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Abstract

The Friedgut-Kalai-Naor (FKN) theorem states that if f is a Boolean function on the Boolean cube which

is close to degree one, then f is close to a dictator, a function depending on a single coordinate. The author

has extended the theorem to the slice, the subset of the Boolean cube consisting of all vectors with fixed

Hamming weight. We extend the theorem further, to the multislice, a multicoloured version of the slice.
As an application, we prove a stability version of the edge-isoperimetric inequality for settings of

parameters in which the optimal set is a dictator.

2010 MSC Codes: 26D07, (42B10, 94C10)

1. Introduction

The classical Friedgut-Kalai-Naor (FKN) theorem [10] is a basic structural result in Boolean func-
tion analysis. It is a stability version of the following trivial result: the only Boolean functions on
the Boolean cube {0, 1}" which have degree one are dictators, that is, functions depending on a
single coordinate.! The FKN theorem can be stated in two equivalent ways.

(1) Iff: {0,1}" — {0, 1} is e-close to degree one, that is, || f~!||> = ¢, then f is O(¢)-close to a
Boolean dictator, that is, P [ f # g] = O(e) for some Boolean dictator g: {0, 1} — {0, 1}.
(2) Iff: {0, 1} — R is a degree one function which is e-close to Boolean, that is,

E [dist (f,{0,1})*] =&,

then f is O(e)-close to a Boolean dictator, that is, E [( f —g)z] = O(¢) for some Boolean
dictator g: {0, 1}"* — {0, 1}.

In fact, the error bound can be improved from O(¢) to ¢ + O(e?); see [12, 14].

The FKN theorem has been extended to many other domains: to graph products [1], to the
biased Boolean cube [12, 13], to sums of functions on disjoint variables [12, 15], and to non-
product domains: the symmetric group [4, 5], the slice [7], and high-dimensional expanders [3].

In this paper we extend it to the multislice, a generalization of the slice recently considered by
O’Donnell, Wu and the author [9].

TTaub Fellow, supported by the Taub Foundations. The research was funded by ISF grant 1337/16.
I'This result is much less trivial on other domains, such as the symmetric group [6] and the Grassmann scheme [8]. See [8]
for a survey, which includes a simple proof of this result for the multislice.
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Given positive integers k1, . . . , k, summing to #, the multislice U, consists of all vectors in [¢]"
in which the number of coordinates equal to i is ;. When ¢ = 2, this domain is known as the slice,
and when ¢ = n, we obtain the symmetric group. In this paper, we focus on the case in which ¢
is constant, and furthermore the multislice is unbiased: «1, . . ., k¥, = pn for some constant p > 0.
The biased case, in which the weights k1, . . ., k¢ are allowed to become arbitrarily small, is more
difficult, since in this case the approximating function need not be a dictator; see [7] for more
details.

In order to formulate the FKN theorem for the multislice, we need to generalize the concept of
degree one function. There are several different routes to this generalization, all yielding the same
class of functions.

(1) Representation theory of the symmetric group. The multislice can be viewed as a permutation
module of S,,. The representation theory of S,, decomposes the space of functions on S, to
isotypical components indexed by partitions of #n, which are partially ordered according
to majorization. In the case of the slice, the degree d functions are those supported on the
isotypical components corresponding to partitions in which the first part contains at least
n — d boxes. We can use the same definition on the multislice.

(2) Polynomial degree. We can view the input to a function on the multislice as consisting of £n
Boolean variables x;; encoding the input vector u via xj; = Ly=i.- A function on the Boolean
cube or on the slice has degree d if it can be represented as a polynomial of degree d over
these variables. This definition carries over to the multislice.

(3) Junta degree. A function on the Boolean cube or on the slice has degree d if it is a linear com-
bination of d-juntas, that is, functions depending on d coordinates. The same definition
works on the multislice.

Armed with the concept of degree one function, we can state our main theorem.

Theorem 1.1. Fix an integer £ > 2 and a parameter p > 0. There exists a constant N = N(¢, p) for
which the following hold. Let k1, . . ., k¢ = pn be integer weights summing to n > N.

If f: U — R is a degree one function which satisfies . [dist (f, {0, 1})?] =&, then there exists
a Boolean function g: U, — {0, 1}, depending on a single coordinate, such that E [(f — g)*] <& +
Og,p(sz).

