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Direct numerical simulations (DNS) of the flow in various rotating annular confinements
have been conducted to investigate the effects of wall inclination on secondary fluid
motions due to an unstable boundary layer. The inner wall resembles a truncated
cone (frustum) whose apex half-angle is varied from 18◦ to 0◦ (straight cylinder).
The large inner radius r1, the mean rotation rate Ω0 and the kinematic viscosity ν
were kept constant resulting in the constant Ekman number E= ν/(Ω0r2

1)= 4× 10−5.
Flows were excited by time-harmonic modulation of the inner wall’s rotation rate
(so-called longitudinal libration) by prescribing the amplitude εΩ0 and the forcing
frequency ω = Ω0. By steepening the inner wall and hence reducing the effect of
the local Coriolis force in the boundary layer three different flow regimes can be
realized: a rotation-dominated, a libration-dominated and an intermediate regime. In
the present study we focus on the libration-dominated regime. For small libration
amplitudes (here ε= 0.2), a laminar Ekman–Stokes boundary layer (ESBL) is realized
at the librating wall. With the aid of laminar boundary layer theory and DNS we
show that the ESBL exhibits an oscillatory mass flux along the librating wall (Ekman
property) and an oscillatory azimuthal velocity, which resembles a radially damped
wave (Stokes property). For large libration amplitudes (here ε= 0.8), the DNS results
exhibit an intermittently unstable ESBL, which turns centrifugally unstable during
the prograde (faster) part of a libration period. This instability is due to the Stokes
property and gives rise to Görtler vortices, which are found to be tilted with respect
to the azimuth when the librating wall is at a finite angle relative to the axis of
rotation. We show that this tilt is related to the Ekman property of the ESBL. This
suggests that linear and nonlinear dynamics are equally important for this intermittent
instability. Our DNS results indicate further that the Görtler vortices propagate into
the fluid bulk where they generate an azimuthal mean flow. This mean flow is notably
different from the mean flow driven in the case of the stable ESBL. A diagnostic
analysis of the Reynolds-averaged Navier–Stokes (RANS) equations in the unstable
flow regime hints at a competition between the radial and axial turbulent transport
terms which act as generating and destructing agents for the azimuthal mean flow,
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respectively. We show that the balance of both terms depends on the wall inclination,
that is, on the wall-tangential component of the Coriolis force.

Key words: instability, intermittency, rotating flows

1. Introduction

Fluid filled bodies showing longitudinal libration, that is, a sinusoidal modulation of
the background rotation rate, are common in the astrophysical context but form also
an interesting set-up for engineering applications. Of particular interest is the question
what kind of mean flows can be driven by the libration and hence a number of recent
studies have focused on this problem (Noir et al. 2009, 2010; Calkins et al. 2010;
Busse 2011; Lopez & Marques 2011; Sauret et al. 2012; Klein et al. 2014; Ghasemi
et al. 2016; Hoff, Harlander & Triana 2016). Simply speaking, for a cylindrical cavity
in the limit when the libration frequency is small in comparison with the rotation
rate Ω0, but large in comparison with the inverse of the spin-up time, the mean flow
is a retrograde solid body rotation (Busse 2011). The reason for the mean flow is a
nonlinear self-interaction of the laminar oscillating flow in the Ekman boundary layer
(already described by Wang 1970), neglecting the effects in the Stokes boundary layer
parallel to the rotation axis which is usually considered to be less important. Similar
results could be found for a spherical cavity (Busse 2010).

From a physical and mathematical point of view, rotating axial boundary layers are
less well studied than Ekman boundary layers since their analytical treatment is more
complicated (Chemin et al. 2006). In fact, also for the problem of a librating rotating
cylinder they can become very important. Noir et al. (2009) realized that for moderate
libration amplitude in a weakly nonlinear flow regime Görtler vortices can form in
the centrifugally unstable Stokes boundary layer. Just recently Ghasemi et al. (2016)
suggest that these vortices can transport angular momentum away from the near-wall
region into the bulk, inducing a mean flow there. These authors showed that when the
boundary layer becomes unstable the vortices drive a retrograde (prograde) mean flow
close to the librating outer (inner) wall. This can be seen as an inverse cascade and
the responsible mechanism can be characterized as angular momentum pumping from
the boundary layer into the bulk by the small-scale Görtler vortices. The strength of
the excited mean flow is of the same order as the mean flow induced by nonlinear
effects in the oscillating Ekman boundary layer. The generation of Görtler vortices in
the equatorial region of a spherical shell has been reported by Calkins et al. (2010)
and by Sauret, Cébron & Le Bars (2013). However, for this geometry it is not clear
how much this instability of the boundary layer contributes to the mean flow.

For cylindrical geometries with the axis of symmetry aligned with the axis of
rotation, all boundary layers are either horizontal or axial. For a sphere, however,
the boundaries have all directions so that features of the Stokes and the Ekman
boundary layers might likewise be present. When Ekman boundary layers become
axial they degenerate into another type of boundary layer, a process called equatorial
degeneracy. Hence, as pointed out by Chemin et al. (2006), for the spherical shell
geometry, questions related to the formation of boundary layers are widely open.
It is thus worth to look for simpler geometries that still cover certain aspects of the
spherical shell geometry.
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Mean flow generation by an intermittently unstable boundary layer 113

One example of such a simplification was introduced by Busse & Or (1986). They
used an annular geometry to study thermal convection in rotating systems motivated
by planetary problems. To include the β-effect (i.e. the effect of Earth’s curvature),
the top and bottom end boundaries were conical such that the depth of the fluid in
the direction of the axis of rotation varied with the distance from the axis. Another
example for a simplified geometry is the one studied by Klein et al. (2014). These
authors also used an annular geometry but the inner wall was a cone and not a
straight cylinder to mimic curvature. (The cone resembles the local inclination of
a spherical wall.) Klein et al. (2014) investigated the excitation of inertial waves
by librating the outer cylinder together with the end plates or the inner cone. They
found that the critical angle of the slope determines the frequency of the most efficient
wave excitation. Similar experiments have been done for the spherical shell geometry
(Koch et al. 2013; Hoff et al. 2016). Note that since the main interest of the present
study is the development of Görtler vortices, their interactions with the boundary
layer and the bulk flow, approximations like the small-gap limit are not useful. By
neglecting curvature in the small-gap limit the Görtler instability would be suppressed
and we would exclude the kind of instability we want to study. Moreover, for many
applications the gap width is large, for example for geophysically motivated problems
like the dynamics of planetary fluid cores, the radius ratio is approximately 1/3.
Compared to small-gap flows, the wide-gap situation is more challenging, however, it
can be tackled by direct numerical simulation (DNS). On the other hand, the stable
laminar structure of the Ekman–Stokes boundary layer (ESBL) can be studied without
including curvature in the axial–radial section by formulating a simple sloping f -plane
model (see § 3.1 and also Salon & Armenio (2011)).

In the present paper we reconsider the previous study by Ghasemi et al. (2016)
but use the same geometry as used by Klein et al. (2014), that is, replace the inner
cylinder by a cone. In that geometry, the boundary layer along the sloping wall
is neither a pure oscillating Ekman nor a pure rotating Stokes boundary layer but
the properties of both boundary layers characterize the flow. This is similar to the
spherical shell where the boundary layer along the inner sphere has any orientation
with respect to the rotation axis and thus possesses, over the major part of the sphere,
properties of the Ekman and Stokes boundary layers. One of our main results is that
for cone angles above a critical value (i.e. weak slopes) the instability is suppressed
and no Görtler vortices can form. The reason is that the Reynolds stress term formed
by the axial and azimuthal flow component, not present for the geometry with an
axial inner cylinder, becomes important. This term is a destructing agent that controls
the terms that imply the angular momentum transport into the bulk and hence the
mean flow. However, for large cone angles (i.e. weak slopes), a mean flow can be
excited by nonlinear effects of the oscillating Ekman boundary layer as described by
Busse (2010) and others.

The rest of this paper is organized as follows. In § 2 we briefly describe the
mathematical formulation and the numerical model. A more complete description of
the model can be found in Klein et al. (2014), Klein (2016). In § 3 we discuss the
properties of the sloping boundary layer (denoted here as Ekman–Stokes boundary
layer) with the aid of laminar boundary layer theory and DNS. We do this first for
stable and then for unstable flow conditions. After that, we investigate the boundary
layer instability in terms of the orientation of Görtler vortices as a function of the
inclination angle of the conical inner wall. This is used to infer the mean flow
generation mechanism in the case of an unstable boundary layer. Then, by computing
the size of the different terms in a diagnostic Reynolds-averaged Navier–Stokes
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FIGURE 1. Schematic drawing of the annular configuration investigated. The inner wall
is a truncated cone (frustum) with apex half-angle α, which is likewise the inclination
angle towards the symmetry axis. The set-up revolves around its symmetry axis ez with
constant mean angular velocity. Flows are excited by modulating the rotation frequency
of the frustum (so-called longitudinal libration). In the present study α is varied in small
steps from 0◦ to 18◦ (see table 1 for details).

(RANS) equation, we clarify the process that suppresses the mean flow excitation
for super-critical cone angles. Finally, in § 4 we summarize our results and give
conclusions.

2. Method
2.1. The librating annulus configuration

We study the flow of an incompressible, homogeneous, Newtonian fluid with the
kinematic viscosity ν in various annular confinements possessing different frustum
inclination angles α. All configurations are comparable to that sketched in figure 1.
Such cylindrical geometries have been studied in the past (e.g. Henderson & Aldridge
1992) and recently (Klein et al. 2014, e.g.). In the present work we use the same
configuration and parameters as in Klein et al. (2014), though in contrast to these
authors we do not compare numerical and experimental results. Nevertheless, the
numerically extracted data form an ideal basis for future experiments to test the
findings but also to extend them to cases with smaller Ekman numbers. It has
been emphasized that annular confinements with inner truncated cones cover some
essential aspects of a spherical shell geometry. These are, for example, sloping f -plane
effects (where f is the Coriolis parameter) (e.g. Pedlosky 1987), critical latitudes and
boundary layer eruptions. In the cylindrical configuration, the notorious complexity of
a spherical set-up has been reduced by limiting our attention to a single inclination
angle α rather than the interval 0 6 |α| 6 π/2. The important consequence is that
any breakdown of the Ekman layer has been removed on purpose from the dynamics
while sloping f -plane effects are maintained. Note, however, that it is possible to
simulate precisely the breakdown condition by selecting the wall inclination and
libration frequency appropriately (see Klein et al. 2014).

The annular confinement shown in figure 1 consists of a truncated cone (so-called
frustum) on the inside with a maximum radius r1 at the bottom (z= 0) and minimum
radius r3(α)6 r1 at the top (z=H), a straight cylinder of radius r2 on the outside and
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Mean flow generation by an intermittently unstable boundary layer 115

ID α (deg.) f∗ γ δ (10−2) Nr ×Nz ×Nθ 1rmin(10−3) 1rmax(10−3)

G1 0 0.00 — 0.89 251× 401× 161 1.0 4.5
G2 3 0.10 9.5 0.95 251× 401× 257 1.0 4.5
G3 6 0.21 4.8 1.00 251× 401× 161 1.0 4.5
G4 9 0.31 3.2 1.08 251× 401× 161 1.0 4.5
G5 12 0.42 2.4 1.17 251× 401× 161 1.0 4.5
G6 15 0.52 1.9 1.29 251× 401× 257 1.0 4.5
G7 18 0.62 1.6 1.45 251× 401× 161 1.0 4.5

TABLE 1. Details of the configurations G1–G7 investigated by varying the cone angle
α. Corresponding values of the effective Coriolis parameter f∗ (as multiple of the mean
rotation rate) and the time scale ratio γ are given. The boundary layer thickness δ equals
to δ− for G2–G7 (ESBL), but δS for G1 (SBL). Nr, Nz, Nθ denote the number of grid
points used in the radial, axial and azimuthal directions. The high-resolution cases are
printed in bold. The minimum and maximum grid spacing 1rmin and 1rmax is given
for the radial direction. The grid spacing along the sloping wall is almost equidistant
with 1z ≈ 3.5 × 10−3. The boundary layer thickness δ is approximately resolved for the
geometries G1 and G2 with nine grid cells, and for the other geometries with more than
ten grid cells.

rigid lids at the bottom and at the top. We consider variations of the inclination angle
α and keep all radii at the bottom (z= 0) fixed. The frustum radius R(z; α) and the
annulus gap width 1r(z; α) depend on the height H and the cone angle α. They are
given by

R(z; α)= r1 − z tan α and 1r(z; α)= r2 − R(z; α). (2.1a,b)

One has R= r1 at the bottom and R= r3= r1−H tanα at the top. The constraint r3> 0
limits the maximum cone angle that can be reached for a given radius-to-height ratio
r1/H.

Seven different geometries (denoted G1–G7) have been investigated by varying the
cone angle α in the range [0◦, 18◦] in steps of 3◦ (see table 1). For α = 0◦ (G1) a
standard Taylor–Couette configuration is realized in which a straight inner cylinder is
coaxially aligned with the outer cylinder. For the present study we adopted a wide-gap
configuration to allow for a wide range of accessible wall inclination angles. Using
r1 as length scale, the geometries investigated are characterized by the dimensionless
values r1= 1, r2= 1.4 and H= 1.5. For the case of α= 0◦, this corresponds also to the
often-used radius ratio r1/r2≈ 0.72 (e.g. Czarny & Lueptow 2007; Paoletti & Lathrop
2011; Avila 2012; Ostilla-Mónico et al. 2014; Nordsiek et al. 2015). The aspect ratio
considered here is Γ = H/(r2 − r1) = 3.75, which is rather small but necessary to
accommodate a broad range of inclination angles. In addition, the small aspect ratio
helps to make three-dimensional (3-D) DNS feasible.

