dedicated to SWTBLI, based mainly on experiments (Settles & Dodson
1994; Andreopoulos, Agui & Briassulis 2000; Dolling 2001), providing a solid background
for future numerical simulation of such complex phenomena. A generic feature of such
flows is that the shock wave, deflected by geometric constraints, causes a sudden a
pressure drop, leading the flow to separate in recirculation bubbles. The general dynamics
of the separated flow is highly dependent on the many parameters characterising the
flow (Mach number, turbulence structure, wall heating, etc.). Due to the delicate physics
characterising SWTBLI, the numerical discretisation of such systems requires a large
number of precautions to be taken into account. The choice of the continuum equations,
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the numerical scheme and the modelisation of turbulence are all crucial aspects for the
accurate simulation of SWTBLI problems.

For example, many of the SWTI/SWTBLI computations considered small enough
Mach numbers to numerically resolve the inner structure of the viscous shock wave.
However, for sufficiently strong shocks, like the ones encountered frequently in
complex engineering applications, an accurate resolution of the shock profile is often
computationally impossible, and an additional regularisation mechanism is needed. The
canonical approaches to address such matters in turbulent flows are usually categorised
in essentially non-oscillatory (ENO), weighted ENO (WENO) or targeted ENO (TENO)
schemes (Qiu & Shu 2004, 2005a,b), shock-fitting techniques (Salas 1976; Rawat & Zhong
2010; Zahr, Shi & Persson 2019; Zahr & Persson 2020) and artificial viscosities (Von
Neumann & Richtmyer 1950; Cook & Cabot 2004; Persson & Peraire 2006; Fernandez,
Nguyen & Peraire 2018b; Tonicello, Lodato & Vervisch 2020). Each of these needs to be
properly designed to regularise shock waves, preserving, at the same time, the delicate
properties of turbulence. Each shock-capturing technique is characterised by two main
steps: identification and regularisation. In particular, in turbulent flows, the detection of
shock waves can be particularly challenging due to the presence of highly unsteady and
rapidly varying turbulent structures. An inaccurate identification of flow discontinuities
can then easily lead to a significant degradation of small-scale fluctuations (Johnsen et al.
2010; Kawai, Shankar & Lele 2010).

The present work addresses the aforementioned fundamental features of compressible
turbulence in a unified setting. The compression/expansion ramp herein considered is, in
fact, a particularly interesting set-up characterised by complex compressible turbulence
dynamics in a self-contained configuration. A wide range of different turbulent structures,
thermodynamic states and compressibility effects can be observed within the same flow
field. The level of information embedded in the present DNS database can be particularly
insightful for the design of innovative turbulence models of compressible flows within the
framework of high-order spectral element methods.

The paper will be organised as follows. In the first part, a thorough validation of the
specific test case will be presented; next, the filtered Navier—Stokes equations will be
introduced to study the large- scale kinetic energy equation. Based on such equations,
averaging and explicit filtering will be applied to the highly resolved DNS data to
analyse relevant unclosed quantities, with particular attention to the SGS kinetic energy
dissipation term. Its dependency on local levels of compressibility finally will be studied
and discussed.

