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Abstract

Background. Excessive worry is a defining feature of generalized anxiety disorder and is pre-
sent in a wide range of other psychiatric conditions. Therefore, individualized predictions of
worry propensity could be highly relevant in clinical practice, with respect to the assessment
of worry symptom severity at the individual level.
Methods.We applied a multivariate machine learning approach to predict dispositional worry
based on microstructural integrity of white matter (WM) tracts.
Results.We demonstrated that the machine learning model was able to decode individual dis-
positional worry scores from microstructural properties in widely distributed WM tracts
(mean absolute error = 10.46, p < 0.001; root mean squared error = 12.82, p < 0.001; prediction
R2 = 0.17, p < 0.001). WM tracts that contributed to worry prediction included the posterior
limb of internal capsule, anterior corona radiate, and cerebral peduncle, as well as the corti-
colimbic pathways (e.g. uncinate fasciculus, cingulum, and fornix) already known to be critical
for emotion processing and regulation.
Conclusions. The current work thus elucidates potential neuromarkers for clinical assessment
of worry symptoms across a wide range of psychiatric disorders. In addition, the identification
of widely distributed pathways underlying worry propensity serves to better improve the
understanding of the neurobiological mechanisms associated with worry.

Introduction

Worry is defined as a chain of thoughts and images that are negatively affect-laden, emerging
when one anticipates a potential threat, but doubts his/her ability to cope (Borkovec et al.,
1998; Brosschot et al., 2006). Although emotionally disturbing, previous studies suggest that
worry has its adaptive functions and could be considered a compensatory strategy employed
in response to perceived danger (Newman et al., 2013). However, worry can become chronic
and intolerable if not effectively regulated, which results in discomfort, disruption, and a
decline in quality of life (Borkovec et al., 1998). Indeed, worry constitutes an important trans-
diagnostic process that pervades many anxiety and mood disorders (Ehring and Watkins,
2008; Sharp et al., 2015; Barlow et al., 2016). For instance, the central feature of generalized
anxiety disorder (GAD) is chronic, excessive, and uncontrollable worry (Borkovec and Inz,
1990; Borkovec et al., 2004). Likewise, worry has frequently been associated with major depres-
sion (Chelminski and Zimmerman, 2003) and neuroticism (Servaas et al., 2014).

Taken together, worry is a pervasive experience in humans, and yet, individuals exhibit
wide heterogeneity in their propensity to experience worrisome thoughts. Therefore, establish-
ing predictive models to assess current worry symptoms would have potential clinical value. In
the current study, we aimed to decode dispositional worry from neuroimaging data. Our pur-
pose was to establish potential neural markers that are indicative of worry as a core symptom
of psychiatric disorders.

Previous neuroimaging studies revealed the correlation of worry propensity with activity
and structural changes in emotion processing (e.g. amygdala) and regulation (e.g. prefrontal
cortex) regions. Also shown previously, is the correlation of worry propensity with functional
and structural connectivity between these neural networks. Stronger worry tendencies were
associated with lower activation in response to aversive events in the prefrontal cortex and
anterior cingulate cortex (ACC) (Schienle et al., 2009), as well as lower ACC and prefrontal
cortex volumes, and higher striatal volume (Hilbert et al., 2015; Andreescu et al., 2017).
Furthermore, functional couplings between prefrontal and limbic regions account for worry
tendencies, such that higher dispositional worry is correlated with weaker functional connect-
ivity in the prefrontal–limbic pathway (Makovac et al., 2016; Meeten et al., 2016). Lastly,
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evidence derived from diffusion tensor imaging (DTI) research
has indicated that worry propensity is related to white matter
(WM) integrity in the frontal cortex, ACC, and amygdala
(Zhang et al., 2013a, b; Andreescu et al., 2017). In particular,
higher worry severity was associated with decreased mean diffu-
sivity (MD) in the left orbital frontal cortex and ACC, as well
as increased MD in the right putamen (Andreescu et al., 2017),
and increased fractional anisotropy (FA) in the amygdala
(Zhang et al., 2013a, b). Furthermore, previous DTI studies
revealed that GAD is associated with lower FA in the uncinate fas-
ciculus, a primary WM tract connecting the amygdala and frontal
cortex (Ayling et al., 2012; Hettema et al., 2012; Tromp et al.,
2012; Liao et al., 2014). Additionally, compared with controls,
GAD patients also exhibited reduced FA in the inferior
fronto-occipital fasciculus, inferior longitudinal fasciculus, and
corona radiate (Liao et al., 2014). Besides previous studies on dis-
positional worry or GAD, there is also evidence showing that
mood and anxiety disorder is associated with WM integrity in
other tracts implicated in emotional processing, including fornix
and cingulum (Abe et al., 2006; Yu et al., 2017). Taken together,
previous findings suggest that mood and anxiety disorder is
closely associated with interactions between networks responsible
for emotion regulation and processing (e.g. prefrontal and limbic
networks), and thus provide potential candidates for the neuro-
markers of trait worry.