If F: U, — {0, 1} satisfies |F~||> =&, then there exists a Boolean function g: U, — {0,1},
depending on a single coordinate, such that P [F # g] < 4¢ + Og,p(sz).2

(The definition of F~! appears at the end of Section 2.1.)

1.1 Application to edge isoperimetry
Let A be an arbitrary subset of the multislice U,.. The (edge) expansion of A is
PA)= P [u" £A]
u~A
7~Trans(n)
where u is a random point chosen from A, T = (ji j2) is a random transposition in S,, and u®
is obtained from u by switching the values of u;, and u;,. In words, the expansion of A is the

probability that if we choose a random point of A and switch two of its coordinates at random, we
reach a point not in A.

2This bound can probably be improved to 8+O(,p(82 log (1/¢)), along the lines of [12, Theorem 5.3] and [14,
Theorem 5.33], but we have not attempted to do so.
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The edge-isoperimetry question is the following:
Given 0 < o < 1, which sets of size |l | minimize the expansion?

When an =7, ¢ k; for some S C [£], it is natural to conjecture that the sets of the form A =
{u: uj € S} minimize the expansion, and this is indeed the case. Using our FKN theorem, we are
able to show a stability version of this result: if a set of size rm has almost minimal expansion, then
it is close to a set with minimal expansion.

Preliminaries

We use E to denote expectation, and [P to denote probability. The distance of an element x to a
set § is dist (x, S) = minyeg |x — y|. For a set S, the notation S+ ¢ stands for {x: dist (x,S) < ¢}.
A function is Boolean if it is {0, 1}-valued. The L? triangle inequality is the inequality (a + b)? <
2(a® + b?).

Let k1, . . ., k¢ be positive integers summing to n. The multislice U, consists of all vectors u €
[€]" in which the number of coordinates equal to i is k;, for all i € [£]. The multislice is p-balanced
ifKy,..., ke > pn.

We endow the multislice with the uniform measure. If f is a function on the multislice, then its
L? norm is || f|| = +/E [ f2]. We say that two functions f, g are e-close if || f — g||*> < e.

We can think of a function on the multislice as being defined over the set of Boolean vari-
ables (xji)je[n},ic[¢)> Which encode an element u € U, in the following way: xj; = 1 if u; =1i. Thus
Zle xji=1 for all j € [n], and Z}’Zl xji =k; for all i € [£]. (When £ = n, the multislice is the
symmetric group S,, and the xj; are the entries of the permutation matrix representing the input
permutation.)

Since xjp =1 — Zfz_ll xji» we do not need to include x1y, . . ., xu¢ explicitly as inputs. This is
the usual convention in the case of the slice (¢ = 2), in which the input consists of just n Boolean
variables x1, . . ., x,.

2. Degree one functions
In this section we propose several different definitions of degree one functions, and show that they
are all equivalent. While similar results hold for degree d functions for arbitrary d, we concentrate
here on the case d = 1.

Throughout the section, we fix a multislice I/, on n points and £ > 2 colours.

2.1 Spectral definition
A partition of n is a non-increasing sequence of positive integers summing to n. We represent a
partition as a finite sequence, or as an infinite sequence (1;):°, where all but finitely many entries
are zero. We can think of k as a partition of n by sorting it accordingly. We say that a partition A
majorizes a partition w, in symbols A > w, if A; + -+ -+ A; > u1 + - - - + i holds for all i > 1.

The multislice U, can be viewed as a permutation module of the symmetric group. The repre-
sentation theory of the symmetric group gives an orthogonal decomposition of the vector space
of real-valued functions on the multislice:

R =P v*,

A=K

where A goes over all partitions of n majorizing k. Furthermore, it is known that V" consists of
all constant functions, and V=11 jg spanned by functions of the form xj;, — x;ji;, [16, Chapter 2].

Definition. A function on the multislice has spectral degree one if it lies in V(") @ V=1L,
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The orthogonal decomposition corresponds to the level decomposition of functions on the
Boolean cube. In particular, we will use the following notation, for a function f on the multislice:

(1) f=0 is the projection of f to V",
(2) f=!is the projection of f to V(=1
() F< =04 7= and f~1 = f — <.

Since V" consists of all constant functions, f=° is the constant function [ [ f1.

2.2 Polynomial definition

We can view the multislice as a function in the Boolean variables xj;, where j ranges over 1] and i
ranges over [£], given by x;; = Lyj=i.

