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Turbulence kinetic energy transfers in direct
numerical simulation of shock-wave–turbulence
interaction in a compression/expansion ramp
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A direct numerical simulation is performed for a supersonic turbulent boundary layer
interacting with a compression/expansion ramp at an angle α = 24◦, matching the same
operating conditions of the direct numerical simulation by Priebe & Martín (J. Fluid
Mech., vol. 699, 2012, pp. 1–49). The adopted numerical method relies on the high-order
spectral difference scheme coupled with a bulk-based, low-dissipative, artificial viscosity
for shock-capturing purposes (Tonicello et al., Comput. Fluids, vol. 197, 2020, 104357).
Filtered and averaged fields are evaluated to study total kinetic energy transfers in
the presence of non-negligible compressibility effects. The compression motions are
shown to promote forward transfer of kinetic energy down the energy cascade, whereas
expansion regions are more likely to experience backscatter of kinetic energy. A standard
decomposition of the subgrid scale tensor in deviatoric and spherical parts is proposed
to study the compressible and incompressible contributions in the total kinetic energy
transfers across scales. On average, the correlation between subgrid scale dissipation and
large-scale dilatation is shown to be caused entirely by the spherical part of the Reynolds
stresses (i.e. the turbulent kinetic energy). On the other hand, subtracting the spherical
contribution, a mild correlation is still noticeable in the filtered fields. For compressible
flows, it seems reasonable to assume that the eddy-viscosity approximation can be a
suitable model for the deviatoric part of the subgrid scale tensor, which is exclusively
causing forward kinetic energy cascade on average. Instead, more complex models are
likely to be needed for the spherical part, which, even in statistical average, provides an
important mechanism for backscatter.
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1. Introduction

Shock-wave–turbulence interaction (SWTI) is a major challenge in many different
applications of aerospace engineering, varying from external flows around supersonic/
hypersonic vehicles to rocket nozzles and scramjet engines. The intrinsic unsteadiness of
SWTI problems often imposes severe thermal and mechanical loads, which can affect
strongly the structural integrity and efficiency of high-speed vehicles, thus playing a
fundamental role in the aeronautical design process. The first attempts to study the mutual
interaction between shock waves and laminar or turbulent boundary layers started with
the experimental works by Ackeret, Feldmann & Rott (1947) and Liepmann (1946). In
the following decades, most of the research on SWTI advanced by virtue of experimental
data of both compression ramps and impinging shocks (see Dolling (2001) and references
therein for an extensive overview). More recently, the increase of computational power
allowed us to tackle the flow physics of the compression ramp via direct numerical
simulation (DNS) for reasonably low Reynolds numbers (Adams 2000; Wu & Martín
2007, 2008; Wang et al. 2015).

The interaction between a large-scale structure, such as a shock wave, and the
small-scale turbulence contained in an incoming boundary layer triggers a wide range
of length and time scales characterising the physics of the problem. The capability of
accurately representing the intricate dynamics of such scales is a fundamental step in the
development of high-fidelity computational fluid dynamics (CFD) simulations of turbulent
flows.

The effect of compressibility alone can be particularly challenging in terms of
turbulence modelling. It is commonly conjectured that for incompressible flows, in
statistical mean, the influence of the smallest scales on the large scales can be represented
as a fully-dissipative process, justifying the widespread use of eddy-viscosity models.
In practical applications to compressible turbulent flows, the use of fully-dissipative
models can be controversial, specifically when the Reynolds-averaging operator adopted
in Reynolds-averaged Navier–Stokes (RANS) equations is replaced by the filtering
operator of large-eddy simulation (LES). The general assumption of similarity between
incompressible and compressible turbulence has led to a series of generalisations of
popular turbulence models for the subgrid scale (SGS) tensor (in LES) and Reynolds
stresses (in RANS). Nevertheless, with the Navier–Stokes equations in their compressible
form, a new set of unclosed SGS terms arises from both the RANS and LES formalisms.
Some previous works addressed the importance of such terms in a priori DNS analyses
(see, for instance, Vreman, Geurts & Kuerten (1995) and references therein); however,
modelling can still be considered significantly underdeveloped for most of those unclosed
terms. Furthermore, even for incompressible contributions, such as the kinetic energy SGS
dissipation term, their dependency on compressibility and thermodynamics remains, at
this date, in great measure unknown.

Since the very beginning of turbulence modelling, the kinetic energy dynamics has
always been identified as one of the primary driving forces of turbulent flows. A
comprehensive understanding of how kinetic energy is distributed along scales and how
turbulent structures interact with one another is of fundamental importance to understand
turbulent flow physics. In the context of LES, the phenomenon known as kinetic energy
backscatter (also known as inverse energy cascade) has been studied extensively in recent
decades (Piomelli et al. 1991; Domaradzki, Liu & Brachet 1993; Kerr, Domaradzki &
Barbier 1996; Piomelli, Yu & Adrian 1996). Based on explicitly filtered DNS data, it is in
fact possible to evaluate directly the kinetic energy transfer contributions associated with
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the unresolved scales of the flow. The main results presented by Piomelli et al. (1991)
highlighted the predominance of a forward energy cascade as the one first conjectured
by Richardson (1922) and later formalised by Kolmogorov (1941) for three-dimensional
turbulence. However, a large amount of the flow field is instead characterised by
backscatter events, i.e. an inverse energy cascade, where small scales contribute as a
source term for the large-scale kinetic energy. After these first results, the presence of
backscatter was observed in many different applications (Cabot, Schilling & Zhou 2004;
O’Brien et al. 2014; Khani & Waite 2016; Livescu & Li 2017; Wang et al. 2018a; Moitro,
Venkataraman & Poludnenko 2019). Both a posteriori and a priori analyses of turbulent
flows were soon applied to more complex conditions, such as reactive and compressible
flows. In such circumstances, thermodynamics plays a much more relevant role in the total
energy balance. Thus the description of total energy transfers in turbulence soon evolved
from the canonical formulation involving kinetic energy only to more generalised forms,
where the influence of internal energy can no longer be neglected. The interconnection
between kinetic and internal energy has been studied in depth subsequently, analysing the
role played by pressure-dilatation work as the predominant conversion mechanism between
the two forms of energy (Livescu, Jaberi & Madnia 2002; Aluie 2013; Lees & Aluie 2019;
Zhao & Aluie 2020; Zhao, Liu & Lu 2020).

Along these lines, shock waves represent a conventional process of energy redistribution
in compressible flows. Shock waves have been shown to have a major impact on turbulence
characteristics.

The first theoretical attempts to treat SWTI were formulated in the 1950s (Moore
1953; Ribner 1953, 1954; Kerrebrock 1956) and they were all based on the
classical decomposition of disturbances introduced by Kovasznay (1953). Only many
years later, as a result of increasing computational capabilities, DNS of isotropic-
turbulence–normal-shock-wave interaction was within reach for relatively weak shocks
(Lee, LELE & Moin 1991; Lee, Lele & Moin 1993). It was observed that the interaction
was characterised by an abrupt increase in turbulence anisotropy and intensity, triggering
strong energy transfers in proximity of the shock wave. A long series of works followed,
analysing the different aspects of SWTI, ranging from the effect of the shock strength
(Lee, Lele & Moin 1997) to the variations of the upstream turbulence (Mahesh & Lee
1995; Mahesh, Lele & Moin 1997; Jamme et al. 2002).

In wall-bounded supersonic flows, the interaction of turbulent boundary layers with
shocks and rarefaction waves is one of the most prevalent phenomena governing the overall
flow structure. Research on shock- wave–turbulent-boundary-layer interaction (SWTBLI)
is commonly based on two main canonical flow configurations: impinging normal/oblique
shocks (Green 1970; Pirozzoli & Grasso 2006; Priebe, Wu & Martín 2009; Pirozzoli,
Bernardini & Grasso 2010; Pirozzoli & Bernardini 2011a), and compression/expansion
ramps (Settles, Fitzpatrick & Bogdonoff 1979; Dolling & Murphy 1983). An extensive
literature has been dedicated to SWTBLI, based mainly on experiments (Settles & Dodson
1994; Andreopoulos, Agui & Briassulis 2000; Dolling 2001), providing a solid background
for future numerical simulation of such complex phenomena. A generic feature of such
flows is that the shock wave, deflected by geometric constraints, causes a sudden a
pressure drop, leading the flow to separate in recirculation bubbles. The general dynamics
of the separated flow is highly dependent on the many parameters characterising the
flow (Mach number, turbulence structure, wall heating, etc.). Due to the delicate physics
characterising SWTBLI, the numerical discretisation of such systems requires a large
number of precautions to be taken into account. The choice of the continuum equations,
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the numerical scheme and the modelisation of turbulence are all crucial aspects for the
accurate simulation of SWTBLI problems.

For example, many of the SWTI/SWTBLI computations considered small enough
Mach numbers to numerically resolve the inner structure of the viscous shock wave.
However, for sufficiently strong shocks, like the ones encountered frequently in
complex engineering applications, an accurate resolution of the shock profile is often
computationally impossible, and an additional regularisation mechanism is needed. The
canonical approaches to address such matters in turbulent flows are usually categorised
in essentially non-oscillatory (ENO), weighted ENO (WENO) or targeted ENO (TENO)
schemes (Qiu & Shu 2004, 2005a,b), shock-fitting techniques (Salas 1976; Rawat & Zhong
2010; Zahr, Shi & Persson 2019; Zahr & Persson 2020) and artificial viscosities (Von
Neumann & Richtmyer 1950; Cook & Cabot 2004; Persson & Peraire 2006; Fernandez,
Nguyen & Peraire 2018b; Tonicello, Lodato & Vervisch 2020). Each of these needs to be
properly designed to regularise shock waves, preserving, at the same time, the delicate
properties of turbulence. Each shock-capturing technique is characterised by two main
steps: identification and regularisation. In particular, in turbulent flows, the detection of
shock waves can be particularly challenging due to the presence of highly unsteady and
rapidly varying turbulent structures. An inaccurate identification of flow discontinuities
can then easily lead to a significant degradation of small-scale fluctuations (Johnsen et al.
2010; Kawai, Shankar & Lele 2010).

The present work addresses the aforementioned fundamental features of compressible
turbulence in a unified setting. The compression/expansion ramp herein considered is, in
fact, a particularly interesting set-up characterised by complex compressible turbulence
dynamics in a self-contained configuration. A wide range of different turbulent structures,
thermodynamic states and compressibility effects can be observed within the same flow
field. The level of information embedded in the present DNS database can be particularly
insightful for the design of innovative turbulence models of compressible flows within the
framework of high-order spectral element methods.

The paper will be organised as follows. In the first part, a thorough validation of the
specific test case will be presented; next, the filtered Navier–Stokes equations will be
introduced to study the large- scale kinetic energy equation. Based on such equations,
averaging and explicit filtering will be applied to the highly resolved DNS data to
analyse relevant unclosed quantities, with particular attention to the SGS kinetic energy
dissipation term. Its dependency on local levels of compressibility finally will be studied
and discussed.

