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Abstract

The first purpose of our paper is to show how Hooley’s celebrated method leading to
his conditional proof of the Artin conjecture on primitive roots can be combined with the
Hardy–Littlewood circle method. We do so by studying the number of representations of an
odd integer as a sum of three primes, all of which have prescribed primitive roots. The second
purpose is to analyse the singular series. In particular, using results of Lenstra, Stevenhagen
and Moree, we provide a partial factorisation as an Euler product and prove that this does
not extend to a complete factorisation.

2010 Mathematics Subject Classification: 11P32 (11P55, 11R45)

1. Introduction

Can we represent an odd integer as a sum of 3 odd primes all of which have 27 as a
primitive root? In [10], Lenstra considered the distribution of primes with a fixed primitive
root and lying in an arithmetic progression. One of his results [10, theorem (8·3)] states that
if b �= 5 (mod 12) then either there are no primes p ≡ b (mod 12) having 27 as a primitive
root or there is exactly one such prime, namely p = 2. Hence, unless n ≡ 3 (mod 12), no
such representation exists.

In this paper, we are interested in the converse direction, at least for all sufficiently large
values of n. The existence of infinitely many primes with a given primitive root a is currently
not known unconditionally for any a ∈Z, so we need to be content with working under
the assumption of a certain generalised Riemann hypothesis, sometimes called Hooley’s
Riemann Hypothesis. For any non-zero integer a, we will write HRH(a) for the hypothesis
that:
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for all square-free k ∈N, the Dedekind zeta function of the number field
Q(ζk,

k
√

a), where ζk ∈C is a primitive kth root of unity, satisfies the Riemann
hypothesis.

Our main theorem can be seen as a combination of the classical conditional result of
Hardy and Littlewood [4] towards ternary Goldbach with Hooley’s [7] conditional proof of
Artin’s conjecture.

THEOREM 1·1. Let a = (a1, a2, a3) ∈Z3 such that no ai is −1 or a square. Assuming
HRH(ai) for i = 1, 2, 3, we have

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi = Aa(n)n
2 + o(n2), as n → +∞,

with an explicit factor Aa(n) ∈R�0 that satisfies Aa(n)a 1, whenever Aa(n) > 0.

The main part of this paper is devoted to the description and investigation of the fac-
tor Aa(n). In particular, a product decomposition of Aa(n) will allow us to interpret
Theorem 1·1 as an incarnation of a local-global principle and gives the following as a simple
consequence.

COROLLARY 1·2. Assume HRH(27). Let n be a sufficiently large odd integer. Then there
are odd primes p1, p2, p3 with 27 as a primitive root and n = p1 + p2 + p3 if and only if
n ≡ 3 (mod 12).

We can also get an explicit saving in the error term, at the cost of having to assume a
stronger generalised Riemann hypothesis. Let HRH’(a) be the hypothesis that:

for each square-free k > 0 all Hecke L-functions of the number field Q(ζk,
k
√

a)
satisfy the Riemann hypothesis.

THEOREM 1·3. Let a1, a2, a3 be three integers none of which is −1 or a perfect square.
Assuming HRH’(ai) for i = 1, 2, 3, we have for β ∈ (0, 1),

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi = Aa(n)n
2 + Oa,β(n

2(log n)−β),

where the implied constant is effective and depends at most on a1, a2, a3 and β.

Before returning to the explicit description of our factor Aa(n), let us briefly review the
relevant literature on Artin’s conjecture and the ternary Goldbach problem, and introduce
some necessary notation along the way.

1·1. Artin’s conjecture

Fix an integer a �= −1 which is not a perfect square. An old question concerns the infini-
tude of the sets of primes having a as a primitive root. Artin observed that the problem can
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be reformulated in the setting of algebraic number theory. Denote by ζk a primitive kth root
of unity and define for any positive square-free integer k the number field

Ga,k :=Q(a1/k, ζk). (1·1)

Artin’s criterion states that the prime p has a as a primitive root if and only if for every prime
q the rational prime p does not split completely in Ga,q . This led to the formulation of the
following conjecture via efforts of D. H. Artin and E. Lehmer, Cunningham and Heilbronn;
see [13] for a historical overview and references. Define

�a := Disc(Q(
√

a)), the discriminant of Q(
√

a) (1·2)

ha := max
{
m ∈N : a is an mth power

}
, (1·3)

Aa :=
∏
p|ha

(
1 − 1

p − 1

)∏
p�ha

(
1 − 1

p(p − 1)

)

and for positive integers q let

f ‡
a (q) :=

∏
p|q,p|ha

1

p − 2

∏
p|q,p�ha

1

p2 − p − 1
.

Here, and throughout our paper, the letter p is reserved for rational primes. We furthermore
define

La := Aa · (1 +μ(2|�a|) f ‡
a (|�a|)

)
,

where μ is the Möbius function. Artin’s conjecture then states that

lim
x→+∞

#
{

p � x : F∗
p = 〈a〉}

#{p � x} = La. (1·4)

This conjecture is of substantial difficulty: there is no value of a for which the limit is known
to be positive. In fact, it is not even known whether for every integer a that is not a square
or −1 there exists a prime having primitive root a.

A significant step in the subject has been the, conditional under HRH(a), resolution of
Artin’s conjecture by Hooley [7]. His method is pivotal in the present work. Notable progress
was later made by Heath–Brown [5], who building on work of Gupta and Murty [2], showed
unconditionally that at least  x/(log x)2 primes p � x have primitive root q, r or s, where
{q, r, s} is any set of non-zero integers which is multiplicative independent and such that
none of q, r, s,−3qr,−3qs,−3rs or qrs is a square. There is a rather extensive list of
further results, as well as certain cryptographic applications; the reader is referred to the
comprehensive survey of Moree [13]. Lenstra [10] used Hooley’s method to show, condition-
ally on HRH(a), the existence of the natural density of primes in an arithmetic progression
and with a as primitive root. An explicit formula for these densities was given later by
Moree [12]. To describe Moree’s result we need the following notation. Let

βa(q) :=
⎧⎨
⎩(−1)

�a
gcd(q,�a )

−1

2 gcd(q, �a), if �a

gcd(q,�a)
is odd,

1 otherwise,
(1·5)
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and observe that βa(q) is a fundamental discriminant in case �a/ gcd(q, �a) is odd. For
positive integers q let

f †
a (q) :=

∏
p|ha ,p|q

(
1 − 1

p − 1

)−1 ∏
p�ha ,p|q

(
1 − 1

p(p − 1)

)−1

.

Definition 1·4. Assume that a �= −1 is a non-square integer, let�a, ha be as in (1·2), (1·3)
and assume that x, q are integers with q > 0. We define

Aa(x mod q) := Aa ·
{

f †
a (q)
ϕ(q)

∏
p|x−1,p|q

(
1 − 1

p

)
, if gcd(x − 1, q, ha)= gcd(x, q)= 1,

0, otherwise,
(1·6)

and

δa(x mod q) := Aa(x mod q)

(
1 +μ

(
2|�a|

gcd(q, �a)

)(
βa(q)

x

)
f ‡
a

( |�a|
gcd(q, �a)

))
,

where ϕ(·) is the Euler totient function and
( ·

·
)

is the Kronecker quadratic symbol.

Moree’s result [12] states that, conditionally under HRH(a), the natural density of primes
in an arithmetic progression and with a as primitive root equals δa(x mod q). His work
will prove of central importance in our interpretation of the Artin factor for the ternary
Diophantine problem under study.

1·2. Ternary Goldbach problem

The ternary Goldbach problem has been one of the most central subjects of study in
analytic number theory; it asserts that every odd integer greater than 5 is the sum of 3 primes.
Hardy and Littlewood [4] used the circle method to provide the first serious approach to the
problem; they proved an asymptotic formula for the number of representations of n as a sum
of k primes (k � 3) conditionally on the veracity of the generalised Riemann hypothesis.
This hypothesis was removed later by Vinogradov [17]. His result states that for every β > 0
one has for all odd integers n that

∑
p1+p2+p3=n

3∏
i=1

log pi = 1

2

(∏
p

�p(n)

)
n2 + Oβ(n

2(log n)−β),

where the product is over all primes, the implied constant depends at most on β, and

�p(n) := p
∑

b1,b2,b3∈(Z/pZ)∗
b1+b2+b3≡n(mod p)

1

(p − 1)3
. (1·7)

This can be thought as the ratio of the probability that a random vector b ∈ ((Z/pZ)∗)3 sat-
isfies

∑
1�i�3 bi ≡ n (mod p) to the probability that a random vector b ∈ (Z/pZ)3 satisfies∑

1�i�3 bi ≡ n (mod p), as made clear from

p =
( ∑

b1,b2,b3(mod p)
b1+b2+b3≡n(mod p)

1

p3

)−1

. (1·8)
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It should be mentioned that Helfgott [6] recently settled the ternary Goldbach problem.
Using recent developments in additive combinatorics, Shao [15] provided general conditions
for an infinite subset P of the primes that allow solving n = p1 + p2 + p3 for large odd n
with each pi in P . The result most related to our work is [15, theorem 1·3]; it states that if
there exists δ > 0 such that the intersection of P with each invertible residue class modulo
every integer q has density at least δ/ϕ(q), then, under suitable additional assumptions,
n = p1 + p2 + p3 is soluble within P . This does not cover our situation, since if ha > 1
then the densities δa(1mod ha) vanish. Furthermore, if ha = 1 then these densities could
become arbitrarily close to zero. Indeed, if q is of the form

∏
p�T p for some T > 2, then it

is easy to see that

δa(1 mod q)ϕ(q)�
∏
p�T

(
1 − 1

p

)
� 1

log log q
.

It would be interesting to modify his approach in order to recover some of our results,
for example a lower bound of the correct order of magnitude as the one provided by
Theorem 1·1. This approach would still require HRH(ai) and besides the focal point of our
paper is the ‘Artin factor’ Aa(n) in Theorem 1·1. A further result related to ours is that of
Kane [9]. A very special case of his work provides an asymptotic for the number of solutions
of n = p1 + p2 + p3 when each pi lies in a prefixed Chebotarev class of a Galois extension
of Q. Primes with a prescribed primitive root do admit a Chebotarev description, however
the number of conditions involved is not fixed.