Importantly however, previous findings on the neural basis of
dispositional worry were based on the univariate correlational
approach, which is subject to several serious limitations. First,
univariate analysis possesses limited sensitivity to identify subtle
and spatially distributed effects. Subtle and distributed informa-
tion across large-scale neural networks might play a critical role
in maintaining worry tendencies. This is especially pertinent con-
sidering that worry is a multi-faceted construct, and presumably
relies on the functional and structural integrity of distributed net-
works. In agreement with this assertion, previous studies using
the univariate approach often reported inconsistent findings on
the neural substrates of worry propensity (Paulesu et al., 2010;
Zhang et al., 2011; Liao et al., 2014; Bergamino et al., 2017).
Second, the traditional in-sample correlation approach is prone
to overfitting, and the correlational results do not always allow
for out-of-sample generalizations (Gabrieli et al., 2015; Dubois
and Adolphs, 2016; Yarkoni and Westfall, 2017). In this case, pre-
vious correlational findings are not readily applicable to clinical
practice, where doctors require individualized assessment of
symptom severity (Paulus, 2015, 2017; Huys et al., 2016). To
address these issues, we implemented a multivariate pattern ana-
lysis (MVPA) approach to identify DTI features that are predictive
of current dispositional worry at the individual level.

In particular, the current approach provides the following
advantages. First, the multivariate nature of the analysis enables
the detection of subtle and spatially distributed effects. MVPA
approaches are particularly suitable for examining neural
mechanisms underlying complex traits such as dispositional
worry and relevant mental disorders (e.g. GAD), thought to be
rooted in disturbed functional and structural integrity of distrib-
uted networks (Etkin et al., 2009; Hilbert et al., 2014). In line
with this conjecture, a recent review proposed that machine learn-
ing algorithms and multivariate tools could be eminently useful
for characterizing neuroanatomy of GAD (Fonzo and Etkin,
2017). Second, the machine learning approach allows for the pre-
diction of unseen participants, offering information at the indi-
vidual level rather than group level. More specifically, the

machine learning approach typically implements cross-validation
procedures to estimate the model with training samples, and to
test the model performance with independent samples (i.e. test
samples). As such, the current work aimed to identify brain mea-
sures, i.e. WM connectivity, that are predictive of current worry
symptoms at the individual level, rather than to predict future
worry symptoms. Moreover, discriminating features adopted by
the model can be employed as neuroimaging markers for worry
tendencies.

In light of previous studies on worry symptoms and WM
integrity (Zhang et al., 2013a, b; Andreescu et al., 2017;
Bergamino et al., 2017), we hypothesized that dispositional
worry scores would be predicted by structural integrity within
the emotion processing and regulation neural network, particu-
larly the prefrontal cortex, ACC, and amygdala. Moreover,
based on previous DTI studies on mood and anxiety disorders
(Hettema et al., 2012; Tromp et al., 2012; Liao et al., 2014), we
further hypothesized that WM tracts, including the uncinate fas-
ciculus, inferior fronto-occipital fasciculus, inferior longitudinal
fasciculus, cingulum, fornix, and corona radiate, would contribute
to the prediction of current trait worry.

Material and methods

Participants

Fifty-nine adult participants (35 females; age 26.19 ± 7.13 years,
range: 18–49 years) were recruited. All the participants were
right handed, had received junior high school or above education,
and used Chinese as their first language. All were clear of organic
brain diseases or any abnormal nervous system manifestations. The
study was conducted in accordance with the 1964 Declaration of
Helsinki and its later amendments, and was approved by the
Ethics Committee of Beijing Normal University. Written informed
consent was obtained from all participants.

Penn State Worry Questionnaire

To assess individual dispositional worry, we administered the
Chinese version of the Penn State Worry Questionnaire (PSWQ)
(Meyer et al., 1990), which measures general tendency toward fre-
quent and excessive worry in both clinical and non-clinical sam-
ples. The PSWQ consists of 16 items; each item is scored on a
five-point Likert scale ranging from 1 (not at all typical) to 5
(very typical). The reliability and validity of the PSWQ have
been demonstrated by previous studies (Meyer et al., 1990;
Brown et al., 1992).

MRI data acquisition

Images were acquired with a Siemens TRIO 3-Tesla scanner at the
Beijing Normal University Imaging Center for Brain Research.
High-resolution structural images were acquired through a 3D
sagittal T1-weighted magnetization-prepared rapid acquisition
with gradient-echo sequence, using the following parameters:
sagittal slices, 144; TR, 2530 ms; TE, 3.39 ms; slice thickness,
1.33 mm; voxel size, 1 mm × 1 mm× 1.33 mm; flip angle, 7°;
inversion time, 1100 ms; FOV, 256 mm × 256 mm. In addition,
for DTI scans, a single-shot, twice-refocused spin-echo diffusion
echo-planar imaging sequence was applied with the following
parameters: TR, 8000 ms; TE, 89 mm; 30 optimal diffusion-
weighted directions with a b-value of 1000 s/mm2 and one
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image with a b-value of 0 s/mm2; data matrix, 128 × 128; FOV,
282 mm × 282 mm; slice thickness, 2.2 mm; 62 axial slices with
no interslice gap; voxel size, 2.2 mm × 2.2 mm × 2.2 mm. To
increase the signal-to-noise ratio, two repetitions were performed,
with a total imaging time of 12 min.