2. Compression/expansion ramp simulation

The canonical compression ramp set-up features all the ingredients of SWTBLI. The
arising flow field can be particularly complex, containing many challenging physical
phenomena, including shock waves, turbulence, flow separation and unsteady heat transfer.
All of these factors have been studied extensively in the literature as each of them requires
specific numerical treatments, particularly if they interact strongly with each other. For
example, standard shock-capturing techniques need to be tailored carefully whenever
applied to compressible turbulent flows, in order to avoid excessive artificial dissipation
(Johnsen et al. 2010; Kawai et al. 2010). In a similar way, low-dissipative numerical
schemes are often essential to reduce detrimental effects as much as possible by numerical
dissipation.
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The test case herein considered has been studied extensively in many works, both
experimental (Bookey er al. 2005; Ringuette ef al. 2009) and numerical (Wu & Martin
2007; Priebe & Martin 2012; Li et al. 2013a,b; Helm & Martin 2016), with particular
attention to the unsteady nature of the main shock wave front. The majority of the
aforementioned numerical simulations rely on different forms of WENO schemes to
handle shock waves (Jiang & Shu 1996) and recycling/rescaling techniques to reproduce
the incoming turbulent boundary layer (Xu & Martin 2004). Another relevant simulation
of the same configuration, which will be used as an additional reference, has been
presented by Li et al. (2010). Starting from this, a series of related studies was
proposed in the following years, including a large number of investigations, such as wall
temperature/turning angle influence, Reynolds stress anisotropy maps and turbulent kinetic
energy balance (Tong et al. 2017a,b; Zhu et al. 2017). Most of these works are characterised
by the same parameters and techniques used by Martin, except for the turbulent boundary
layer inlet condition. In the simulation by Li er al. (2010), the transition to turbulence has
been simulated without any artificial turbulence injection or recycling/rescaling technique.
Instead, a blow-and-suction disturbance has been used to trigger the transition sufficiently
far away from the compression corner.

To the authors’ knowledge, the interaction between a fully-developed turbulent
boundary layer and an oblique shock wave generated by a compression ramp has never
been simulated using the high-order spectral element method (Kopriva & Kolias 1996;
Sun, Wang & Liu 2007; Jameson 2010). More details on the spatial discretisation scheme
have been reported in Appendix A.

2.1. Simulation setup

In all the previously cited works, different resolution levels and a large variety of analyses
have been performed on the same configuration, providing an extensive framework for
validation. The canonical problem consists of a supersonic, fully-turbulent, boundary
layer interacting with a 24° compression/expansion ramp. The computational domain (see
figure 1) has been parametrised using the 99 % thickness of the incoming boundary layer
(here denoted as §). The classical geometry of the present configuration is commonly
limited to the compression ramp only. The subsequent expansion corner has been added to
study the effect of strong expansions on the turbulence.

As geometrical reference, the origin is located at the corner of the compression ramp and
the x-coordinates are measured starting from this point following wall-tangent directions.
In agreement with the DNS by Priebe & Martin (2012), the reference supersonic boundary
layer has been evaluated at x = —8§. Upstream of this location, the generation of the
turbulent boundary layer itself takes place. In the work by Priebe & Martin (2012), a
secondary simulation based on recycling/rescaling has been used in order to prescribe a
realistic inlet condition at x = —84. In the present simulation, instead, an extended domain
has been considered, in which the digital filter technique for turbulence generation by
Klein, Sadiki & Janicka (2003) has been applied at x = —205. A weakly Riemann-based,
non-reflective, far-field boundary condition has been enforced on the upper boundary.
Periodic boundary conditions have been prescribed in the spanwise direction. Notice that
the spanwise extent of the domain has been chosen to match previous similar studies (Wu
& Martin 2007; Li et al. 2010; Priebe & Martin 2012; Tong et al. 2017a,b).

The main flow properties of the boundary layer are listed in table 1.

The Reynolds number is defined as Reg = uso/vso, Where 6 represents the momentum
thickness, us, the free stream velocity and vs, the kinematic viscosity in the free
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Figure 1. Q-criterion contours coloured by velocity magnitude (Q = 1.014%o /8%). In the background, numerical
Schlieren is displayed to highlight the primary shock wave. Here, § denotes incoming boundary layer thickness.