1·3. The factor Aa(n)

Let us now describe the representation of Aa(n) that is obtained directly from the
proof of Theorem 1·1. Define for q > 0 and square-free k > 0 the number field Fa,q,k :=
Q(ζq, ζk, a1/k) , so that Ga,k = Fa,k,k . Moreover, for b ∈Z with gcd(b, q)= 1, we let
ca,q,k(b) := 1 if the restriction of the automorphism σb : ζq �→ ζ b

q of Q(ζq) to Q(ζq)∩ Ga,k

is the identity and we otherwise let ca,q,k(b) := 0. We use the usual notation eq(z) :=
exp(2π i z/q), for z ∈C, q ∈N. The exponential sum

Sa,q,k(z) :=
∑

b∈(Z/qZ)∗
ca,q,k(b)eq(zb) (1·9)

and the entities

La,q,k(z) :=
3∏

i=1

Sai ,q,ki (z),

da,k(q) :=
3∏

i=1

[Fai ,q,ki :Q]

will play a central role throughout this paper. For positive square-free k1, k2, k3 we define

Sa,k(n) :=
∞∑

q=1

1

da,k(q)

∑
z∈Z/qZ

gcd(z,q)=1

eq(−nz)La,q,k(z). (1·10)

It will be made clear in Section 2 that this is the singular series for the representation prob-
lem n = p1 + p2 + p3 where for each i the prime pi splits completely in Gai ,ki . The absolute
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convergence of the sum over q will be verified in Lemma 3·2. With this notation in place,
the leading factor in Theorem 1·1 and Theorem 1·3 is given by

Aa(n)= 1

2

(∑
k∈N3

μ(k1)μ(k2)μ(k3)Sa,k(n)

)
. (1·11)

The sum over k will be shown to be absolutely convergent in Lemma 3·2. It is desirable
to describe the integers n for which Aa(n) �= 0. An important remark is that if the method
of Hooley works in an Artin conjecture-related problem, then it provides a leading constant
which is an infinite alternating sum of Euler products that is not obviously equal to the
conjectured Artin constant. Such a phenomenon is well documented and can be observed
for instance in the work of Lenstra [10], who studied the density of primes in arithmetic
progressions and with a prescribed primitive root, as well as the work of Serre [14], who
studied the density of primes p for which the reduction of an elliptic curve over Fp is cyclic.
Artin constants have not been studied in the context of Diophantine problems prior to the
present work, however, we will show that Aa(n) factorises partially and we shall provide an
interpretation for Aa(n). For every positive integer d we define the densities

σa,n(d) := d
∑

b1,b2,b3(mod d)
b1+b2+b3≡n(mod d)

3∏
i=1

δai (bi mod d)

Lai

. (1·12)

The factor d has an explanation that is identical to the explanation of the factor p
in (1·7)-(1·8). Let [·] denote the least common multiple, νp(·) be the p-adic valuation and
define

Da := 2min{ν2(�ai ):1�i�3}−max{ν2(�ai ):1�i�3}[�a1, �a2, �a3]. (1·13)

THEOREM 1·5. The factor Aa(n) in Theorems 1·1 and 1·3 factorises as follows,

Aa(n)= 1

2

( 3∏
i=1

Lai

)
σa,n(Da)

∏
p�Da

σa,n(p). (1·14)

Furthermore, whenever Aa(n) > 0, we have

Aa(n)
3∏

i=1

ϕ(hai )

|�ai |2hai

, (1·15)

with an absolute implied constant.

For an interpretation of the right-hand side of (1·14) see Section 1·4. The proof of (1·14)
(that will be provided in Section 4·1) requires adroit manoeuvring. This is because the den-
sities δa(bi mod d) in (1·12) have a complicated dependence on bi and also do not exhibit
good factorisation properties with respect to d.

Let us furthermore comment that in contrast to the usual applications of the circle method,
the constant in (1·14) does not factorise as an Euler product, see Section 4·6 for a precise
statement of this phenomenon. The following consequence of Theorem 1·1 and Theorem 1·5
can be seen as an instance of a local-global principle.
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COROLLARY 1·6. Let a1, a2, a3 be three integers none of which is −1 or a perfect square,
and assume HRH(ai) for i = 1, 2, 3. For every sufficiently large odd integer n, the following
statements are equivalent:

(1) There are primes p1, p2, p3 not dividing 6�a1�a2�a3 such that each ai is a primitive
root modulo pi and p1 + p2 + p3 = n;

(2) For d ∈ {3,Da}, there are primes p1, p2, p3 with gcd(p1 p2 p3, 2d)= 1 such that ai

is a primitive root for pi for every i = 1, 2, 3 and p1 + p2 + p3 ≡ n (mod d).

Though part (2) of Corollary 1·6 may not look like a purely local statement, it is one.
In fact, for any d in N, solubility of the congruence modulo d in primes not dividing 2d with
prescribed primitive roots is equivalent to the statement that σa,n(d) > 0. In Lemma 4·7, we
shall see that σa,n(p) > 0 whenever p � 3�a1�a2�a3 . Moreover, it is clear from the definition
in (1·12), that whether σa,n(d) is zero or not is a local condition modulo d.

1·4. Interpretation of the Artin factor for the ternary Goldbach problem

Studying the constants in any counting problem of flavour similar to that of Artin’s
conjecture is a non-trivial task and has been analysed rather extensively. The problems
involve primes with a fixed primitive root, primes in progressions and with a fixed primitive
root and primes such that the reduction of a fixed elliptic curve over the correspond-
ing finite field is cyclic, see the work of Serre [14]. The reader that is interested in an
overview of the work that has been done on these constants so far is directed at the work of
Lenstra–Stevenhagen–Moree [11], as well as the survey of Moree [13].

We now focus on the interpretation of the “Artin-factor” Aa(n) with the help of (1·14).
First, the factor 1/2 is related to the density of solutions in R of

∑
1�i�3 xi = n and it has

the exact same interpretation as in the classical situation of ternary Goldbach, and therefore,
we do not further comment on this.

The term

La1La2La3

in (1·14) should be thought of as the “probability” that for all i = 1, 2, 3, a random prime pi

has primitive root ai , see (1·4).
The factors σa,n(d) for d ∈ {Da} ∪ {p prime : p �Da} admit an explanation that is com-

parable to the analogous densities in the classical case of the ternary Goldbach problem,
see (1·7). There is only one difference, namely that one has to use the weight

δai (bi mod d)

Lai

,

instead of 1/(p − 1). This new weight equals the conditional probability that a random
prime lies in the arithmetic progression bi (mod d) given that it has primitive root ai .

It would be desirable to use algebraic considerations (for example, the approach of ‘entan-
glement’ of splitting fields as in the work of Lenstra–Stevenhagen–Moree [11]), to provide
a prediction for Aa(n) with a method that is different to the one in Section 4·1.

1·5. The case where all primitive roots are equal

In our next theorem, we provide an explicit description of the local conditions in
Corollary 1·6, but for space considerations we do so only in the important case where

a1 = a2 = a3 =: a.
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The first row of the following table contains the discriminant of Q(
√

a) and the second
row contains the power properties of a. For example, if a is a cube, but not a fifth power, we
shall write a ∈Z3 \Z5.

THEOREM 1·7. Let a �= −1 be a non-square integer and n ∈N. Then the ‘Artin factor’

A(a,a,a)(n)

is strictly positive if and only if n satisfies the congruence conditions in the third row of the
following table.

Disc(Q(
√

a)) Power properties of a Congruence conditions for n
−3 Z \ ({−1} ∪Z2) 3 (mod 6)
−4 Z \ ({−1} ∪Z2) 1 (mod 4)
5 Z \ ({−1} ∪Z2) 1 (mod 2) and not 0 (mod 5)
12 Z \ ({−1} ∪Z2 ∪Z3) 3, 5, 7, 9 (mod 12)
12 Z3 \ ({−1} ∪Z2) 3 (mod 12)
−15 Z \ ({−1} ∪Z2 ∪Z3 ∪Z5) 1 (mod 2) and not 0 (mod 15)
−15 Z3 \ ({−1} ∪Z2 ∪Z5) 1 (mod 2) and 3, 6, 9, 12 (mod 15)
−15 Z5 \ ({−1} ∪Z2 ∪Z3) 1 (mod 2) and not 0, 1, 2, 7, 8, 14 (mod 15)
−15 Z15 \ ({−1} ∪Z2) 12 (mod 15)
−20 Z5 \ ({−1} ∪Z2) 1 (mod 2) and not 1 (mod 20)
21 Z7 \ ({−1} ∪Z2 ∪Z3) 1 (mod 2) and not 8 (mod 21)
21 Z3 \ ({−1} ∪Z2 ∪Z7) 3 (mod 6)
21 Z21 \ ({−1} ∪Z2) 1 (mod 2) and 3, 6, 12, 15 (mod 21)
±24 Z3 \ ({−1} ∪Z2) 3 (mod 6)
60 Z3 \ ({−1} ∪Z2) 3 (mod 6)
60 Z5 \ ({−1} ∪Z2 ∪Z3) 1 (mod 2) and not 31, 41 (mod 60)
−84 Z3 \ ({−1} ∪Z2) 3 (mod 6)
105 Z3 \ ({−1} ∪Z2) 3 (mod 6)
±120 Z3 \ ({−1} ∪Z2) 3 (mod 6)
±168 Z3 \ ({−1} ∪Z2) 3 (mod 6)
−420 Z3 \ ({−1} ∪Z2) 3 (mod 6)
±840 Z3 \ ({−1} ∪Z2) 3 (mod 6)
every other value Z3 \ ({−1} ∪Z2) 3 (mod 6)
every other value Z \ ({−1} ∪Z2 ∪Z3) 1 (mod 2)

The last two rows refer to any value of Disc(Q(
√

a)) not considered in an earlier
row.

Theorem 1·7 enables one to describe all large enough integers having a representation as a
sum of 3 primes with a prescribed primitive root. One such example is Corollary 1·2, whose
proof we give now.

Proof of Corollary 1·2. If n is a sum of 3 odd primes all of which have primitive root 27, we
saw in the first paragraph of our paper that n must be 3 (mod 12). For the opposite direction
we observe that if a = 27 then we have Disc(Q(

√
a))= 12 and a ∈Z3 \ ({−1} ∪Z2), hence

consulting the fifth row in the table of Theorem 1·7 we see that, conditionally on HRH(27),
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every sufficiently large integer n ≡ 3 (mod 12) is a sum of three odd primes with primitive
root 27.

1·6. Structure of the paper

We study a generalisation of the ternary Goldbach problem in Section 2, where each of
the three primes involved satisfies certain splitting conditions in a different number field
extension of Q. The main result of Section 2 is Proposition 2·1, whose proof is given
in Section 2·3.

Next, Section 3·1 contains the first steps for the combination of Hooley’s argument [7]
and the Hardy–Littlewood circle method. Theorem 1·1 will be proved in Section 3·2, while
Theorem 1·3 is verified in Section 3·3.

The rest of our paper, namely Section 4, deals with the ‘Artin factor’ Aa(n). The former
part of Theorem 1·1, viz. (1·14), is verified in Section 4·1, while the latter part, viz. (1·15),
is established in Section 4·2. Corollary 1·6 and Theorem 1·7 are proved in Section 4·4 and
Section 4·5 respectively. Finally, we show that Aa(n) does not factorise as an Euler product
in Section 4·6.

Notation. The letters p and � will always denote a rational prime. The entities ai , hai , �ai

are considered constant throughout our work, thus the dependence of implied constants on
them will not be recorded. On several occasions our implied constants are absolute, this will
always be specified. Finally, we will use the notation

e(z) := exp(2π i z) and eq(z) := exp(2π i z/q), (z ∈C, q ∈N).

2. Uniform ternary Goldbach with certain splitting conditions

In this section the letters k, ki shall refer exclusively to positive square-free integers.
Recall (1·1) and define

Spl
(
Ga,k

) := {p prime in N : p splits completely in Ga,k}. (2·1)

We study the asymptotics of the representation function

Va,k(n) :=
∑

p1+p2+p3=n
∀i : pi ∈Spl(Gai ,ki )

3∏
i=1

log pi . (2·2)

We will see that the singular series related to the estimation of Va,k(n) is the series Sa,k(n)
introduced in (1·10). Kane [9] studied a very general set of problems, one case of which is
that of evaluating Va,k(n) asymptotically. His work provides a function fa such that for each
B > 0 and square-free k1, k2, k3 we have

Va,k(n)= 1

2
Sa,k(n)n

2 + OB

(
| fa(k)| n2

(log n)B

)
, (2·3)

where the implied constant depends at most on a and B. This can be deduced by taking

N := n, X := n, k := 3, ai := 1, Ki := Gai ,ki and Ci := idGai ,ki

in [9, theorem 2]. With this choice the constant C∞ in [9, theorem 2] equals n2/2 and a
long but straightforward computation allows one to show that the ‘singular series’ Sa,k(n)
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can be factored into the remaining parts of the main term in the asymptotic formula
[9, equation (1·2)].