Definition. A function on the multislice has polynomial degree one if it can be represented as a
polynomial of degree at most 1 in the variables x;;.

Note that since xjp =1 — Zf;ll Xji, we can assume that the variables xyy, . . ., x4¢ do not appear
in the polynomial representation.

Lemma 2.1. A function on the multislice has spectral degree one if and only if it has polynomial
degree one.

Proof. If a function has spectral degree one, then it is a linear combination of the constant
function 1 and functions of the form xj;; — x;i,, so it has polynomial degree one.
Conversely, suppose that f has polynomial degree one, so that

n £
f=ctd D i
j=1 i=1
Let ¢j = Zle ¢ji/ € for all j € [n]. Since Zle xji = 1, we have

f=c+ ZeCJ + Z Z (¢ji — ¢j)xji-

j=1 i=1
By construction,

¢
> (Gi—¢)=0
i=1

hence
£—1
ng — Cj = — Z (Cj,' — Cj).
i=1
Therefore
n £—1
=c+ Z Lej+ Z Z (cji — ¢)(xji — xje).
j=1 i=1
This shows that f has spectral degree one. O
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2.3 Junta definition

A dictator is a function depending on a single coordinate. This also includes constant functions.

Definition. A function on the multislice has junta degree one if it can be represented as a linear
combination of dictators.

Lemma 2.2. A function on the multislice has polynomial degree one if and only if it has junta degree
one.

Proof. The functions 1, xj; are dictators, so if a function has polynomial degree one then it has

junta degree one. Conversely, if f depends only on the jth coordinate, then f = Zle cixji for some
constants ¢y, . . ., ¢g, so f has polynomial degree one. Therefore a function having junta degree one
also has polynomial degree one. O

In view of Lemmas 2.1 and 2.2, we define a function on the multislice to have degree one if it
satisfies any of the definitions given above.

2.4 Normal form
We close this section by describing a normal form for degree one functions.

Lemma 2.3. Every degree one function on the multislice has a unique representation of the form
n £
f=c+) ) i
j=1 i=1
where Zle ¢ji =0 forallje [n] and 2}121 cji =0 forallie[£].

Proof. We start by showing that if f has degree one then it has a representation as required by
the lemma. By linearity, it suffices to show this for the function x;; (the lemma clearly holds for

constant functions). Since Zle x1i = 1, we have

1 & 1
=y ; (x11 — x15) + 7

n

Similarly, since ) i

| Xji = ki, we have

1 & Kj
xXi= Z (vri = i) + -
j=1
Combining both expressions, we obtain

14 n 4
1 1 1
X1 =— E E (xll—le—xli-l-x]'i)-i-— E (Kl—Ki)+_
£n i o In P 12

L n
1 K1
=7 E E (-xll_le_xli+xji)+7-
i=1 j=1
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It is not hard to check that x11 — xj1 — x1; + xj; satisfies the requisite properties for all j’ € [n] and
i' € [£], hence so does the expression given for x;;.

Next, we show that the representation is unique. It suffices to show that the only representation
of the zero function is the zero polynomial. In other words, we have to show that if

n £
0=c+ Z chixji’

j=1 i=1

where the ¢j; satisfy all the constraints in the lemma, then ¢ = 0 and ¢j; = 0 for all j € [n] and i € [¢].

Choose any two indices j; # j, and any two colours i; # i. Consider an arbitrary point u
in the multislice satisfying u;, = i; and uj, = i3, and the point obtained by switching i; and i,.
Subtracting the corresponding right-hand sides, we deduce

0=¢jriy = Ciy = Cioir T Cjaiy-
This identity also holds when j; =j,. Averaging over all values of j, and using Z?:l Gjiy =
Z}’Zl ¢ji, =0, we deduce that cj;; =¢j;, for all ij #ip. Since S ¢j;i =0, this implies that

¢jji = 0 forall i € [¢] and all j; € [n]. It follows that also ¢ = 0, so the only representation of zero is
the zero polynomial, completing the proof of uniqueness. O

3. FKN theorem

In this section we prove Theorem 1.1, by induction on the number of colours. The actual statement
that we will prove by induction is the following.

Theorem 3.1. Fix an integer £ > 2 and a parameter p > 0. There exists a constant N = N (¢, p) such
that, for every p-balanced multislice on n > N points and £ colours, the following holds.