Ma Rey st Uoo ) 5* 0 H
2.91 2000 340  610ms”! 7.0mm  258mm  047mm  5.49

Table 1. Characteristic of the incoming boundary layer.

stream flow. The Kdrman number is defined as 8+ = Su; /v,,, where u, denotes the friction
velocity and vy, the kinematic viscosity at the wall. Finally, §* indicates the displacement
thickness and H = §*/0 the shape factor. The kinematic viscosity, defined as v = u(T)/p,
varies over the domain due to the direct dependence on density and implicit dependence
on the temperature through the dynamic viscosity, here modelled using Sutherland’s law:

= tpf [ =— ) LT 2.1
a ’”f(Tmf) (T+3) —

with fi,.r = 1.834 x 1075 kg m™' s7!, T,,; =291.15 K and S = 120 K. No-slip
isothermal conditions have been applied to the wall faces. Finally, the temperature at
the wall has been enforced as T, = 307 K, corresponding to approximately 1.14 the
recovery temperature. The free stream density has been set to the nominal value py =
7.7 x 1072 kg m~3.

Regarding the turbulent inlet condition, many different approaches have been proposed
in the literature of SWTI to prescribe turbulent inflow generation (see Wu (2017) for an
extensive summary). Using the Klein ez al. (2003) digital filter technique, generalised
and validated to the present numerical set-up (Pinto & Lodato 2019; Lodato, Tonicello &
Pinto 2021), the mean profiles, to which perturbations are superposed, have been evaluated
using closed-form relations involving van Driest transformed velocity as described by
Touber (2010). Given the correlation tensor of the fluid velocity and typical length scales
of the desired turbulence field, realistic velocity fluctuations are prescribed at the inlet
boundaries, far enough from the flow zone of interest. The values of the correlation tensor
have been extrapolated from a turbulent boundary layer DNS performed by Pirozzoli

935 A31-6


https://doi.org/10.1017/jfm.2022.22

https://doi.org/10.1017/jfm.2022.22 Published online by Cambridge University Press

DNS of shock-wave/turbulence interaction

N N¢ N, N. Axt Ayt AZF DoF
6 120 4 120 + 120 28 27 4.75-15 0.3-9 4.2 54M

Table 2. Numerical discretisation details, where N denotes order of approximation, Ny, Ny, N, denote
the numbers of elements along the streamwise, wall-normal and spanwise directions, respectively, and
Axt, AyT, Az" denote the wall-normalised grid spacings.

& Bernardini (2011b) at a similar Reynolds number. Finally, density and temperature
fluctuations have been imposed using the strong Reynolds analogy (SRA).

Details regarding the 6th-order accurate numerical discretisation are listed in table 2.
The number of total degrees of freedom (DoF) has been chosen in order to match the
accuracy of the DNS by Priebe & Martin (2012). As is common practice for high-order
spectral element schemes, the grid spacings in table 2 have been evaluated using the length
of the elements along each direction divided by the order of approximation (denoted as
N). Wall resolution is enforced by locating the first solution point at y* ~ 0.3 and the
entire first element within the viscous sublayer (y* < 10). The mesh spacing along the
streamwise direction varies between Axt = 4.75 and Ax" = 15, whereas the spanwise
mesh spacing is AzT = 4.2. Such choices are particularly common in the numerical
simulation of low- Reynolds-number turbulent boundary layers. To further validate the
resolution of the present computation, the Kolmogorov length scale has been estimated a
posteriori as n = (v3/8)]/4, with &€ = 2(vSl‘.j’.(8ui/8uj)). The ratio between the effective

grid spacing A = (Ax x Ay x Az)!/3 and the Kolmogorov length scale  was found
to be approximatively equal to unity upstream of the shock, and never larger than 6
downstream of the interaction region. As shown by Pirozzoli, Bernardini & Grasso (2008),
the small-scale eddies in wall-bounded turbulence are characterised by a typical length
scale of 5-6 times 7. It is worthwhile mentioning that the use of the resolved flow to
evaluate its own characteristic scales gives only an estimation of the order of magnitude of
the Kolmogorov length scale. It is also commonly known that the primary limiting factor
of wall-bounded turbulent flows is driven mainly by the accurate prediction of the viscous
sublayer (see, for instance, Sayadi, Hamman & Moin 2013), which is properly resolved
by the present computation. Consequently, based on such considerations, the prescribed
resolution is expected to be sufficiently accurate to properly resolve all the relevant scales
of the turbulent structures for the present configuration.