Initially, we assume the whole system to be in uniform rotation (angular velocity
Ω0ez) around its axis of symmetry. Flows relative to this state of rigid body rotation
are excited by longitudinal libration of the inner boundary. That is, the rotation rate
of the inclined inner wall is subject to sinusoidal modulations of the form

Ω(t)=Ω0[1+ ε sin(ωt)] (2.2)

in which ε is the (dimensionless) libration amplitude and ω is the libration frequency.
The libration amplitude gives rise to a local perturbation velocity εΩ0R(z; α), which
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is of the order εΩ0r1 for a small cone angle and an aspect ratio of order one. The
cone angle does not notably affect the velocity scale, but will affect the local Coriolis
(i.e. f -plane effect) which will be discussed further in § 3.1 below.

2.2. Governing equations
We are interested in small-amplitude flows relative to the background rigid body
rotation Ω0. A perturbation is prescribed by longitudinal libration of the frustum.
The perturbation propagates away from the wall due to viscous diffusion. At finite
distance from the wall the perturbation velocity will then be subject to the Coriolis
force and nonlinearity so that instabilities may develop. The equations of motion
describing this flow are given by the incompressible Navier–Stokes equations in the
co-rotating frame of reference,

∂u
∂t
+ Ro(u · ∇)u+ 2ez × u=−∇φ − E∇× (∇× u), (2.3)

∇ · u= 0, (2.4)

where u is the velocity, φ is the fluctuating kinematic pressure, t is the time, ∇ is the
nabla operator, Ro is the Rossby number and E is the Ekman number. The rotational
form of the viscous diffusion term is used to highlight the importance of the vorticity
∇× u for three-dimensional flows.

Equations (2.3) and (2.4) were made dimensionless by taking the maximum radius
of the librating wall as length scale (L= r1), the wall libration as velocity scale (U=
εΩ0r1) and the mean rotation rate as inverse time scale (T =Ω−1

0 ). The acceleration
terms are normalized with εΩ2

0 r1. This yields two dimensionless control parameters
in (2.3): the Rossby number Ro and the Ekman number E given by

Ro=
U

r1Ω0
= ε and E=

ν

Ω0r2
1
. (2.5a,b)

The Rossby number measures the strength of the nonlinear momentum advection
relative to the Coriolis force and is in the present scaling equal to the libration
amplitude ε. The Ekman number measures the strength of viscous forces relative to
the Coriolis force. Both are measures for the integral scale of the flow so that the
bulk Reynolds number estimated for system-scale motions is given by Re= Ro/E.

We seek solutions to the governing (2.3) and (2.4) in terms of the velocity field
u(x, t) subject to the no-slip boundary condition at the domain boundary. In the
co-rotating frame of reference (rotating with Ω0) and with respect to cylindrical
coordinates, the velocity boundary conditions complementing the dimensionless
equations of motion are given by

ur = uz = 0 and uθ =
{

r sin(ωt) at r= R(z; α),
0 otherwise, (2.6a,b)

where R(z; α) is given by (2.1). The first expression for the radial velocity ur and
the axial velocity uz reflects the impermeability of the wall and the absence of any
wall-deforming motion.

It is worth noting that the present scaling of (2.3) and (2.4) is adequate for
numerical solutions in rotation-dominated flow regimes which obey Ro . 1 since all
forces will be of the order of one or smaller. The Rossby number, or the libration
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amplitude ε for that matter, directly sets the strength of the nonlinearity. However,
the balance of forces will depend not only on the time scale Ω−1

0 of the Coriolis
force, but also on the time scale ω−1 imposed by libration, which does not yet appear
in the present scaling. Moreover, also the spatial gradients and the curvature of the
velocity field need to be considered which would demand more knowledge of the
flow driven by libration. We will therefore come back to the scaling problem in § 3.2
when the Ekman–Stokes boundary layer and the DNS solution is addressed in more
detail.

2.3. Description of the numerical solver
In the following we give an overview of the history and the relevant features of the
numerical solver HYBRID-NEW used for the present study. HYBRID-NEW solves
numerically the incompressible Navier–Stokes equations (2.3) and (2.4) in planar
or axial geometries using a finite differencing method on a structured grid. The
implementation of HYBRID-NEW dates back to the early 1990s, when Choi and
colleagues simulated the flow over riblets in planar geometry (Choi, Moin & Kim
1992, 1993). This numerical solver was then further developed in the late 1990s by
Kaltenbach and colleagues to study planar diffuser flows (Lund & Kaltenbach 1995;
Kaltenbach et al. 1999). Kaltenbach and Hauschild introduced the axial geometry in
2004. Building on this axial formulation HYBRID-NEW has been modified further
just recently to simulate rotating flows in rotating annular confinements with wall
libration. In particular, the flow induced by wall libration has been investigated with a
focus on inertial waves and boundary layer dynamics for which very good agreement
between the numerical results and laboratory measurements has been obtained (Klein
et al. 2014; Klein 2016). Moreover, the accuracy of the numerical solver was
validated by Ghasemi (2017) and Ghasemi et al. (2016) comparing numerical results
obtained with HYBRID-NEW against two relevant reference configurations. The first
is turbulent Taylor–Couette flow with reference data of Bilson & Bremhorst (2007),
the second concerns the flow induced by a librating cylinder with reference data of
Sauret et al. (2012). Both of these test cases exhibit virtually perfect agreement.

To aid conservation properties, the conservative form of the governing (2.3) and
(2.4) is solved with respect to a terrain-following, locally orthogonal coordinate system
using contravariant volume fluxes qi (i= 1, 2, 3) as model variables. The transformed
set of equations is rather lengthy and not given here (details can be found in the
PhD thesis of Klein 2016). The volume fluxes qi are interpolated to the mass points
(grid cell centres) and, for this study, mapped to the cylindrical velocity components
(uz, ur, uθ) where z denotes the axial, r the radial and θ the azimuthal coordinate. The
cylindrical velocity components forms the basis for visualization and further analysis.

For the wall-bounded directions (radial–axial plane) second-order finite differences
are used to aid efficiency. The volume flux components q1 and q2 are staggered
on the Arakawa C-grid with respect to the transformed coordinates. This implies
that no additional regularization of the libration boundary conditions is needed. For
the azimuthal (spanwise) direction periodicity is exploited by utilizing a collocation
method in conjunction with the Fourier spectral derivative and 2/3 de-aliasing (Orszag
1971). The azimuthal volume flux component q3 is collocated with the fluctuating
pressure φ at the grid cell mass points, whereas the volume flux components q1 and
q2 are located on the grid cell faces. This arrangement constrains interpolations to
axial–radial sections.

The time integration scheme implemented in HYBRID-NEW is semi-implicit and
similar to the one described by Orlandi (2000). Here, however, only the wall-normal
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viscous terms are treated implicitly using a factored (second-order) Crank–Nicolson
scheme. Nonlinear advection, Coriolis force, pressure gradient force, azimuthal viscous
terms and viscous cross-terms (resulting from the coordinate transformation), as well
as the boundary conditions are treated explicitly with a conventional third-order
Runge–Kutta scheme.

The solution of the Poisson equation for the fluctuating pressure φ is woven into
the time-marching scheme to keep the flow solenoidal at any discrete time level. This
is accomplished by the fractional-step algorithm described by Kim & Moin (1985).
In this algorithm, the fluctuating pressure φ is computed at mass points by inverting
the discretized Laplacian with the pressure pinned to zero at one point in the domain
(usually at an edge). Homogeneous Neumann boundary conditions (n ·∇φ= 0; surface
normal n) are prescribed at the domain boundaries even for the librating wall. This is
permissible because there is no flow across the wall and because φ is never computed
at the wall nor used as diagnostic quantity. The 3-D Poisson equation is then solved
by a hybrid approach. A Fourier transformation method is applied in the azimuthal
(spanwise) direction. This is followed by 2-D direct sparse matrix inversions for the
set of azimuthal wavenumber contribution. These inversions are done with the LU-
decomposition provided by the LAPACK library (Anderson et al. 1999). The costly
factorization into the lower (L) and upper (U) part is done at maximum once during
a simulation for each of the azimuthal wavenumbers. The factorization is invoked
together with the first matrix inversion when the residual of the velocity divergence for
the considered wavenumber is above the estimated discretization error. This strategy
improves notably the numerical efficiency of the solver for intermittent flow problems.

It is worth noting that in accord with Morinishi et al. (1998) the numerical scheme
used conserves mass, momentum and kinetic energy. This is a direct consequence
of the contravariant volume flux formulation with specification of locally orthogonal
grids. The algebraic grid generator used has been designed carefully to produce
numerical grids which obey the discrete form of the geometric conservation law (see
Thompson, Warsi & Mastin (1985) for the theoretical background and Klein (2016)
for the application to HYBRID-NEW).

2.4. Resolution requirements and the selection of control parameter values
The key problem for 3-D DNS is to resolve a turbulent flow down to Kolmogorov
scale but also the viscous sublayer at the wall. In the case of wall libration with
relatively small libration amplitudes (low Rossby numbers) the resolution of the
near-wall viscous layer (here the ESBL) is the more challenging task. We aimed
to resolve the laminar boundary layer thickness δ with at least ten grid boxes
(Nδ > 10). One can estimate δ by assuming a finite wall inclination α so that the
local dimensionless Coriolis parameter is f∗= 2 sin α∼ 1. Likewise, the dimensionless
libration frequency ω ∼ 1 can be taken as comparable with the mean rotation rate
Ω0. This yields a dimensionless boundary layer thickness (normalized with L = r1)
proportional to the Ekman number, i.e. δ ∼ E1/2 (compare with Greenspan 1969;
Kerswell 1995). The theoretical boundary layer thickness δ is derived in § 3.1
accounting for the dependencies on f∗ and ω. This improved estimate has been
used to compute the values listed in table 1.

When the libration amplitude reaches a critical value it has been observed that the
near-wall flow becomes intermittently unstable in the centrifugally unstable retrograde
(prograde) libration phase ωt∈[π,2π] (ωt∈[0,π]) in the case of outer (inner) cylinder
libration (see Sauret et al. 2012; Ghasemi et al. 2016). This instability gives rise to
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Görtler vortices and a turbulent region on top of the laminar boundary layer. So, also
the spatio-temporal evolution of this instability needs to be resolved in a DNS.

The near-wall resolution requirements are partly weakened by employing a
tanh-based grid stretching in the wall-normal directions. However, it needs to be
emphasized that the bulk flow will contain inertial waves. These weaves originate
constantly and primarily from the edges of the geometry adjacent to a librating wall
(e.g. Klein et al. 2014) but they are also emitted spontaneously by Görtler vortices
developing in the unstable boundary layer flow (e.g. Sauret et al. 2013). Inertial
waves are propagate as oblique shear layers through the entire flow domain. This
means that even under laminar flow conditions one needs to resolve these internal
shear layers in the bulk of fluid. Internal shear layers related to inertial waves (IW)
are known to have a width of the order of δIW ∼E1/3 (e.g. Kerswell 1995; Koch et al.
2013) and need to be resolved with a sufficient number of grid cells. This constrains
the grid spacing in the bulk of fluid.

For the present study the (dimensionless) libration frequency of the frustum has
been kept constant at ω= 1. This means that the time scale of libration is similar to
the time scale of the Coriolis force, and that the selected libration frequency falls right
into the middle of the inertial wave interval 0 < ωIW < 2. Inertial waves redistribute
kinetic energy within the flow domain, but can lead to energy accumulation in
standing wave patterns in the case of resonance. ‘Classical’ eigenmode resonances
are relevant for the cylindrical gap (geometry G1; see also Borcia, Ghasemi &
Harlander 2014) and similar to those in the full cylinder (e.g. Greenspan 1969; Lopez
& Marques 2011). The corresponding flow structures are smooth and not much
of concern for spatial resolution requirements. Another mechanism for resonance,
however, is given by wave attractors, which are exhibited by geometries with inclined
(e.g. Maas & Lam 1995; Hazewinkel, Maas & Dalziel 2008; Jouve & Ogilvie 2014)
or conical walls (geometries G2–G7; see also Klein et al. 2014). These structures are
the result of geometric focusing of inertial waves due to reflections at oblique wall
segments, here given by the inner (frustum) wall. This has two consequences. One
is that wave energy is focused towards a unique limit cycle (orbit) after a couple of
recurrences to the inclined wall. This orbit is called a wave attractor and has a few
distinct reflection points located along the confinement wall. Another is the reduction
of the wavelength and, hence, an increase of the shear so that a balance between
energy concentration and viscous dissipation develops on the smallest scales (see
Hazewinkel et al. 2008). Therefore, presence of a wave attractor yields considerably
higher resolution requirements compared to a (low-order) eigenmode.

In the present paper, we intend to study the Görtler instability of the boundary
layer flow with minimal feedback from the bulk flow. We therefore ensured that no
wave attractor or eigenmode exists at the selected forcing frequency (ω = 1) for the
geometries G1–G7. This was done in a previous study with the aid of geometric ray
tracing (see Borcia & Harlander 2012).