2. Compression/expansion ramp simulation

The canonical compression ramp set-up features all the ingredients of SWTBLI. The
arising flow field can be particularly complex, containing many challenging physical
phenomena, including shock waves, turbulence, flow separation and unsteady heat transfer.
All of these factors have been studied extensively in the literature as each of them requires
specific numerical treatments, particularly if they interact strongly with each other. For
example, standard shock-capturing techniques need to be tailored carefully whenever
applied to compressible turbulent flows, in order to avoid excessive artificial dissipation
(Johnsen et al. 2010; Kawai et al. 2010). In a similar way, low-dissipative numerical
schemes are often essential to reduce detrimental effects as much as possible by numerical
dissipation.
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The test case herein considered has been studied extensively in many works, both
experimental (Bookey et al. 2005; Ringuette et al. 2009) and numerical (Wu & Martín
2007; Priebe & Martín 2012; Li et al. 2013a,b; Helm & Martín 2016), with particular
attention to the unsteady nature of the main shock wave front. The majority of the
aforementioned numerical simulations rely on different forms of WENO schemes to
handle shock waves (Jiang & Shu 1996) and recycling/rescaling techniques to reproduce
the incoming turbulent boundary layer (Xu & Martín 2004). Another relevant simulation
of the same configuration, which will be used as an additional reference, has been
presented by Li et al. (2010). Starting from this, a series of related studies was
proposed in the following years, including a large number of investigations, such as wall
temperature/turning angle influence, Reynolds stress anisotropy maps and turbulent kinetic
energy balance (Tong et al. 2017a,b; Zhu et al. 2017). Most of these works are characterised
by the same parameters and techniques used by Martín, except for the turbulent boundary
layer inlet condition. In the simulation by Li et al. (2010), the transition to turbulence has
been simulated without any artificial turbulence injection or recycling/rescaling technique.
Instead, a blow-and-suction disturbance has been used to trigger the transition sufficiently
far away from the compression corner.

To the authors’ knowledge, the interaction between a fully-developed turbulent
boundary layer and an oblique shock wave generated by a compression ramp has never
been simulated using the high-order spectral element method (Kopriva & Kolias 1996;
Sun, Wang & Liu 2007; Jameson 2010). More details on the spatial discretisation scheme
have been reported in Appendix A.

2.1. Simulation setup
In all the previously cited works, different resolution levels and a large variety of analyses
have been performed on the same configuration, providing an extensive framework for
validation. The canonical problem consists of a supersonic, fully-turbulent, boundary
layer interacting with a 24◦ compression/expansion ramp. The computational domain (see
figure 1) has been parametrised using the 99 % thickness of the incoming boundary layer
(here denoted as δ). The classical geometry of the present configuration is commonly
limited to the compression ramp only. The subsequent expansion corner has been added to
study the effect of strong expansions on the turbulence.

As geometrical reference, the origin is located at the corner of the compression ramp and
the x-coordinates are measured starting from this point following wall-tangent directions.
In agreement with the DNS by Priebe & Martín (2012), the reference supersonic boundary
layer has been evaluated at x = −8δ. Upstream of this location, the generation of the
turbulent boundary layer itself takes place. In the work by Priebe & Martín (2012), a
secondary simulation based on recycling/rescaling has been used in order to prescribe a
realistic inlet condition at x = −8δ. In the present simulation, instead, an extended domain
has been considered, in which the digital filter technique for turbulence generation by
Klein, Sadiki & Janicka (2003) has been applied at x = −20δ. A weakly Riemann-based,
non-reflective, far-field boundary condition has been enforced on the upper boundary.
Periodic boundary conditions have been prescribed in the spanwise direction. Notice that
the spanwise extent of the domain has been chosen to match previous similar studies (Wu
& Martín 2007; Li et al. 2010; Priebe & Martín 2012; Tong et al. 2017a,b).

The main flow properties of the boundary layer are listed in table 1.
The Reynolds number is defined as Reθ = u∞θ/ν∞, where θ represents the momentum

thickness, u∞ the free stream velocity and ν∞ the kinematic viscosity in the free
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6δ

24°

2δ

8δ

10δ

10δ

Figure 1. Q-criterion contours coloured by velocity magnitude (Q = 1.0u2∞/δ2). In the background, numerical
Schlieren is displayed to highlight the primary shock wave. Here, δ denotes incoming boundary layer thickness.

Ma Reθ δ+ u∞ δ δ∗ θ H

2.91 2900 340 610 m s−1 7.1 mm 2.58 mm 0.47 mm 5.49

Table 1. Characteristic of the incoming boundary layer.

stream flow. The Kármán number is defined as δ+ = δuτ /νw, where uτ denotes the friction
velocity and νw the kinematic viscosity at the wall. Finally, δ∗ indicates the displacement
thickness and H = δ∗/θ the shape factor. The kinematic viscosity, defined as ν = μ(T)/ρ,
varies over the domain due to the direct dependence on density and implicit dependence
on the temperature through the dynamic viscosity, here modelled using Sutherland’s law:

μ = μref

(
T

Tref

)3/2 (Tref + S)
(T + S) , (2.1)

with μref = 1.834 × 10−5 kg m−1 s−1, Tref = 291.15 K and S = 120 K. No-slip
isothermal conditions have been applied to the wall faces. Finally, the temperature at
the wall has been enforced as Tw = 307 K, corresponding to approximately 1.14 the
recovery temperature. The free stream density has been set to the nominal value ρ∞ =
7.7 × 10−2 kg m−3.

Regarding the turbulent inlet condition, many different approaches have been proposed
in the literature of SWTI to prescribe turbulent inflow generation (see Wu (2017) for an
extensive summary). Using the Klein et al. (2003) digital filter technique, generalised
and validated to the present numerical set-up (Pinto & Lodato 2019; Lodato, Tonicello &
Pinto 2021), the mean profiles, to which perturbations are superposed, have been evaluated
using closed-form relations involving van Driest transformed velocity as described by
Touber (2010). Given the correlation tensor of the fluid velocity and typical length scales
of the desired turbulence field, realistic velocity fluctuations are prescribed at the inlet
boundaries, far enough from the flow zone of interest. The values of the correlation tensor
have been extrapolated from a turbulent boundary layer DNS performed by Pirozzoli
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N Nx Ny Nz Δx+ Δy+ Δz+ DoF

6 120 + 120 + 120 28 27 4.75–15 0.3–9 4.2 54M

Table 2. Numerical discretisation details, where N denotes order of approximation, Nx,Ny,Nz denote
the numbers of elements along the streamwise, wall-normal and spanwise directions, respectively, and
Δx+,Δy+,Δz+ denote the wall-normalised grid spacings.

& Bernardini (2011b) at a similar Reynolds number. Finally, density and temperature
fluctuations have been imposed using the strong Reynolds analogy (SRA).

Details regarding the 6th-order accurate numerical discretisation are listed in table 2.
The number of total degrees of freedom (DoF) has been chosen in order to match the
accuracy of the DNS by Priebe & Martín (2012). As is common practice for high-order
spectral element schemes, the grid spacings in table 2 have been evaluated using the length
of the elements along each direction divided by the order of approximation (denoted as
N). Wall resolution is enforced by locating the first solution point at y+ ≈ 0.3 and the
entire first element within the viscous sublayer (y+ < 10). The mesh spacing along the
streamwise direction varies between Δx+ = 4.75 and Δx+ = 15, whereas the spanwise
mesh spacing is Δz+ = 4.2. Such choices are particularly common in the numerical
simulation of low- Reynolds-number turbulent boundary layers. To further validate the
resolution of the present computation, the Kolmogorov length scale has been estimated a
posteriori as η = (ν3/ε)1/4, with ε = 2〈νSd

ij(∂ui/∂uj)〉. The ratio between the effective
grid spacing Δ = (Δx × Δy × Δz)1/3 and the Kolmogorov length scale η was found
to be approximatively equal to unity upstream of the shock, and never larger than 6
downstream of the interaction region. As shown by Pirozzoli, Bernardini & Grasso (2008),
the small-scale eddies in wall-bounded turbulence are characterised by a typical length
scale of 5–6 times η. It is worthwhile mentioning that the use of the resolved flow to
evaluate its own characteristic scales gives only an estimation of the order of magnitude of
the Kolmogorov length scale. It is also commonly known that the primary limiting factor
of wall-bounded turbulent flows is driven mainly by the accurate prediction of the viscous
sublayer (see, for instance, Sayadi, Hamman & Moin 2013), which is properly resolved
by the present computation. Consequently, based on such considerations, the prescribed
resolution is expected to be sufficiently accurate to properly resolve all the relevant scales
of the turbulent structures for the present configuration.

The computational domain (figure 2) has been enlarged with respect to most of
the previously cited works based on recycling/rescaling techniques. Indeed, the inlet
forcing method for turbulence injection necessitates a certain length to develop the
desired boundary layer statistical properties, which can vary considerably depending
on the specific turbulence injection techniques. The recovery distance can vary from
approximately 2/3δ (Adler et al. 2018) up to 15δ (Morgan et al. 2011, 2013). In the present
work, the reference fully-developed boundary layer is evaluated at x = −8δ, which is
located 12δ downstream from the inlet boundary. As will be discussed more thoroughly in
the following sections of the paper, such a distance has been shown to be sufficiently long
to provide good first- and second-order statistics of the turbulent velocity field. Finally,
relevant statistics have been gathered every 0.025δ/u∞ s for approximatively 1000δ/u∞ s,
which is commonly considered enough time to obtain a reliable temporal convergence for
the present configuration (Wu & Martín 2007; Li et al. 2010; Priebe & Martín 2012).
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20δ

10δ

10δ

Figure 2. Compression/expansion ramp: computational grid. Here, δ denotes incoming boundary layer
thickness.

2.2. Shock capturing
The compressible Navier–Stokes equations are solved using the spectral difference method
for unstructured spatial discretisation (Kopriva & Kolias 1996; Sun et al. 2007; Jameson
2010; Jameson, Vincent & Castonguay 2012). Letting ρ be the density, ui the velocity
components, and E the specific total energy (internal plus kinetic), these read

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0, (2.2)

∂

∂t
(ρui)+ ∂

∂xj
(ρuiuj + pδij) = ∂

∂xj
(σij), (2.3)

∂

∂t
(ρE)+ ∂

∂xj
[(ρE + p)uj] = ∂

∂xj
(σijui)− ∂qj

∂xj
, (2.4)

where δij is the Kronecker delta, σij is the viscous stress tensor, and qj is the heat flux
vector. This last is computed via the Fourier law as qj = −κ ∂T/∂xj, where κ is thermal
conductivity and T is temperature. The above equations are closed using the ideal gas state
equation

p = ρRT, ρE = p
γ − 1

+ 1
2
ρukuk, (2.5a,b)

where R is the gas constant and γ = cp/cv is the specific heat ratio.
Shock waves will often represent an under-resolved feature of the flow field, and

artificial terms are necessary for their numerical description. Consequently, the term
‘direct numerical simulation’ is here strictly restricted to the scales of turbulence and not
to the whole spectrum of scales characterising the physics of the problem. See the works
by Margolin (Margolin 2019; Margolin & Plesko 2019) for a deeper discussion on artificial
viscosity and SGS modelling.