Our aim in this section is to prove the following result, conditional on the hypothesis
HRH’(ai) introduced before Theorem 1·3. It constitutes a version of (2·3) that has a power
saving in the error term and an explicit and polynomial dependence on the ki . As is surely
familiar to circle method experts, an error term of this quality is currently out of reach
unconditionally even in the setting of the classical ternary Goldbach problem.

PROPOSITION 2·1. Assume HRH’(ai) for i = 1, 2, 3. The following estimate holds for all
square-free k1, k2, k3 with 1 � k1, k2, k3 � n and with an implied constant depending at most
on a,

Va,k(n)= 1

2
Sa,k(n)n

2 + O
(

n11/6(log n)6
(

max
1�i�3

ki

)6
)
.

2·1. Algebraic considerations

We shall need explicit bounds for certain algebraic quantities associated to Ga,k . This
subsection is mostly devoted to providing the necessary estimates.

Recall the definitions of�a and ha , given in (1·2) and (1·3). We begin by determining the
degree of the number field Fa,q,k defined at the start of Section 1·3 (see [12, lemma 2·3]).

LEMMA 2·2. For k square-free let k ′ = k/ gcd(k, ha). Then [Fa,q,k :Q] = k ′ϕ([q, k])/
ε(q, k), where

ε(q, k)=
{

2, if 2 | k and �a | [q, k],
1, otherwise.

LEMMA 2·3. Let k ′ = k/ gcd(k, ha) and a = ggcd(k,ha)

1 gk
2 , with g1 free of k ′th powers. Then

log
∣∣Disc(Fa,q,k)

∣∣
[Fa,q,k :Q] � log k ′ + log([q, k])+ 2 log |g1| .

Proof. We have
∣∣Disc(Fa,q,k)

∣∣=N(�Fa,q,k/Q(ζ[q,k]))|Disc(Q(ζ[q,k]))|[Fa,q,k :Q(ζ[q,k])], where N is
the absolute norm of an ideal and �Fa,q,k/Q(ζ[q,k]) is the relative discriminant ideal. Any k ′-th
root α ∈ Fa,q,k of g1 generates Fa,q,k over Q(ζ[q,k]), so its different d(α) �= 0 is in the different
ideal of Fa,q,k/Q(ζ[q,k]). Since the minimal polynomial of α over Q(ζ[q,k]) divides xk ′ − g1,
we find that k ′αk ′−1 is a multiple of d(α) in OFa,q,k , and thus in the different ideal as well.
Hence,

N(�Fa,q,k/Q(ζ[q,k]))� |NFa,q,k/Q(k
′αk ′−1)|� (k ′)[Fa,q,k :Q]|g1|(k ′−1)ϕ([q,k]) � (k ′)[Fa,q,k :Q]|g1|2[Fa,q,k :Q].

To complete the proof, use |Disc(Q(ζ[q,k]))| = [q, k]ϕ([q,k])∏
p|qk p−ϕ([q,k])/(p−1) �

[q, k]ϕ([q,k]).

Clearly, the intersection Q(ζq)∩ Ga,k contains Q(ζgcd(q,k)). More precisely, it is deter-
mined as follows (see [12, lemma 2·4]).
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LEMMA 2·4. We have

[Q(ζq)∩ Ga,k :Q(ζgcd(q,k))] =
{

2 if 2 | k, �a � k and �a | [q, k]
1 otherwise.

In the first case, the integer βa(q) defined in (1·5) is a fundamental discriminant and we
have Q(ζq)∩ Ga,k =Q(ζgcd(q,k),

√
βa(q)).

Since both Q(ζq) and Ga,k are normal, the same holds for their compositum Fa,q,k . We
investigate the existence of certain elements of the Galois group Gal(Fa,q,k/Q). Recall the
definitions of σb and ca,q,k(b) from the start of Section 1·3.

LEMMA 2·5. Let b ∈Z with gcd(b, q)= 1. The following are equivalent:

(1) there is an automorphism σ ∈ Gal(Fa,q,k/Q) with

σ |Q(ζq ) = σb and σ |Ga,k = idGa,k ; (2·4)

(2) ca,q,k(b)= 1;
(3) with βa(q) defined in (1·5), we have

b ≡ 1 (mod gcd(q, k)) , and (2·5)

2 | k, �a � k, �a | [q, k] implies that

(
βa(q)

b

)
= 1. (2·6)

Moreover, if σ as in (1) exists, it is unique and in the center of Gal(Fa,q,k)/Q.

Proof. Write I :=Q(ζq)∩ Ga,k . The map σ �→ (σ |Q(ζq ), σ |Ga,k ) provides an isomorphism

Gal(Fa,q,k/Q)∼= {(σ1, σ2) ∈ Gal(Q(ζq)/Q)× Gal(Ga,k/Q) : σ1|I = σ2|I }.
Thus, an automorphism σ with (2·4) exists if and only if ca,q,k(b)= 1, proving the equiv-
alence of (1) and (2). In this case σ is necessarily unique and clearly in the center of
Gal(Fa,q,k/Q), because the Galois group Gal(Q(ζq)/Q) is abelian and idGa,k is in the center
of Gal(Ga,k/Q). Thus, let us study the conditions under which ca,q,k(b)= 1.

Since Q(ζgcd(q,k))⊂ I and σb|Q(ζgcd(q,k)) coincides with the automorphism ζ �→
ζ b(mod gcd(q,k)), the condition (2·5) is clearly necessary. Thus, we assume it to hold from
now on, whence σb|Q(ζgcd(q,k)) = idGa,k . If any of the assumptions in (2·6) do not hold, then we
have I =Q(ζgcd(q,k)) by Lemma 2·4, and thus ca,q,k(b)= 1. If all of the assumptions in (2·6)
hold, then, invoking Lemma 2·4 once more, we find that

√
βa(q) ∈Q(ζq) and ca,q,k(b)= 1

is equivalent to

σb(
√
βa(q))=

√
βa(q). (2·7)

Since βa(q) is a fundamental discriminant, we may invoke [12, lemma 2·2] to see that (2·7)
is equivalent to (βa(q)/b)= 1.

2·2. Consequences of HRH’(a)

In this section we use the hypothesis HRH’(a) to provide estimates for certain exponential
sums related to the estimation of Va,k(n).
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LEMMA 2·6. Assume HRH’(a). For any square-free k and coprime integers c, q we have∑
p�x

p∈Spl(Ga,k)

(log p)eq(cp)= x

ϕ(q)[Ga,k :Q]
∑

χ(mod q)
χ◦N=χ0

χ(c)τ (χ)+ O(k2√qx(log qx)2).

Here, χ runs through all Dirichlet characters modulo q for which χ ◦N, considered as a ray
class character modulo qOGa,k , is the trivial ray class character χ0. Moreover, τ(χ) denotes
the Gauss sum τ(χ)=∑

y(mod q) χ(y)eq(y).

Proof. We have ∑
p�x

p∈Spl(Ga,k)

(log p)eq(cp)=
∑

p�x,p�q
p∈Spl(Ga,k)

(log p)eq(cp)+ O((log q)2). (2·8)

Bringing into play the Dirichlet characters modulo q allows us to insert, for p � q,

eq(cp)= 1

ϕ(q)

∑
b(mod q)

∑
χ(mod q)

χ(b)χ(cp)eq(b)= 1

ϕ(q)

∑
χ(mod q)

χ(cp)τ (χ)

into (2·8), thus showing the validity of

∑
p�x

p∈Spl(Ga,k)

(log p)eq(cp)= 1

ϕ(q)

∑
χ(mod q)

χ(c)τ (χ)ψa,k(x, χ)+ O((log q)2),

where

ψa,k(x, χ) :=
∑
p�x

p∈Spl(Ga,k)

(log p)χ(p)= 1

[Ga,k :Q]
∑
Np�x

deg(p)=1

(log Np)χ(Np)

= 1

[Ga,k :Q]
∑
Nn�x

�(n)χ(Nn)+ O(
√

x log x).

Here and for the rest of this section p denotes a prime ideal in OGa,k , deg(p) denotes its inertia
degree over Q, n denotes an ideal in OGa,k , and � is the von Mangoldt function on ideals of
OGa,k , defined by�(pe) := log Np for e � 1 and�(n) := 0 in all other cases. Observing that
χ ◦N defines a character of the ray class group of Ga,k modulo qOGa,k , we can consider its
Hecke L-function,

L(s, χ) :=
∑
n �=0

χ(Nn)(Nn)−s .

It is now easy to see that −L ′(s, χ)/L(s, χ)=∑
n �=0 �(n)χ(Nn)(Nn)−s . The Ramanujan–

Petersson conjecture is obviously true for L(s, χ), since it is true for any Hecke L-function.
Hence [8, theorem 5·15] implies that∑

Nn�x

�(n)χ(Nn)= rχ x + O(x
1
2 (log x) log(x [Ga,k :Q]q(χ))),

where rχ is the order of the pole of L(s, χ) at s = 1. For the definition of
q(χ), see [8, page 95]. Furthermore, on [8, page 129] it is proven that q(χ)�
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4[Ga,k :Q]|Disc(Ga,k)|q [Ga,k :Q]. Our next task is to make explicit the value of rχ . If χ ◦N is
the trivial ray class character χ0 modulo OGa,k , then we have rχ = 1; otherwise we have
rχ = 0. Using |τ(χ)|�√

q and Lemma 2·3 we can substitute in (2·2) to find that

1

ϕ(q)

∑
χ(mod q)

χ(c)τ (χ)ψa,k(x, χ)= xϕ(q)−1

[Ga,k :Q]
∑

χ(mod q)
χ◦N=χ0

χ(c)τ (χ)+ O([Ga,k :Q]√qx(log qx)2),

thus concluding our proof upon observing that [Ga,k :Q] = [Fa,k,k :Q]� k2.

Although it is possible to directly evaluate the main term in Lemma 2·6, we will instead
use the following trick.

LEMMA 2·7. Under the same conditions as in Lemma 2·6 we have∑
p�x

p∈Spl(Ga,k)

(log p)eq(cp)= Sa,q,k(c)

[Fa,q,k :Q] x + oq,k(x), as x → +∞.

Proof. Partitioning in progressions modulo q we see that, owing to (2·8), the sum over p in
our lemma is equal to the following quantity up to an error of size oq,k(x),∑

b∈(Z/qZ)∗
eq(bc)

∑
p�x

p≡b(mod q)
p∈Spl(Ga,k)

log p.

By Lemma 2·5 there exists an automorphism σ of Fa,q,k satisfying

σ |Q(ζq ) = σb and σ |Ga,k = idGa,k

if and only if ca,q,k(b)= 1. Furthermore, if such an automorphism exists, it is unique.
The lemma is now a consequence of Chebotarev’s density theorem.

Combining Lemma 2·6 and Lemma 2·7 proves the following lemma.

LEMMA 2·8. Under the same assumptions as in Lemma 2·6 we have∑
p�x

p∈Spl(Ga,k)

(log p)eq(cp)= Sa,q,k(c)x

[Fa,q,k :Q] + O(k2√qx log2 qx).

Define for a square-free integer k > 0 the exponential sum

fa,k(α)=
∑
p�n

p∈Spl(Ga,k)

(log p)e(αp), (α ∈R). (2·9)

The next lemma is easily proved via partial summation and Lemma 2·8.