There are two more constraints for the DNS of the present flow configuration. The
first concerns the time needed to converge the simulations to a statistically stationary
state which is rather long because of the intermittent behaviour. The second concerns
the averaging, which has to be performed over several libration periods (see § 2.5) to
gather sufficient statistics. With the computational facilities available long time 3-D
DNS could be performed for an Ekman number of E = 4 × 10−5 using a minimum
grid spacing of |1xwall

i | ' 10−3 near the wall and a four times higher grid spacing
|1xbulk

i | ' 4× 10−3 in the bulk (see also table 1).
High-resolution 3-D DNS have been performed only for the geometries G2 and

G6 using Nθ = 257 azimuthal grid points. All other geometries have been simulated
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with a coarser azimuthal resolution of Nθ = 161 (see table 1). This was done to
reduce computational cost, but comes at the price that the azimuthal structure of
the near-wall instability might not be sufficiently resolved (e.g. by comparing with
the results of Lopez & Marques 2011). So, what is the (azimuthal) resolution
requirement? This question was addressed by Ghasemi (2017, chap. 2) investigating
a classical Taylor–Couette (TC) flow with the HYBRID-NEW solver. It turns out
that for TC flow the dominating error is due to azimuthal truncation. Comparing for
example the Reynolds stress 〈u′ru

′

θ 〉 obtained with HYBRID-NEW with those from
Bilson & Bremhorst (2007) revealed that the high-resolution (Nθ = 257) results differ
from the reference by less than 1 %. Truncating the azimuthal resolution at Nθ = 129
grid points leads to a relative error of approximately 10 % in the mean velocity profile
and artificially reduced turbulent stresses. With the aid of these TC flow results we
concluded that a coarse azimuthal resolution of Nθ = 161 grid points can be used to
simulate the unstable boundary layer over the frustum with an error definitely below
10 % (and most likely even below 5 %).

Altogether, the numerical simulations to be discussed below were performed for
the constant Ekman number E = 4 × 10−5 and two different libration amplitudes
(Rossby numbers) ε = 0.2 and 0.8. For ε = 0.2, the boundary layer over the frustum
is stable during the whole libration period, whereas for ε= 0.8 the boundary layer is
intermittently unstable by exceeding a critical libration amplitude (Sauret et al. 2012).

2.5. Remarks on the post-processing of the numerical data
Post-processing of the numerical data was carried out on the grounds of the cylindrical
velocity components (ur, uz, uθ), where (r, z, θ) denote the radial, axial and azimuthal
directions, respectively. These velocities were obtained as primary model output after
interpolation of the volume fluxes to grid cell centres and rotation of the basis vectors.

The statistical analysis of the flow excited was carried out only for the statistically
stationary state, which was identified by monitoring the convergence of the total
kinetic energy averaged over a libration period of duration 2π/ω. Once the statistically
stationary state had been reached, ensemble (phase) averages, a long-time average
and spatial averages were computed. Ensemble averages ψ for a selected property
field ψ were computed for different libration phases ϕ = (ωt mod 2π) = const. The
long-time average ψ̃ was computed over several integer libration periods ωt = 2πM
with M & 10 and usually combined with an azimuthal and/or an axial average. While
the azimuthal average 〈ψ〉θ was computed straightforwardly, the axial average 〈ψ〉z
encompasses only a fraction of the annulus height (z ∈ [0.3, 1.2] of the available
range [0, 1.5]) to exclude effects from the Ekman boundary layer over the lids. This
can be justified for the mean azimuthal bulk flow, which is typically a swirl flow
with its symmetry axis aligned with the axis of mean rotation.

Within the boundary layer over the frustum we expect a largely wall-tangential flow,
which has an azimuthal component induced by libration and induced secondary flow
in the radial–axial section parallel to the frustum wall. Hence, all velocity components
of the cylindrical system are in general non-zero over the conical inner boundary. The
secondary parallel contribution results from the local transformation

u‖ = uz cos α − ur sin α. (2.7)

The local velocity solution thus gives rise to two contributions to the wall shear
stress, the azimuthal component τθ and the wall-parallel contribution in an axial–radial
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section of the domain. Therefore, the dimensionless wall shear stress over the librating
frustum is given by the two components

τθ = E
∣∣∣∣∂uθ
∂n

∣∣∣∣ and τ‖ = E
∣∣∣∣∂u‖
∂n

∣∣∣∣ , (2.8a,b)

where ∂/∂n denotes the wall-normal derivative with the surface normal n =
ez cos α − er sin α. The wall-normal derivative is straightforward to compute in
the numerical solver due to terrain-following locally orthogonal grid lines. Note that
the wall shear stress is also subjected to ensemble averaging and azimuthal–axial
averaging as described above, where the ‘axial average’ simply encompasses all grid
cells at the wall in the specified z-range. Note also that the bar indicating ensemble
averaging is omitted in (2.8).

The secondary velocity u‖ in the boundary layer yields an axial and radial
displacement of fluid along the frustum wall. In applications it is almost never
possible to resolve the near-wall spatial structure. It is therefore helpful to compute a
boundary layer average of that induced secondary flow. This yields a time-dependent
mass flux Q(t) confined in the boundary layer realized at the librating conical inner
boundary. The mass flux is obtained by integrating through the viscous sublayer,
that is,

Q≈
∫ R+2δ

R
〈u‖〉θz dr, (2.9)

where R is the local curvature radius of the wall as given by (2.1). The integrand is
subject to spatial averaging, where the subscript z means averaging along the almost
axial wall. Similar to (2.8), the bar which would indicate ensemble averaging is
omitted. Note that the boundary layer thickness δ is much smaller than the local wall
radius R so that curvature can be neglected. Also the wall inclination is small so that
a radial integration can be performed approximately instead of a true wall-normal
integration.

It is worth to mention that the wall-normal integration in (2.9) extends over
twice the (non-dimensional) laminar boundary layer thickness (2δ) implying a
non-dimensional curvature radius R of order unity. The laminar boundary layer
thickness can usually be estimated for various flow problems by considering an
infinite planar wall. For the libration-induced flow over a curved wall it has been
found empirically that the planar approximation can describe the flow sufficiently
well up to a distance of 2–3δ (see Lopez & Marques 2011; Klein 2016, but also
figure 3 and the related discussion in § 3.2 below). This near-wall flow remains almost
unaffected by the bulk flow, just a small effect might be due to inertial waves (Klein
et al. 2014). Here we use this empirical integration length 2δ to compute statistics
of the viscously dominated near-wall region of the ESBL.

3. Results

The stationary rotating flow over a rigid boundary at a finite angle relative to the
axis of rotation is known to form an Ekman boundary layer (EBL) in which the
velocity field above the interface is characterized by the Ekman spiral (see e.g. Ekman
1905; Greenspan 1969). In case the flow above the wall or the wall itself is oscillating
(librating), it has been shown that the stationary theory can be extended to incorporate
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weak time dependencies. Assuming that the flow remains laminar and stable, the so-
called rotary or oscillating Ekman boundary layer develops over the interface. Then
the Coriolis force dominates the wall-normal flow structure of the boundary layer
once momentum transfer has occurred between the wall and the fluid due to viscous
diffusion (e.g. Thorade 1928; Prandle 1982; Busse 2011). In the annular configuration
investigated here (figure 1) this situation would correspond to a flow driven by a
librating top and/or bottom lid.

The other limiting scenario corresponds to the librating outer cylinder or the
librating straight inner cylinder (geometry G1, see table 1). In the vicinity of the
wall viscous diffusion is still driving the flow. The Coriolis force, however, can
take no effect in the flow organization since the rotation axis has no wall-normal
(radial) component. Therefore, the flow over an axially oriented wall is governed by
viscous forces. This setting is similar to Stokes’ second problem (e.g. Batchelor 1967,
pp. 353–355) and thus gives rise to a Stokes boundary layer (SBL).

Libration of the frustum wall yields complications since the wall is neither
perpendicular nor parallel to the rotation axis (geometries G2–G7 in table 1). For
shallow inclination angles or comparably high libration frequencies the boundary
layer is neither an EBL nor a SBL. Instead, the boundary layer over the librating
frustum presumably exhibits properties of both, the EBL and the SBL. We will refer
to that type of boundary layer as Ekman–Stokes boundary layer (ESBL) from here
on. First, we will focus on a justification of this terminology by applying laminar
boundary layer theory to the flow over the librating frustum. Second, we will discuss
the boundary layer flow in a fully nonlinear DNS and how it is subjected to a
Görtler-like instability similar to the SBL over an axially oriented wall in libration.
Finally, we will investigate the mean flow driven by the unstable ESBL in comparison
to the stable boundary layer flow.

3.1. Analysis of the laminar ESBL
The laminar boundary layer flow over the librating frustum is realized for small
libration amplitudes, that is, we may consider the linearized Navier–Stokes equations
(2.3) by letting Ro → 0. The problem of a libration-induced boundary layer flow
along the slope has only been rarely considered in the literature (most recently by
Swart et al. 2010). We therefore include a laminar boundary layer analysis for the
frustum in the following. This material comes for a large part from Klein (2016).

Libration of the frustum induces wall-parallel shear of alternating sign. The laminar
boundary layer flow is therefore expected to vary only in wall-normal direction for a
snapshot at a given time instance. This suggests to decompose the vector of the wall
rotation rate into a wall-parallel and a wall-normal component, namely ez= e⊥ cosα+
e‖ sinα. Inserting this into the Coriolis acceleration term in (2.3) and using rigidity of
the wall permit to cancel out the geostrophic balance. Hence only the unbalanced wall-
parallel projection of the Coriolis force affects the flow evolution near the wall. This
is known as the f -plane approximation (e.g. Pedlosky 1987). For the frustum with a
wall inclination α (taken with respect to the rotation axis), the strength of the effective
Coriolis force is proportional to the dimensionless effective Coriolis parameter

f∗ ≡ f sin α with f = 2 (3.1)

relative to the mean rotation rate Ω0. In analogy to the sphere, this yields f∗ ∈ [−2, 2]
such that f∗ = 2 applies to Earth’s North Pole, f∗ =−2 applies to the South Pole and
f∗= 0 applies at the equator or the inner cylinder in geometry G1. Here, f∗ is constant
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Unstable (ε= 0.8) Stable (ε= 0.2)

ID α (deg.) β (deg.) βmax
τ ,+ (deg.) |τ‖|max

+

|τθ |
max
+

|τ‖|max
+

|τ‖|
max
+

|τ‖|max
−

βmax
τ ,+ (deg.) |τ‖|max

+

|τθ |
max
+

|τ‖|max
+

|τ‖|
max
+

|τ‖|max
−

G1 0 0.0 0.95 0.05 60 6.0 0.01 0.01 6500 1.16
G2 3 3.8 3.2 0.19 18 0.90 3.6 0.22 16 1.16
G3 6 7.5 6.7 0.40 8.5 1.07 7.1 0.41 8.0 1.14
G4 9 10.7 10.9 0.60 5.2 1.20 10.5 0.60 5.4 1.13
G5 12 13.3 16.0 0.85 3.5 1.40 14.4 0.78 3.9 1.12
G6 15 16 20.3 1.0 2.7 1.52 18.4 0.93 3.0 1.12
G7 18 19 26.6 1.3 2.0 1.65 21.8 1.00 2.5 1.12

TABLE 2. Simulated maximum values and ratios of the spatially averaged wall shear stress
components τθ and τ‖ obtained for intermittently unstable and stable flow conditions. The
subscripts + and − refer to the prograde and retrograde libration half-phases, respectively.
The maximum values were divided by ε and multiplied with 103. The values for the
unstable ESBL correspond to figure 7. The deflection angle β of the Görtler vortices was
measured in an axial–azimuthal section for unstable flow conditions; the stress angle βτ
is given for both stable and unstable conditions.

for the entire frustum of the selected geometry but increases with the apex half-angle
α for the geometries G1–G7 (see table 2). We use an asterisk (∗) to distinguish the
local value f∗ from the maximum possible value f = 2 and retain f to avoid confusion
with a numerical factor 2 in the laminar solution presented below. To simplify the
equations, but without loss of generality, we assume f∗ > 0 from here on.

In order to simplify the analytical treatment, we consider a tangential plane with
a local coordinate origin at some radius R on the frustum wall. A local Cartesian
treatment is permissible since the frustum radius is much larger than the boundary
layer thickness of the ESBL (R� δ), but requires some care to incorporate curvature
effects as we shall see shortly. Let the local Cartesian axes be oriented such that
x′ is the local azimuthal (zonal) coordinate, z′ is the local wall-normal coordinate
and y′ is the second wall-tangential coordinate (lying in a radial–axial section). The
local velocity components are then given by u′, w′ and v′ corresponding to the local
azimuthal, wall-normal and wall-tangential component. This ensures that the local axes
are right-handed and that for α = 0◦ the velocities correspond to u′ = uθ , w′ = ur and
v′ = uz.

The most general property of the frustum (or spherical wall) libration is the
generation of positive and negative vorticity. This suggests to use the vorticity-
divergence form of the f -plane equations as starting point, that is,

∂ζ

∂t
+ f∗∆= E

∂2ζ

∂z′2
,

∂∆

∂t
− f∗ζ = E

∂2∆

∂z′2
, (3.2a,b)

where ζ = ∂v′/∂x′ − ∂u′/∂y′ is the wall-normal vorticity and ∆ = ∂u′/∂x′ + ∂v′/∂y′
is the divergence formed by the wall-tangential velocity components. Both ζ and
∆ can be simplified further for an axisymmetric flow since ∂(·)/∂x′ = 0. Note that
the unbalanced pressure forces cancel exactly in the equation for ζ , whereas in the
equation for ∆ the pressure gradient terms have been dropped by taking advantage
of the boundary layer approximation (i.e. the wall-normal gradients are much larger
than the wall-tangential gradients).
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The boundary conditions for a single librating wall are given by

u′ =
Rf
2

sin(ωt), v′ =w′ = 0 at z′ = 0,

ζ = f∗ sin(ωt), ∆= 0 at z′ = 0,
u′, v′,w′→ 0, ζ , ∆→ 0 at z′→+∞.