In this work, the shock-capturing technique is based on the subcell shock- capturing
method with modal sensors first proposed by Persson & Peraire (2006) within a
discontinuous Galerkin framework. The spectral behaviour of the resolved variables is
evaluated along each direction in order to detect discontinuities in the flow field. The
characteristic-based sensor proposed recently by Lodato (2019a,b) has been used. Once
shock waves are located efficiently, they can be regularised properly using an artificial
viscosity (AV) approach based on the bulk viscosity, similar to the one developed by
Fernandez et al. (2018b) and Fernandez, Nguyen & Peraire (2018a). The artificial terms,
added to the compressible Navier–Stokes equations, are based on an augmentation of
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physical fluid viscosities and diffusivities. Accordingly, considering a Newtonian fluid
under Stokes’ hypothesis, the viscous stress tensor and the heat flux become

σij = 2μSd
ij + βAV

∂uk

∂xk
δij, (2.6)

where Sd
ij indicates the deviatoric part of the strain-rate tensor

Sd
ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

3
∂uk

∂xk
δij, (2.7)

and

qj = −(κ + κAV)
∂T
∂xj
, κAV = βAVcp

Prβ
, (2.8a,b)

where Prβ is expressed dynamically as a function of the local Mach number according to
the equation

Prβ = Pr{1 + exp[−4(Ma(x)− Mathr)]}. (2.9)

The parameter Mathr has been set to 3, to avoid the addition of unnecessary thermal
dissipation for low-Mach-number regions of the flow. This approach has been reported
recently as a good compromise to capture the expected entropy overshot within the shock
zone (Tonicello et al. 2020).

It was found necessary to improve this artificial viscosity model in the case of
wall-bounded turbulent flows. While eddy-viscosity, by definition, vanishes at wall
boundaries, as dictated by the turbulent boundary layer theory, the artificial viscosity
has no constraint from this point of view. However, it is common practice to turn off the
artificial viscosity at wall faces (Kawai et al. 2010). Accordingly, to avoid the unnecessary
activation of the artificial viscosity close to the wall, a modification of the sensor proposed
by Ducros et al. (1999) has been coupled with the baseline modal shock detection
procedure. The elementwise constant shock sensor by Persson & Peraire (2006) (smodal)
has been modified as follows:

se = smodal × [0.5(|〈∂uk/∂xk〉| − 〈∂uk/∂xk〉)]2

〈∂uk/∂xk〉2 + 〈√ωkωk〉2 + ε
, (2.10)

where 〈·〉 denotes elementwise averaging, ωi = εijk(∂uk/∂xj) indicates the ith component
of the vorticity vector, and ε is a constant of order machine epsilon squared. (To define
the vorticity vector, the Levi–Civita symbol has been introduced, denoted as εijk.) The
present modification has been tested already in the same numerical framework for the
simulation of transonic aerofoils (Tonicello, Lodato & Vervisch 2022). The proposed
correction also prevents the activation of the artificial viscosity in strongly vortical
regions characterised by negligible volumetric compressions. It is, in fact, well-known
that excessively large values of bulk viscosity can deteriorate considerably the dilatation
field in highly compressible regions (Kawai et al. 2010; Tonicello et al. 2020).

In addition to the shock-capturing numerical approach, a positivity-preserving scheme
developed by Zhang & Shu (2010), adapted to the spectral difference scheme (Lodato,
Vervisch & Clavin 2016, 2017; Lodato 2019a), has been employed to fully secure the
stability of the simulation. The impact on the flow physics of both the shock-capturing and
the positivity-preserving schemes are discussed thereafter. More detailed presentations of
the shock-capturing technique and the positivity-preserving scheme have been included in
Appendices B and C, respectively.
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Figure 3. Averaged (a) friction coefficient and (b) wall pressure, along the streamwise direction. Solid line,
present simulation; dashed line, DNS by Zhu et al. (2017), dashed-dotted line, DNS by Priebe & Martín (2012).
Black circle, measurements by Ringuette et al. (2009).

3. Simulation validation and physical analysis

In this section, a detailed validation of the the main flow features is presented. Once the
reliability of the simulation is established, further analyses on the resolved flow field are
discussed in subsequent sections.

3.1. Wall coefficients and mean profiles
In order to validate the proposed DNS, the averaged friction coefficient and wall pressure
have been computed and compared with previous simulations and experimental data of
the same configuration in figure 3. In many other works, a perfect agreement within the
rich literature of compression ramp simulations has proven to be a very difficult task to
achieve. This is commonly true not only in the detached region of the flow, which can
be very challenging to be accurately predicted, but also in the upstream region where
large deviations of the skin friction coefficient are normally reported in the literature. To
highlight such a tendency, the DNS by Zhu et al. (2017) along with experimental data
by Ringuette et al. (2009) have been added to figure 3. The simulation by Zhu et al.
(2017) was performed under the same conditions as the experiments by Ringuette et al.
(2009) and DNS by Wu & Martín (2007), which were characterised by a slightly smaller
Reynolds number with respect to the present computation (namely, Reθ = 2400). Another
relevant difference can be identified in the upstream boundary layer: the DNS performed
by Zhu et al. (2017) did not rely on any artificial injection of turbulence. In fact, the full
laminar-to-turbulent transition of the incoming boundary layer was explicitly simulated
using a blow-and-suction disturbance technique.

In figure 3(a), in the upstream region, the friction coefficient is slightly higher than the
reference DNS by Priebe & Martín (2012), whereas the simulation by Zhu et al. (2017)
reports an even larger value. The experimental separation point is much better predicted
by both Zhu et al. (2017) and the present simulation rather than by Priebe & Martín (2012).
Furthermore, both simulations tend to provide smaller values of the friction coefficient in
the downstream region, in agreement with the experimental location of the reattachment
point. In figure 3(b), the computed wall pressure profile follows nicely the one obtained
by Zhu et al. (2017), which departs from the DNS by Priebe & Martín (2012) within the
interaction region around −3 < x/δ < 0.
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Figure 4. Tangential velocity profiles along the wall-normal direction. (a) x = −3δ. Solid line, present
simulation; dashed line, DNS by Priebe & Martín (2012). (b) x = 4δ. Solid line, present simulation; dashed
line, DNS by Wu & Martín (2007); symbols, experimental data by Ringuette et al. (2009); the streamwise
velocity is normalised by the outer velocity ue downstream of the main shock.
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Figure 5. (a) Van Driest (VD) transformed streamwise velocity at x = −8δ. Solid line, present simulation;
dashed line, DNS by Wu & Martín (2007); symbols, experimental data by Ringuette et al. (2009); dash-dotted
line, u+

VD = y+ and u+
VD = 5.25 + log( y+)/0.41. (b) Normalised Reynolds stresses at x = −8δ. Solid line,

present simulation; dashed line, DNS by Pirozzoli & Bernardini (2011b).

In order to assess the quality of the incoming boundary layer, mean profiles along
wall-normal planes at different locations have been extracted. First, in figure 4, velocity
profiles have been evaluated before the interaction with the shock wave (x = −3δ) and
after (x = 4δ). Second, in figure 5, the van Driest transformed streamwise velocity and the
normalised Reynolds stresses at x = −8δ are shown. In both panels of figure 5, the first
6 solution points of the high-order discretisation are shown to highlight wall resolution.
Notice that the first element is entirely contained in the viscous sublayer (y+ < 10). The
van Driest transformed velocity follows accurately the experimental data in the log region,
whereas some small differences with respect to the reference DNS are visible, in particular
in the buffer layer.

At x = −3δ, the profile extracted from the present simulation shows a perfect agreement
with the reference DNS. Downstream of the shock-interaction region, instead, some
discrepancies can be seen, where a much better agreement with the experimental data
by Ringuette et al. (2009) has been obtained. Similar results in the detached region have
been reported only by Kokkinakis et al. (2020) using a 9th order WENO scheme. In the
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Reθ δ δ+ δ∗ θ H cf × 103

Reference 2900 7.10 mm 340 2.58 mm 0.47 mm 5.49 2.16
x = −8δ 2873 7.43 mm 355 2.72 mm 0.47 mm 5.86 2.17

Table 3. Characteristics of the incoming boundary layer: reference versus computed.
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Figure 6. Probe locations. In the background, instantaneous normalised velocity magnitude field.

same work, different schemes were employed and compared. Compared to lower order
methods, the 9th order WENO scheme resulted in higher values of the skin friction in the
upstream boundary layer and smaller ones in the downstream region, in agreement with
the results shown in figure 3(a).

Finally, the main features of the incoming boundary layer are summarised in table 3.
Most of them are in fairly good agreement with the reference values of Priebe’s simulation.

3.2. Probes
The main variables have been collected over the simulated time through virtual probes
located in regions characterised by different thermodynamic states and turbulence
structure (see figure 6). Subsequently, temporal and spatial kinetic energy spectra have
been related using Taylor’s hypothesis. All the probes have been taken far enough from
the wall, in order to make Taylor’s hypothesis reasonably realistic. The first probe has
been located in the log region of the incoming boundary layer, and the second in the
detached flow downstream of the interaction with the shock wave. The kinetic energy
spectra, computed using Taylor’s hypothesis, are shown in figure 7(a). In addition, due to
the periodic conditions along z, the kinetic energy spectra in the spanwise direction have
been evaluated at the same locations; they are shown in figure 7(b). To reduce numerical
noise, the spatial kinetic energy spectra have been computed at multiple time steps and
subsequently averaged.

The inertial range is clearly visible in all the spectra, followed by a steeper viscous range
where viscous dissipation takes place. Notice that no accumulation of kinetic energy in
the proximity of the Nyquist grid wavenumber is observed. The molecular viscosity is
then sufficiently large to dissipate the kinetic energy associated with the smallest grid
size, indicating a fairly good resolution of the dissipative scales. It is interesting to note
that the inertial range is evidently elongated after the interaction with the shock wave.
This feature is in good agreement with the widely known evolution of isotropic turbulence
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Figure 7. Kinetic energy spectra. Dashed line, x = −8δ; solid line, x = 4δ. E denotes the kinetic energy
Fourier spectrum of the velocity signal: (a) applying Taylor’s hypothesis to temporal signals; (b) along z
(y = 0.7δ), where the vertical dashed line represents the Nyquist grid wavenumber. Here, κ represents the
wavenumber, which is evaluated along the spanwise direction as κz = 0.5/z and, using Taylor’s hypothesis,
as κ = 2πf /〈‖u‖〉, with f the temporal frequency of the time signal. Both spectra are normalised by the first
mode.

across large-scale shock waves. The turbulence downstream of the interaction is, in fact,
characterised by smaller scales (see also figure 9), pushing the dissipative range to larger
wavenumbers.