LEMMA 2·9. Assume HRH’(a). Let k be square-free integer and define α = c/q + β,
where (c, q)= 1. Then

fa,k(α)= Sa,q,k(c)

[Fa,q,k :Q]
∫ n

0
e(βx)dx + O

(
k2(1 + |β|n)√qn(log qn)2

)
.
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It will be necessary to gain a better understanding of the exponential sums Sa,q,k(c).
We start by studying ca,q,k(·) in the next lemma, whose proof follows directly from (2·5)
and (2·6).

LEMMA 2·10. Let b, q be coprime integers and factor q as q = d
∏l

i=1 pei
i with d an

integer composed of primes dividing �a and pi distinct prime numbers not dividing �a.
Then we have for any square-free integer k,

ca,q,k(b)= ca,d,k(b)
l∏

i=1

ca,p
ei
i ,k
(b).

LEMMA 2·11. Let k be square-free, assume that b, q are coprime integers and suppose
that q = q1q2, b = b1q2 + b2q1, with q1, q2 coprime. If gcd(q1, �a)= 1 or gcd(q2, �a)= 1,
then

Sa,q,k(b)= Sa,q1,k(b1)Sa,q2,k(b2).

Proof. By the Chinese remainder theorem we can write each element y ∈Z/qZ as y1q2 +
y2q1, where yi ∈Z/qiZ, thus showing that eq(by)= eq1(b1 y1q2)eq2(b2 y2q1). This leads to

Sa,q,k(b)=
∑

y∈(Z/qZ)∗
ca,q,k(y)eq(by)

=
∑

y1∈(Z/q1Z)∗
eq1(b1 y1q2)

∑
y2∈(Z/q2Z)∗

eq2(b2 y2q1)ca,q,k(y1q2 + y2q1).

By Lemma 2·10 we have ca,q,k(y1q2 + y2q1)= ca,q1,k(y1q2 + y2q1)ca,q2,k(y1q2 + y2q1). The
entity ca,q,k(y) is periodic (mod q) as a function of y, thus we can write Sa,q,k(b) as∑

y1∈(Z/q1Z)∗
eq1(b1 y1q2)ca,q1,k(y1q2)

∑
y2∈(Z/q2Z)∗

eq2(b2 y2q1)ca,q2,k(y2q1)

and a simple linear change of variables in each sum completes the proof.

LEMMA 2·12. For k square-free, b an integer and p a prime with p � b�a we have

|Sa,p j ,k(b)| =
{

1, j = 1
0, j > 1.

Proof. Let us observe that (2·6) always holds for q = p j as in the lemma, as the hypothesis
is never satisfied. We first handle the case j = 1. If p � k then by Lemma 2·5, Sa,p,k(b) is the
classical Ramanujan sum and the result follows, while in the remaining case, p | k, the result
is also immediate from (2·5). Now suppose j > 1. Again, if p � k, the sum in the lemma is
a Ramanujan sum and the result follows. We are therefore free to assume that p | k. Writing
y = 1 + px we see that

Sa,p j ,k(b)=
∑

y(mod p j)
y≡1(mod p)

ep j (by)= ep j (b)
∑

x(mod p j−1)

ep j−1(bx),

which is clearly sufficient since the inner sum vanishes.

https://doi.org/10.1017/S0305004119000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000331


Vinogradov’s theorem with primes having given primitive roots 89

LEMMA 2·13. Let r, Q, c ∈Z be such that r Q �= 0, gcd(c, Q)= 1, r divides Q and
assume that a function f :Z→C has period |r |. If we have |r |< |Q| then the following
sum vanishes, ∑

b(mod |Q|)
e|Q|(bc) f (b).

Proof. The claim becomes clear upon writing the sum in our lemma as∑
b0(mod |r |)

e|Q|(b0c) f (b0)
∑

x(mod |Q/r |)
e|Q/r |(xc)

and observing that if |Q/r | �= 1, then each exponential sum over x vanishes.

LEMMA 2·14. Let k be a square-free integer, suppose that q is composed of primes
dividing �a and let b be an integer with gcd(b, q)= 1. If q ��a, then Sa,q,k(b)= 0.

Proof. First suppose 2 � k or �a | k or �a � [q, k] and write q = pe1
1 · · · pel

l . We have

ca,q,k(b)=
l∏

i=1

ca,p
ei
i ,k
(b),

therefore Sa,q,k(b)= 0 can now be easily proved as before, as our hypotheses imply that
e j > 1 for at least one j .

Now suppose that 2 | k and �a � k and �a | [q, k]. For y ∈Z, let f (y) := 1 if
y ≡ 1 (mod gcd(k, q)) and (βa(q)/y)= 1, and f (y) := 0 otherwise. By Lemma 2·5 we have

Sa,q,k(b)=
∑

y(mod q)

f (y)eq(by).

Since gcd(k, q) | gcd(�a, q)= |βa(q)| and βa(q) is a fundamental discriminant, we see
that f has period gcd(�a, q), strictly dividing q by our hypotheses. Now apply Lemma 2·13.

Combining Lemmas 2·11, 2·12 and 2·14 allows us to conclude that

Sa,q,k(b)� 1, (2·10)

where the implied constant depends at most on a.

2·3. Proof of Proposition 2·1
Recall (2·9). Our starting point is the circle method identity,

∑
p1+p2+p3=n
pi ∈Spl(Gai ,ki )

3∏
i=1

(log pi )=
∫ 1

0
fa1,k1(α) fa2,k2(α) fa3,k3(α)e(−nα)dα. (2·11)

COROLLARY 2·15. Assume HRH’(a), and suppose α, c, q fulfil |α − c/q|� q−1n−2/3,
gcd(c, q)= 1, q � n2/3 and that k is square-free. Then we have fa,k(α)� (n/q +
k2n5/6)(log n)2.
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Proof. Observe that Lemma 2·2 gives [Fa,q,k :Q]−1 � ϕ([q, k])−1 � ϕ(q)−1 � (log q)q−1,
hence, by Lemma 2·9 and (2·10) one obtains fa,k(α)� n(log n)q−1 + k2(1 +
n1/3q−1)

√
qn(log n)2. Our proof can then be concluded by using q � n2/3.

Define P := nν , for an absolute constant ν ∈ (0, 1/6] that will be chosen later. In our
situation the major arc M(c, q) is defined for coprime c, q via

M(q, c) := {α : |α − c/q|� q−1n−2/3},
while we let M be the union of all M(q, c) with 1 � q � P , 1 � c � q, gcd(c, q)= 1 and
define the minor arcs through m := [0, 1] \M. We note here that the major arcs are pairwise
disjoint. This follows from the inequailty (qq ′)−1 > (qn2/3)−1 + (q ′n2/3)−1, holding for all
n > 8, as q, q ′ � n1/3.

COROLLARY 2·16. Assume HRH’(ai) for 1 � i � 3. Then∫
m

| fa1,k1(α) fa2,k2(α) fa3,k3(α)|dα� n2−ν(log n)3 min
i

k2
i .

Proof. By Dirichlet’s approximation theorem, for each α there exist coprime integers c, q
with |α − c/q|� q−1n−2/3 and 1 � q � n2/3. If α ∈m then q > nν , hence Corollary 2·15
yields the estimate fa,k(α)� k2n1−ν(log n)2. We may assume k1 � k2, k3 with no loss of
generality, therefore the integral in our lemma is � k2

1n1−ν(log n)2
∫ 1

0 | fa2,k2(α) fa3,k3(α)|dα,
thus Cauchy’s inequality yields the following bound for the latter integral,

�
(∫ 1

0
| fa2,k2(α)|2dα

)1/2 (∫ 1

0
| fa3,k3(α)|2dα

)1/2

.

Both integrals are at most
∑

p�n(log p)2 � n log n, which provides the desired result.

Note that if β + c/q ∈M(q, c) for some q � n1/3, then Lemma 2·9 shows that

fai ,ki (α)=
Sai ,q,ki (c)

[Fai ,q,ki :Q]
∫ n

0
e(βx)dx + O

(
n5/6

q1/2
(log n)2 max

i
k2

i

)
.

Hence the estimates∫ n

0
e(βx)dx � min{n, |β|−1} and

Sa,q,k(c)

[Fa,q,k :Q] � ϕ(q)−1

show that fa1,k1(c/q + β) fa2,k2(c/q + β) fa3,k3(c/q + β)− La,q,k(c)da,k(q)−1
(∫ n

0 e(βx)dx
)3

is

� min{n2, |β|−2}
ϕ(q)2

n5/6

q1/2
(log n)2 max

i
k2

i + n15/6

q3/2
(log n)6 max

i
k6

i . (2·12)

The major arcs give rise to the following contribution towards (2·11),

∑
1�q�nν

∑
1�c�q

gcd(c,q)=1

∫ q−1n−2/3

−q−1n−2/3

fa1,k1(c/q + β) fa2,k2(c/q + β) fa3,k3(c/q + β)e(−n(c/q + β))dβ,
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and a straightforward analysis utilising (2·12) reveals that the last expression equals

∑
1�q�nν

∑
1�c�q

gcd(c,q)=1

eq(−cn)La,q,k(c)

da,k(q)

∫ q−1n−2/3

−q−1n−2/3

(∫ n

0
e(βx)dx

)3

e(−nβ)dβ + O

(
n11/6(log n)6

maxi k−6
i

)
.

The integral over β can be estimated as n2/2 + O(q2n4/3), thus by (2·10) the sum over q
is Sa,k(n)n2/2 + O((n4/3+ν + n2−ν)(log n)3) and the choice ν = 1/6 concludes the proof of
Proposition 2·1.

3. Fusing the circle method with Hooley’s approach

3·1. Opening phase

The aim of Section 3 is to prove Theorem 1·1 and Theorem 1·3. We commence in this
subsection by calling upon parts of Hooley’s work [7] that will prove useful. We will make
an effort to keep the notation in line with his as much as possible. In this section, the letters
p, q will be reserved for primes. Two primes p, q are said to satisfy the property Ra(q, p)
if both of the following conditions hold,

q|(p − 1); a is a qth power residue (mod p) .

A standard index calculus argument shows that for a prime p � a the integer a is a primitive
root (mod p) if and only if Ra(q, p) fails for all primes q. For any η, η1, η2 ∈R>0 we define

Na(n, η) := #
{

p � n : Ra(q, p) fails for all primes q � η
}

and

Ma(n, η1, η2) := #
{

p � n : there exists q ∈ (η1, η2] such that Ra(q, p) holds
}
.

Letting

Na(n) := #{p � n : a is a primitive root modulo p}
we see from the work of Hooley [7, equation (1)] that for each ξ1, ξ2, ξ3 ∈R with

1 � ξ1 < ξ2 < ξ3 < n − 1

we have

Na(n)= Na(n, ξ1)+ O
(

Ma(n, ξ1, ξ2)+ Ma(n, ξ2, ξ3)+ Ma(n, ξ3, n − 1)
)
.

Hooley makes specific choices for the parameters ξi ; we will keep the same choice for ξ2

and ξ3, namely ξ2 := n
1
2 (log n)−2, ξ3 := n

1
2 log n, however, we shall later choose a different

value for ξ1. For the moment we shall only demand that 1< ξ1 � (log n)(log log n)−1. The
estimates proved in [7, equations (2) and (3)] provide us with

Na(n)= Na(n, ξ1)+ O
(

Ma(n, ξ1, ξ2)+ n(log log n)(log n)−2
)
. (3·1)

The argument in [7, equation (33)] shows that for each ξ1 as above, one has under HRH(a)
that

Ma(n, ξ1, ξ2)� n

log n

∑
q>ξ1

1

q2
+ n

log2 n
,
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which, once combined with the simple estimate
∑

q>ξ1
q−2 � ξ−1

1 and (3·1) provides us with

Na(n)= Na(n, ξ1)+ O

(
n

log n

1

ξ1
+ n log log n

log2 n

)
, (3·2)

with an implied constant depending at most on a.