Iff: U, — R is a degree one function which satisfies I [dist (f, {0, 1})?] = &, then there exists a
Boolean dictator g such that E [(f — g)*] = Oy, p(e).

Theorem 1.1 follows from this formulation using the following argument.

Proof of Theorem 1.1. We start with the first part of the theorem. Let f: Uy — R be a
degree one function which satisfies E [dist (f, {0, 1})?)] =¢. Theorem 3.1 shows that there
exists a Boolean dictator g such that E [(f — g)*] = O, (e). Let h=f — g. Since g is Boolean,
E [dist (h, {0, :tl})z] < &. When || < 1/2, we have dist (b, {0, :tl})2 = h2, and hence

& > E [dist (b, {0, £1})*] 2 E [W*1 <12l = E (W] — E [ 1= 2],
When |h| > 1/2, we have ht > h2/4, SO
E [W1p=1/2] <4E [1*].

In [9] it is shown that a p-biased multislice is hypercontractive for any constant p and constant
number of colours, hence E [h*] = Og,p(E [h2]?) = Og,p(sz), since h has degree one. This shows
that E [h?] <e +4E W] =¢ + Ov,p (¢2), completing the proof of the first part of the theorem.
We continue with the second part of the theorem, which is very similar. Let F: U, — R
be a Boolean function which satisfies ||[F>!||?> =&, and let f = FS!, Since T [dist (f,{0,1})*1 <
E [(f — F)?] =&, the first part gives a Boolean dictator g satisfying F [(f — g)*] =& + Og)p(&‘z).
The L2 triangle inequality implies that [E [(F — g)z] <de + Og,p(é‘z). Since both F and g are
Boolean, P [F #g¢] =E [(F — g)z], completing the proof. O
For brevity, in the rest of the section we use O( - ) for Og ,( - ).
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3.1 Base case

The base case of our inductive proof is when £ =2, and it follows from the main result of [7],
whose statement reads as follows.

Theorem 3.2. Suppose that f : Uy, — {0, 1} satisfies || f~! > =&, where 2 < k < n/2. Then either
for1—fisO(e)-close to a function of the form max;es x;1, where S C [n] has cardinality at most

max (1, O(/g/(k/n))).
From this theorem, we deduce the base case of Theorem 3.1.

Proof of Theorem 3.1 in the case £ = 2. Let f: Uy, — R be a degree one function satisfying
E [dist (£, {0, 1})?] = &, and assume without loss of generality that k < n/2. Let F be the function
obtained by rounding f to {0, 1}. By definition, F [(F — f)*] = &, so ||[F>!||> < & (since FSUis the
degree one function which is closest to F).

By choosing N appropriately, we can ensure that k > 2, and hence Theorem 3.2 applies, show-
ing that either f or 1 — f is O(¢)-close to a function depending on at most max (1, ) coordinates,
where m = O(/e/(k/n)) = O,(/¢).

We now consider two cases. The first case is when m < 1. In this case, F is O(g)-close to a
dictator. Since E [(F — f)?] = &, it follows via the L? triangle inequality that f is also O(g)-close to
the same dictator.

When m > 1, we can lower-bound ¢ > e,, for some constant e, > 0 depending on p. The L2
triangle inequality implies that

E[f 1=l =E[((f — 1)+ 1)*1p=] S2E [(f — D*1p=1] + 2.
Therefore
e = [dist (f, {0, 1})]
=E [f*lp=o] + E[(f — 1)*1p=1]

1
>E[f*1r=0l + S E[f*1p=1] - 1
1
>_E[f]-1
JELA)
In other words, £ [f2] < 2(1 4+ ¢). This implies that

2(1+e¢ 2(1 +
I -0 < 2,  2E ),
&

/

>

€p

completing the proof in this case. O

3.2 Inductive step

We now assume that Theorem 3.1 holds for a certain value of £ > 2, and will prove it for £ + 1.
We start with a simple comment. Theorem 3.1 is trivial for large ¢, using the same argument

used to derive the second part of Theorem 1.1. Indeed, suppose that & > gy. The aforementioned

argument shows that

2(1+¢)  2(1+&9)
e < £.