In addition, in figure 8, the compensated kinetic energy spectra at the same locations
have been computed to evaluate Kolmogorov’s constant. In similarity to figure 7(b), notice
the elongated inertial subrange due to the more energetic nature of small-scale fluctuations
downstream from the interaction. Note that the classical value of Kolmogorov’s constant,
which is approximately equal to 1.5, is indicated for reference by a horizontal line.
Notice that the kinetic energy spectra depicted in figure 7 present a monotonic behaviour,
where the largest values are obtained at the largest wavelengths. Monotonically decreasing
spectra are not uncommon in both experimental and numerical studies of turbulence (e.g.
Comte-Bellot & Craya 1965; Spalart 1988; Phillips 1991; Eggels et al. 1994; Matsubara
& Alfredsson 2001; Pantano & Sarkar 2002; Wu & Moin 2009; Laizet, Lamballais
& Vassilicos 2010, to cite just a few), and although kinetic energy spectra are often
characterised by a first increase of energy in proximity of the integral length scale,
subsequently followed by the classical inertial range (see, for example, Pirozzoli &
Bernardini 2011b), monotonic spectra, which are very similar to those obtained in the
present study, were also reported by Wu & Martín (2007) for the same flow configuration.
As pointed out by one of the anonymous reviewers, a possible explanation for this
monotonic behaviour of the spectra might point to the integral scales being constrained
artificially by the selected spanwise domain size, with a consequent build-up of energy
at the lowest wavenumbers. Indeed, the spanwise extent of the domain used by Wu &
Martín (2007) is almost identical to the one adopted in the present DNS, and it could
be argued that results therein were affected by excessive artificialspanwise confinement.
Yet, other similar DNS with the same imposed spanwise periodicity at about 2δ report
autocorrelation functions with a relatively fast decay at length scales that are considerably

935 A31-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.22


N. Tonicello, G. Lodato and L. Vervisch

100

10–1

10–2

10–3

10–4

100 101

E
 (
κ

zδ
)κ

z5
/3

/〈ε̄
〉3

/2

κzδ

Figure 8. Compensated kinetic energy spectra along z (y = 0.7δ). Dashed line, x = −8δ; solid line, x = 4δ.
The horizontal solid line represents the classical value of Kolmogorov’s constant, approximately equal to 1.5
(Pope 2001).
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Figure 9. Numerical Schlieren.

smaller than the spanwise domain size (Tong et al. 2017a,b). In particular, in both of
these studies, spanwise autocorrelations drop to zero at a distance of about 0.2δ before the
interaction with the shock, which is, however, never larger than half the domain size in the
spanwise direction even after the interaction, hence justifying the present choice for the
domain width. Moreover, it is worthwhile pointing out that the same monotonic behaviour
of the spectra is observed here both upstream and downstream of the shock-interaction
region. Within the former region, as already observed, the autocorrelation functions by
Tong et al. (2017a,b) suggest the presence of integral scales much smaller than the
spanwise extent of the domain, which would exclude the above-mentioned phenomenon of
energy accumulation at the largest scales. Even more so, any spanwise confinement would
also be excluded after the interaction with the shock, where, as expected, a reduction in
the scales of turbulence is observed.
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Figure 10. Instantaneous absolute value of the normalised spanwise component of the vorticity field (wall
view). Vertical white lines represent compression and expansion corners. Three periods along the spanwise
direction have been plotted.
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Figure 11. PDFs of (a) pressure, (b) density, and (c) temperature, time signals at the downstream probe
location. Dash-dotted line, conditional PDF with Ma < 1; dashed line, conditional PDF with Ma > 1; solid
line, total PDF. Vertical dotted line in (a) represents the pressure mean value.

Another well-known effect of shock waves on isotropic turbulence is the strong
amplification of the transverse vorticity component. As a qualitative visualisation of such
behaviour, a wall view of the vorticity field is shown in figure 10. From this figure, the
recovery of velocity fluctuations right after the turbulent inlet condition is also seen.
Knowing the time history of the main variables, the discrete probability density function
(PDF) of quantities of interest may be built in a time-averaged statistical sense. At the
downstream probe location, the flow regularly oscillates between subsonic and supersonic
regimes. Consequently, the PDFs have been conditioned to the local Mach number.
The discrete PDFs of density and pressure are shown in figure 11. The PDF of pressure,
shown in figure 11(a), is not particularly influenced by the supersonic/subsonic regime. On
the other hand, in figure 11(b), a significant dependance on the sonic regime is observed for
the density: whenever the Mach number exceeds a unitary value, the density PDF tends to
extend to larger values, whereas in subsonic conditions, it is more symmetric with respect
to the mean value. This tendency can beexplained partially by the presence of shocklets
(Zeman 1990) in the detached flow, causing local compressions, and consequently an
abrupt increase of the fluid density. The pressure field, instead, tends to recover the
zero-pressure gradient characterising the incoming turbulent boundary layer, and it is not
considerably influenced by the compressibility effects arising in the detached region of
the flow. Consequently, the pressure field does not deviate considerably from its mean
value. The behaviours of pressure and density are then compensated by a decrease in the
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Figure 12. Snapshot of averaged artificial viscosity normalised by the molecular viscosity.
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Figure 13. Averaged limiter activation.

temperature field due to the ideal gas law. Such a tendency is confirmed by the PDF of the
temperature signal, which is depicted in figure 11(c). The temperature is, in fact, clearly
skewed towards lower values with respect to the mean for supersonic regimes.

In these simulations, the shock-capturing artificial viscosity must be essentially inactive
in the separated flow, which is characterised by strong vortical structures. This is confirmed
in figure 12, where the averaged value of the artificial viscosity (AV) is shown. The model
is active only in the proximity of the shock wave, whereas vanishing values are observed
in the rest of the domain. Similarly, the positivity-preserving scheme has a relatively
low and localised activation, as shown in figure 13. To visualise its activation levels,
an elementwise constant flag has been introduced, taking a unitary value if the limiter
is active and zero if it is not. Such a flag indicator is then averaged in time and along
the spanwise direction following the classical paradigm for statistically steady-state and
spanwise periodic flows. The maximum value assumed by the limiter flag is approximately
1 × 10−4, meaning that the limiter is not only active in a very small region of the flow but
also mostly inactive in time as well.
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4. Analysis of the balance equation for the resolved kinetic energy

The space filtered mass and momentum balance equations are obtained by applying a
density-weighted spatial filtering operation (̃·) = ρ(·)/ρ̄ to (2.2) and (2.3):

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ũj) = 0, (4.1)

∂

∂t
(ρ̄ũi)+ ∂

∂xj
(ρ̄ũiũj) = − ∂ p̄

∂xi
+ ∂

∂xj

[
2μ(T̃) S̃d

ij

]
+ ∂τij

∂xj
+
∂τvij

∂xj
, (4.2)

where S̃d
ij is the deviatoric part of the strain-rate tensor, computed from the resolved

velocity field as

S̃d
ij = 1

2

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)
− 1

3
∂ ũk

∂xk
δij, (4.3)

and the terms representative of transport by unresolved fluctuations are

τij = ρ̄ũiũj − ρuiuj, (4.4)

τvij = 2μSd
ij − 2μ(T̃) S̃d

ij. (4.5)

The total kinetic energy may be written

ρ̄Ek = 1
2ρuiui = 1

2 ρ̄ũiũi + ρ̄k, (4.6)

where ρ̄k = (ρuiui − ρ̄ũiũi)/2 denotes the unresolved part of the kinetic energy.
The contribution of τvij (see (4.5)) is often neglected, based on the assumption that

terms involving molecular viscosity are mostly restricted to the smallest scales and then
weakly affected by the averaging or filtering operations. Most common turbulence models
for the unresolved Reynolds stress tensor τij rely on the so-called Boussinesq hypothesis
(eddy-viscosity hypothesis):

τij = 2ρ̄νtS̃d
ij − 2

3 ρ̄kδij, (4.7)

where νt is the eddy-viscosity.
The balance equation for the resolved part of the kinetic energy may be written as

∂(1
2 ρ̄ũkũk)

∂t
= K0 + K1 − K2 + K3 − K4, (4.8)

with

K0 = ∂

∂xj

{
−1

2 ρ̄ũkũkũj − p̄ũj +
[
2μ(T̃) S̃d

ij + τij + τvij

]
ũi

}
, (4.9)

K1 = p̄
∂ ũj

∂xj
, K2 = 2μ(T̃) S̃d

ij
∂ ũi

∂xj
, K3 = −τij

∂ ũi

∂xj
, K4 = τvij

∂ ũi

∂xj
. (4.10a–d)

The first term on the right-hand side of (4.8) represents a transport term, which only
redistributes kinetic energy. The last four terms, instead, act as sources and sinks of the
kinetic energy of the resolved scales. The term K1 denotes the pressure-dilatation work,
which quantifies the exchange of energy between kinetic and internal energy balances.
The term K2 represents the large-scale viscous dissipation. The term K3 is the dissipation
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term of the resolved part of the kinetic energy (i.e. the so-called production term of k, the
unresolved kinetic energy), and K4 denotes the contribution of the unclosed viscous term
due to the nonlinearity of molecular viscosity.

In a similar manner, the transport equation for the unresolved part of the kinetic energy
(i.e. the last term in (4.6)) reads

∂ρ̄k
∂t

= ∂

∂xj

[
−ρ̄kũj − 1

2 ρ̄(ũkukuj − ũkukũj)
]

+ ∂

∂xj

[(−puj + p̄ũj
)+

(
2μ(T) Sd

ijui − 2μ(T) S̃d
ijũi

)
− τijũj

]
+
(

p
∂uj

∂xj
− p̄

∂ ũj

∂xj

)
−
(

2μ(T) Sd
ij
∂ui

∂xj
− 2μ(T) S̃d

ij
∂ ũi

∂xj

)
+ τij

∂ ũi

∂xj︸ ︷︷ ︸
−K3

. (4.11)

As in the resolved kinetic energy balance, all the terms on the right-hand side can be cast in
flux terms, which only redistribute the turbulent kinetic energy in space, and in source/sink
contributions. The most interesting term, for the purposes of the present work, is certainly
the last one in (4.11), which coincides exactly with the term K3 of (4.8) with inverted
sign. Such a term is, in fact, representative of the interchange of kinetic energy between
the resolved and unresolved scales within the LES formalism, or mean and fluctuating
fields in the RANS framework. In other words, the dissipation of the resolved kinetic
energy, denoted K3, directly coincides with the production of unresolved kinetic energy.
Most of the following analyses will be focused on the resolved kinetic energy balance
rather than on the transport equation of the unresolved kinetic energy. Such a decision
is justified mainly by the fundamental importance of the resolved kinetic energy within
the LES framework. The main task of LES is, in fact, to provide a generally satisfying
description of the large-scale motions and only model the influence of the smallest scales
on the resolved field.