LEMMA 3·1. For any β ∈ (0, 1) and any sets of primes Pi ⊂ [1, n] of cardinality
ε(Pi)n/ log n the following estimate holds with an implied constant that depends at most
on β,

∑
p1+p2+p3=n

∃i :pi ∈Pi

3∏
i=1

log pi �β n2(max
i
ε(Pi))

β.

Proof. Define r2(m) := #{(p1, p2) : pi prime, p1 + p2 = m}. The sum in the lemma is at
most

(log n)3
3∑

i=1

∑
p1+p2+p3=n

pi ∈Pi

1 = (log n)3
3∑

i=1

∑
p<n

1Pi (p)r2(n − p)

and using Hölder’s inequality with exponents (1/β, 1/(1 − β)) allows us to bound the inner
sum on the right by

ε(Pi )
βnβ(log n)−β

(∑
p<n

r2(n − p)1/(1−β)
)1−β

.

Straightforwardly, there exists c = c(β) > 0 with (1 − z)/(1 − 2z)� (1 + cz)1−β for all 0<
z � 1/3. Using this for z = 1/p′ and alluding to the following classical bound (that can be
found in [3, equation (7·2)], for example),

r2(m)� m

(log m)2
∏

p′ |m,p′ �=2

p′ − 1

p′ − 2

yields

r2(m)�β

m

(log m)2
∏
p′ |m

(
1 + c

p′

)1−β
.

Therefore the quantity in the lemma is

� (log n)3
(n maxi ε(Pi )

log n

)β(( n

(log n)2

)1/(1−β)∑
p<n

∏
p′ |n−p

(1 + c/p′)
)1−β

and to finish our proof it remains to show that

∑
p<n

∏
p′ |n−p

(1 + c/p′)�c
n

log n
.
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Rewriting this sum as
∑

d�n μ(d)
2cω(d)d−1#{p< n : p ≡ n (mod d)} we see that

the contribution from the integers d > n1/2 is �∑
n1/2<d�n cω(d)d−1(n/d + 1)�

n1/2+1/100. By the Brun–Titchmarsh theorem, the terms with d � n1/2 contribute �
n(log n)−1

∑
d�n1/2 cω(d)(dϕ(d))−1 � n(log n)−1, thus concluding our proof.

Let us define the set

Pi := {
p : p|ai

}∪ {p � n : Rai (q, p) holds for some prime q > ξ1

}
.

The arguments bounding Ma(n, ξ1, n − 1) in the deduction of (3·2) show under HRH(a)
that

#Pi � n

ξ1 log n
+ n log log n

log2 n
. (3·3)

By (3·3) we have

ε(Pi )= log n

n
#Pi � 1

ξ1
+ log log n

log n
� 1

ξ1
,

and thus we can apply Lemma 3·1. Therefore, under HRH(ai) for i = 1, 2, 3, and for each
fixed β ∈ (0, 1) we obtain the validity of

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi =
∑

p1+p2+p3=n,pi �ai
∀i,∀q�ξ1: Rai (q,pi ) fails

3∏
i=1

log pi + Oβ

( n2

ξ
β

1

)
.

Bringing into play the following quantity for each square-free positive integer ki ,

Pa,k(n) :=
∑

p1+p2+p3=n, pi �ai
∀i : q|ki ⇒Rai (q,pi ) holds

3∏
i=1

log pi , (3·4)

makes the following estimate available, once the inclusion-exclusion principle has been
used,

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi =
∑
k∈N3

p|k1k2k3⇒p�ξ1

μ(k1)μ(k2)μ(k3) Pa,k(n)+ Oβ

(
n2ξ

−β
1

)
. (3·5)

The entity Pa,k(n) is analogous to Pa(k) that is present in the work of Hooley [7, section 3].
Indeed, the inclusion-exclusion argument above is inspired by the argument leading to
[7, equation (5)].

Using the arguments in [7, section 4] we shall first translate the Rai (q, pi )-condition
present in (3·4) into a condition related to the factorisation properties of the prime pi in
certain number fields. Recall the definition of ha given in (1·3). For any positive square-free
integer ki we define k ′

i := ki/ gcd(ki , hai ). Then, as explained in [7, equation (8)], for a prime
p � ai and a square-free integer ki , the conditions Rai (q, p) hold for all q | ki if and only if

xk ′
i ≡ ai (mod p) is soluble and p ≡ 1 (mod ki ) .
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It is then proved following [7, Eq.(8)] that, in light of the Kummer–Dedekind theorem, this is
in turn equivalent to the property that p is completely split in the number field Q(a

1/k ′
i

i , ζki ).
Recall (1·1) and let us see why

Gai ,ki =Q(a
1/k ′

i
i , ζki ).

It is clearly sufficient to show that a1/ki

i ∈Q(a
1/k ′

i
i , ζki ). Writing ai = bhai and using

μ(ki)
2 = 1, we see that gcd(hai gcd(ki , hai ), ki )|hai , hence there are integers x, y with

hai gcd(ki , hai )x + ki y = hai .

This leads to the equality a1/ki

i = (b1/ki )hai = by(a1/ki
′

i )x , which completes the argument.
Recalling the definition of Spl

(
Gai ,ki

)
in (2·1), we infer by (3·4) that for all k ∈N3 with

each ki square-free we have

Pa,k(n)=
∑

p1+p2+p3=n, pi �ai

∀i : pi ∈Spl(Gai ,ki )

3∏
i=1

log pi = Va,k(n)+ Oβ(n
2((log n)/n)β),

for any β ∈ (0, 1). For the second equality, recall (2·2) and use Lemma 3·1. Inserting this
into (3·5) we have proved that whenever 1< ξ1 � (log n)(log log n)−1 and 0<β < 1, then

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi =
∑
k∈N3

p|k1k2k3⇒p�ξ1

μ(k1)μ(k2)μ(k3)Va,k(n)+ Oβ

(
n2ξ

−β
1

)
. (3·6)

For summing up the error terms, we have used the following estimate, valid for 2 − β <

δ < 2,

∑
k∈N3

p|k1k2k3⇒p�ξ1

|μ(k1)μ(k2)μ(k3)|nδ � nδ
( ∑

k∈N
p|k⇒p�ξ1

|μ(k)|
)3 = nδ23#{p�ξ1}

� nδe3ξ1 � nδ+
3

log log n

�β,δ n2(log n)−β(log log n)β � n2ξ
−β
1 .

Before concluding the proofs of Theorem 1·1 and Theorem 1·3, we need a preparatory
lemma.

LEMMA 3·2. The series defining Sa,k(n) in (1·10) and the series representing Aa(n) in
(1·11) are absolutely convergent. For each ε > 0 and z � 1 we have

∑
k∈N3

∃i,p: p|ki and p�z

|Sa,k(n)|
( 3∏

i=1

|μ(ki )|
)
�
∑
k∈N3

∃i : ki�z

( 3∏
i=1

|μ(ki )|
) ∞∑

q=1

1

da,k(q)

∑
x∈(Z/qZ)∗

|La,q,k(x)| �ε

1

z1−ε ,

with an implied constant depending at most on a and ε.
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Proof. The first inequality is clear by (1·10). Observe that k ′
i � ki/hai  ki , hence by

Lemma 2·2 we obtain

1

da,k(q)
�

3∏
i=1

1

kiϕ([q, ki ]) = 1

ϕ(q)3

3∏
i=1

ϕ(gcd(q, ki ))

kiϕ(ki )
.

Combining this with (2·10) we see by (1·10) that for ε > 0 and square-free ki ,

∞∑
q=1

1

da,k(q)

∑
x∈(Z/qZ)∗

|La,q,k(x)| �
3∏

i=1

1

kiϕ(ki)

∞∑
q=1

ϕ(gcd(q, k1))ϕ(gcd(q, k2))ϕ(gcd(q, k3))

ϕ(q)2

�ε

gcd(k1, k2, k3)

(k1k2k3)2−ε .

Therefore, the inner sum in our lemma satisfies the bound

�
∑
k1�z

|μ(k1)|
k2−ε

1

∑
k2∈N

|μ(k2)|
k2−ε

2

∑
k3∈N

|μ(k3)| gcd(k1, k2, k3)

k2−ε
3

.

We conclude the proof of our desired bound using the estimates

∑
k3∈N

|μ(k3)| gcd(k3,m)k3
−2+ε �ε mε and

∑
k1�z

|μ(k1)|
k2−ε

1

� z−1+ε.

This bound implies in particular the absolute convergence of the sum in (1·11).

3·2. The proof of Theorem 1·1
Recall (2·3). Now note that, replacing fa(x) by a larger function if necessary, we may

assume in the statement of (2·3) that fa([1,∞)3) is a subset of (1,∞). Fix any B > 0. The
function

x �→ log(1 + x)+
∑

1�k1,k2,k3�x

fa(k),

is strictly increasing, hence it has an inverse, say ha(x). Define the function ξ1 : (1,∞)→R
through

ξ1(x) := 1

2
· min

{
log x

log log x
, log(ha((log x)B/2))

}
(3·7)

and observe that

lim
x→+∞ ξ1(x)= +∞, (3·8)

however, owing to the non-explicit error term in [9, Theorem 2] we cannot have any further
control on the rate of divergence in the last limit. For n  1, the definition of ξ1 implies∑

1�k1,k2,k3�e2ξ1(n)

fa(k)� (log n)B/2.

Noting that a square-free integer with all of its prime factors bounded by ξ1(n) must be at
most

∏
p�ξ1(n)

p � exp(2ξ1(n)) and inserting (2·3) into (3·6) yields the following with an
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implied constant depending on β and B,

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi = n2

2

∑
k∈N3

p|k1k2k3⇒p�ξ1(n)

( 3∏
i=1

μ(ki )
)
Sa,k(n)

+ O

(
n2

ξ
β

1

+ n2

(log n)B

( ∑
k∈N3

∀i : ki�e2ξ1(n)

fa(k)
))

= n2

2

∑
k∈N3

p|k1k2k3⇒p�ξ1(n)

( 3∏
i=1

μ(ki )
)
Sa,k(n)+ O

(
n2

ξ
β

1

+ n2

(log n)B/2

)
.

An application of Lemma 3·2 with ε= 1 − β shows that

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi − 1

2

(∑
k∈N3

μ(k1)μ(k2)μ(k3)Sa,k(n)

)
n2 �β,B

n2

min{(log n)B/2, ξ1(n)β} ,

and the proof of Theorem 1·1 is concluded upon invoking (3·8), except for the assertion that
Aa(n)a 1 whenever Aa(n) > 0. This assertion follows immediately from Theorem 1·5,
proved in Section 4. Moreover, we have confirmed the shape of Aa(n) given in (1·11).

Note that the reason for the non-explicit error term in Theorem 1·1 is that the function ξ1

in (3·7) is not explicit.

3·3. The proof of Theorem 1·3
Let β be any real number in (0, 1) and define

ξ1(n) := log n

log log n
.