E(f-07*<
€0

Since 0 is a dictator, we see that when & > &9, Theorem 3.1 trivially holds. Therefore, from now on
we may assume that ¢ is small enough (as a function of £ and p).
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Next, we need a criterion that guarantees that the approximating function in Theorem 3.1 is
constant. We will use the concept of influence: given two coordinates ji, j» € [n] and a function
f:Uc =R,

Infyj, [fl= B [(f(u) —f2))],

U

Lemma 3.3. Let U, be a p-balanced multislice with £ colours. There exists a constant n =n(p)
such that the following holds for all ¢ <n. If f: U, — R is a degree one function which satisfies
E [dist (£, {0, 1) =¢ and Infj ;, [f] <n for all j1, j» € [n] then there exists a constant C € {0, 1}

such that E [(f — C)?] = O(¢) and | E [ f] — C| = O(/e).

Proof. Theorem 3.1 shows the existence of a Boolean dictator g satisfying E [(f — g)*] = O(e).
The L2 triangle inequality shows that Infj j, [g] = O(Infj ;, [ f] + &) = O(). Suppose, for the sake
of contradiction, that g is not constant. Then there exists a coordinate j; and colours iy, i such that
g(u) =0ifu;; =iy and g(u) = 1ifu;, = ip. Let j, be any other coordinate. A random u chosen from
the multislice satisfies uj, =i} and uj, =i, with probability larger than 0. When that happens,
(g(u) — g(u'1172)))? = 1. Therefore Infj ;, [¢] > p>. By choosing 1 = p?, we reach a contradiction.
We conclude that g = C for some constant C € {0, 1}.

The L!-1? norm inequality implies that E [|f — C|]> <E [(f — C)?] = O(¢), and hence
|E[f] — C|<EI[|f— C|]] = O(y/¢), completing the proof. O

3.2.1 Isolating the dictatorial coordinate

The first step in the argument is to identify the dictatorial coordinate, if any. We do this by looking
at the degree one expansion of f:

n ¢
f= c+ Z Z CjiXji.

j=1 i=1

Note that although there are £+ 1 colours, using the identity xj41)=1— Zle Xji we can
eliminate all variables involving the last colour.

Let j; # j» be two arbitrary coordinates, and let i 7 £ + 1 be an arbitrary colour. Suppose that
u is an element of the multislice satisfying u;, =i and uj, = € + 1. A short calculation shows that

fw) = fuI) = gj; — g
When choosing u at random from the multislice, the event u;, =i and u;, = £ + 1 occurs with
probability larger than p2. Therefore the L? triangle inequality implies that

4e > I [dist (f(u) — f(u179), {0, £1})*] > p? dist (¢j,i — cjpi» {0, £1})%,

implying that dist (¢j,; — ¢j,i, {0, £1}) = O(y/¢). Choosing c;:= min; ¢j;, we deduce that ¢j; €
{ci,ci + 1} £ O(/¢) for all j € [n].

We associate with each coordinate j € (1] a vector y; € {0, 1}¢ such that lcji — ¢i — yjil = O(%).
Assuming 7 > 2¢, there exists a vector v € {0, 1} which is realized by at least two coordinates
j1, j2. Our goal now is to show that v is realized by all but at most one coordinate. To this end,
let us assume that yy,, v, # v for some coordinates k; # k. Let i1, iy # £ + 1 be colours such that
Yikiiy 7& Viy and Yikais 3& Viy-

If an element u of the multislice satisfies {uj,, uy, } = {i1, € + 1}, then f(u) —f(u(j1 k)y =
+1 =+ O(y/¢), and similarly for j,, k,. Hence we can find a constraint on Uj,, Uk, » Ujy, U, which
implies f(u) — f(uli1 k0(2k2)) = 3 + O(/€). For small enough &, this guarantees that dist ( f(u) —
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f(u(j1 k)2 k2)y, {0,£1})> >1/2. A random u~1U, satisfies the constraint with probability
Q(p*), so

4e > T [dist (f(u) — fuFG2RD) 0, £1})2] = Q(ph),

which is impossible if ¢ is small enough.
We conclude that y; = v for all but at most a single coordinate. Without loss of generality, let
the exceptional coordinate (if any) be the last coordinate.

3.2.2 Constant pieces
Our strategy now is to consider restrictions of f obtained by fixing the value of the last coordi-
nate. For n > 2/p, fixing the last coordinate to colour x € [¢ + 1] will result in a function f, on
a (p/2)-balanced multislice kO onn—1 points and £ + 1 colours. Let &, = I [dist ( f, {0, 1)?].
We will show that each f, is nearly constant by applying Lemma 3.3, and later on put all the pieces
together. Just as above, we can assume that ¢, is small enough, since & > pe,.