If not explicitly stated differently, all the terms of the resolved kinetic energy balance
will be considered as normalised by the quantity ρ∞u3∞/δ.

4.1. Averaged fields
In the DNS featuring a homogeneous direction, the density-weighted ensemble-averaging
is defined from an integration in time and along the statistically homogeneous direction:

φ̃(x1, x2) = ρφ

ρ̄
=

∫ L

−L

∫ T

0
ρφ dx3 dt∫ L

−L

∫ T

0
ρ dx3 dt

, (4.12)

for a sufficiently large duration T and where L denotes the length of the x3 homogeneous
direction. The terms K1 (pressure-dilatation) and K3 (dissipation) of (4.8) are thus first
considered in a RANS context, for which the balance equations formally take the exact
same form as the filtered ones.

Pressure-dilatation (K1) represents a quantity that can be expressed directly as a function
of the resolved variables, as opposed to the unresolved dissipation (K3), for which explicit
turbulence modelling is needed. The pressure-dilatation term, despite being a large-scale
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Figure 14. Dissipation of the kinetic energy of the resolved scale (K3 term of (4.8)).

quantity, is particularly important as it represents the primary mechanism of energy
exchange between kinetic and internal energies.

Each of these terms is plotted in the whole domain in figures 14 and 15. In figure 14,
showing the dissipation, black and red lines have been added to highlight zones of negative
and positive values, respectively. Clearly, most of the flow field is characterised by forward
transfer of kinetic energy from the mean flow to the turbulent kinetic energy, as expected
in RANS. The dissipation term reaches its smallest values right after the interaction with
the shock wave, indicating that most of the unresolved dissipation takes place at this
location. The presence of non-zero values of dissipation in the proximity of the shock
wave is instead caused by the unsteadiness of the shock front, which oscillates along the
streamwise direction. As already mentioned, backscatter is rarely observed on average,
whereas it is a more common feature in an explicit filtering set-up. However, in the present
configuration, even on average, a large portion of the flow experiences an inverse energy
transfer, from the fluctuating field to the mean flow, in the proximity of the expansion
corner. The correlation between expansion/compression motions and the inverse/direct
energy cascade observed by O’Brien et al. (2014) and Wang et al. (2018a, 2020) is then
confirmed also on average. A deeper discussion of the interpretation of such behaviour
will be presented in the following sections.

The pressure-dilatation term p̄(∂ ũj/∂xj) is shown in figure 15. The large-scale
compression and expansion are clearly visible in the proximity of the corresponding
corners. In the detached region, most of the flow is mildly compressed due to the presence
of local shocklets. Closely after the main shock/turbulence interaction, the secondary
shocks caused by the separated flow (visible also in figure 9) produce a relatively extended
compression region downstream of the main shock. The presence of secondary shocks
is also responsible for the main shock deflection, coinciding in the figure with the
intersection between the two white lines. The pressure-dilatation work interacts only
partially with the incoming turbulent boundary layer in a very narrow region of the flow,
coinciding with the shock in the vicinity of the wall. The Reynolds number is, in fact, not
large enough for the shock wave to penetrate entirely in the turbulent boundary layer.
To highlight the interaction, the evolution of the most relevant terms of the resolved
kinetic energy balance have been computed along the streamwise direction, at height
y+ ≈ 30 (figure 17). As already observed in figure 14, the dissipation reaches its local
minimum right after the shock. At x ≈ −3δ, the turbulent boundary layer interacts with
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Figure 15. Pressure-dilatation term (K1 term of (4.8)).
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Figure 16. Normalised turbulent kinetic energy: 2ρ̄k/(ρ∞u2∞).

the main shock wave generating fluctuations at smaller scales, thereby promoting a large
amount of dissipation immediately after. For the same reason, downstream of the primary
shock, turbulent kinetic energy is locally produced and subsequently advected in the
detached region (see figure 16). Similarly to the kinetic energy dissipation, non-zero
values of turbulent kinetic energy in proximity of the shock wave are caused mainly
by the oscillation of the shock wave. It is worth mentioning that the pressure-dilatation
work assumes non-negligible values only in proximity of the shock wave. Across the
shock, in fact, kinetic energy is converted locally in internal energy, precisely, through
the pressure-dilatation term. In terms of resolved kinetic energy balance, the negative
values of dissipation and pressure-dilatation work are compensated mainly by the flux
term K0, which assumes mostly positive values along the streamwise direction. The sum
of all the terms on the right-hand side of (4.8) has been evaluated, and it is additionally
shown in figure 17 as a solid black line. The local balance of resolved kinetic energy
is very close to zero, indicating an accurate prediction not only of the large-scale terms
such as pressure-dilatation and viscous dissipation, but also of the unclosed fluctuating
contributions such as the unresolved dissipation term K3. Furthermore, an accurate local
balance of resolved kinetic energy is also indicative of negligible numerical dissipation,
confirming the high resolution of the present DNS.
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Figure 17. Main terms of the resolved kinetic energy balance (see (4.8)) along the streamwise direction
at height y+ ≈ 30. Dashed line, flux term K0; dotted line, pressure-dilatation work K1; dash-dotted line,
dissipation term of the resolved part of the kinetic energy K3; solid line, local balance of the resolved kinetic
energy

∑5
i=0 Ki (K5 from (4.13)). All the terms are normalised by ρ∞u3∞/δ.

An additional term in (4.8), representing the contribution of the artificial viscosity
model, has been taken into account in the evaluation of the resolved kinetic energy balance
shown in figure 17. Such a term can be written as

K5 = ∂

∂xj

(
βAV

∂ ũk

∂xk
ũj

)
− βAV

(
∂ ũk

∂xk

)2

= K f
5 + Ks

5. (4.13)

Its contribution to the total balance of resolved kinetic energy has been shown to be
smaller than the other relevant terms. The expression of such a term has been omitted
in (4.8) for clarity purposes. In agreement with the classical analysis of kinetic energy
balance, the artificial viscosity term has been written as the sum of a flux term and a sink
term. A visual comparison of these two terms along the streamwise direction at height
y+ ≈ 30 is shown in figure 18. It can be seen that both terms are particularly small in
comparison to the other relevant terms (compare with figure 17), even more so away from
the main shock. Furthermore, the flux component, which only represents a redistribution of
resolved kinetic energy, is the dominant one between the two contributions. The dissipative
nature of the artificial viscosity model is then quantified more representatively by the sink
contribution, which is negative by construction. The sink contribution is much smaller,
not only with respect to the other terms in the balance of resolved kinetic energy, but also
with respect to the flux counterpart. It is then confirmed that the bulk artificial viscosity
model herein employed has a very small influence in the overall budget of resolved kinetic
energy.

4.2. Space filtered versus averaged fields
The differential filter proposed by Germano (1986) is applied, in which the resolution
of a heat-type equation is performed with the spectral difference scheme employed for
simulating the flow. Filter widths Δ = 2h, Δ = 4h and Δ = 8h have been considered in
the following analysis, with h the DNS resolution.
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Figure 18. Artificial viscosity terms of the resolved kinetic energy balance. Dotted line, flux contribution K f
5 ;

dashed line, sink contribution Ks
5; solid line, sum of the two, K5 = K f

5 + Ks
5. Notice that the vertical axis units

are scaled by 10−5.

The role of compressibility in kinetic energy transfers has been investigated extensively
(O’Brien et al. 2014; Wang, Gotoh & Watanabe 2017; Sidharth & Candler 2018; Wang
et al. 2018a,b; Chen et al. 2019; Wang et al. 2020), where the most relevant studies
have been focused on the interconnection between large-scale dilatation, turbulent Mach
number and dissipation. The first two represent the most relevant indicators of local levels
of compressibility, and the last one drives the canonical mechanism of kinetic energy
redistribution along scales in turbulent flows.

All the PDFs that will be considered in the following sections have been computed using
the nodal values of the variable of interest in the portion of domain downstream from the
plane x = −8δ. For filtered fields, instantaneous PDFs and joint PDFs (JPDFs) have been
computed every 5 δ/u∞ seconds for 30 distinct flow field snapshots. The resulting PDFs
and JPDFs have been averaged subsequently over time, and normalised to integrate to
unity.

In figure 19(a), the PDF of the dissipation term of the resolved field (term K3 in (4.8))
is shown using both averaging and filtering approaches. Some peculiar differences can
be seen. The first, most relevant, can be identified in an evident prevalence of negative
contributions of K3 using averaged fields (see figure 19b). On average, within reasonable
bounds, the assumption of classic kinetic energy cascade holds, whereas using the filtering
operation, a much larger amount of both positive and negative values are observed. Still,
the left tail of the PDF is clearly longer than the right one, indicating that forward transfer
is still more likely to occur than backscatter. Even if the general behaviour of averaged and
filtered PDFs is clearly different, mean values are similar. Such observation is in agreement
with the suitability of eddy-viscosity models: their dissipative nature is, in fact, able to
represent mean kinetic energy transfers (but not local ones). The influence of the small
scales on the resolved flow field is then fairly well approximated, despite the absence of
explicit backscatter mechanisms.

Second, as expected, local interactions allow much larger values of both inverse and
direct energy cascade due to a less regular flow field. Smaller filter widths lead, in fact, to
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Figure 19. (a) PDF of the SGS kinetic energy dissipation term (K3). Black line, averaging; blue line, filtering
with Δ = 2h; red line, filtering with Δ = 4h; and green line, filtering with Δ = 8h. (b) Detailed view of (a).

larger gradients and therefore larger values of dissipation. Such behaviour is clearly visible
in figure 19(a), where a narrower PDF is observed for the largest filter size (Δ = 8h).
Similar trends have been reported already in the case of compressible forced isotropic
turbulence by Wang et al. (2018a). Finally, the negligible difference between the PDFs
for Δ = 2h and Δ = 4h is a good accuracy indicator for the present computation. A very
small amount of kinetic energy is, in fact, transferred between the two scales, showing that
the total kinetic energy can be considered fairly well resolved by the Nyquist grid size (see
also figure 7b).

In the present work, as a classical indicator of small-scale compressibility activity, the
SGS Mach number has been considered, defined as

MaSGS =
√

2ρ̄k
3γ p̄

. (4.14)

The averaged SGS Mach number throughout the domain is shown in figure 20. In
figures 21 and 22, the filtered SGS Mach number is displayed for increasing filter size.
The maximum value of the averaged SGS Mach number is approximately equal to 0.32.
Using explicit filtering, instead, slightly higher values can be observed (around 0.42
for Δ = 4h and Δ = 8h). Non-negligible compressibility effects are expected for values
approximately larger than 0.3 (Passot & Pouquet 1987; Erlebacher et al. 1990; Sarkar,
Erlebacher & Hussaini 1991a; Sarkar et al. 1991b). Such values have been reported
mainly in the detached region of the flow, where compressibility is expected to have a
much stronger influence. Non-zero values of the turbulent kinetic energy are observed
not only in the detached region but also in the proximity of the shock wave, where the
flow is essentially laminar. On average, the generation of turbulent kinetic energy at
the shock location is explained by the oscillation of the shock wave in the streamwise
direction. Considering LES space filtering, sucha tendency is caused simply by the spatial
regularisation of the discontinuity. (A shock wave, from a numerical point of view, will
still represent an unresolved feature of the flow even if not directly linked to the classical
concept of turbulence under-resolution.)
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Figure 20. Averaged SGS Mach number (see (4.14)).
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Figure 21. Filtered SGS Mach number (Δ = 4h).