The computational domain (figure 2) has been enlarged with respect to most of
the previously cited works based on recycling/rescaling techniques. Indeed, the inlet
forcing method for turbulence injection necessitates a certain length to develop the
desired boundary layer statistical properties, which can vary considerably depending
on the specific turbulence injection techniques. The recovery distance can vary from
approximately 2/35 (Adler et al. 2018) up to 15§ (Morgan et al. 2011, 2013). In the present
work, the reference fully-developed boundary layer is evaluated at x = —83, which is
located 12§ downstream from the inlet boundary. As will be discussed more thoroughly in
the following sections of the paper, such a distance has been shown to be sufficiently long
to provide good first- and second-order statistics of the turbulent velocity field. Finally,
relevant statistics have been gathered every 0.025§/ux s for approximatively 10008 /u s,
which is commonly considered enough time to obtain a reliable temporal convergence for
the present configuration (Wu & Martin 2007; Li et al. 2010; Priebe & Martin 2012).
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206

Figure 2. Compression/expansion ramp: computational grid. Here, § denotes incoming boundary layer
thickness.

2.2. Shock capturing
The compressible Navier—Stokes equations are solved using the spectral difference method
for unstructured spatial discretisation (Kopriva & Kolias 1996; Sun et al. 2007; Jameson
2010; Jameson, Vincent & Castonguay 2012). Letting p be the density, u; the velocity
components, and E the specific total energy (internal plus kinetic), these read

L %j(puj) —o, 22)
0 0 0
a_t(/mi) + a_xj(/miuj + péij) = a—xj(Uij), (2.3)
9 9 9 dg;
a(pE) + a—xj[(pE +puj] = a—xj(%‘ui) "oy (2.4)

where §; is the Kronecker delta, o;; is the viscous stress tensor, and g; is the heat flux
vector. This last is computed via the Fourier law as g; = —« 9T /9dx;, where « is thermal
conductivity and T is temperature. The above equations are closed using the ideal gas state
equation
p 1
p = pRT, pE=—— 4 —pugug, (2.5a,b)
y—1 2
where R is the gas constant and y = ¢, /cy is the specific heat ratio.

Shock waves will often represent an under-resolved feature of the flow field, and
artificial terms are necessary for their numerical description. Consequently, the term
‘direct numerical simulation’ is here strictly restricted to the scales of turbulence and not
to the whole spectrum of scales characterising the physics of the problem. See the works
by Margolin (Margolin 2019; Margolin & Plesko 2019) for a deeper discussion on artificial
viscosity and SGS modelling.

In this work, the shock-capturing technique is based on the subcell shock- capturing
method with modal sensors first proposed by Persson & Peraire (2006) within a
discontinuous Galerkin framework. The spectral behaviour of the resolved variables is
evaluated along each direction in order to detect discontinuities in the flow field. The
characteristic-based sensor proposed recently by Lodato (2019a,b) has been used. Once
shock waves are located efficiently, they can be regularised properly using an artificial
viscosity (AV) approach based on the bulk viscosity, similar to the one developed by
Fernandez et al. (2018b) and Fernandez, Nguyen & Peraire (2018a). The artificial terms,
added to the compressible Navier—Stokes equations, are based on an augmentation of
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physical fluid viscosities and diffusivities. Accordingly, considering a Newtonian fluid
under Stokes’ hypothesis, the viscous stress tensor and the heat flux become

ouy
0Xk

where S;ji. indicates the deviatoric part of the strain-rate tensor

oy = 2S5 + Bav —— 8, (2.6)

o _ 1 [ 0u; . ou; 1 ouy 5 2.7
P72 \oy | dx) 3ax ‘
and
oT Bave
g =—(K+kay)—, Kayv=—-"1, (2.8a,b)
axj Prﬁ

where Prg is expressed dynamically as a function of the local Mach number according to
the equation

Prg = Pr{l + exp[—4(Ma(x) — May,,)1}. 2.9)
The parameter May,, has been set to 3, to avoid the addition of unnecessary thermal
dissipation for low-Mach-number regions of the flow. This approach has been reported
recently as a good compromise to capture the expected entropy overshot within the shock
zone (Tonicello et al. 2020).