We insert in (3·6) the estimate for Va,k(n) given in Proposition 2·1 to see that

∑
p1+p2+p3=n
∀i : F∗

pi
=〈ai 〉

3∏
i=1

log pi − n2

2

∑
p|k1k2k3⇒p�ξ1

Sa,k(n)
3∏

i=1

μ(ki )�β

n2

ξ
β

1

+ (log n)6

n−11/6

( ∑
k∈N

p|k⇒p�ξ1

k6|μ(k)|
)3
.

For n  1, each k in the sum satisfies k �
∏

p�ξ1
p � n

2
log log n , hence the cube of the sum over

k is at most n
θ

log log n for some absolute positive constant θ . This shows that the right-hand side
above is �β n2ξ

−β
1 . Appealing to Lemma 3·2 completes the proof of Theorem 1·3.

4. Artin’s factor for ternary Goldbach

In this section, we study in detail the leading factor Aa(n) in Theorems 1·1 and 1·3,
and thus prove Theorem 1·5, Corollary 1·6 and Theorem 1·7. Recall that we have already
confirmed the equality (1·11) in the proof of Theorem 1·1 in Section 3·2.

4·1. The proof of (1·14)

Recall the definitions of Fa,q,k(b) and ca,q,k(b) from the start of Section 1·3. It was shown
by Lenstra [10, theorem (3·1), equation (2·15)] conditionally under HRH(a), that for all
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integers b and q > 0 the natural density of the primes p satisfying the following conditions
exists,

F∗
p = 〈a〉 and p ≡ b (mod q) ,

and, furthermore, that it equals
∑

k∈N μ(k)ca,q,k(b)[Fa,q,k :Q]−1. This topic was later
revisited by Moree [12], who showed that

∑
k∈N

μ(k)ca,q,k(b)

[Fa,q,k :Q] = δa(b mod q), (4·1)

where δa(b mod q) is the arithmetic function given in Definition 1·4. We will make
consequent use of Moree’s result in this section.

LEMMA 4·1. We have

∑
k∈N3

μ(k1)μ(k2)μ(k3)Sa,k(n)=
∞∑

q=1

∑
c∈(Z/qZ)∗

eq(−nc)
3∏

i=1

( ∑
bi ∈Z/qZ

eq(bi c)δai (bi mod q)

)
.

Proof. Recall (1·9) and (1·10). Lemma 3·2 allows us to rearrange terms, thus we can rewrite
the sum over k in our lemma as

∞∑
q=1

∑
c∈Z/qZ

gcd(c,q)=1

eq(−cn)
3∏

i=1

(∑
ki ∈N

μ(ki )Sai ,q,ki (c)

[Fai ,q,ki :Q]

)
.

By (1·9) the sum over ki equals

∑
bi ∈Z/qZ

gcd(bi ,q)=1

eq(bi c)
∑
ki ∈N

μ(ki)cai ,q,ki (bi)

[Fai ,q,ki :Q]

and using (4·1) concludes our proof.

The difficulty of converting the sum over k in (1·11) into a product comes from the
fact that the terms δai (bi mod q) in Lemma 4·1 are not a multiplicative function of q.
These terms would be multiplicative in the classical Vinogradov setting, where one has
1gcd(bi ,q)=1(bi)/ϕ(q) in place of δai (bi mod q).

For brevity, we will write from now on βi(q) and �i for βai (q) and �ai .

LEMMA 4·2. If the odd part of a positive integer q is not square-free then the following
expression vanishes,

3∏
i=1

( ∑
bi ∈Z/qZ

eq(bi c)δai (bi mod q)

)
.

The expression also vanishes if ν2(q) >min{ν2(�i ) : i = 1, 2, 3}.
Proof. In the present proof we write [P] := 1 if a proposition P holds, and [P] := 0 other-
wise. For 1 � i � 3, we factorise each positive integer q uniquely as q = qi,0qi,1, where qi,0

is only divisible by primes dividing �i and gcd(qi,1, �i )= 1. Now owing to Definition 1·4
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the quantity δai (bi mod q)/Aai equals

([
gcd(bi , qi,1) gcd(bi − 1, qi,1, hai )= 1

] f †
ai
(qi,1)

ϕ(qi,1)

∏
p|bi −1,p|qi,1

(
1 − 1

p

))

×
(

f †
i (qi,0)

ϕ(qi,0)

∏
p|bi −1,p|qi,0

(
1 − 1

p

))[
gcd(bi , qi,0) gcd(bi − 1, qi,0, hai )= 1

]

×
(

1 +
(
βi(qi,0)

bi

)
μ

(
2|�i |

gcd(qi,0, �i )

)
f ‡
ai

( |�i |
gcd(qi,0, �i )

))
.

The integers qi,0 and qi,1 are coprime, hence we may write bi = qi,0bi,1 + qi,1bi,0 and use the
Chinese remainder theorem to write the sum over bi in the lemma as the product of

Aai · f †
ai
(qi,0)

ϕ(qi,0)

f †
ai
(qi,1)

ϕ(qi,1)

∑
bi,1(mod qi,1)

gcd(bi,1,qi,1)=1
gcd(bi,1qi,0−1,qi,1,hai )=1

e(bi,1c/qi,1)
∏

p|(bi,1qi,0−1,qi,1)

(
1 − 1

p

)

and

∑
bi,0(mod qi,0)

gcd(bi,0,qi,0)=1
gcd(bi,0qi,1−1,qi,0,hai )=1

e(bi,0c/qi,0)∏
p|(bi,0qi,1−1,qi,0)

(1 − 1
p )

−1

(
1 +

(
βi(qi,0)

bi,0qi,1

)

×μ

(
2|�i |

gcd(qi,0, �i )

)
f ‡
ai

( |�i |
gcd(qi,0, �i )

))
.

To study the sum over bi,1 we use Lemma 2·13 with

Q := qi,1, r :=
∏
p|qi,1

p, f (b) := [gcd(b, r) gcd(b − 1, r, hai )= 1]
∏

p|b−1,p|r

(
1 − 1

p

)

to deduce that if the expression in our lemma is non-vanishing then for each i the integer
qi,1 must be square-free. Now assume that the prime p satisfies p � gcd(�1, �2, �3). Then
there exists i ∈ {1, 2, 3} such that p ��i and then the non-vanishing of the expression in the
lemma implies that qi,1 must be square-free, thus νp(q)= νp(qi,1)� 1.

Now the sum over bi,0 can be studied via Lemma 2·13 with Q := qi,0, r := gcd(qi,0, �i )

and with f (b) being the product of [gcd(b, r) gcd(bqi,1 − 1, r, hai )= 1] and{
1 +

(
β(qi,0)

b

)
μ

(
2|�i |

gcd(qi,0, �i )

)
f ‡
i

( |�i |
gcd(qi,0, �i )

) } ∏
p|(bqi,1−1,r)

(
1 − 1

p

)
.

We have used the fact that p | qi,0 if and only if p | r , and that the Kronecker sym-
bol has period |β(qi,0)| = r . Lemma 2·13 shows that unless the expression in our lemma
vanishes, we have gcd(qi,0, �i )= qi,0, thus for every i we must have qi,0 |�i . Now if a
prime p satisfies p | gcd(�1, �2, �3) we have that for every i , νp(q)= νp(qi,0)� νp(�i ),
thus νp(q)� min{νp(�i ) : i = 1, 2, 3}. If p �= 2 then this shows that νp(q)� 1 since the
odd part of a fundamental discriminant is square-free, while if p = 2 then we must have
ν2(q)� min{ν2(�i) : i = 1, 2, 3}.
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Lemma 4·2 allows us to simplify the summation over q in Lemma 4·1, since the only
integers q making a contribution towards the sum must satisfy

∀p, i : p|�i , p|q ⇒ νp(q)� νp(�i) and p|q, p ��1�2�3 ⇒ νp(q)� 1.

To keep track of every factorisation we introduce for every q ∈N and w ∈ {0, 1}3 the positive
integer

q(w) :=
∏

p:
∀i : p|�i ⇔w(i)=0

pνp(q),

so that q =∏
w∈F3

2
q(w). Furthermore, whenever w �= u then we have gcd(q(w), q(u))= 1.

Note that for a given q, q(w) is uniquely characterised by the properties

gcd(q(w),
∏

i :w(i)=1

�i )= 1 and q(w) | gcd{�i : w(i)= 0}. (4·2)

In the case w = (1, 1, 1), the latter condition is interpreted as vacuous. It may be that for
certain values of ai and for all q some q(w) are equal to 1; for example, this happens if
a1 = a2 = a3, in which case we see that w /∈ {(0, 0, 0), (1, 1, 1)} implies that q(w)= 1. We
now use the definition of q(w), Lemma 4·1 and Lemma 4·2 to infer∑

k∈N3

μ(k1)μ(k2)μ(k3)Sa,k(n)=
∑

(q(w))∈N8,

(4·2) holds
μ(q((1,1,1)))2=1

∑
c(mod

∏
w q(w))

gcd(c,
∏

w q(w))=1

e(−nc
∏

w

q(w)−1)

×
3∏

i=1

( ∑
bi(mod

∏
w q(w))

e
(

bi c
∏

w

q(w)−1
)

× δai

(
bi mod

∏
w

q(w)
))
.

(4·3)

Noting that the integers
∏

w(i)=0 q(w) and
∏

w(i)=1 q(w) are coprime, that

gcd
(
�i ,

∏
w

q(w)
)

=
∏

w(i)=0

q(w),

and recalling Definition 1·4, we see that

δai

(
bi mod

∏
w

q(w)
)

= δai

(
bi mod

∏
w(i)=0

q(w)
)
Aai

(
bi mod

∏
w(i)=1

q(w)
)
A −1

ai
.

Writing bi = b′
i

∏
w(i)=1 q(w)+ b′′

i

∏
w(i)=0 q(w) and using the Chinese remainder theorem

we obtain ∑
bi(mod

∏
w q(w))

e
(

bi c
∏

w

q(w)−1
)
δai

(
bi mod

∏
w

q(w)
)

=
∑

b′
i(mod

∏
w(i)=0 q(w))

e
(

b′
i c
∏

w(i)=0

q(w)−1
)
δai

(
b′

i

∏
w(i)=1

q(w)mod
∏

w(i)=0

q(w)
)

×
∑

b′′
i (mod

∏
w(i)=1 q(w))

e
(

b′′
i c

∏
w(i)=1

q(w)−1
)
A −1

ai
Aai

(
b′′

i

∏
w(i)=0

q(w)mod
∏

w(i)=1

q(w)
)
.
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In order to analyse the expressions above, we introduce for r ∈N, c ∈Z the quantity

Ma(c, r) := 1

Aa

∑
b(mod r)

er (bc)Aa(b mod r) (4·4)

and, for r ∈Nk , c ∈Zk , define

Da(c, r) :=
∑

b(mod r1···rk )

e
[
b
( r∑

i=1

ci

ri

)]
δa(b mod r1 · · · rk).

Hence, writing

c =
∑

w∈{0,1}3

c[w] ∏
v�=w

q(v),

we see that
∏

w(i)=1 Mai (c
[w], q(w)) equals

A −1
ai

∑
b′′

i (mod
∏

w(i)=1 q(w))

e
(

b′′
i c

∏
w(i)=1

q(w)−1
)
Aai

(
b′′

i

∏
w(i)=0

q(w)mod
∏

w(i)=1

q(w)
)

and that Dai ((c
[w])w(i)=0, (q(w))w(i)=0) is

∑
b′

i(mod
∏

w(i)=0 q(w))

e
(

b′
i c
∏

w(i)=0

q(w)−1
)
δai

(
b′

i

∏
w(i)=1

q(w)mod
∏

w(i)=0

q(w)
)
.