To focus on the mutual influence between kinetic energy transfers and compressibility,
the correlation between large-scale pressure-dilatation work and SGS kinetic energy
dissipation is analysed in figure 23, where the JPDF of the K3 and K1 terms is depicted.
On average, a large amount of the flow field is characterised by a classical direct energy
cascade, as the kinetic energy dissipation term is evidently skewed toward negative values.
The evident branch of positive values of dissipation in the second quadrant is instead
caused by the expansion fan downstream of the compression ramp (see figure 14 for
comparison).

Considering filtered quantities, both differences and analogies can be seen. Differently
with respect to the JPDF of the averaged field, a larger amount of backscatter is present,
in particular, in compression regions. Expansion motions are still characterised mainly
by backscatter, whereas compressions enhance a direct energy cascade. Such a tendency is
more evident for larger filter widths and is connected intrinsically to the previous figures 21
and 22: for larger filter widths, the unresolved kinetic energy is higher, leading to larger
SGS Mach numbers and consequently a stronger influence of compressibility in kinetic
energy transfers.

A more intuitive visualisation of pressure-dilatation work and dissipation of the resolved
scales is shown in figure 24, where local interactions are highlighted: compression
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Figure 22. Filtered SGS Mach number (Δ = 8h).
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Figure 23. JPDFs of dissipation of resolved scales (K3) and resolved pressure-dilatation work (K1).
(a) Averaged data; (b) filtered data with Δ = 4h; (c) filtered data with Δ = 8h.

regions are characterised by classical forward kinetic energy cascade, whereas, vice versa,
expansion regions are more likely to experience backscatter.

Notice that the JPDF of the averaged field in figure 23(a) is in large amount restricted
to a very narrow region along the K1 = 0 line, meaning that, on average, most of the
unresolved activity is restricted to regions of negligible pressure-dilatation work. The
strongest kinetic energy transfers are located right downstream of the interaction with the
shock wave, where the flow is only mildly compressed due to the presence of shocklets
generated by the detached flow. Considering filtered fields, the JPDFs are much wider and
characterised by a large amount of both positive and negative pressure-dilatation work.
The shape of the JPDF of the averaged field can be explained by the highly intermittent
character of the separated flow. The averaging operation causes an overall compensation
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Figure 24. Visual comparison of dissipation (bottom, K3) and pressure-dilatation work (top, K1) for a given
instantaneous filtered field (Δ = 4h). The two quantities are shown in a specular way to ease the comparison.
White and black circles highlight regions of intense back and forward scattering, respectively.

between compression and expansion regions. Such an effect is an example of the kind of
information that is lost when studying averaged fields only.

From the JPDFs of figure 23, the correlation coefficients between resolved dissipation
of scales and resolved pressure-dilatation work can be computed easily, providing a more
statistically quantitative evaluation of the interplay between the two terms. In the first row
of table 4, the correlation coefficients over the whole plane are listed for averaged and
filtered fields. K1 and K3 are more and more correlated for increasing filter widths, and
even more correlated on average, with correlation coefficient 0.2775. In the remaining
rows of table 4, the correlation coefficients in the different quadrants of the K1–K3 plane
have been evaluated to identify which one of them has the strongest influence on the
overall correlation. Since the fields are mildly correlated, the predominant quadrants to
observe are the first and third. It can be seen that on average, the first quadrant is the
most influential, with correlation coefficient 0.8781, whereas an almost null correlation
coefficient resulted from the third quadrant. Such general behaviour is clearly visible in
figure 23(a), where in the third quadrant, the JPDF is almost perfectly aligned with the K3
axis, indicative of a considerably small correlation. In the first quadrant, instead, the JPDF
is much closer to the bisector of the first and third quadrant. Similar trends are observed
for filtered data too (figure 23a,b), where the correlation coefficient in the first quadrant is
larger than the one computed in the third quadrant. The difference between the two values
is considerably smaller compared to the averaged case. The large correlation coefficient in
the first quadrant indicates that the correlation between dissipation of resolved scales and
resolved pressure-dilatation work is stronger in expansion regions undergoing backscatter
events rather than in compression motions experiencing classical forward energy cascade.
It is then relevant to highlight that the importance of compressibility in the modelling is
imposed not entirely by the physics of the problem, but it is also strongly influenced by
the filter width and thus by the flow resolution chosen for the simulation. A relatively
coarse LES is then more likely to experience a stronger influence of compressibility in the
modelling rather than well-resolved simulations.

Another way to study the relation between compressibility and kinetic energy
transfer is to relate the SGS Mach number to the SGS kinetic energy dissipation. In
figure 25, the JPDFs of these two quantities are shown considering both averaging and
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Average Δ = 4h Δ = 8h
Full 0.2775 0.1936 0.2682

I 0.8781 0.5252 0.6062
II −0.3936 −0.3117 −0.2546
III 0.070 0.3278 0.3269
IV −0.1644 −0.3241 −0.3159

Table 4. Correlation coefficients between K1 and K3, in the different quadrants.
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Figure 25. JPDFs of SGS kinetic energy dissipation and MaSGS. (a) Averaged data; (b) filtered data with
Δ = 4h; (c) filtered data with Δ = 8h.

filtering approaches. The amount of forward kinetic energy transfer gets stronger and
stronger for increasing values of MaSGS, indicating that larger turbulent Mach numbers
enhance dissipation of the resolved scales.

Considering the filtered counterparts, a large amount of backscatter is present, even if
the JPDF is still clearly asymmetric toward negative values of K3. In a similar way with
respect to the averaged terms, both forward and back scattering tend to increase for larger
SGS Mach numbers. This can be observed clearly in figure 26 as well, where a direct
comparison of the two quantities is shown for a given instantaneous filtered field.

Figure 25 links two quantities that are both unresolved, since the definition of SGS
Mach number involves the turbulent kinetic energy. On the contrary, figure 23 relates an
unclosed term, such as the dissipation of the resolved kinetic energy, to the large- scale
pressure-dilatation work, giving more useful information in terms of turbulence modelling.

5. Eddy-viscosity hypothesis

In the previous discussions, the dissipation of the resolved kinetic energy has been used
as the sole indicator of backscatter. Still, due to the intrinsic compressible character
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Figure 26. Visual comparison of SGS dissipation (bottom) and SGS Mach number (top) for a given
instantaneous filtered field (Δ = 4h). The two quantities are shown in a specular way to ease the comparison.
Circles highlight strong energy transfer regions.

of the equations, it is reasonable to decompose the dissipation term into two separate
contributions:

− τij
∂ ũi

∂xj
= −

(
τ d

ij + 1
3τkkδij

) ∂ ũi

∂xj
= −τ d

ij
∂ ũi

∂xj
− 1

3τkk
∂ ũi

∂xi
, (5.1)

where τ d
ij = τij − 1

3τkkδij is the deviatoric part of the SGS tensor. Under incompressible
conditions, such decomposition is redundant from an energetic point of view, due to
the solenoidal nature of the velocity field. In other words, the influence of the trace of
the SGS tensor on the large-scale kinetic energy is directly proportional to the level of
compressibility of the flow, quantified by the velocity field dilatation. To recover a traceless
tensor, in compressible LES, commonly only the deviatoric part of the SGS tensor is
modelled using an eddy-viscosity hypothesis (see (4.7)). The influence of this hypothesis
on the total resolved kinetic energy is then expressed as

− τij
∂ ũi

∂xj
+ 1

3τkk
∂ ũl

∂xl
= −2ρ̄νtS̃d

ij
∂ ũi

∂xj
(5.2)

(see Rogallo & Moin 1984), which leads to the following expression for eddy-viscosity:

νt = K3 +Λ

−2ρ̄S̃d
ij(∂ ũi/∂xj)

, (5.3)

where Λ = −(2/3)ρ̄k(∂ ũl/∂xl). Such a formulation can be interpreted in both the filtered
and averaged sense.

The term Λ represents the turbulent kinetic energy transfer due to the spherical part
of the SGS tensor. It is usually modelled following the Yoshizawa (1986) approach,
also with a dynamic formulation (Moin et al. 1991). This term, involving the turbulent
kinetic energy, vanishes in the incompressible case, and the presence of negative/positive
eddy-viscosities is entirely caused by the sign of the dissipation term (i.e. backscatter
implies negative eddy-viscosities and, vice versa, forward kinetic energy transfer causes
positive eddy-viscosities). Consequently, the unresolved part of the turbulent kinetic
energy does not play a role in terms of dissipation of the resolved part of the kinetic energy

935 A31-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.22


DNS of shock-wave/turbulence interaction

0.020

(a)

0.015

0.010

0.005

–0.005

–0.010

–0.015

–0.020
–0.005 0 0.005

0K3

0.020

(b) (c)

0.015

0.010

0.005

–0.005

–0.010

–0.015

–0.020

0

0.100

0.075

0.050

0.025

–0.025

–0.050

–0.075

–0.100

0

106

10–6

104

10–4

102

10–2

100

Λ
–0.025 0 0.025

Λ
–0.02 0 0.02

Λ

Figure 27. JPDFs of SGS dissipation and Λ. The solid black line denotes the line νt = 0. (a) Averaged data;
(b) filtered data with Δ = 4h; (c) filtered data with Δ = 8h. Both K3 and Λ are normalised by ρ∞u3∞/δ.

in incompressible conditions. For non-spectral filters, as observed by Vreman, Geurts &
Kuerten (1994), the turbulent kinetic energy always takes positive values. Consequently,
in the compressible case, the term Λ is negative in expansion regions and positive in
compression regions, thus following an opposite trend with respect to K3.