It was found necessary to improve this artificial viscosity model in the case of
wall-bounded turbulent flows. While eddy-viscosity, by definition, vanishes at wall
boundaries, as dictated by the turbulent boundary layer theory, the artificial viscosity
has no constraint from this point of view. However, it is common practice to turn off the
artificial viscosity at wall faces (Kawai et al. 2010). Accordingly, to avoid the unnecessary
activation of the artificial viscosity close to the wall, a modification of the sensor proposed
by Ducros et al. (1999) has been coupled with the baseline modal shock detection
procedure. The elementwise constant shock sensor by Persson & Peraire (2000) (s;0da1)
has been modified as follows:

[0.5(|(Qu/dxk)| — (dur/dxi))]?
(Qu/ 9x1)% + (Jokwr)? + €

where (-) denotes elementwise averaging, w; = &k (dui/dx;) indicates the ith component
of the vorticity vector, and € is a constant of order machine epsilon squared. (To define
the vorticity vector, the Levi-Civita symbol has been introduced, denoted as g;.) The
present modification has been tested already in the same numerical framework for the
simulation of transonic aerofoils (Tonicello, Lodato & Vervisch 2022). The proposed
correction also prevents the activation of the artificial viscosity in strongly vortical
regions characterised by negligible volumetric compressions. It is, in fact, well-known
that excessively large values of bulk viscosity can deteriorate considerably the dilatation
field in highly compressible regions (Kawai et al. 2010; Tonicello et al. 2020).

In addition to the shock-capturing numerical approach, a positivity-preserving scheme
developed by Zhang & Shu (2010), adapted to the spectral difference scheme (Lodato,
Vervisch & Clavin 2016, 2017; Lodato 2019a), has been employed to fully secure the
stability of the simulation. The impact on the flow physics of both the shock-capturing and
the positivity-preserving schemes are discussed thereafter. More detailed presentations of
the shock-capturing technique and the positivity-preserving scheme have been included in
Appendices B and C, respectively.

(2.10)

Se = Smodal X
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Figure 3. Averaged (a) friction coefficient and (b) wall pressure, along the streamwise direction. Solid line,
present simulation; dashed line, DNS by Zhu et al. (2017), dashed-dotted line, DNS by Priebe & Martin (2012).
Black circle, measurements by Ringuette et al. (2009).

3. Simulation validation and physical analysis

In this section, a detailed validation of the the main flow features is presented. Once the
reliability of the simulation is established, further analyses on the resolved flow field are
discussed in subsequent sections.

3.1. Wall coefficients and mean profiles

In order to validate the proposed DNS, the averaged friction coefficient and wall pressure
have been computed and compared with previous simulations and experimental data of
the same configuration in figure 3. In many other works, a perfect agreement within the
rich literature of compression ramp simulations has proven to be a very difficult task to
achieve. This is commonly true not only in the detached region of the flow, which can
be very challenging to be accurately predicted, but also in the upstream region where
large deviations of the skin friction coefficient are normally reported in the literature. To
highlight such a tendency, the DNS by Zhu et al. (2017) along with experimental data
by Ringuette et al. (2009) have been added to figure 3. The simulation by Zhu et al.
(2017) was performed under the same conditions as the experiments by Ringuette et al.
(2009) and DNS by Wu & Martin (2007), which were characterised by a slightly smaller
Reynolds number with respect to the present computation (namely, Reg = 2400). Another
relevant difference can be identified in the upstream boundary layer: the DNS performed
by Zhu et al. (2017) did not rely on any artificial injection of turbulence. In fact, the full
laminar-to-turbulent transition of the incoming boundary layer was explicitly simulated
using a blow-and-suction disturbance technique.