For w = (1, 1, 1), let �w := 1. In case w �= (1, 1, 1), we define

�w :=
∏

p�
∏

w(i)=1 �i

pmin{νp(�i ) : w(i)=0}.

Then
∏

w �w coincides with the entity Da introduced in (1·13). We see that the sum in (4·3)
becomes ∑

(q(w))∈N8

w�=(1,1,1)⇒q(w)|�w

μ(q((1,1,1)))2=1
gcd(q((1,1,1)),�1�2�3)=1

∑
(c[w])∈∏w(Z/q(w)Z)∗

(∏
w

eq(w)(−nc[w])
)

×
3∏

i=1

{
Dai ((c

[w])w(i)=0, (q(w))w(i)=0)
∏

w(i)=1

Mai (c
[w], q(w))

}
.

Clearly, the terms corresponding to q((1, 1, 1)) can be separated, thus, in light of (4·3), we
are led to ∑

k∈N3

μ(k1)μ(k2)μ(k3)Sa,k(n)= Sa,0(n)Sa,1(n), (4·5)
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where

Sa,0(n) :=
∑

(q(w))w �=(1,1,1)∈N7

q(w)|�w

∑
(c[w])∈∏w �=(1,1,1)(Z/q(w)Z)∗

( ∏
w�=(1,1,1)

eq(w)(−nc[w])
)

×
3∏

i=1

{
Dai ((c

[w])w(i)=0, (q(w))w(i)=0)
∏

w(i)=1
w�=(1,1,1)

Mai (c
[w], q(w))

}

and

Sa,1(n) :=
∑

gcd(q((1,1,1)),�1�2�3)=1

μ(q((1, 1, 1)))2

×
∑

c[(1,1,1)]∈(Z/q((1,1,1))Z)∗
eq((1,1,1))(−nc[(1,1,1)])

3∏
i=1

Mai (c
[(1,1,1)], q((1, 1, 1))).

(4·6)

LEMMA 4·3. For any q ∈N and w ∈ {0, 1}3 define dw :=�w/q(w).

(1) Let i ∈ {1, 2, 3} and for each w with w(i)= 0 let c[w] ∈ (Z/q(w)Z)∗. Then

Dai ((c
[w])w(i)=0, (q(w))w(i)=0)= Dai ((c

[w]dw)w(i)=0, (�w)w(i)=0).

(2) Let i ∈ {1, 2, 3}, w ∈ {0, 1}3 \ {(1, 1, 1)} with w(i)= 1 and c[w] ∈ (Z/q(w)Z)∗. Then

Mai (c
[w], q(w))= Mai (c

[w]dw, �w).

Proof. (1) Define

Q :=
∏

w:w(i)=0

q(w)=
∏

w:w(i)=0

�w

dw
and D :=

∏
w:w(i)=0

�w.

If we assume HRH(ai ) then it is immediately clear from Moree’s interpretation of δai as
densities [12] that the following holds,

δai

(
m mod Q

)=
∑

b(mod D)
b≡m(mod Q)

δai

(
b mod D

)
.

One can also prove this unconditionally directly from Definition 1·4 via a tedious but
straightforward calculation that we do not reproduce here. To conclude the proof we observe
that

Dai ((c
[w])w(i)=0, (q(w))w(i)=0)=

∑
m(mod Q)

e

(
m

∑
w:w(i)=0

c[w]

q(w)

)
δai (m mod Q)

=
∑

b(mod D)

e

(
b
∑

w:w(i)=0

c[w]dw

�w

)
δai (b mod D)

= Dai ((c
[w]dw)w(i)=0, (�w)w(i)=0).

(2) Since by assumption w(i)= 1, we have gcd(�w, �i )= 1, and thus,

Aai (m mod �w)

Aai

= δai (m mod �w)

Lai

.
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We similarly have

Aai (m mod �w/dw)

Aai

= δai (m mod �w/dw)

Lai

.

By HRH(ai) it then follows that

Aai (m mod �w/dw)=
∑

b(mod �w)
b≡m(mod �w/dw)

Aai (b mod �w),

which can also be shown unconditionally as above. The rest of the proof is carried out as in
the first part.

For the analysis of Sa,1(n), we recall the definition of σa,n(d) in (1·12) and use the
following lemma.

LEMMA 4·4. If p ��1�2�3, then

σa,n(p)= 1 +
∑

c∈(Z/pZ)∗
ep(−nc)

3∏
i=1

Mai (c, p).

Proof. The easily verified equality
∑

b(mod p) Aai (b mod p)= Aai shows that the expression
on the right-hand side is equal to

∑
c∈Z/pZ

ep(−cn)
3∏

i=1

Mai (c, p)=
∑

b∈(Z/pZ)3

( 3∏
i=1

Aai (bi mod p)

Aai

)∑
c∈Z/pZ

ep(c(b1 + b2 + b3 − n))

= p
∑

b∈(Z/pZ)3∑3
i=1 bi ≡n(mod p)

3∏
i=1

Aai (bi mod p)

Aai

.

Since p ��1�2�3, we see that Aai (bi mod p)/Aai = δai (bi mod d)/Lai .

Using (4·6), multiplicativity and Lemma 4·4, we infer that

Sa,1(n)=
∏

p��1�2�3

(
1 +

∑
c∈(Z/pZ)∗

ep(−nc)
3∏

i=1

Mai (c, p)
)

=
∏

p��1�2�3

σa,n(p). (4·7)

We now turn our attention to Sa,0(n). Letting dw :=�w/q(w)we use Lemma 4·3 to obtain

Sa,0(n)=
∑

(dw)w �=(1,1,1)∈N7

dw|�w

∑
(c[w])∈∏w �=(1,1,1)

(
Z

(�w/dw)Z

)∗

( ∏
w�=(1,1,1)

e
(

− nc[w]dw/�w

))

×
3∏

i=1

{
Dai ((c

[w]dw)w(i)=0, (�w)w(i)=0)
∏

w(i)=1
w�=(1,1,1)

Mai (c
[w]dw, �w)

}
.
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For any dw with dw |�w the elements y[w] (mod �w) that satisfy the condition
gcd(y[w], �w)= dw are exactly those of the form

y[w] = c[w]dw, c[w] ∈
( Z

(�w/dw)Z

)∗
.

We thus obtain that the sum over dw, c[w] equals∑
(y[w])∈∏w �=(1,1,1)(Z/�wZ)

( ∏
w�=(1,1,1)

e
(

− ny[w]/�w

))

×
3∏

i=1

{
Dai ((y

[w])w(i)=0, (�w)w(i)=0)
∏

w(i)=1
w�=(1,1,1)

Mai (y
[w], �w)

}
.

By definition, �(1,1,1) = 1, so Da =∏
w�=(1,1,1) �w. Note that gcd(�w, �v)= 1 for w �= v.

Using the Chinese remainder theorem and writing every y
(
mod

∏
v�=(1,1,1) �w

)
as

y =
∑

w�=(1,1,1)
y[w] ∏

v/∈{w,(1,1,1)}
�v,

we see that the sum over y[w] equals

∑
y(mod Da)

e(−ny/Da)

3∏
i=1

( ∑
bi (mod Da)

e(bi y/Da)δai (bi mod Da)

)
.

This equals clearly

Da

∑
b(mod Da)∑3

i=1 bi ≡n(mod Da)

3∏
i=1

δai (bi mod Da),

thus, recalling (1·12), we have shown that

Sa,0(n)= σa,n(Da)

3∏
i=1

Lai . (4·8)

The proof of (1·14) is concluded upon combining (4·5), (4·7) and (4·8).

4·2. The proof of (1·15)

We begin by finding an explicit expression for σa,n(p), for p ��1�2�3, that is explicit in
terms of n and the hai . Define

θa(p) :=
{

1, if p | ha,
1
p , if p � ha.

LEMMA 4·5. For an integer c and a prime p with p � c we have

Ma(c, p)= − (1 + θa(p)ep(c))

(p − 1 − θa(p))
.
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Proof. Combining (1·6) and (4·4) we immediately infer

Ma(c, p)= 1

(p − 1 − θa(p))

∑
b(mod p)

gcd(b,p)=1
gcd(b−1,p,ha)=1

ep(bc)
∏
� prime

�|gcd(b−1,p)

(
1 − 1

�

)
.

It is now easy to see that the sum over b equals −1 − ep(c) or −1 − ep(c)/p according to
whether p | ha or p � ha .

Let us denote the elementary symmetric polynomials in θai (p) by

�0(p) := 1,

�1(p) := θa1(p)+ θa2(p)+ θa3(p),

�2(p) := θa1(p)θa2(p)+ θa2(p)θa3(p)+ θa1(p)θa3(p),

�3(p) := θa1(p)θa2(p)θa3(p).

LEMMA 4·6. For every odd integer n and prime p �
∏3

i=1 �i we have

σa,n(p)= 1 − p∏
1�i�3 (p − 1 − θai (p))

( ∑
0� j�3

j≡n(mod p)

� j (p)
)

+
∏

1�i�3

( 1 + θai (p)

p − 1 − θai (p)

)
.

Proof. By Lemma 4·4 and Lemma 4·5 we see that

σa,n(p)= 1 − 1∏
1�i�3 (p − 1 − θai (p))

∑
c∈(Z/pZ)∗

ep(−cn)
∏

1�i�3

(1 + θai (p)ep(c)).

The sum over c equals

∑
0� j�3

� j (p)
∑

c∈(Z/pZ)∗
ep(c( j − n))= p

( ∑
0� j�3

j≡n(mod p)

� j (p)
)

−
∏

1�i�3

(1 + θai (p))

and the proof is complete.

LEMMA 4·7. Let n be an odd integer. If 3 |�1�2�3, then
∏

p��1�2�3
σa,n(p) �= 0. If 3 �

�1�2�3, then the following are equivalent:

(1)
∏

p��1�2�3
σa,n(p)= 0;

(2) σa,n(3)= 0;
(3) one of the following two conditions holds:

3 divides every element in the set {ha1, ha2, ha3} and 3 � n; or

3 divides exactly two elements in the set {ha1, ha2, ha3}, and n ≡ 1 (mod 3) .

Furthermore,
∏

p��1�2�3
σa,n(p) �= 0 implies

∏
p��1�2�3

σa,n(p) 1, with an absolute
implied constant.
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Proof. For a prime p ��1�2�3 with p � 5 there exists at most one 0 � j � 3 satisfying
j ≡ n (mod p), therefore ∑

0� j�3
j≡n(mod p)

� j (p)� 3.

Invoking Lemma 4·6 we obtain

σa,n(p) > 1 − 3p

(p − 2)3
+ 1

(p − 1)3
.

Since by assumption no ai is a square, we have 2 � ha1 ha2 ha3 . The fact that n is odd implies
that ∑

0� j�3
j≡n(mod 2)

� j (2)=�1(2)+�3(2)= 13

8
,

hence if �1�2�3 is odd we can use Lemma 4·6 to show that σa,n(2)= 2. We have shown
that for odd n one has ∏

p��1�2�3
p �=3

σa,n(p) 1

with an absolute implied constant and it remains to study σa,n(3). One can find an explicit
formula for this density by fixing the congruence class of n (mod 3). For example, if
n ≡ 1 (mod 3) we have

σa,n(3)= 1 − 3(θa1(3)+ θa2(3)+ θa3(3))∏
1�i�3 (2 − θai (3))

+
∏

1�i�3

(1 + θai (3)

2 − θai (3)

)

and we can check that σa,n(3)= 0 if and only if at most one of the θi is equal to 1/3. A case by
case analysis reveals that if n ≡ 2 (mod 3) then σa,n(3)= 0 if and only if (θai (3))i = (1, 1, 1)
and that if n ≡ 0 (mod 3) then σa,n(3) never vanishes. Noting that σa,n(3) attains only finitely
many values as it only depends on n (mod 3) and the choice of (θai (3))i ∈ {1, 1/3}3, we
see that there exists an absolute constant c such that if σa,n(3) > 0 then σa,n(3) > c, thus
concluding our proof.