In figure 27, the JPDF of these two terms has been plotted for both averaging and
explicit filtering. The solid black line denotes the line νt = 0 (i.e. K3 = −Λ). Below this
line, the eddy-viscosity assumes positive values, whereas above it, the eddy-viscosity is
negative. Regarding the JPDF within the RANS context, a clear prevalence of forward
kinetic energy cascade can be observed. The term K3 assumes mostly negative values,
and it is particularly clustered around the vertical line Λ = 0. This property indicates
that most of the energy transfers are located in regions of negligible dilatation (at least
on average). Furthermore, a distinct bandwidth of non-null values of the JPDF is almost
perfectly aligned with the νt = 0 line. This narrow stripe is located slightly below the
νt = 0 line, as it extends for relatively large values of Λ. Finally, the JPDF is almost
entirely confined below the νt = 0 line, indicating that in statistical mean, the assumption
of positive eddy-viscosity can be fairly accurate, even in the presence of backscatter. The
term Λ, in fact, compensates the backscatter phenomenon, preventing the occurrence of
negative eddy-viscosities. With the space filtered fields, the same tendencies are present
but in a less evident form. Even if a forward kinetic energy cascade is generally more
likely to occur than backscatter, a large amount of the flow field is characterised by
negative values of the eddy-viscosity. In analogy to table 4, in table 5 the correlation
coefficients between Λ and K3 have been computed in the whole domain, and in the
different quadrants of the Λ–K3 plane. As observed in figure 27, the two fields are mildly
anticorrelated. The correlation coefficients are negative, and they are more and more
negative for increasing filter widths. Compared to both filtered fields, Λ and K3 in the
average field are more anticorrelated, with correlation coefficient − 0.4755. Since Λ and
K3 are generally anticorrelated, the second and fourth quadrants can give more insightful
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Average Δ = 4h Δ = 8h
Full −0.4755 −0.2636 −0.3268

I 0.6897 0.4835 0.4393
II −0.8990 −0.7392 −0.7922
III 0.2696 0.4989 0.4864
IV −0.6536 −0.6349 −0.6407

Table 5. Correlation coefficients between Λ and K3, in the different quadrants.
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Figure 28. Comparison between averaged terms (a) K3 and (b) K3 +Λ. Both terms are normalised by
ρ∞u3∞/δ.

information on their mutual dependency. Both on average and for filtered fields, the second
quadrant is characterised by a stronger anticorrelation with respect to the fourth quadrant.
As observed in table 4, such a difference is less pronounced for filtered fields. In analogy
with the previous discussion regarding K1 and K3, the stronger influence of the second
quadrant indicates that the coexistence of backscatter events and negative values of Λ is
the dominant mechanism of anticorrelation between the two fields.

To highlight the difference between K3 and the sum K3 +Λ, their averaged values
are shown in figure 28. Following the classical definition of kinetic energy transfer
based on K3, the expansion region experiences strong backscatter (figure 28a), but if the
compressible contributionΛ is accounted for, then only negative values are observed in the
whole domain. It is then reasonable to conclude that the deviatoric part of the SGS tensor,
on average, has an essentially dissipative role, whereas the trace is directly responsible for
the backscatter observed in the proximity of the expansion corner.

To evaluate the contribution of the spherical part on the total SGS kinetic energy
dissipation, the joint probability function of the deviatoric contribution K3 +Λ with
respect to the large-scale pressure-dilatation work K1 has been computed and shown in
figure 29. Starting from the JPDF of the averaged field, in agreement with figure 28,
the deviatoric contribution of the SGS kinetic energy dissipation takes negative values
only. The backscatter region observed in figure 23(a) completely disappears when the
spherical part is subtracted. In the filtered case, instead, a mild correlation between the
two terms can still be observed even though it is considerably weaker, in particular for
small filter widths. These observations highlight a clearly different behaviour between
averaged and filtered approaches. On the one hand, the correlation, once observed,
completely vanishes on average when the spherical part is subtracted. On the other hand,
the same correlation persists when evaluated on filtered fields. The correlation coefficients
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Figure 29. JPDFs of deviatoric SGS dissipation and large-scale pressure-dilatation work. (a) Averaged data;
(b) filtered data with Δ = 4h; (c) filtered data with Δ = 8h.

Average Δ = 4h Δ = 8h
Full 0.1081 0.0370 0.0889

I 0.6402 0.3829 0.3829
II −0.5777 −0.3661 −0.3010
III −0.0105 0.2738 0.2472
IV −0.2332 −0.3259 −0.2663

Table 6. Correlation coefficients between K1 and K3 +Λ, in the different quadrants.

between the deviatoric contribution of the dissipation of resolved scales and the resolved
pressure-dilatation work are listed in table 6. The correlation coefficients evaluated on the
whole domain are significantly close to zero. It is particularly interesting to compare these
values with the ones listed in table 4: the positive correlation observed in table 4 is now
reduced considerably if not completely set to zero. As previously discussed, the correlation
between dissipation of the resolved scales and resolved pressure-dilatation work is caused
mainly by the spherical contribution of (5.1). Since the correlation between the two terms
is very mild, the correlation coefficients evaluated in the different quadrants are not as
revealing as the ones computed on previous JPDFs.

To facilitate the comparison, figure 30 shows the JPDFs of the averaged field accounting,
respectively, for both deviatoric and spherical contributions or for deviatoric contributions
only. A spherical bulk term, such as the one introduced by the artificial viscosity scheme,
can be interpreted interestingly as some kind of approximation of the turbulent kinetic
energy itself. In fact, close to the shock wave, the flow field divergence is negative, and the
term

β
∂ ũk

∂xk
(5.4)

935 A31-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.22


N. Tonicello, G. Lodato and L. Vervisch

–0.2
–0.025

–0.020

–0.015

–0.010

–0.005

0.005

0.010

0

–0.025

–0.020

–0.015

–0.010

–0.005

0.005

0.010

0

–0.1 0 0.1 0.2
K1

K3

K
3 

+ 
Λ

–0.2 –0.1 0 0.1 0.2
10–6

10–4

10–2

100

102

104

106

K1

(a) (b)

Figure 30. Averaged JPDFs of standard and deviatoric SGS dissipation and large-scale pressure-dilatation
work. (a) K3; (b) K3 +Λ.

is consistently negative too, where β is a bulk viscosity. From a direct comparison of such
a term with the spherical part of the SGS tensor, the following heuristic expression can be
obtained easily:

2
3 ρ̄k ∼ −β ∂ ũk

∂xk
. (5.5)

Away from the shock, such similarity is less evident. Nevertheless, the parallelism
between compression regions and positive turbulent kinetic energy can be used
conveniently for modelling purposes. In fact, it can be proved easily that a bulk viscosity
term in the momentum equation causes large-scale kinetic energy dissipation. Therefore,
the additional bulk term would ideally reproduce only the dissipative character of the
turbulent kinetic energy on the large scales, in a fashion that resembles eddy-viscosity
models, where only the direct kinetic energy transfers are modelled. In a similar way,
Wang et al. (2018a, 2020) proposed a simplified relation between SGS dissipation and
dilatation, reporting a scaling close to (∂ ũk/∂xk)

2 in compression regions, which is the
same form as a bulk viscosity term. In their work, the total SGS dissipation was analysed,
including both deviatoric and spherical contributions. The bulk viscosity, furthermore,
has a well-known dissipative character on the dilatation field, reinforcing the idea of SGS
modelling as essentially a regularisation technique.

In the incompressible case, vorticity is smoothed thorough explicit filtering of DNS
data, and an analogous mechanism needs to be present in under-resolved a posteriori
simulations, for example, through an augmented shear viscosity. In the same way, a
similar tendency is expected for the dilatation. The filtered dilatation will result as
less singular and irregular. Thus a regularisation of it would be produced successfully
by an artificial bulk term in the resolution of the filtered momentum equation. The
natural decoupling between dilatational and solenoidal contributions in compressible
turbulence (see Pan & Johnsen 2017) clearly indicates a convenient dichotomy based
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on Helmholtz decomposition. The contraposition between solenoidal and dilatational
field (and consequently vorticity and divergence) could possibly suggest a parallelism
in the SGS modelling as well, based on the difference between deviatoric and spherical
components of the SGS tensor, that could be possibly modelled using their respective
natural choices of shear and bulk viscosities.

Preliminary computations of an LES of a similar configuration using the same inflow
boundary condition, artificial viscosity model and numerical scheme (Tonicello, Lodato &
Vervisch 2021) have shown promising results in combination with the recently developed
spectral element dynamic model (Chapelier & Lodato 2016) as the SGS model. Future
research will be focused on the design of further generalisations of the spectral element
dynamic model for highly compressible turbulent flows, paying particular attention to the
deviatoric component of the SGS tensor. The development of such a model, which is
outside the scope of the present study, will be grounded on the high fidelity data extracted
from the present DNS, which represent a solid background for the design of novel SGS
models. The information gathered from the DNS can, in fact, be used to perform an
extensive range of physical and numerical analyses on a posteriori LES computations,
including detailed studies on SGS modelling and numerical dissipation/dispersion under
non-negligible compressibility effects.

Nonetheless, the methodical development of such a model is far beyond the scope of
the present work. The DNS presented herein can be interpreted as very first step in this
direction, and future work will be focused on this matter.

6. Conclusions

A DNS of a 24◦ compression/expansion ramp has been performed using a high-order
spectral difference code. The presented set-up has been chosen as a popular example of
shock-wave–turbulence interaction. Despite its relatively simple geometry, the interaction
between a supersonic boundary layer and compression/expansion ramps is representative
of many different complex features of compressible turbulent flows.

After a thorough validation, considering mean profiles and wall coefficients, a series
of a priori analyses has been considered. The present work has been developed using
both averaging and explicit filtering, providing a clear dualism between RANS and LES
approaches, respectively. Most of the attention has been focused on specific terms that
appear in the resolved kinetic energy balance in both the filtered and averaged sense.
In particular, the well-known dissipation term has been analysed in detail. It has been
shown that in the present set-up, following both the averaging and filtering formalisms,
the presence of both direct and reverse kinetic energy cascade was observed. In agreement
with previous observations (O’Brien et al. 2014; Wang et al. 2018a), compression regions
are mostly characterised by forward kinetic energy transfers, whereas an inverse cascade
is promoted by expansion motions.