In figure 3(a), in the upstream region, the friction coefficient is slightly higher than the
reference DNS by Priebe & Martin (2012), whereas the simulation by Zhu et al. (2017)
reports an even larger value. The experimental separation point is much better predicted
by both Zhu et al. (2017) and the present simulation rather than by Priebe & Martin (2012).
Furthermore, both simulations tend to provide smaller values of the friction coefficient in
the downstream region, in agreement with the experimental location of the reattachment
point. In figure 3(b), the computed wall pressure profile follows nicely the one obtained
by Zhu et al. (2017), which departs from the DNS by Priebe & Martin (2012) within the
interaction region around —3 < x/§ < 0.
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Figure 4. Tangential velocity profiles along the wall-normal direction. (a) x = —34. Solid line, present

simulation; dashed line, DNS by Priebe & Martin (2012). (b) x = 45. Solid line, present simulation; dashed
line, DNS by Wu & Martin (2007); symbols, experimental data by Ringuette et al. (2009); the streamwise
velocity is normalised by the outer velocity u, downstream of the main shock.
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Figure 5. (a) Van Driest (VD) transformed streamwise velocity at x = —8§. Solid line, present simulation;

dashed line, DNS by Wu & Martin (2007); symbols, experimental data by Ringuette ez al. (2009); dash-dotted

line, u?}D =yt and u?}D =5.25 +log(y")/0.41. (b) Normalised Reynolds stresses at x = —88. Solid line,
present simulation; dashed line, DNS by Pirozzoli & Bernardini (20115).

In order to assess the quality of the incoming boundary layer, mean profiles along
wall-normal planes at different locations have been extracted. First, in figure 4, velocity
profiles have been evaluated before the interaction with the shock wave (x = —3§) and
after (x = 46). Second, in figure 5, the van Driest transformed streamwise velocity and the
normalised Reynolds stresses at x = —8§ are shown. In both panels of figure 5, the first
6 solution points of the high-order discretisation are shown to highlight wall resolution.
Notice that the first element is entirely contained in the viscous sublayer (y© < 10). The
van Driest transformed velocity follows accurately the experimental data in the log region,
whereas some small differences with respect to the reference DNS are visible, in particular
in the buffer layer.

Atx = —34, the profile extracted from the present simulation shows a perfect agreement
with the reference DNS. Downstream of the shock-interaction region, instead, some
discrepancies can be seen, where a much better agreement with the experimental data
by Ringuette et al. (2009) has been obtained. Similar results in the detached region have
been reported only by Kokkinakis et al. (2020) using a 9th order WENO scheme. In the
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Rey 8 st 8 0 H ¢ x10°
Reference 2900 7.10 mm 340 2.58 mm 0.47 mm 5.49 2.16
x=—86 2873 7.43 mm 355 2.72 mm 0.47 mm 5.86 217

Table 3. Characteristics of the incoming boundary layer: reference versus computed.
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Figure 6. Probe locations. In the background, instantaneous normalised velocity magnitude field.

same work, different schemes were employed and compared. Compared to lower order
methods, the 9th order WENO scheme resulted in higher values of the skin friction in the
upstream boundary layer and smaller ones in the downstream region, in agreement with
the results shown in figure 3(a).

Finally, the main features of the incoming boundary layer are summarised in table 3.
Most of them are in fairly good agreement with the reference values of Priebe’s simulation.

3.2. Probes

The main variables have been collected over the simulated time through virtual probes
located in regions characterised by different thermodynamic states and turbulence
structure (see figure 6). Subsequently, temporal and spatial kinetic energy spectra have
been related using Taylor’s hypothesis. All the probes have been taken far enough from
the wall, in order to make Taylor’s hypothesis reasonably realistic. The first probe has
been located in the log region of the incoming boundary layer, and the second in the
detached flow downstream of the interaction with the shock wave. The kinetic energy
spectra, computed using Taylor’s hypothesis, are shown in figure 7(a). In addition, due to
the periodic conditions along z, the kinetic energy spectra in the spanwise direction have
been evaluated at the same locations; they are shown in figure 7(b). To reduce numerical
noise, the spatial kinetic energy spectra have been computed at multiple time steps and
subsequently averaged.