 (3.3)

Equations (3.2) subject to the boundary conditions (3.3) have the solution

ζ (z′, t) =
f∗
2

sin(ωt)
[

exp
(
−

z′

δ−

)
cos
(

z′

δ−

)
+ exp

(
−

z′

δ+

)
cos
(

z′

δ+

)]
+

f∗
2

cos(ωt)
[
σ exp

(
−

z′

δ−

)
sin
(

z′

δ−

)
− exp

(
−

z′

δ+

)
sin
(

z′

δ+

)]
, (3.4)

1(z′, t) =
f∗
2

sin(ωt)
[
σ exp

(
−

z′

δ−

)
sin
(

z′

δ−

)
+ exp

(
−

z′

δ+

)
sin
(

z′

δ+

)]
−

f∗
2

cos(ωt)
[

exp
(
−

z′

δ−

)
cos
(

z′

δ−

)
− exp

(
−

z′

δ+

)
cos
(

z′

δ+

)]
, (3.5)

in which the following parameters were defined,

σ ≡ sgn( f∗ −ω) and δ± ≡

√
2E
|f∗ ±ω|

. (3.6a,b)

The sign σ is positive (+1) for libration frequencies ω < f∗, whereas it is negative
(−1) for libration frequencies ω > f∗. The vorticity-divergence solution reveals that
there are two competing boundary layer thicknesses δ+ and δ− which define the ESBL.
We will discuss the boundary layer structure shortly in more detail after we have
computed the velocity profiles.

The wall-normal velocity profile w′(z′, t) follows from a wall-normal integration of
the continuity equation ∂w′/∂z′ +∆= 0. This shows that the wall-normal outflow w′
is induced by the wall-tangential divergence ∆ which is a result of libration, viscous
diffusion and Coriolis force. The wall-tangential velocity profiles u′(z′, t) and v′(z′, t)
of the librating frustum are obtained by integrating ζ and ∆ along the frustum wall
(along y′). A consistent wall velocity is obtained by letting u′ ∝ Rf /2, which crosses
zero at the apex of the cone that describes the frustum, and yields y′ = −R/ sin α.
The integration along y′ must also account for the azimuthal curvature of the frustum.
This effect can be accounted for in a laminar boundary layer flow by considering the
circulation around the frustum. Doing so simply yields the additional factor 1/2 in the
otherwise planar treatment of the local dynamics. The local 1-D velocity solution of
the ESBL at the librating frustum is thus given by

u′(z′, t)=
R

2 sin α
ζ(z′, t), v′(z′, t)=−

R
2 sin α

1(z′, t), w′(z′, t)=−
∫ z′

0
1(ξ, t) dξ .

(3.7a−c)

By expanding (3.7) we can finally obtain the time-dependent velocity profiles of the
laminar ESBL. These are given by

u′(z′, t) =
R
2

sin(ωt)
[

exp
(
−

z′

δ−

)
cos
(

z′

δ−

)
+ exp

(
−

z′

δ+

)
cos
(

z′

δ+

)]
+

R
2

cos(ωt)
[
σ exp

(
−

z′

δ−

)
sin
(

z′

δ−

)
− exp

(
−

z′

δ+

)
sin
(

z′

δ+

)]
, (3.8)
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v′(z′, t) =
R
2

sin(ωt)
[
−σ exp

(
−

z′

δ−

)
sin
(

z′

δ−

)
− exp

(
−

z′

δ+

)
sin
(

z′

δ+

)]
+

R
2

cos(ωt)
[

exp
(
−

z′

δ−

)
cos
(

z′

δ−

)
− exp

(
−

z′

δ+

)
cos
(

z′

δ+

)]
, (3.9)

w′(z′, t) = −
f∗
2f

sin(ωt)[σδ−(1+ 2Isin(z′/δ−))+ δ+(1+ 2Isin(z′/δ+))]

+
f∗
2f

cos(ωt)[δ−(1+ 2Icos(z′/δ−))− δ+(1+ 2Icos(z′/δ+))], (3.10)

where we have used the following shorthand for some integrals

Isin(ξ)=−
e−ξ

2
(cos ξ + sin ξ) and Icos(ξ)=−

e−ξ

2
(cos ξ − sin ξ). (3.11a,b)

Equations (3.8)–(3.10) constitute the 1-D laminar boundary layer solution of the
time-dependent f -plane equations valid locally for a given radial position R on the
librating frustum. All velocities have been scaled with the libration amplitude ε. For
the solution presented it is instructive to consider the limiting cases of very low and
high libration frequencies discussed in the following.

For very low libration frequencies, ω� f∗, one has σ = 1 and δ±→ δE =
√

2E/f∗,
which is the thickness of the classical Ekman boundary layer. All terms in the second
lines of equations (3.8)–(3.10) vanish, which results in a quasi-steady Ekman layer
that oscillates in phase with the wall libration. In addition, this Ekman layer has non-
zero wall-normal velocity w′ (Ekman pumping/suction) due to non-zero vorticity of
the boundary condition (e.g. Greenspan 1969; Busse et al. 2007). With increasing ω,
the difference between δ− and δ+ increases and leads to a larger phase lag, which
reaches its constant maximum value for ω> f∗.

For very high libration frequencies, ω� f∗, one has σ =−1 and δ±→ δS=
√

2E/ω,
which is the thickness of the classical Stokes boundary layer as discussed by Sauret
et al. (2012). In this case, the right-hand sides of (3.9) and (3.10) vanish and there
is only an azimuthal velocity u′ in the boundary layer. The fluid near the frustum is
dragged along with the wall due to viscosity, but the time scale of libration is too
short for significant momentum diffusion to occur before the wall velocity reverses
sign. With decreasing libration frequency, momentum diffusion can affect fluid further
away from the wall so that the Coriolis force becomes notable at some point, which
finally giving rise to non-zero v′ and w′ components once δ− and δ+ differ notably as
ω→ f∗.

At intermediate frequencies (ω close to f∗) the ESBL is not so easily described.
Figure 2 therefore shows how the ESBL structure changes with ω or f∗ when varied
over orders of magnitude. More precisely, the normalized boundary layer thicknesses
δ±/δE is shown as function of the normalized libration frequency γ = ω/f∗. Due to
this scaling, the two graphs shown describe every possible ESBL. The asymptotic
behaviour for γ � 1 (EBL) and γ � 1 (SBL) can be observed by means of δ±
converging to a constant value (EBL) or an inclined line (SBL). Only for ω close
to f∗ (γ ∼O(1)) there is a notable difference between δ+ and δ−, and δ− diverges at
ω = f∗ (γ = 1). The configurations G2–G7 studied below fulfil γ > 1 and are given
by vertical lines. (G1 is not shown since it has a straight wall with a pure SBL.)

Let us come back to the velocity solution given by (3.8)–(3.10). It is worth noting
that the wall-normal velocity w′ does not depend on the frustum radius R, but on the
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101

100

10–1

10010–110–2 104103102101

FIGURE 2. Similarity curve of the ESBL in terms of the theoretical boundary layer
thicknesses δ as a function of the time scale ratio γ . All boundary layer thicknesses have
been normalized by the steady EBL thickness δE. The ESBL thickness δ− erupts at γ = 1
(solid line), whereas the ESBL thickness δ+ remains finite (thick dashes). The limiting
cases are the steady EBL for γ � 1 (thin dashes) and the SBL for γ � 1 (dotted). Note
that the geometries investigated (G2–G7) are located to the right of the boundary layer
eruption.

local wall-normal vorticity (say f∗) in contrast to the wall-tangential velocities u′ and
v′. The Ekman pumping/suction associated with the induced velocity w′ is maximal
for a wall perpendicular to the rotation axis (EBL case |f∗| = f ) and reaches zero
for an axial wall (SBL case f∗ = 0). Equations (3.8)–(3.10) show that w′ becomes
negligibly small compared to u′ and v′ in case of a very large curvature radius
(R� 1). That is, the kinetic energy density at the wall (u′2 ∝ R2f 2) increases with
the radius, but the vorticity remains constant (ζ ′ ∝ f∗). So, for R� 1, the solution
developed above approaches the planar ESBL studied by Salon & Armenio (2011),
who considered a pressure-driven (tidally forced) flow on the f -plane. This suggests
that the boundary layer over the librating frustum is always an ESBL, but it depends
on the local wall curvature how strong the Ekman pumping/suction is in comparison
to the wall-tangential flow trapped in the boundary layer.

Now that we have the analytical expressions for the laminar velocity profiles we can
move on by computing the wall shear stress and the Ekman flux in analogy to (2.8)
and (2.9) used for the DNS. This provides further insight into the properties of the
ESBL and will proof useful in the analysis of the stable and unstable ESBL addressed
later.

The wall shear stress components due to the analytical velocity profiles read

τθ ' E
∂u′

∂z′
= E

(
−

R
2
δ− + δ+

δ−δ+
sin(ωt)−

R
2
δ− − σδ+

δ−δ+
cos(ωt)

)
, (3.12)

τ‖ ' E
∂v′

∂z′
= E

(
−

R
2
δ− + σδ+

δ−δ+
sin(ωt)+

R
2
δ− − δ+

δ−δ+
cos(ωt)

)
, (3.13)

where the boundary layer thicknesses δ± and the sign σ have been defined in (3.6).
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FIGURE 3. ESBL profiles over the librating frustum at two different libration phases ϕ=0
and π/2 for the geometry G3. The analytical solution is compared to the DNS for a
wall inclination of α = 6◦ towards the axial direction and the libration amplitude ε= 0.2
(Rossby number Ro= 0.2) in the stable regime. The origin of the wall-normal coordinate
z′ = 0 corresponds to the point (r, z) ≈ (0.905, 1.0) and all velocity components have
been rescaled with the local frustum radius R≈ 0.905. The Ekman layer thicknesses δ−
is given by a dotted vertical line for orientation. The temporal variability is indicated by
grey shading between the envelope of the 1-D analytical solutions.

The Ekman flux is an oscillating mass flux confined to the ESBL. This flux has
an azimuthal and a wall-parallel component. The azimuthal component is due to
the Stokes property (i.e. momentum diffusion), whereas the wall-parallel component
is due to the Ekman property (i.e. Coriolis force). Here, we want to focus on the
Ekman property by looking into the wall-parallel component Q. Over the frustum, Q
has radial and axial contributions. Computing Q in analogy to (2.9) but here for the
analytical velocity profiles yields

Q=−
δ− + σδ+

4σ
sin(ωt)+

δ− − δ+

4
cos(ωt)= A sin(ωt+ χ), (3.14)

where the amplitude A and the phase shift χ are given by

A=

√
E
2

√
f∗

f 2
∗
−ω2

, tan χ =−
√

f∗ +ω−
√

f∗ −ω
√

f∗ +ω+
√

f∗ −ω
for ω< f∗, (3.15a,b)

A=

√
E
2

√
ω−

√
ω2 − f 2

∗

ω2 − f 2
∗

, tan χ = 1 ⇒ χ =π/4 for ω> f∗, (3.16a,b)

where we assume positive values for f∗ and ω. The geometries G2–G7 correspond to
the second case where the phase shift is fixed but the amplitude of the induced mass
flux depends on the forcing frequency (ω) and the wall inclination ( f∗). There are two
interesting properties specific to the ESBL: (i) the fixed phase shift (3.16) is a result of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.552


128 A. Ghasemi, M. Klein, A. Will and U. Harlander

the Ekman property by means of a fixed intrinsic time scale f−1
∗

of the Coriolis force,
and (ii) the mass flux amplitude tends to zero for ω� f∗ but ‘erupts’ for ω→ f∗ (Klein
et al. 2014). It turns out that small (large) libration frequencies in comparison to the
effective Coriolis parameter emphasize the Ekman (Stokes) property of the ESBL. So,
in order to have a significant Ekman property in the ESBL, we consider a regime with
ω and f∗ not too far apart from each other.

3.2. Comparison of the local numerical and analytical ESBL solutions
The DNS requires a finite libration amplitude, which means finite Rossby number and,
thus, per se weakly nonlinear conditions. Nevertheless, as long as the flow remains
stable, a fair comparison between weakly nonlinear DNS and the linear theory can
be performed in the vicinity of the wall. For the case shown in figure 3 a Rossby
number of Ro=0.2 and an Ekman number of E=3×10−5 has been selected such that
the flow remained axisymmetric and stable over the frustum. The simulations were
conducted as described in § 2. For better comparison with the f -plane solution, the
velocities (uθ , ur, uz) were transformed to a local reference frame such that (u′, v′,w′)
denote the local azimuthal, axial (wall parallel in a radial–axial slice), and wall-normal
velocity components. Wall-normal velocity profiles (coordinate z′) have been recorded
over a selected location on the frustum.

Figure 3 shows various local wall-normal velocity profiles (u′, v′, w′) over the
librating frustum comparing the 1-D ESBL solution to the 3-D DNS for the two
libration phases ϕ = 0 and π/2. The inclination of the frustum wall is α = 6◦
(geometry G3), but the flow is representative for all geometries G2–G7 with an inner
frustum. Any of the velocity components has been normalized with the local libration
velocity Rf /2. The temporal variability of the flow is illustrated by a shading of the
area between the minimum and maximum values of the 1-D solution.

It is quite remarkable how well the 1-D theory captures the stable 3-D DNS
near the wall. The agreement between 1-D theory and DNS is virtually perfect for
the wall-tangential components u′ and v′ in figure 3(a,b) up to the five theoretical
boundary layer thicknesses (z′ 6 5δ−) shown. By contrast, the wall-normal velocity
profile w′ in figure 3(c) deviates notably from the DNS, but especially for z′ > 2δ−.
This can be explained by curvature and geometry effects. On the one hand, we
accounted for curvature only by formulating the boundary conditions on the f -plane
and then continued with a Cartesian formulation. On the other hand, the 1-D solution
does not account for adverse pressure gradients, mean bulk flow (e.g. Sauret et al.
2012), oscillatory bulk flow due to inertial waves (e.g. Klein et al. 2014) or secondary
circulations due to the lids (e.g. Wang 1970; Hollerbach & Fournier 2004). These
additional flows are likely to modify the boundary layer structure, in particular the
wall-tangential divergence, and are thus likely to have an effect on the wall-normal
velocity profile. In any case, the wall-normal velocity is very small compared to the
wall-tangential velocity components (u′ : v′ : w′ ≈ 1 : 10−1

: 10−4) and deviations might
be less critical.