Subsequently, the dissipation term has been decomposed in deviatoric and spherical
contributions. Such a procedure has been used to evaluate the suitability of eddy-viscosity
models for the deviatoric part of the SGS tensor in compressible flows. Averaged results
have shown that the expression of equivalent eddy-viscosity rarely assumes negative values
throughout the whole domain. It is then evident that the correlation, already observed,
between large-scale dilatation and SGS dissipation is, in large part, caused by the spherical
part of the SGS tensor. Its corresponding term in the total kinetic energy balance is, in
fact, directly proportional to the divergence of the velocity field. The importance of proper
modelling of the spherical part of the SGS tensor is then highlighted.
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For sufficiently high turbulent Mach numbers, the influence of expansion/compression
motions and, consequently, of the spherical part of the SGS tensor, increases, revealing a
clear mechanism of backscatter based on the local levels of compressibility. It has been
observed that, inspired by classical eddy-viscosity models for the deviatoric part, a bulk
viscosity could be used as an SGS model for the turbulent kinetic energy. Further analyses
will be focused on a better understanding of solenoidal and dilatational contributions on
kinetic energy transfers. The ultimate goal of such analyses is identified in the development
of SGS models (in particular for the turbulent kinetic energy) more suitable to high-order
simulations of compressible flows.
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Appendix A. The spectral difference scheme

The spectral difference method (Kopriva & Kolias 1996; Liu, Vinokur & Wang 2006;
Wang et al. 2007) solves the strong form of the differential equation using piecewise
continuous functions as approximation space. Consequently, the solution is assumed to
be discontinuous at the element interface. In order to have a consistent discretisation,
the solution is interpolated using a polynomial of degree N − 1, while the flux, which
is connected to the conservative variables via a divergence operator, is approximated
with a polynomial of degree N. The most important ingredient of the spectral difference
discretisation is the definition of two different set of points: solution and flux points. The
numerical solution is defined on the nodes xs

i , with i = 0, . . . ,N − 1. Fluxes, instead, are
defined on a different set of nodes x f

i , with i = 0, . . . ,N, among which boundary points
are included. It will be noted that in the present study, the solution points are set as the
Gauss–Legendre points of order N, a sensible choice to minimise aliasing errors in the
nonlinear case while defining a well-conditioned basis set for the solution interpolation
(Jameson et al. 2012), whereas the flux points are set as the Gauss–Legendre points of
order N plus the two end points −1 and 1 to ensure linear stability (Jameson 2010). An
example of solution and flux points for a polynomial approximation of degree N = 4 is
shown in figure 31. The solution is approximated with a polynomial of degree N − 1:

û(x̂) =
N−1∑
i=0

ui lsi (x̂). (A1)

In the spectral difference scheme, the values of the solution are extrapolated at the flux
points

û(x̂ f
j ) =

N−1∑
i=0

ui lsi (x̂
f
j ), j = 0, . . . ,N, (A2)
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DNS of shock-wave/turbulence interaction

Figure 31. Solution (red circles) and flux (blue squares) points of spectral difference discretisation in the
reference element (N = 4).

and then used to compute fluxes on the same collocation basis:

fj = f̂ (x̂ f
j ) = f̂ (û(x̂ f

j )). (A3)

Then a continuous flux polynomial of degree N is constructed, by Lagrange interpolation,
using the fluxes evaluated from the interpolated solution at the interior flux points and the
numerical fluxes at the element interfaces:

f̂ (x̂) = f̂ I
L l f

0 (x̂)+
N−1∑
j=1

fj l f
j (x̂)+ f̂ I

R l f
N(x̂). (A4)

In other words, the interpolated values of the flux at element extrema are substituted by
the interface numerical fluxes f̂ I

L and f̂ I
R. Finally, the flux divergence is evaluated at the

solution points,

df̂
dx̂
(x̂s

i ) = f̂ I
L

dl f
0

dx̂
(x̂s

i )+
N−1∑
j=1

fj
dl f

j

dx̂
(x̂s

i )+ f̂ I
R

dl f
N

dx̂
(x̂s

i ), (A5)

and the numerical solution can be advanced in time using a suitable time integration
scheme discretising the equation

dû
dt

= −df̂
dx̂
(x̂s

i ). (A6)

Once the one-dimensional strategy is defined, the three-dimensional generalisation can be
obtained easily. The governing equations are once again transferred from the physical to
the computational domain through the change of coordinates

x =
K∑

i=0

Mi(x̂) xi, (A7)

where K is the number of points defining the physical element, whereas xi and Mi are the
relevant position vectors (in physical space) and shape functions, respectively.

The equations then take the form

∂Q
∂t

+ ∇x̂ · G = 0, (A8)

where Q = det(J)U and G = adj(J) · F , with det(J) and adj(J) representing, respectively,
the determinant and the adjoint of the Jacobian of the transformation J = ∂ x̂/∂x. Clearly,
the aforementioned change of coordinates consisted simply in a linear scaling in the
one-dimensional analysis, whereas in multiple dimensions, more complex deformations of
the reference element are allowed. In this sense, using appropriate definitions of coordinate
transformation, it is possible to handle highly complex geometries with a reasonably small
effort. Of course, the geometrical flexibility of spectral element methods represents a very
desirable feature for realistic CFD configurations.
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Figure 32. Distribution of solution (red circles) and flux points (blue squares) in the standard element for a
third-order spatial discretisation.

Within the element, solution and flux points are defined in a tensor product fashion,
leading to the following expression of the interpolated representation of conserved
variables:

U(x̂, ŷ, ẑ) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

Qi,j,k

det (J)i,j,k
lsi (x̂) lsj (ŷ) lsk(ẑ), (A9)

where li(x̂), lj(ŷ), lk(ẑ) represent one-dimensional Lagrange polynomials along the three
dimensions of the reference element. Similarly to the one-dimensional case, along each
direction the polynomial approximation defines immediately a strategy to evaluate the
conserved variables at the flux points, namely,

U f ,j,k =
N−1∑
i=0

Qi,j,k

det (J)i,j,k
lsi (x̂f ), (A10)

U i,f ,k =
N−1∑
j=0

Qi,j,k

det (J)i,j,k
lsj (ŷf ), (A11)

U i,j,f =
N−1∑
k=0

Qi,j,k

det (J)i,j,k
lsk(ẑf ), (A12)

with f = 0, . . . ,N. An example of tensor product location of solution and flux points is
shown in the reference element in figure 32.

Fluxes, considered here only along x̂ for simplicity, can be written as

G1
j,k(x̂) =

N∑
p=0

(adj(J) · F )1p,j,k l f
p (x̂), (A13)
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where (adj(J) · F )1p,j,k is the first component of adj(J) · F evaluated at the pth flux
point. The relevant flux is computed using the reconstructed solutions at the flux points,
namely, U f ,j,k from (A10). This reconstructed flux is only elementwise continuous, but
discontinuous across cell interfaces. With regard to the interface contribution, a Riemann
solver is employed to compute a common flux at the cell interface, to ensure conservation
and stability. The flux is then made continuous by replacing the element interface fluxes
F 0,j,k and F N,j,k with the single-valued numerical interface flux given by the approximate
solution of the interface Riemann problem. The computation of the derivative along x̂ is
finally computed in exactly the same way as in the one-dimensional case. Namely, given
the interpolation of corrected fluxes G̃1

j,k(x̂), the derivative of G̃1
j,k(x̂) along x̂ is computed

simply by applying the derivative operator to (A13):

∂

∂ x̂
(G̃1

j,k(x̂)) =
N∑

p=0

(adj(J) · F̃ )1p,j,k
dl f

p (x̂)
dx̂

. (A14)

In a similar manner, the same procedure can be used to compute viscous fluxes where the
interpolation to flux points is applied to first derivatives. In fact, after the computation of
inviscid fluxes, the first derivatives of the conserved quantities are available at the solution
points and the same strategy can start again, leading ultimately to the evaluation of the
second derivatives at the solution points. As for the inviscid fluxes, a common numerical
flux needs to be defined at the interface.

Appendix B. The shock-capturing method

In the main body of the paper the shock-capturing method has been introduced, focusing
on the functional form of the bulk artificial viscosity and on the Ducros modification used
in the present work. In this appendix a more thorough presentation of the shock-capturing
methods is given, in particular regarding shock detection and model calibration.

In order to identify properly regions of the flows where artificial regularisation is
required, the local level of smoothness of a given variable is determined by checking the
rate of decay of the expansion coefficients, or modal coefficients, of the solution on an
orthogonal basis. In particular, a popular choice, employed in the present implementation,
is represented by the Legendre polynomials. A specific variable of interest, here denoted
as ψ , can then be written along a specific direction ξ in space as

ψ(ξ) =
N−1∑
i=0

ψ̂i P∗
i (ξ), (B1)

where P∗
i is the normalised Legendre polynomial of degree i, and ψ̂i are the modes of the

chosen variable. The modes can be computed easily from the nodal values of the target
variable using a simple matrix multiplication, i.e. using the Vandermonde matrix of the
selected polynomial basis. In order to evaluate the smoothness of the spatial signal, the
truncated expansion is introduced as

ψ̄(ξ) =
N−2∑
i=0

ψ̂i P∗
i (ξ). (B2)
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Consequently, a resolution indicator within the spectral element n can be evaluated
comparing the energy content of the truncated and full expansion as

sn
modal = log10

[
(ψ − ψ̄, ψ − ψ̄)n

(ψ,ψ)n

]
, (B3)

where (·, ·)n indicates the classical inner product within the element n. Once the
smoothness indicator has been computed, the local magnitude of the artificial viscosity is
modulated smoothly from 0 to a maximum value ε0 using an activation function f (sn

modal)

that is defined as

f (sn
modal) =

⎧⎪⎪⎨⎪⎪⎩
0, for sn

modal < s0 − l,
ε0

2

{
1 + sin

[
π(sn

modal − s0)

2l

]}
, for s0 − l ≤ sn

modal ≤ s0 + l,

ε0, for sn
modal > s0 + l,

(B4)

where ε0 = Cελmaxh/N, with λmax the maximum wave speed in the whole domain, and h
the element size. Finally, the elementwise constant value of bulk artificial viscosity is set
simply as βAV = ρ f (sn

modal).
The rest of the undefined variables, namely, Cε, l and s0, are additional parameters of

the model. With regard to the threshold s0 and sensor tolerance l, these are computed via a
self-calibration algorithm based on a manufactured solution (see also Lodato (2019a) and
Lodato et al. (2016) for additional details).

Appendix C. The positivity-preserving scheme

The adaptation of the positivity-preserving algorithm by Zhang & Shu (2010) requires the
positivity check on the density and pressure to be done at every Runge–Kutta step on the
reconstructed solution at both the solution and flux points. The main relevant steps of the
current implementation are summarised below (see also Lodato 2019a).

At each Runge–Kutta stage, let U i,j,k and Ū be the spectral difference interpolation of
the conserved variables at the solution points and the relevant average within the element,
respectively. Also, let U i±1/2,j,k, U i,j±1/2,k and U i,j,k±1/2 be the reconstructed solutions at
the flux points along the three directions, respectively. For simplicity, the solution vector
at both solution and flux points is indicated as Uα , where α can be any triplet of indices
related to the solution of flux points in the element. The minimum density ρmin = min(ρα)
among the values at both the solution and flux points is first obtained, and the coefficient
θ1 is computed as

θ1 = min
{

1,
ρ̄ − ε

ρ̄ − ρmin

}
, (C1)

where ε is a threshold value for the density (e.g. ε = 10−13). Then, at each solution and
flux point, the density is recomputed as

ρ̂α = θ1(ρα − ρ̄)+ ρ̄ . (C2)

The density values defined as such are used to evaluate the conserved variables Ûα at any
solution or flux point within the element.
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With regard to the pressure pα(Ûα) at each solution and flux point, a coefficient tαε ∈
[0, 1] is computed, such that

tαε = 1 if pα ≥ ε, (C3)

or tαε is the solution of the equation

pα[(1 − tαε )Ū + tαε Û] = ε if pα < ε. (C4)

Notice that the above equation is quadratic in tαε for an ideal gas, and can be solved
analytically. Finally, the solution at the solution and flux points is recomputed as

Ũα = θ2(Ûα − Ū)+ Ū, (C5)

where θ2 = min(tαε ) is the smallest value of tαε obtained among the solution and flux points.
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