Let us start by noting that

n—1 ¢
fr =0+ Z Z GjiXiis

j=1 i=1

where the coefficients cj; are the same as before. Suppose now that S C [n — 1] is a set of Ké)fr)l

coordinates, and let S’ = SU {n}. Let f, s be the function obtained by setting all coordinates in S to
the value £ 4 1:

4
frs= 0 4 Z Z GjiXii.

j¢s i=1

This is a function on a (p/2)-balanced multislice ¥ **) on £ colours, so we can apply Lemma 3.3.
In preparation for such an application, let us define &, s = [ [dist ( fys, {0, 1})?].

By construction, for each i € [£] there exists a value d; € {c;, ¢; + 1} such that |¢;; — di| = O(/¢)
for all j € [n — 1]. This allows us to upper-bound Infjj, [ fis] for all coordinates ji, j>. Indeed, if
uj, = iy and uj, =i, then

| fr.s(w) _fx,S(“(jljZ)” = |Cj1i1 + Cipiy = Cjyi, — Cjzf1| = 0(v/e).
This shows that Inf; ;, [ f,] = O(e). For small enough ¢, this allows us to apply Lemma 3.3 in

order to conclude that there is a constant C, s € {0, 1} such that E [( fy,s — CX’S)Z] =O(ey,s) and
| E [fx,s] — Cy,s1 = O(/gx.5)-

We apply the foregoing to a random choice S. The next step is to show that C, s is concentrated.
To this end, we calculate

L (x)
_ 0 Ki
E[f)(,S] c +ZZC]1 m

jgs' i=1
(x)

where m = Zle k;*’. We can view E [ fy,s] as a function on the multislice Um (00 - Denoting it
A
by 1 and using a different parametrization of the slice, we have

Ki(X)

n—1 14
=0 . .
=ct+ > x Cji—.
2 Z i Z i
j=1 i=1
This is a degree one function, and it satisfies

E [dist (1, {0, 1})*] <E [(1 — Cy,5)*] = O(E [e4,5]) = Ole).
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Furthermore, for each j; # j, we have

¢ PICOR
Infjljz (n] < <Z (Cju’ — Cj2i)’7> =0(e).
i=1

For small enough ¢, we can thus apply Lemma 3.3 (for two colours) to deduce that E [(1 —
CX)Z] = O(gy) for some constant C,, € {0, 1}.

Without loss of generality, let us suppose that C, =0. Then E w2 = O(gy ), and hence P [ >
1/2] = O(gy). Since E [e4,5] =&, also P [gy,5 > 8] = O(e ), for any constant § > 0. Recalling that
I — Cy sl = O(/€y.s), this implies that with probability 1 — O(ey),

1
Cx,S <u+|p— C)(,Sl < 5 +0() <1,
for an appropriate choice of 8. This shows that C, s = 1 with probability O(e, ). Therefore
E[f] =ISE[E [f7s1]
= ISE[E [(fr.s — Cx,s)zlcx,s=o]] + ISE[E [(fr.s — Cys+ 1)21cX,5=1]]

< ZISE[E [(f)(,S - C)(,S)z]] +2P [Cx,S = 1]

= o(zg: [e.51) + Ole,) = Oe, ).
Also taking the case C, = 1 into account, we deduce

E[(fx_cx)z]:O(gx)a Cxe{())l}-

3.2.3 Completing the proof

We can now complete the proof of Theorem 3.1. Let g(u) = C,,, a Boolean dictator. Let x be the
marginal distribution of 4, when u ~ U,.. Then

E1(f -1 =E[E [(fy = C)")] = O(Esy1) = Oe).
X X

This completes the proof.

4. Edge isoperimetry

Consider a multislice U, on atleast four points. Define the volume of a subset A of the multislice U,
tobe vol (A) = |A|/|U|. The goal of this section is to prove the following isoperimetric inequality:
if vol (A) = « then
2(1 — @)

-1
We will also identify when this inequality is tight, and prove stability in these cases.

D(A) =2

4.1 Spectral formula

For a partition A > k, let f=* denote the orthogonal projection of f to V* (see Section 2.1 for the
appropriate definitions). Frobenius [11] proved the following formula:

14

> I - @il (4.1)

i=1

1
n(n—1)

[ff]= Z ckf:A, where ¢, =

t~Trans(n) o
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A classical fact is that ¢; > ¢, if A > u; see for example [2, Lemma 10]. This allows us to identify
the minimal values of 1 — ¢;.