Note that the larger one (δ−) of the two theoretical boundary layer thicknesses δ± is
taken as the overall thickness of the ESBL. This boundary layer thickness is resolved
roughly by the distance between the markers shown in figure 3, hence, the mesh size
near the wall resolves δ− with Nδ ≈ 4 grid boxes. This is just good enough to capture
the boundary layer structure given the ratio of δ−/δ+. 1.6 for the geometries G2–G7
investigated. It is worth to point out that the level of agreement between DNS and the
1-D theory is comparable to the reference results by Lopez & Marques (2011) and
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Salon & Armenio (2011), which indicates that the near-wall dynamics is sufficiently
resolved in the present DNS and that the 1-D theory is acceptable for the near-wall
laminar flow.

In order to study further the effects of nonlinearity, let us come back to the scaling
of the governing equations. We can now make use of the laminar boundary layer
structure to yield appropriate length scales by means of δ± (3.6) as well as the
well-known boundary layer thicknesses δS of the Stokes layer (e.g. Batchelor 1967,
pp. 353–355) and the thickness δE of the Ekman layer over an inclined wall. Wall
libration of the frustum suggests to use the libration frequency to obtain a time scale
ω−1 and to keep the velocity scale U = εΩ0r1, but to express spatial gradients more
carefully with an appropriate length scale. A term-by-term analysis of the momentum
balance yields ∣∣∣∣∂u

∂t

∣∣∣∣∼ω, |2ez × u| ∼ f∗, |E∇× (∇× u)| ∼
E
δ2
,

|Ro(u · ∇)u| ∼
Ro
δ
, |∇φ| ∼

Ro
δ
,

 (3.17)

where each term was normalized by ε−1U2
= εΩ2

0 r2
1. Hence, ω and f∗ are taken

dimensionless relative to the mean rotation rate Ω0, and the length scale δ is
dimensionless due to division by the maximum frustum radius r1. The balance
of forces governs the type of the boundary layer. The viscous term is of the order of
E/δ2

S = ω for the SBL (δS =
√

2E/ω), whereas it is of the order of E/δ2
E = f∗ for the

EBL (δE =
√

2E/f∗) and of the order of E/δ2
±
= |ω± f∗| for the ESBL.

For low Rossby numbers and moderate Ekman numbers (not too small boundary
layer thickness) equation (3.17) reveals that the local acceleration prescribed by the
wall libration and the Coriolis acceleration imposes two time scales. In analogy to
Noir et al. (2010), we define the parameter

γ ≡
ω

f∗
, (3.18)

which expresses the strength of the librational acceleration relative to the (local)
Coriolis acceleration in terms of a time scale ratio. Three different flow regimes of
the ESBL can be distinguished with the aid of γ . These are given by (i) γ � 1,
the rotation-dominated regime with the EBL limit; (ii) γ ∼ 1, the intermediate or
librational–rotational regime with a ‘true’ ESBL; and (iii) γ � 1, the libration-
dominated or viscous regime with the SBL limit. These regimes have been discussed
above for the laminar ESBL in terms of ω and f∗ instead of γ (see pp. 13, below
equation (3.11)).

It is illustrative to express the boundary layer thicknesses δ± in terms of the time
scale ratio γ to yield

δ±(γ )=
δE

√
1± γ

, (3.19)

where δE =
√

2E/f∗ denotes the thickness of the steady EBL over the inclined
(frustum) wall. The functional dependency δ±(γ ) is shown in figure 2, in which
one can distinguish the three flow regimes mentioned. Regime (ii) is located in the
central part covering a γ -interval of approximately three orders of magnitude centred
at γ = 1. In this regime the two boundary layer thicknesses δ± are notably different
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from each other indicating strong competition between the libration and Coriolis time
scales. In the limits, regime (i) is approached on the left side for γ < 5 × 10−2,
whereas regime (iii) is approached on the right side for γ > 5× 101. These regimes
exhibit a collapse of the two ESBL thicknesses to either the Ekman boundary layer in
regime (i) or the Stokes layer in regime (iii). The values of γ and δ± corresponding
to geometries G2–G7 are given for orientation and found exclusively to the right
of the boundary layer eruption γ = 1 (see table 2 for the exact values). For the
geometry G2 with γ ≈ 10, still the librational forcing gives the main contribution
to the boundary layer dynamics, thus it is categorized as the regime (iii). Increasing
α, γ gradually decreases and thus the effect of the rotation on the flow dynamics
increases in such a way that for the geometry G7 with γ ≈ 1.5 both rotation and
libration give almost the same contribution to the boundary layer dynamics.

The parameter γ allows us to estimate fairly easily which of the forces dominates
the boundary layer dynamics and, thus, to infer which boundary layer structure is
present. This can be relevant for applications, like librating planets or moons, which
exhibit all possible wall inclinations thanks to their spherical symmetry, and thus one
is left with determining their libration frequency (e.g. Comstock & Bills 2003). It is
worth mentioning that the values of γ in table 2 can also be recovered using the
maximum ratio of the wall shear stress components as will be discussed in § 3.5 (see
table 2, |τθ |max

+
/|τ‖|

max
+

).
Until now we have considered only the stable laminar ESBL and used 1-D theory

to obtain the axisymmetric near-wall velocity solution over a curved and inclined
(conical) wall. In practical applications, however, one is more frequently confronted
with (locally) unstable or turbulent flows, which lack specific symmetries. In the
following, we will therefore put the focus on nonlinearity, instability and curvature
effects by studying the unstable ESBL with DNS for a large libration amplitude
(ε = 0.8) but moderate Ekman number (E = 4 × 10−5). We will discuss further the
instability mechanism and how it affects the mean flow excited by comparing DNS
for the unstable flow regime to those of the stable flow regime.

3.3. Görtler instability of the ESBL
In order to steer the discussion in the direction of the unstable flow conditions, let
us begin with a brief review of the laminar flow and the instability mechanism at
work in the case of a librating coaxial inner cylinder (geometry G1). In this case the
induced flow is notably curved, but when the cylinder radius is large compared to
the boundary layer thickness, it is well known that an SBL is established over the
librating wall and curvature is barely notable for the laminar flow (e.g. Sauret et al.
2012). The SBL is basically a damped wave, which follows the boundary oscillation
and thus yields a strong velocity shear in the vicinity of the librating wall. The
absence of the Ekman property is reflected in γ tending to infinity, which means that
librational forcing and molecular momentum diffusion dominate the flow dynamics
exclusively. Non-zero radial and axial velocity components in the DNS are the result
of secondary flows that may be due to geometry, nonlinearity and lid effects under
stable conditions (e.g. Wang 1970; Busse 2011) or due to instability (e.g. Noir et al.
2009; Sauret et al. 2012). Focusing on the instability mechanism, it is worth pointing
out that the SBL over the librating inner cylinder becomes centrifugally unstable once
the libration amplitude exceeds a critical value. This means that curvature effects are
vital for the instability. The instability is intermittent and confined to the vicinity of
the librating wall. It was reported that structures very much alike Görtler vortices
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FIGURE 4. (Colour online) Contour plots of the instantaneous azimuthal uθ (a–d) and
radial velocity component ur (e, f ) visualizing the Görtler instability of the ESBL for
intermittently unstable flows driven by frustum libration with libration amplitude ε = 0.8
and frequency ω= 1 using an Ekman number of E= 4× 10−5. Panels (a,b,e) on the left
correspond to the geometry G2, panels (c,d, f ) on the right correspond to the geometry G6.
The contours are shown in axial–radial (a–d) and wall-parallel–azimuthal sections (e, f ) of
the annular domain. The latter case, the wall-parallel surface is extracted at about 2δ−.
The contours have been recorded at the end of the prograde libration half-period when
the instability is fully developed: libration phase ϕ = 7π/8 (a,c,e, f ), and ϕ =π (b,d).

develop. These vortices accelerate the flow locally due to nonlinear advection, which
results in a local enhancement of the Coriolis force and leads to a rapid propagation
of the Görtler vortices into the fluid bulk (Ghasemi et al. 2016).

The aim of the following paragraphs is to clarify how much of the instability
mechanism of the SBL remains in an ESBL. We tackle this question by varying the
wall slope of the inner cylinder (frustum).

For the selected Ekman number E= ν/(Ω0r2
1)= 4× 10−5 all the geometries G1–G7

were found to be unstable for a dimensionless libration amplitude of ε = 0.8, and
remained stable for ε=0.2. In that respect the ESBL studied here behaves very similar
to the SBL investigated by Sauret et al. (2012) and Ghasemi et al. (2016), i.e. the
ESBL becomes centrifugally unstable in the prograde half-phase of a libration cycle.
The DNS results shown in figure 4 reveal the generation of Görtler vortices over the
librating frustum. A few representative examples of the developed instability are given,
whose details and consequences will be discussed further in the following.

Figure 4 shows various contour plots of instantaneous velocity components in
different sections of the annular domain. Figure 4(a–d) shows uθ in axial–radial
slices for two different configurations G2 (a,b) and G6 (c,d), and for two different
libration phases ϕ = 7π/8 and π at the end of the prograde libration half-period.
Figure 4(e, f ) shows a wall-parallel–azimuthal section of ur for the libration phase
ϕ = 7π/8 at the end of the prograde libration cycle. Geometry G2 exhibits a small
effective Coriolis parameter f∗ and represents the transitional regime (iii) where the
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FIGURE 5. Schematic drawing of the laminar boundary layer flow in terms of the
boundary layer mass flux Q in the unstable phase where Görtler vortices develop (a,b),
and the stress angle βτ normalized by the vortex deflection angle β as function of the wall
inclination angle α (c). Stress angles of the stable and unstable flow have been normalized
using β from the ε= 0.8 case. The streamlines are aligned with the azimuthal coordinate
for the inner cylinder (a), but oblique over the frustum (b). The tilt of the streamlines
over the frustum tends to increase the effective curvature radius of the local flow (r′′> r′
for locally comparable wall radii).

viscous diffusion is much larger than the Coriolis force (γ ∼ O(10)). Geometry G6
exhibits the second largest value of f∗ investigated and has γ ∼O(1).

Mushroom-like structures in the axial–radial plane and azimuthally elongated
structures along the wall are clearly visible in figures 4(a–d) and 4(e, f ), respectively.
The later have been obtained by taking a wall-parallel–azimuthal section approximately
2δ− above the frustum. Streaks of positive ur are surrounded by those of negative
ur which suggests that the propagation of the Görtler vortices out of the ESBL (and
into the bulk) is compensated by a local flow entrainment into the ESBL. The close
visual correspondence of the elongated vortices in the ESBL and the Görtler vortices
observed in an SBL (see Lopez & Marques 2011; Sauret et al. 2012; Ghasemi et al.
2016) suggest that the structures in the unstable ESBL are also Görtler vortices. The
time sequence of events during the instability development favour this interpretation.
Assuming that the Stokes property of the ESBL is the cause of the instability, the
analysis of Ghasemi et al. (2016) for a pure SBL can be applied straightforwardly
to the ESBL: First, the Görtler vortices are generated by a centrifugal instability
mechanism after the frustum started to decelerate. Second, the Görtler vortices
propagate radially into the fluid bulk by forming mushroom-like structures that decay
as time progresses. The axial–radial sections in figures 4(a,b) and 4(c,d), respectively,
reveal the temporal evolution of the Görtler vortices in the ESBL.

An interesting feature of the Görtler vortices in the ESBL is their tilt with respect
to the azimuthal coordinate. This tilt is apparent in figure 4( f ) and can be quantified
by defining a deflection angle β. One could argue that the Coriolis force induces the
tilt of the Görtler vortices so that β might not depend on α but rather on the time
scale ratio γ = ω/f∗. The values of α, γ and β for the geometries G1–G7 are given
in table 2.

The tilt of the Görtler vortices can be related to the direction of the flow within
the boundary layer, that is, the direction of the wall shear stress that will be
discussed in detail in § 3.5. Figure 5(a,b) shows a sketch of the flow along the inner
cylinder (a) and the inner frustum (b) during the unstable phase of the libration cycle.
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The flow is not just azimuthal in the case of the frustum like for the pure Stokes
boundary layer and neither just down slope like for the pure Ekman flux. The sum
of both effects leads to a spiral-shaped downward flow and the Görtler vortices
will be mainly oriented parallel to this flow. This can be analysed quantitatively
by comparing the deflection angle β to the components of the wall shear stress
components tan βτ = |τ‖|max

+
/|τθ |

max
+

(see table 2). Figure 5(c) shows the normalized
stress angle βτ/β as a function of the wall slope α. This normalization is arbitrary for
ε= 0.2 since there are no Görtler vortices for this case. Under these stable conditions,
βτ/β can be interpreted as the tilt angle that could be expected if the flow would
be unstable for ε = 0.2. As can be seen in figure 5(c), for both stable and unstable
conditions, with increasing cone angle α the stress angle βτ becomes slightly smaller
than the Görtler vortex deflection angle β but the dependency is rather weak. Linear
regression βτ/β = bα + c yields a slope of b = −0.034 for ε = 0.8 and b = −0.015
for ε= 0.2, respectively. This has an interesting consequence. The effective curvature
radius r′′ increases with α as sketched in figure 5(b) so that a critical value of α can
be expected above which the Görtler instability will vanish. We will see later that
the Görtler instability is the main driver for a bulk mean flow, which means we can
expect that for large cone angle α this mean flow will be significantly reduced.

Finally we give the power scaling of the deflection angle β with respect to α and
γ =ω/(2Ω0 sin α). For the values listed in table 2 we find

β(α)≈ 1.48α0.89 and β(γ )≈ 29.4γ −0.89, (3.20a,b)

which yields a close-to-linear dependency of the deflection angle on any of the
librating wall’s inclination parameters. This is because the values of α are small
(α 6 18◦), so that a dependency on sin α is not notable because of the uncertainty
in β. The almost linear dependencies confirm that the cause of the Görtler vortex
deflection is the Ekman flux Q along the inner cone, which is given by (3.14) and
(3.16) for the stable boundary layer here.