We next provide a lower bound for Sa,0(n), see (4·8). One could proceed by find-
ing explicit expressions, however, this will lead to rather more complicated formulas
than the one for Sa,1(n) in Lemma 4·6. We shall instead opt to bound the densities δa(bi

mod Da) from below in (4·8) and then count the number of solutions of the equation
n ≡ x1 + x2 + x3 (mod Da) such that for every i we have δa(xi mod Da) �= 0.

LEMMA 4·8. Given any integers q and x such that q is positive and δa(x mod q) > 0, we
have

δa(x mod q) ϕ(ha)

qha
,

with an absolute implied constant.
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Proof. Under the assumptions of our lemma we have the following due to Definition 1·4,

δa(x mod q)A −1
a

ϕ(q)

f †
a (q)

∏
p|x−1,p|q

(
1 − 1

p

)−1

= 1 +μ

(
2|�a|

gcd(q, �a)

)(
βa(q)

x

)
f ‡
a

( |�a|
gcd(q, �a)

)
.

The right-hand side is either � 1 or equal to 1 − f ‡
a (|�a| gcd(q, �a)

−1). In the latter case,
since the right-hand side must be positive and f ‡

a (|�a| gcd(q, �a)
−1)−1 is an integer, we see

that the right-hand side is � 1/2. Therefore, under the assumptions of our lemma we have

δa(x mod q)� Aa

2

f †
a (q)

ϕ(q)

∏
p|x−1,p|q

(
1 − 1

p

)
.

It is obvious that Aa f †
a (q) ϕ(ha)/ha,with an implied absolute constant. This is sufficient

for our lemma owing to
∏

p|x−1,p|q(1 − 1/p)� ϕ(q)/q.

Recalling (1·12) we see that

σa,n(Da)

3∏
i=1

Lai =Da

∑
b1,b2,b3(mod Da)

b1+b2+b3≡n(mod Da)

3∏
i=1

δai (bi mod Da),

thus, if σa,n(Da) > 0 then there exist x1, x2, x3 (mod Da) such that
∏3

i=1 δai (xi mod Da) > 0
and x1 + x2 + x3 ≡ n (mod Da). Invoking Lemma 4·8 we see that if σa,n(Da) > 0 then

σa,n(Da)

3∏
i=1

Lai �Da

3∏
i=1

δai (xi mod Da)D−2
a

3∏
i=1

ϕ(hai )

hai

.

Recalling (1·13) we obtain Da � [�1, �2, �3]� |�1�2�3|, hence

σa,n(Da)

3∏
i=1

Lai 
3∏

i=1

ϕ(hai )

|�i |2hai

,

with an absolute implied constant. Combined with Lemma 4·7, this concludes the proof
of (1·15).

4·3. The proof of Theorem 1·5
The theorem consists of two assertions, (1·14) and (1·15). The former was proved

in Section 4·1 and the latter in Section 4·2.

4·4. The proof of Corollary 1·6
Obviously, (1) implies (2). For the reverse direction, let d ∈ {3,Da} and let p1, p2, p3 be

primes not dividing 2d, such that each ai is a primitive root modulo pi and p1 + p2 + p3 ≡
n (mod d). Thus, for every i = 1, 2, 3 the progression pi (mod d) satisfies gcd(pi , d)= 1
and contains an odd prime having ai as a primitive root. We can now use the following obser-
vation due to Lenstra [10, p.216]: if gcd(x, d)= 1 and δa(x mod d)= 0, then either there is
no prime p ≡ x (mod d)with F∗

p = 〈a〉, or there is one such prime, which must be equal to 2.
This shows that we must have δa(xi mod d) > 0 for every i = 1, 2, 3. Using the fact that
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x1 + x2 + x3 ≡ n (mod d), as well as Definition (1·12) shows that σa,n(Da)σa,n(3) > 0. By
Lemma 4·7, we get Aa(n) > 0, and thus Aa(n) 1 by (1·15). Thus, (1) follows immediately
from Theorem 1·1 and the trivial estimate

∑
p1+p2+p3=n

∃i : pi |6�1�2�3

( 3∏
i=1

log pi

)
� n(log n)3.

4·5. The proof of Theorem 1·7
First note that D(a,a,a) = |�a|. It is clear that for the proof of Theorem 1·7 we need to find

equivalent conditions for n to satisfy

σ(a,a,a),n(|�a|)
∏
p��a

σ(a,a,a),n(p) > 0.

By Lemma 4·7 the condition
∏

p��a
σ(a,a,a),n(p) �= 0 is equivalent to

{
n ≡ 3 (mod 6) , if 3 | ha and 3 ��a,

n ≡ 1 (mod 2) , otherwise.
(4·9)

Hence it remains to find equivalent conditions for n to satisfy σ(a,a,a),n(|�a|) > 0.

PROPOSITION 4·9. Assume that n is an odd positive integer.

(1) If 3 � gcd(�a, ha) or 3 | n, and if �a has a prime divisor that is greater than 7, then
σ(a,a,a),n(|�a|) > 0.

(2) If 3 | gcd(�a, ha) and 3 � n, then σ(a,a,a),n(|�a|)= 0.

Proof. It can be seen directly from Definition 1·4 that the quantity δa(xi mod |�a|) is non-
zero if and only if

gcd(xi − 1, �a, ha)= 1, gcd(xi , �a)= 1 and

(
�a

xi

)
= −1. (4·10)

In view of Definition 1·12, we need to find conditions under which there are x1, x2, x3 ∈Z
with x1 + x2 + x3 ≡ n (mod�a), such that each xi satisfies (4·10).

To prove (2), we observe that the first two conditions in (4·10) imply that xi ≡ 2 (mod 3),
hence 3 | n.

Let us now prove (1). Write �a =∏
p|�a

Dp, where D2 ∈ {−8,−4, 8} and Dp =
(−1)(p−1)/2 p for p � 3. Let p′ > 7 be the largest prime divisor of �a . For every p< p′,
we find x (p)1 , x (p)2 , x (p)3 (mod Dp) that solve the congruence x (p)1 + x (p)2 + x (p)3 ≡ n (mod Dp)

and satisfy gcd(x (p)i − 1, �a, ha)= gcd(x (p)i , �a)= 1. If p> 3, this is possible for every n
by a simple application of the Cauchy–Davenport Theorem. If p = 3, it is possible precisely
by our assumption that then 3 � ha or 3 | n. Finally, for p = 2, it is possible since 2 � nha .

Let us now define x (p
′)

i . Consider the sets

R :=
{

x ∈Z/p′Z :
(

x

p′

)
= 1, x �= 1

(
mod p′) }, N :=

{
x ∈Z/p′Z :

(
x

p′

)
= −1

}
.
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If
∏

p|�a
p<p′

(Dp/x (p)i )= 1, we pick x (p
′)

i ∈ N , and if
∏

p|�a
p<p′

(Dp/x (p)i )= −1, we pick x (p
′)

i ∈ R.

We can always do so and achieve x (p
′)

1 + x (p
′)

2 + x (p
′)

3 ≡ n (mod p′), as the sets

R + R + R, R + R + N , R + N + N , N + N + N

cover all of Z/p′Z. This follows from a direct computation if p′ = 11 and from the Cauchy–
Davenport Theorem if p′ � 13.

To finish our proof of (1), we pick integers xi that satisfy xi ≡ x (p)i (mod Dp) for all p |�a .
Then quadratic reciprocity ensures that(

�a

xi

)
=
(

x (p
′)

i

p′

) ∏
p|�a
p<p′

(
Dp

x (p)i

)
= −1

for all i . Hence, the xi satisfy (4·10), and moreover x1 + x2 + x3 ≡ n (mod�a).

Proof of Theorem 1·7. First let us note that the fundamental discriminants with every prime
smaller than 11 are of the form

Di1
2 (−3)i2 5i3(−7)i4,

where D2 is an integer in the set {−4, 8,−8} and every exponent i j is either 0 or 1. This
gives a finite set of values for �a and it is straightforward to use a computer program that
finds all congruence classes n (mod �a) such that n ≡ x1 + x2 + x3 (mod �a) for some x ∈
(Z/�aZ)

3 satisfying all of the conditions (4·10) for 1 � i � 3.
By Definition 1·4 these conditions are equivalent to δa(xi mod |�a|) �= 0 and when com-

bined with (4·9) they provide the congruence classes for n in every row of the table in
Theorem 1·7 apart from the last two rows.

For the last two rows,�a has a prime factor greater than 7. In this case, if 3 | ha , then (4·9)
and Proposition 4·9 yield the condition n ≡ 3 (mod 6). If, on the other hand, 3 � ha then we
get no further condition apart from n odd.

4·6. Non-factorisation of Aa(n)

We finish by showing that the right-hand side in (1·14) does not always factorise as an
Euler product of a specific form. Namely, assume that for every non-square integer a �= −1
we are given a sequence of real numbers λa :Z2 → [0,∞) such that for every prime p and
integers x, x ′ we have

δa(x mod p) > 0 =⇒ λa(x, p) > 0 (4·11)

and

x ≡ x ′ (mod p)=⇒ λa(x, p)= λa(x
′, p).

Now, in parallel with (1·12), let us define

�p,a(n) :=
( ∑

b1,b2,b3(mod p)
b1+b2+b3≡n(mod p)

3∏
i=1

λa(x, p)

)( ∑
b1,b2,b3(mod p)

b1+b2+b3≡n(mod p)

1

p3

)−1

.

The fact that the quantities �p,a(n) are well-defined follows from the periodicity of λa .
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We will see that one cannot have the following factorisation for all odd integers n,

L 3
a σ(a,a,a),n(|�a|)=

∏
p|�a

�p,a(n). (4·12)

Indeed, if a := (−15)5 = −759375 then by Definition 1·4 we easily see that

δ−759375(x mod 15) > 0 ⇔ x (mod 15) ∈ {7, 13, 14 (mod 15)},
hence for all integers n ≡ 7 (mod 15) we have σ(a,a,a),n(|�a|)= 0 due to (1·12) and the
fact that for all x ∈ {7, 13, 14}3 one has

∑3
i=1 xi �= 7 (mod 15). Definition 1·4 furthermore

implies that

δ−759375(x mod 3) > 0 ⇐⇒ x (mod 3) ∈ {1, 2 (mod 3)}
and

δ−759375(y mod 5) > 0 ⇐⇒ y (mod 5) ∈ {2, 3, 4 (mod 5)},
therefore whenever n ≡ 7 (mod 15) then the vectors x = (1, 1, 2) and y = (4, 4, 4) satisfy

3∑
i=1

xi ≡ n (mod 3) ,
3∑

i=1

yi ≡ n (mod 5) and
3∏

i=1

δ−759375(xi mod 3)δ−759375(yi mod 5) > 0.

By (4·11) this implies that�3,−759375(n) > 0, �5,−759375(n) > 0, which contradicts (4·12) due
to σ(a,a,a),n(|�a|)= 0.
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