Lemma4.1. We have 1 — c(y) =0, 1 — ¢(y—1,1) =2/(n — 1), and 1 — ¢, = 4/n for all A # (n), (n —
1,1).

Proof. The largest three partitions in majorization order are (n), (n — 1, 1), (n — 2, 2). Calculation
shows that c(,—32) = 4/n, so the lemma follows from the observation that ¢, > ¢, if A > pu. O

The important formula of Frobenius allows us to deduce one for ®(A).

Lemma 4.2. For any A C U,

_ 1 _ =A2
¢(A)—V01(A>§‘1 Gl %

Proof. For a given element u € A and a given transposition 7 € Trans(n), the element u” lies in A
if E [1,214] = 1/|U,|, and otherwise E [1,714] = 0. Hence

||

1
P [uf€A]l= E[1514] = ——— (1%, 14).
u~A[ ] |A| [AA] VOl(A)(A A)
Averaging over T, we get
Pt ed]= < E 1151 >
u~A vol (A) 7~Trans(n) A A

7~Trans(n)

Applying (4.1) and the orthogonality of the isotypical decomposition, we obtain

1 1
TeA]l= 174130 = il
B WA= s D a3 IR = s 2 el

t~Trans(n) Azk A=K

The lemma now follows from the identity vol (A) = ||14]|> = Yol lj)“ 1. O

4.2 Main argument
Lemma 4.2 implies an isoperimetric inequality, along the lines of Hoffman’s bound.

Proposition 4.3. If A C U, and vol (A) = «, then

2(1—
D(A) > M_
n—1
Furthermore, ifky, . . ., k¢ = 2 and the bound is tight, then A is a dictator (membership in A depends

on the colour of a single coordinate).
Suppose now that the number of colours is bounded, and that the multislice is p-balanced for
some constant p. If

D(A) =(1+¢) A=)
n—1
(where & > 0), then there exists a Boolean dictator B such that
|AAB]
Ui

=O0(a(1 —a)e).
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Proof. Since 15" = [14]1 = vol (A)1, it follows that [|15" |2 = vol (A)?. Similarly,
ST EM? = 1412 = E [14] = vol (A).

A=K
Hence, combining Lemmas 4.2 and 4.1, we have

1 2 2(1 —vol (A))
A) > 1(A) —vol (A)?) = ———— 2,
) vol (A) n—l(vo( ) = vol(4)7) n—1
This proves the upper bound. If the upper bound is tight, then 14 is supported on (n), (n — 1, 1),
so 14 has degree one. This implies [8] that A is a dictator.

Suppose now that the number of colours is bounded, that the multislice is p-balanced, and that

o(A) = (1 +5) 2=
n—1
Let
8= [11all® — 111702 = iz YR,
Then
1 2 an, 2(n—2)
_2(0—a)  2(n—2)6
C on—1 n(n—1) o

The assumption on ®(A) thus implies an upper bound on 4:

1—
5 <UD ot - ae).
(n—2)
Theorem 1.1 shows that if # is larger than some constant depending on £ and p, then 14 is O(5)-
close to a Boolean dictator 15, completing the proof. When 7 is small, compactness shows that 14

is trivially O(8)-close to §, since there are only finitely many possible A, o, ¢. O

Corollary 4.4. Suppose that o € (0, 1) satisfies an =", ¢ ki for some S C [£]. Then the bound in
Lemma 4.3 is tight for the families
Ajs={u:u; €S}, je[n].

Conversely, if the bound in Lemma 4.3 is tight for a family A, then there exists a set S C [£] satisfying
an=7y_, ¢kiand a coordinate j € [n] such that A = Ajs.

Proof. The expansion of Ajs is the probability that a random transposition is of the form (jk),
where k is one of the (1 — a)n coordinates whose colour is not in S. Therefore

(I-—a)n  2(1—-a)
k) -l
This shows that the bound in Lemma 4.3 is tight for A;s.

Conversely, if the bound in Lemma 4.3 is tight for a family A, then A is a dictator and thus of
the form Ajs. Since vol (Ajs) =) ;. ki/n, we see that ), ¢ ki = an. O

D(Ajs) =

ieS
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