In order to clarify what determines the deflection of the Görtler instability, the near-
wall flow structure has to be addressed more carefully. The laminar ESBL discussed
in the previous section provides the environment in which the instability develops. We
will therefore discuss the relevance of the Ekman flux and the wall shear stress in the
following two sections.

3.4. Ekman flux of the ESBL under stable and unstable flow conditions
The axial displacement of the Görtler vortices can be related to the oscillating Ekman
flux by considering the time scales of the instability and the forcing. The Görtler
vortices develop only during a fraction of the prograde libration cycle, that is, between
libration phase ϕ=π/2 and π. In the remaining 3/4 of a libration period the Görtler
vortices merely decay while propagating towards the fluid bulk. This suggests that the
Ekman flux properties are only important in the fraction of the libration period during
which the Görtler vortices develop.

To assess this further, we assume that the Ekman flux Q is dominated by linear
dynamics with a laminar near-wall flow, which is described by the analytical solution
given by (3.14) and (3.16). For the geometries studied here we have to select the
case with constant phase shift (χ = π/4). The amplitude is positive (A > 0) so that
the Ekman flux becomes negative,

Q= A sin(ϕ + χ) < 0 for 3π/4<ϕ < 7π/4. (3.21)
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FIGURE 6. Evolution of the spatially averaged wall-parallel mass flux Q (Ekman flux)
scaled with the dimensionless libration amplitude ε for statistically stationary flow
conditions. Q is a property of the ESBL driven up and down the librating frustum
during one libration cycle. DNS results are shown for stable flow conditions excited with
ε=0.2 (a) and intermittently unstable flow conditions excited with ε=0.8 (b). Time series
are shown for all geometries G1–G7 and exhibit an increase of Q/ε with the cone angle
α of the frustum. The grey region indicates the time interval of the development of the
Görtler instability.

Remember that the local axes used for the analytical computation is oriented such
that Q> 0 corresponds to axially upward flow. Consequently, the Görtler vortices start
to develop at ϕ = π/2 in the ESBL with some upward directed Ekman flux, which
decreases gradually while the Görtler vortices intensify. (This is supported also by the
DNS results in figure 6 to be discussed shortly.) From there on, the Görtler vortices
are immersed in a downward directed Ekman flux until they have decayed or left the
Ekman flux influence region of the ESBL.

The evolution of the wall-parallel Ekman flux Q over one libration period for
statistically stationary flow conditions is shown in figure 6 for all the geometries
investigated. Figure 6(a) shows the DNS results for the stable ESBL excited by wall
libration with the dimensionless amplitude ε = 0.2, whereas figure 6(b) shows those
for the intermittently unstable ESBL excited with ε= 0.8. The dimensionless libration
frequency ω= 1 and the Ekman number E= 4× 10−5 were kept constant.

The simulated Ekman fluxes Q in the stable ESBLs shown in figure 6(a) are
sinusoidal in time as expected from the analytical analysis. All time series pass
through the same zero crossings at ϕ ≈ 5π/8 and 13π/8 and the local extrema can
be found half-way in between. This is interesting, since the phase shift is larger in
comparison to the analytical solution given by (3.14) and (3.16). The origin of the
remaining phase shift is not clear yet but potentially related to an interaction of the
ESBL with the excited bulk flow. (We will discuss the mean bulk flow further in
§ 3.6.) For the rest, the Ekman flux of the stable ESBL agrees with the analytical
solution, in particular with respect to the increase in amplitude together with cone
angle due to an increase of the effective Coriolis force.

The simulated Ekman fluxes Q in the intermittently unstable ESBL shown in
figure 6(b) are neither sinusoidal nor symmetric even though the sinusoidal forcing
is still dominating the time series. For this unstable flow regime, the negative part
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of the time series of Q between ϕ = 5π/8 and 13π/8 is notably modified, which
can be attributed to the development of Görtler vortices for libration phases ϕ >π/2.
However, once the Görtler vortices have decayed the laminar solution starts to
dominate again for ϕ & 7π/4. Consequently, the positive part of the time series of Q
is comparable to the stable regime (compare with figure 6a).

The Ekman flux is affected more by the Görtler vortices when the cone angle α
and the effective Coriolis parameter f∗ are small and the time scale ratio γ is large.
In the case of geometry G2 in figure 6(a,b), for example, the minimum value of Q
reached at ϕ ≈ 9π/8 in the stable regime is about eight times larger in magnitude
than the corresponding value of Q in the intermittently unstable flow regime. With
increasing α or f∗ (decreasing γ ) the negative values of Q in the unstable flow regime
are much closer to the values obtained in the stable flow regime. For the geometry
G7 in figure 6(a,b), for example, the minimum value of Q reached at ϕ ≈ 9π/8 in
the stable flow regime is only approximately 1.16 times larger in magnitude than
the corresponding value in the unstable flow regime. Altogether, the Coriolis force
(as property of the ESBL) appears to have a stabilizing effect on the boundary layer
flow. We therefore conjecture that there is a critical cone angle αc (wall slope) above
(below) which the Görtler instability ceases to exist for given values of the similarity
parameters γ and E of the laminar ESBL. The proof of this conjecture is beyond the
scope of the present study but would be worth addressing elsewhere.

With close with noting that the development of the Görtler vortices causes near-wall
mixing of angular momentum. The negative part of the time series of Q is notably
flattened (figure 6b), which indicates that the structure of the ESBL is partly destroyed,
but only temporarily. Therefore, not only the Görtler vortices are affected by the
Ekman flux, but also the Ekman flux is modified by the Görtler vortices.

3.5. Wall shear stress components under stable and unstable flow conditions
For the geometry G2 with cone angle α = 3◦ and effective dimensionless Coriolis
parameter f∗ ≈ 0.1 it follows that the time scale ratio is γ ≈ 10. Thus, according
to the classification above, librational forcing dominates the boundary layer flow and
the boundary layer is almost a Stokes layer. With α increasing from G2 to G7, γ
decreases gradually to about 1.6 so that the Coriolis force influences more and more
the boundary layer dynamics. This change in quality is exhibited not only by the
boundary layer thickness (see figure 2) but also by the wall shear stress, which is
very sensitive to the flow structure above the wall. The wall shear stress components
τθ and τ‖ (as defined by (2.8)) contain information about the ESBL and can therefore
be used to characterize the boundary layer in addition to or as an alternative to the
time scale ratio γ . The stable ESBL excited with the dimensionless libration amplitude
ε= 0.2 is accurately described by the analytical solution (see (3.8)–(3.10) figure 3) so
that we focus on the unstable ESBL in the following paragraphs.

Figure 7 shows various simulated time series of the scaled wall shear stress
components τθ/ε and τ‖/ε covering a complete libration period for the flow in the
statistically stationary state under intermittently unstable flow conditions (ε = 0.8).
Each profile corresponds to one of the geometries G1–G7. The wall shear stress is
scaled with ε in analogy to the 1-D boundary layer solution given by (3.12) and
(3.13). For all geometries investigated, the boundary layer over the inner librating
wall becomes unstable in the prograde half-phase of libration just after the wall
libration has passed its maximum amplitude at ϕ =π/2, which is precisely the onset
of the wall deceleration.
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FIGURE 7. Evolution of the azimuthal wall shear stress component τθ (a) and the almost
axial along-wall component τ‖ (b) during a libration cycle in the case of statistically
stationary flow conditions in the intermittently unstable flow regime (dimensionless
libration amplitude ε= 0.8). Time series are shown for various geometries (G1–G7) with
different wall inclinations (cone angles α=0◦–16◦). The Ekman number and dimensionless
libration frequency were fixed at E = 4× 10−5 and ω = 1, respectively. The grey region
indicates the time interval of the developing Görtler instability.

The azimuthal component of the wall shear stress τθ is shown in figure 7(a) and
reaches its maximum value at ϕ ≈ π/4 during the prograde half-phase of libration.
The amplitude decreases with increasing cone angle α from G1 to G7 due to stronger
Coriolis force effects. The time series of τθ are almost symmetric in the prograde
and retrograde libration half-phases. This indicates that the Görtler instability has only
a weak effect along the azimuth, which is therefore the direction with merely linear
dynamics.

The axial component of the wall shear stress τ‖ is shown in figure 7(b) and reaches
its maximum value at ϕ≈ 3π/4, which is also in the prograde half-phase of libration
but phase shifted by 1φ=π/2 with respect to τθ . The maximum value increases with
the cone angle α or the wall-parallel component of the Coriolis force, respectively.
This suggests that the straight cylinder case G1 has τ‖ 6=0 only because the developing
Görtler instability (compare with Sauret et al. 2012; Ghasemi et al. 2016) since the
SBL lacks a boundary layer mass flux in the axial direction. The time series of τ‖
are not symmetric with respect to the prograde and retrograde libration half-periods
in contrast to τθ . This indicates a strong effect of the Görtler instability (i.e. nonlinear
dynamics) in the along-wall direction. In fact, the Görtler vortices yield the largest
gradients (shear) approximately in axial direction (see figure 4e, f ).

It is worth to note that the magnitudes of τθ and τ‖ are comparable in the DNS
results. Moreover, the phase shifts of π/4 and 3π/4 to the libration exhibited by τθ
and τ‖, respectively, are present in the DNS results and the 1-D laminar boundary
layer solution, ((3.12) and (3.13), case with ω > f∗ and σ = −1). This suggests that
there is a trace of both the linear and nonlinear dynamics. The azimuthal flow is
dominated by the viscous linear dynamics due to the forcing, whereas the axially
directed flow is dominated by the nonlinear dynamics of the Görtler vortices.

Furthermore, note that the evolution of the wall shear stress components for
stable flow conditions is perfectly sinusoidal and qualitatively similar to the Ekman
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flux shown in figure 6(a). The time series are therefore not shown here, but the
corresponding values of the wall shear stress components are given in table 2. It
is quite interesting that the ratio of the wall shear stress components |τθ |max

+
/|τ‖|

max
+

during prograde libration is comparable for the stable and intermittently unstable
ESBL (see table 2). This ratio apparently scales with γ so that its maximum value
may be used for the flow regime identification of the ESBL as an alternative to
γ . The ratio |τ‖|max

+
/|τ‖|

max
−

reflects the asymmetry of the Ekman fluxes observed in
the prograde and retrograde libration half-periods. For the stable ESBL, this ratio
shows an asymmetry of approximately 15 %. For the intermittently unstable ESBL,
the asymmetry increases with increasing cone angle α so that it is approximately
65 % for the geometry G7.

The maximum axial wall shear stress |τ‖|max
+

is notably different for the stable and
unstable flow conditions (see table 2). It exhibits an approximately linear dependency
on the effective Coriolis parameter f∗ corresponding to an approximately inverse
proportionality to γ (provided the libration frequency is constant), that is,

|τ‖|
max
+
≈

{
0.0028γ −0.90 for ε= 0.2,
0.0034γ −1.02 for ε= 0.8. (3.22)

A similar analysis for the maximum azimuthal wall shear stress |τθ |max
+

(see table 2)

reveals only a weak dependency on γ , namely|τθ |max
+
≈ 0.27γ 0.13, for both the

intermittently unstable (ε = 0.8) and stable (ε = 0.2) ESBLs. From geometry G2
to G7, |τθ |max

+
changes by almost 20 %. But at the same time also the mean frustum

radius rm= (r1+ r3)/2 changes from rm= 1 (G1) to rm= 0.8 (G7) which is precisely a
20 % difference. This suggests that the variation of |τθ |max

+
is merely due to geometry

and a result of the change of the wall velocity due to smaller mean frustum radius
at larger cone angle α.

So, what will be the net effect of the intermittently unstable ESBL flow? We address
this question in the following by investigating the generation of azimuthal mean flows
by distinguishing the stable and unstable ESBL.

3.6. Mean flow generation due to Görtler vortices in the unstable ESBL
In this section we focus on the generation mechanism of the mean flow in the case
of an intermittently unstable ESBL (excited with the dimensionless libration amplitude
ε= 0.8). We do not discuss in detail the mean flow generation mechanism in the case
of a stable ESBL (ε=0.2), but we will describe important properties of this mean flow
for comparison.

Figure 8 shows radial profiles of the scaled time-mean azimuthal velocity
〈ũθ 〉θ/ε2 (see § 2.5 for the definition of the mean) for the geometry G2 in the
libration-dominated regime (iii) and G6 in the intermediate rotation-libration
regime (ii), respectively. The mean flow is either due to a stable (figure 8a,b) or
unstable (figure 8c,d) boundary layer flow. The corresponding radial profiles of
the azimuthal mean velocity extracted at the axial position z = 1.2 are shown in
figure 8(e, f ). In the following, we describe first the mean flow due to a stable ESBL
and afterwards that due to the unstable ESBL.

In the case of the stable ESBL (figure 8a,b), both geometries G2 and G6 exhibit
a prograde jet-like structure in the azimuthal mean velocity field. This jet originates
from the bottom corner, extends to the top lid and aligns then with the rotation axis.
For the geometry G2, the cone angle is small (α= 3◦) so that the prograde jet remains
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FIGURE 8. (Colour online) Azimuthal mean flow 〈ũθ 〉θ/ε2 for the stable (a,b) and
intermittently unstable (c,d) ESBLs for the geometries G2 (a,c) and G6 (b,d). Radial
profile of 〈ũθ 〉zθ/ε2 at axial height z= 1.2 for all the geometries from G1 to G7 for the
stable (e) and intermittently unstable ( f ) ESBLs.

attached to the frustum. This is different for the geometry G6, where the wall is
more oblique (α = 15◦) and the prograde jet has notably detached from the frustum
at heights z > 0.4. In addition, one can also see a retrograde mean flow between
the frustum and the prograde jet. The radial profiles shown in figure 8(e) reveal that
the position of the maximum of the prograde jet is quite stable and located at radial
position r = 1.02 for the geometries G2–G7 investigated. Geometry G1 is somewhat
different as it exhibits a SBL over the inner wall and only a weak prograde jet close
to the inner cylinder (see also Ghasemi et al. 2016, figure 3).