The inertial range is clearly visible in all the spectra, followed by a steeper viscous range
where viscous dissipation takes place. Notice that no accumulation of kinetic energy in
the proximity of the Nyquist grid wavenumber is observed. The molecular viscosity is
then sufficiently large to dissipate the kinetic energy associated with the smallest grid
size, indicating a fairly good resolution of the dissipative scales. It is interesting to note
that the inertial range is evidently elongated after the interaction with the shock wave.
This feature is in good agreement with the widely known evolution of isotropic turbulence
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Figure 7. Kinetic energy spectra. Dashed line, x = —8§; solid line, x = 45. [E denotes the kinetic energy
Fourier spectrum of the velocity signal: (a) applying Taylor’s hypothesis to temporal signals; (b) along z
(y = 0.78), where the vertical dashed line represents the Nyquist grid wavenumber. Here, x represents the
wavenumber, which is evaluated along the spanwise direction as «, = 0.5/z and, using Taylor’s hypothesis,
as k = 2nf/(||lul|), with f the temporal frequency of the time signal. Both spectra are normalised by the first
mode.

across large-scale shock waves. The turbulence downstream of the interaction is, in fact,
characterised by smaller scales (see also figure 9), pushing the dissipative range to larger
wavenumbers.

In addition, in figure 8, the compensated kinetic energy spectra at the same locations
have been computed to evaluate Kolmogorov’s constant. In similarity to figure 7(b), notice
the elongated inertial subrange due to the more energetic nature of small-scale fluctuations
downstream from the interaction. Note that the classical value of Kolmogorov’s constant,
which is approximately equal to 1.5, is indicated for reference by a horizontal line.
Notice that the kinetic energy spectra depicted in figure 7 present a monotonic behaviour,
where the largest values are obtained at the largest wavelengths. Monotonically decreasing
spectra are not uncommon in both experimental and numerical studies of turbulence (e.g.
Comte-Bellot & Craya 1965; Spalart 1988; Phillips 1991; Eggels et al. 1994; Matsubara
& Alfredsson 2001; Pantano & Sarkar 2002; Wu & Moin 2009; Laizet, Lamballais
& Vassilicos 2010, to cite just a few), and although kinetic energy spectra are often
characterised by a first increase of energy in proximity of the integral length scale,
subsequently followed by the classical inertial range (see, for example, Pirozzoli &
Bernardini 20115), monotonic spectra, which are very similar to those obtained in the
present study, were also reported by Wu & Martin (2007) for the same flow configuration.
As pointed out by one of the anonymous reviewers, a possible explanation for this
monotonic behaviour of the spectra might point to the integral scales being constrained
artificially by the selected spanwise domain size, with a consequent build-up of energy
at the lowest wavenumbers. Indeed, the spanwise extent of the domain used by Wu &
Martin (2007) is almost identical to the one adopted in the present DNS, and it could
be argued that results therein were affected by excessive artificialspanwise confinement.
Yet, other similar DNS with the same imposed spanwise periodicity at about 2§ report
autocorrelation functions with a relatively fast decay at length scales that are considerably
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Figure 8. Compensated kinetic energy spectra along z (y = 0.78). Dashed line, x = —84; solid line, x = 44.
The horizontal solid line represents the classical value of Kolmogorov’s constant, approximately equal to 1.5
(Pope 2001).
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Figure 9. Numerical Schlieren.

smaller than the spanwise domain size (Tong et al. 2017a,b). In particular, in both of
these studies, spanwise autocorrelations drop to zero at a distance of about 0.2§ before the
interaction with the shock, which is, however, never larger than half the domain size in the
spanwise direction even after the interaction, hence justifying the present choice for the
domain width. Moreover, it is worthwhile pointing out that the same monotonic behaviour
of the spectra is observed here both upstream and downstream of the shock-interaction
region. Within the f