The prograde jet shown in figure 8(e) exhibits a dependency on the wall inclination
in addition to the compensated ε2-dependency. The magnitude of the jet increases with
the cone angle α or the local Coriolis parameter f∗, respectively. The maximum jet
velocity 〈ũθ 〉max

θ /ε2 is located at z = 1.2 and r = 1.02 and exhibits an almost linear
dependency on f∗. A least-squares fit of the data gives

〈ũθ 〉max
θ /ε2

= 0.23f 1.14
∗
. (3.23)

It is interesting that the structure of the prograde jet shown in figure 8(e) is
reminiscent of the Stewartson layer in a librating spherical shell geometry, in which
it is caused by the boundary layer ‘eruption’ at the equator (see e.g. Sauret & Le
Dizès 2013). For the present geometry, however, the origin of this ‘Stewartson layer’
is not yet fully clear. It seems that the divergence of the wall-tangential Ekman flux
near the corners adjacent to librating parts of the wall (here in particular the bottom
inner corner) is crucial. This hypothesis is supported by the localized boundary layer
eruption of the corner flow suggested by Klein et al. (2014).
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It is also worth noting that the retrograde mean flow is absent for the geometries
G1 and G2 (see figure 8e). The generation mechanism for this retrograde flow is
completely unclear at present. We conjecture that it is due to the recurrence of
low frequency inertial waves to the frustum. These waves propagate mainly in axial
direction so that they can get focused towards the upper inner corner provided
their frequency is low enough or the cone angle of the frustum large enough (for
details see Borcia & Harlander 2012; Klein et al. 2014). This scenario yields strong
localization of wave energy and momentum in the vicinity of the upper inner corner
so that the ‘trapped’ waves can interact nonlinearly with each other and/or the ESBL.
The retrograde mean flow follows from mixing of background angular momentum
(e.g. Maas 2001).

In the case of the intermittently unstable ESBL, the prograde azimuthal mean flow
tends to cover a larger radial fraction of the domain (figure 8c,d) in comparison to the
stable ESBL (figure 8a,b). This is even better visible in figure 8( f ), where the radial
profiles of the compensated azimuthal mean velocity 〈ũθ 〉θ/ε2 are shown. One can see
that the prograde mean flow is typically composed of two peaks for the geometries
G2 to G5 which suggests presence of two different generation mechanisms. The first
local maximum is located closer to the librating frustum and the second further away
towards the bulk. The first is larger than the second for the geometry G2, while it
becomes smaller than the second for G3–G5, and disappears for the geometries G6
and G7. The first maximum decreases with increasing cone angle α or local Coriolis
parameter f∗, respectively.

It is worth noting that the mean flow magnitude in the case of an unstable ESBL
approaches 〈ũθ 〉max

θ /ε2
≈ 0.09 whereas it keeps increasing in the case of the stable

ESBL (see lines for G2–G7 in figure 8e, f ). The results in figure 8( f ) reveal that the
approximately linear dependency 〈ũθ 〉max

θ /ε2
∝ f∗ according to (3.23) is not valid for

the unstable ESBL.
Geometry G1 yields an interesting limit by exhibiting only a single-peaked jet (first

maximum). This suggests dominance of one generation mechanism. The maximum
value 〈ũθ 〉max

θ /ε2 is located in the vicinity of the frustum wall and exhibits a jump
of more than an order of magnitude when the ESBL changes from stable to unstable
flow conditions. It is the result of the generation of Görtler vortices in the unstable
SBL (Ghasemi et al. 2016) and this behaviour is still visible in the geometry G2. So,
what happens for the geometries G3–G7?

For larger wall inclination angles α (measured relative to the axis), not only does
the ESBL becomes thicker (see table 1) but also the deflection angle β of the Görtler
vortices increases (see figure 4 and table 2). This suggests that, with increasing α or f∗,
the Görtler vortices travel further within the ESBL and decay partly there. This leaves
less momentum and kinetic energy for the mean flow driven in the bulk (Ghasemi
et al. 2016).

The intensity of the Görtler vortices is not only reduced due to inertial (upscale
energy transfer to the mean flow) and viscous losses, but also due to the cylindrical
geometry. As discussed at the end of the § 3.5, the mean radius of the frustum
decreases with increasing α and so does the resultant prograde mean flow due to
weaker background angular momentum near the librating frustum wall. Consequently,
for a fixed axial position z well above the bottom lid, the contribution of the Görtler
vortices to the generation of the prograde mean flow becomes smaller from G1 to
G7 due to an increase of α (see figure 8f ). In the geometry G6 (figure 8d), for
example, the dominating source for the mean flow is due to Görtler vortices close
to the bottom inner corner (edge) and the prograde jet seems to originate from
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there precisely. Interestingly, the radial profiles of the azimuthal mean flow shown in
figure 8( f ) indicate that the bulk part of the prograde jet (r > 0.9) is virtually the
same in the two geometries G6 and G7. This can be understood as follows. On the
one hand, the deflection angle β of the Görtler vortices increases from G6 to G7
which causes the vortices to travel further within the ESBL and along the frustum.
Viscous losses dominate there so that the vortices contribute less to the generation of
the prograde jet outside the ESBL. On the other hand, the Ekman flux of the ESBL
increases from G6 to G7 (see figure 6) which yields a more intense source for the
prograde jet near the bottom inner corner. This is backed by the empirical finding
that the mean flow magnitude scales almost linearly with the Coriolis parameter f∗
(see (3.23)). This suggests that Görtler vortices contribute less to the prograde mean
flow generation with increasing cone angle α, but this is compensated by a larger
amplitude of the Ekman flux in the libration-induced ESBL flow.

Altogether, the discussion of the previous paragraphs suggests that the first (inner)
mean flow maximum (figure 8( f ), G2–G5) represents the contribution of the Görtler
vortices, whereas the second (outer) maximum is due to the Ekman flux and the corner
flow in the bottom inner corner. The source for the mean flow in the geometry G2 is
therefore mainly due to Görtler vortices since the boundary layer flow is dominated by
libration and viscosity (Stokes property of the ESBL). In the geometries G6 and G7,
the main source for the mean flow is the corner flow since the ESBL flow is strongly
affected by rotation effects (Ekman property). The prograde jet in the geometries G3
to G5 is due to an intermediate situation where both the Görtler vortices and the
Ekman flux (plus corner flow) have notable contributions. Note that the Ekman flux is
also affected by the Görtler vortices, but this is merely restricted to the unstable phase
of libration so that the Ekman flux does not fully vanish (figure 6). The perturbation of
the Ekman flux, however, is relatively larger for smaller wall inclinations α (measured
relative to the axis).

3.7. RANS analysis of the prograde mean flow
In this section we consider in more detail the prograde mean jet flow and focus on the
case of an unstable ESBL. The flow behaviour is studied in the statistically stationary
state for which we inspect the Reynolds-averaged Navier–Stokes (RANS) equations
by means of a combination of long time and spatial averaging of the DNS solution.
We follow mainly the strategy used by Ghasemi et al. (2016). That is, we still use
the RANS equations in cylindrical coordinates and apply them here to the rotating
flow in an annular confinement without axial–radial mirror symmetry. The motivation
for a cylindrical reference system is given by the simulated azimuthal mean flow,
which has a columnar spatial structure aligned with the axis of rotation (see figure 8).
Furthermore, the RANS equations have substantially less terms in the cylindrical basis
than in the generalized curvilinear one we used for the numerical solver (as described
in § 2.3) and this simplifies our analysis.

In the statistically stationary state, the azimuthal mean flow is axisymmetric and has
reached a balance in the averaged sense. This implies that the terms with the time
derivative and those with azimuthal derivatives vanish. The azimuthal (θ ) component
of the RANS equations in the cylindrical co-rotating frame of reference thus reads

〈ũθ 〉zθ 〈ũr〉zθ

r
+ f 〈ũr〉zθ + 〈ũr〉zθ∂r〈ũθ 〉zθ ≈ E

(
∂2

r 〈ũθ 〉zθ +
∂r〈ũθ 〉zθ

r
−
〈ũθ 〉zθ

r2

)
− ∂z〈ũ′zu

′

θ 〉zθ − ∂r〈ũ′ru
′

θ 〉zθ − 2
〈ũ′ru

′

θ 〉zθ

r
. (3.24)
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FIGURE 9. (Colour online) Axial and radial Reynolds stress terms 〈ũ′zu
′

θ 〉zθ/(ε
2f∗) (a) and

〈ũ′ru
′

θ 〉zθ/(ε
2f∗) (b), respectively. A stable (ε = 0.2) and an intermittently unstable ESBL

(ε= 0.8) are considered for the geometries G2, G4 and G6.

There are two remaining Reynolds stress terms in (3.24). One is 〈ũ′ru
′

θ 〉zθ , the other
one is 〈ũ′zu

′

θ 〉zθ . Inspecting this equation for the geometry G1, for which the boundary
layer is a SBL, numerical results reveal that the radial turbulent transport is much
larger than the axial one (〈ũ′ru

′

θ 〉zθ � 〈ũ′zu
′

θ 〉zθ). This case is investigated in detail by
Ghasemi et al. (2016, § D), who suggested neglecting the axial transport term.

Present numerical results for cases with the inner cylinder wall tilted with respect
to the rotation axis (geometries G2–G7), however, exhibit a different behaviour,
suggesting that the axial Reynolds stress term 〈ũ′zu

′

θ 〉zθ cannot be neglected in
comparison to the radial one 〈ũ′ru

′

θ 〉zθ . In these geometries, there is an ESBL over
the frustum which causes u′θ to be coupled to u′z in the vicinity of the wall (Ekman
property of the ESBL). This results in a larger correlation 〈ũ′zu

′

θ 〉zθ .
Figure 9 shows radial profiles of 〈ũ′ru

′

θ 〉zθ and 〈ũ′zu
′

θ 〉zθ for the stable and unstable
ESBLs for the geometries G2, G4 and G6 and for different α or f∗. As previously,
the simulations are done for two different libration amplitudes ε. Assuming that each
velocity fluctuation scales with ε and making use of the fact that the Ekman flux
depends on f∗, the Reynolds stress terms are scaled with ε2f∗. (This compensates
approximately the empirical mean flow scaling given in (3.23).)

In figure 9(a) one can see that the radial profiles of 〈ũ′zu
′

θ 〉zθ/(ε
2f∗) for the

intermittently unstable ESBL approach those of the stable ESBL with increasing f∗
(geometries G2–G6 from right to left). For the geometry G2, the librational forcing
governs the ESBL dynamics (regime (iii)) and there is only a weak Ekman flux. By
contrast, there is a considerable Ekman flux parallel to the frustum for the geometries
G4 and G6 (compare with figure 6). In the cylindrical coordinates, the Ekman flux
parallel to the frustum has always components in both the radial and axial directions,
although with different magnitude. As f∗ increases, the Ekman flux increases, causes
u′z to be increased and results in a larger correlation 〈ũ′zu

′

θ 〉zθ (〈ũ′zu
′

θ 〉
min
zθ =−0.0024 for

G2, but −0.010 for G6). In figure 9(b) and for the geometry G2 (regime (iii)) one
can see that 〈ũ′ru

′

θ 〉zθ/(ε
2f∗) is larger for the unstable ESBL compared to the stable

ESBL. As f∗ increases (G2–G6, from right to left), the radial profile of the radial
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Reynolds stress term of the unstable ESBL approaches that of the stable ESBL. For
the geometry G6 (regime (ii)) those profiles almost coincide again.

Note that the radial profiles shown in figure 9(a,b) are notably different for the
stable and unstable ESBL. This is most notable for the geometry G2 with weakest f∗.
As we saw already in figure 6(b), the Ekman flux is weak and therefore substantially
perturbed by the Görtler vortices. This seems to explain also the differences seen
in the Reynolds stresses. Following Ghasemi et al. (2016, §§ C and D), the Görtler
vortices generate a mean flow due to the radial gradient of 〈ũ′ru

′

θ 〉zθ outside of
the boundary layer in the case of an inner straight cylinder (geometry G1). In
the geometry G2 the situation does not change much implying that the Görtler
vortices have a considerable influence on the mean flow in the vicinity of the ESBL.
However, as f∗ increases, the ESBL becomes thicker and the vortices need to travel
further within the boundary layer (see § 3.6). In the geometry G6, this effect seems
responsible for a smaller contribution of the Görtler vortices to the term 〈ũ′ru

′

θ 〉zθ
outside the boundary layer and, consequently, causes the mean flow to be diminished.

Note further that in the case of the stable ESBL there are no Görtler vortices.
Nevertheless, there is considerable overlap of the profiles corresponding to the
geometry G6 shown in figure 9(b). We attribute this contribution to the mean flow to
the Ekman flux through the corner flow at the bottom which is now responsible for
generating 〈ũ′ru

′

θ 〉zθ .
On the basis of numerical data we performed a scale analysis with the cylindrical

RANS equation (3.24). We kept only those terms larger than a threshold of 5 % of
the largest term. In addition, the 1/r-terms where neglected in favour of the radial
derivatives because we are facing an azimuthal jet and this jet is relatively thin
compared to the annular gap (this is analogous to Ghasemi et al. 2016, §§ D and E).
So, with these simplifications in (3.24) we obtain the empirical balance

∂r〈ũ′ru
′

θ 〉zθ︸ ︷︷ ︸
RT

+ ∂z〈ũ′zu
′

θ 〉zθ︸ ︷︷ ︸
AT

+ f 〈ũr〉zθ︸ ︷︷ ︸
LA

≈ E∂2
r 〈ũθ 〉zθ︸ ︷︷ ︸

D

, (3.25)

where RT is the radial turbulent transport, AT is the axial turbulent transport, LA is
the local Coriolis force affecting the azimuthal balance and D is the viscous diffusion.
Equation (3.25) is an approximate balance for which the validity has been proven
numerically as will be discussed shortly. In view of this, it is not surprising to
see in figure 8(a–d) that the radial derivative dominates the viscous terms and that
the Coriolis force has a notable contribution only due to the azimuthal mean flow.
Note that the turbulent axial transport term AT was not present in the diagnostic
RANS equation for the straight annulus (geometry G1; see Ghasemi et al. 2016).
We therefore conjecture that AT is also related to the Ekman property of the ESBL
which manifests itself otherwise mainly by driving the Ekman flux up and down the
frustum wall.

Figure 10 shows the radial profiles of the different terms given in (3.25) for the
case of an unstable ESBL in the geometries G2 and G6 corresponding to the flow
regimes (iii) and (ii), respectively. In figure 10(a), one can see that RT is almost
balanced by D for the geometry G2. As we discussed at the beginning of this section,
the situation for the geometry G2 is very close to the geometry G1 and the term AT
is generally weak since it is related to the Ekman flux, which is weak here, too. This
is in agreement with the previous discussion of figure 8 where we concluded that, for
the geometry G2, the prograde mean flow for the unstable ESBL is mainly due to the
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FIGURE 10. (Colour online) Radial profiles of the terms contributing to the approximate
balance (3.25) for the geometries G2 in regime (iii) (a) and G6 in regime (ii) (b) for
the intermittently unstable ESBL. The contributions shown are the turbulent axial and
radial transport terms (AT and RT), the Coriolis force (LA), the viscous diffusion (D)
and the balance as the difference of the right- minus left-hand side (R− L). The ESBL
thickness δ is given for orientation and corresponds to the laminar value δ− according to
equation (3.6).

Görtler vortices. For the geometry G6 the magnitudes of RT and AT are very similar
outside of the ESBL, but both terms have opposite signs and their magnitude is much
larger than that of D. Therefore, one can argue that in (3.25) RT takes the role of a
generating agent, whereas AT takes that of a destructing agent for the prograde mean
flow. This argument is supported also by figure 8, in which we saw that the prograde
azimuthal mean flow is actually missing over the largest part of the frustum for the
geometry G6. Instead, only a prograde jet was originating from the bottom corner.

Note that the positive sign of the mean flow driven by an unstable ESBL can also
be understood with the aid of (3.25). The negative sign of RT outside of the boundary
layer implies generation of a positive (prograde) mean flow. This is fully analogous
to Ghasemi et al. (2016, § D).

4. Summary and conclusion
In this paper we have used direct numerical simulations (DNS) to study an

intermittently unstable boundary layer flow over a conical wall (frustum). The
frustum forms the inner wall of an annular confinement, which is filled with an
incompressible Newtonian fluid of kinematic viscosity ν, and we consider the whole
set-up to rotate uniformly with mean angular velocity Ω0. The annular configuration
studied models the near equator and mid-latitudes of planetary-scale flows, which
means that results obtained are generally relevant for geophysical applications, like
core and mantle flows, but also for the ocean or even the atmosphere. Flows have
been excited by longitudinal libration i.e. by a sinusoidal modulation of the rotation
rate of the inner wall. The libration frequency was kept fixed at ω = Ω0 but two
different values of the libration amplitude εΩ0 have been investigated. These yield
stable (ε = 0.2) and intermittently unstable (ε = 0.8) flow conditions for the selected
Ekman number E= ν/(Ω0r2

1)= 4× 10−5 with r1 the maximum frustum radius.
An important aspect of the present work concerns the dependency of the stable and

unstable flow on the wall inclination angle α measured relative to the rotation axis.
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Guided by the notion that the flow remains stable for small libration amplitudes, we
used laminar boundary layer theory to obtain analytical expressions for the velocity
field. The wall inclination enters through the local Coriolis parameter f∗ = 2Ω0 sin α,
which means that the solution presented may potentially be useful also for spherical
geometry for which f∗ is not constant but varies with latitude. Our analytical analysis
accounts schematically for wall curvature by adopting the vorticity-divergence form so
that the radial dependency of the wall velocity can be accounted for in the vorticity
boundary condition in an otherwise Cartesian treatment.

The boundary layer solution yields the presence of an Ekman–Stokes boundary layer
(ESBL), which is characterized by an along wall (axial–radial) velocity representing
an oscillating oblique mass flux along the frustum wall (Ekman property), and an
oscillatory azimuthal velocity representing a kind of damped wave which follows
the wall libration (Stokes property). The key similarity parameter of the ESBL is
the time scale ratio γ = ω/f∗. According to γ , three different flow regimes have
been identified: (i) rotation dominated (γ � 1), (ii) rotation–libration dominated
(γ ∼ 1) and (iii) libration dominated (γ � 1). The flow regimes (ii) and (iii) have
been studied in this work by variation of the local Coriolis parameter f∗ through
the wall inclination α. The configuration in which the inner wall is parallel to the
rotation axis (α= 0) comprises an extreme situation in which a pure Stokes boundary
layer (SBL) is established over the librating wall. As the inclination angle increases,
the Ekman property of the ESBL becomes more important until, finally, rotation
dominates the boundary layer dynamics (γ � 1). A comparison of our 1-D boundary
layer solution to stable 3-D DNS results far away from the lids exhibits very good
agreement with respect to instantaneous velocities. This suggests the presence of
an ESBL in the DNS results. The wall-normal velocity component is driven by
the vortical boundary condition and compares less well. We attribute this to wall
curvature and other geometrical effects (like end plates). However, the magnitude of
the wall-normal velocity over the librating wall is 3–4 orders of magnitude smaller
than the wall-tangential velocities of the ESBL. Interestingly, the wall-tangential
velocities turn out comparable to the solution given by Salon & Armenio (2011),
who considered a tidally driven flow in the first place. Their solution is the limiting
case of our solution for a very large wall curvature radius.

With an understanding of the laminar ESBL properties we moved on to gain a
better understanding of the intermittently unstable flow. The intermittency is imposed
here by wall libration, which yields alternating Rayleigh-stable and Rayleigh-unstable
conditions near the wall. The ESBL turns centrifugally unstable when the wall starts
to decelerate (ωt = π/2), but libration amplitudes have to be large-enough to let the
instability grow before the flow stabilizes again near the wall. For the SBL over
a straight cylinder it is the induced azimuthal flow plus curvature which yield the
Görtler-type instability (Sauret et al. 2012; Ghasemi et al. 2016). Results presented
suggest that this argumentation can be carried over to the ESBL, especially when the
wall inclination is weak.

Indeed, the presented DNS results exhibit a qualitative similarity of the ESBL
instability to that of the SBL, say a formation of elongated Görtler vortices near the
wall. However, these vortices are tilted compared to the azimuthal coordinate in the
ESBL over the frustum, whereas they are azimuthally aligned in the SBL over a
straight cylinder. We suggest that the instability develops in locally close-to-laminar
flow conditions and use the laminar boundary layer theory to study the flow at the
libration phase when the instability develops. It turns out that the ESBL exhibits
an oblique mass flux along the frustum wall (Ekman flux) due to the Coriolis force,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.552


Mean flow generation by an intermittently unstable boundary layer 145

which is absent in the SBL. Consequently, it is this oblique flow over the frustum wall
at onset of instability which causes the tilt of the Görtler vortices. This simply shows
how the Ekman property of the ESBL influences the Stokes property of the ESBL.
In turn, the Ekman flux in the retrograde phase is also affected by the development
of the vortices which is more visible for smaller inclination angles (figure 9).

The latter explanation regarding the origin of the tilt of the Görtler vortices is
supported by the stress angle βτ , which measures the direction of the wall shear stress
relative to the azimuthal coordinate. The wall shear stress depends strongly on the
mass flux in the boundary layer. Both quantities are therefore coupled. Furthermore,
the ratio of the wall shear stress components |τθ |max

+
/|τ‖|

max
+

was found to scale almost
linearly with γ . This implies that it can be used as a substitute for the γ parameter
for identification of the flow regime which can be useful for applications. Coming
back to the stress angle, it turns out that βτ follows roughly the tilt β of the Görtler
vortices which means there is only a weak dependency on the wall inclination α itself
since βτ/β ≈ 1. We conclude that the laminar boundary layer dynamics is crucial for
an understanding of the unstable ESBL and the developing Görtler instability. Here
it is the linear dynamics (Coriolis force and Ekman flux) in combination with wall
curvature (centrifugal instability) that is responsible for the deflection of the Görtler
vortices over the librating frustum.

Note further that the effective curvature radius for the laminar boundary layer
flow increases with the wall inclination angle α. This is revealed also by a non-zero
stress angle at the most unstable libration phase. We conjecture that there is a critical
inclination angle αc for the Görtler instability to occur for a selected wall curvature
radius, libration frequency, libration amplitude and Ekman number, but this has to be
addressed in a future study.

An interesting feature of the bulk flow in the case of the stable ESBL is to be
seen in a prograde azimuthal jet, which is coaxially aligned with the rotation axis
and present over the librating inner wall. More precisely, the prograde jet originates
from the bottom corner and extends up to the top lid. The prograde jet seems to be
a reminiscent of the Stewartson layer in a librating spherical shell and has a linear
dependency on ε2f∗. For the intermittently unstable ESBL, the development of the
Görtler vortices not only affects the ESBL but also the fluid bulk. An additional
prograde mean flow is generated in the bulk which we attribute to the angular
momentum transport induced by the Görtler vortices. This mean flow, however, does
not exhibit the scaling ε2f∗ of the stable ESBL (see figure 8f ).

We investigated the scaling of the mean flow related to the Görtler vortices
by varying the wall inclination. Increasing the inclination angle towards the axial
direction led to a reduction of the magnitude of the prograde mean flow. In other
words, the mean flow magnitude decreased with the tilt of the Görtler vortices.
Furthermore, for a small wall inclination (geometry G2 in regime (iii)), we saw
approximately an order of magnitude jump in the prograde mean flow amplitude
when the ESBL was changed from stable to unstable flow conditions. Increasing
the wall inclination towards geometry G7 in regime (ii) leads to a larger tilt of the
Görtler vortices and some thickening of the ESBL. The thickening of the ESBL
implies that the Görtler vortices travel further within the boundary layer and decay
there before reaching the bulk. Consequently, as α increases from 3◦ (geometry G2)
to 18◦ (geometry G7), the magnitude of the prograde azimuthal mean flow related to
the Görtler vortices decreases until it has almost vanished in geometry G7.

In order to clarify the mean flow generation mechanism due to Görtler vortices over
an inclined wall we investigated the azimuthal component of the Reynolds-averaged
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Navier–Stokes (RANS) equations. We derived at the balance (3.25). In contrast to
the diagnostic RANS equation for the straight annulus (Ghasemi et al. 2016), which
contains only the generating radial transport RT = ∂r〈ũ′ru

′

θ 〉zθ , we found an additional
axial transport term AT = ∂z〈ũ′zu

′

θ 〉zθ , which acts as a destructive agent. AT is related
to the oblique boundary layer mass flux along the frustum wall (Ekman property of
the ESBL) and is not relevant for the SBL over a librating straight cylinder. For the
geometry G2 in which the librational forcing dominates the ESBL dynamics (regime
(iii)), RT is substantially larger than AT outside the ESBL. However, with increasing
wall inclination α, the effect of rotation becomes more and more important, and
for the geometry G6 (α = 15◦) the generating agent RT is almost entirely balanced
by the destructive agent AT , preventing the generation of a prograde mean flow. To
summarize, the generation mechanism of the azimuthal mean flow by the Görtler
vortices in the straight wall annulus (geometry G1) was realized by Ghasemi et al.
(2016) as the pumping of angular momentum from the boundary layer to the fluid
bulk. Here we found that the Ekman property of the ESBL weakens this pumping.

We close by noting that the mean flow generation over an inclined wall discussed
above might also be of relevance for the mean flow generation in spherical geometries.
There, however, the inclination angle changes with latitude. Our analysis hence shows
how the unstable SBL of the equatorial region of a librating spherical shell transits
to an ESBL in mid-latitudes and to an eventually stable Ekman layer in the polar
regions. The development of the Görtler vortices around the equatorial region of a
sphere is known since the early experimental work by Aldridge (1967) and the recent
experimental and numerical work by Noir et al. (2009). The results discussed in
the present work propose the generation of an azimuthal mean flow by the Görtler
vortices, in addition to the excitation due to interactions within the laminar boundary
layer reported by Sauret & Le Dizès (2013). Obviously, the equatorial boundary layer
does not only erupt for low libration frequencies, it is also prone for Görtler instability
due to the SBL property. Our findings demonstrate that strong mean flows and jets
cannot only persist in turbulent flows but can even become particularly strong due to
turbulence. This result can help to understand long-lived jets in planets and moons by
means that the intermittent instability of the ESBL provides an interesting mechanism
for maintaining an azimuthal jet under unstable flow conditions. These conditions can
be established by libration (as modelled here), but can also be the result of a tidally
driven flow that constitutes a similar mathematical problem (Salon & Armenio 2011).
The mean flow driven by the developing Görtler instability of the ESBL is relevant
because it is large scale, has constant sign and is of second order (O(ε2), see Ghasemi
et al. 2016), which is comparable to the mean flow driven by the nonlinearity of the
Ekman layer (Wang 1970; Busse 2010, 2011). Compared to the DNS presented using
an Ekman number of 4 × 10−5, in geophysical flows, shear-related instabilities like
the discussed Görtler instability can be expected to become more important due to
larger shear resulting from very small Ekman numbers (E . 10−9).
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