Image preprocessing

Processing of the diffusion MRI dataset was implemented using
PANDA (http://www.nitrc.org/projects/panda), which is a pipe-
line toolbox for diffusion MRI analysis (Cui et al., 2013) based
on FSL (Jenkinson et al., 2012). The procedure included skull-
stripping, simple-motion and eddy-current correction, and diffu-
sion tensor/parameter calculation. The following two diffusion
metrics were calculated: (i) FA, a measure of the fraction of the
magnitude of the tensor that can be attributed to the anisotropic
diffusion (Basser, 1995); (ii) MD, a measure of average diffusion
across different directions (Basser et al., 1994). FA and MD are
the most commonly used diffusion parameters, and are thought
to provide complementary information about diffusion
(Beaulieu, 2002; Alexander et al., 2011). Tract-based spatial statis-
tics was employed to extract the core (skeleton) of WM (Smith
et al., 2006). In detail, all FA images were registered to the tem-
plate, and then averaged to generate a mean FA image. The FA
skeleton, which represented the core tracts that were common
to all subjects, was calculated using the mean FA. This skeleton
was then thresholded (FA value >0.2) to further remove
non-WM regions. Each individual subject’s registered FA and
MD images were projected to this skeleton, and FA and MD skel-
eton images were produced for each subject. Following this, we
calculated the regional average FA and MD skeleton using the
WM Parcellation Map (WMPM), which is a prior WM atlas
defined in the MNI space with 50 ‘core WM’ regions (Mori

et al., 2008). As each subject’s FA/MD skeleton and the
WMPM atlas were both in MNI space and both with a resolution
of 1 mm × 1 mm × 1 mm, we overlaid the skeleton images on the
atlas to categorize each skeleton voxel into the 50 WM regions
(Huang et al., 2011; Tseng et al., 2013). For each participant,
the mean FA and MD skeletons were acquired for each of the
50 WM regions.

Multivariate relevance vector regression analysis

The average FA and MD values for the 50 regions were concate-
nated to yield a feature vector for each subject (Cui et al., 2016).
The feature vector therefore consisted of 50 FA features and 50
MD features. The use of different types of features together in
the model likely improves prediction performance, since distinct
features putatively capture complementary aspects of WM tissue
(Alexander et al., 2011). Indeed, previous studies indicate that
using FA and MD features together resulted in higher model per-
formance than using each type of features alone (Ross and Jain,
2003; Damoiseaux and Greicius, 2009; Wee et al., 2011; Dai
et al., 2012; Xie et al., 2015; Cui et al., 2016).

The relationship between PSWQ scores and microstructural
WM properties was examined using multivariate relevance
vector regression (RVR) with a linear kernel as implemented in
PRoNTo (http://www.mlnl.cs.ucl.ac.uk/pronto/) and in-house
scripts running under Matlab environment (Mathworks, 2016
release) (Fig. 1). RVR is a sparse kernel learning multivariate
regression method set in a fully probabilistic Bayesian framework
(Tipping, 2001). In this framework, a zero-mean Gaussian prior
is introduced over the model weights, and is governed by a set of
hyper-parameters, one for each weight. The most probable values
for these hyper-parameters are then iteratively estimated from
the training data, with sparseness achieved due to posterior

Fig. 1. Schematic overview of the prediction framework.
DTI, diffusion tensor imaging; TBSS, tract-based spatial
statistics; WM, white matter; FA, fractional anisotropy;
MD, mean diffusivity; LOSOCV, leave-one-subject-out
cross-validation.
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distributions of many of the weights peaking sharply around zero.
Those training vectors associated with non-zero weights are
referred to as ‘relevance’ vectors. The optimized posterior distribu-
tion of the weights can then be used to predict the target value (e.g.
anxiety score) for a previously unseen feature vector, by computing
the predictive distribution (Tipping, 2001).

In the current work, a leave-one-subject-out cross-validation
(LOSOCV) was used to evaluate the out-of-sample prediction
performance. N-1 subjects (where N is the number of subjects)
were used as the training set, with the remaining individual
used as the testing sample. During the training procedure, each
feature was linearly scaled to a range of zero to one across the
training set, and then a RVR prediction model was constructed

using this training set. During the testing procedure, each testing
subject’s feature vector was scaled using the scaling parameter
acquired during the training procedure. Following this, the RVR
prediction model was used to predict the testing subjects’
PSWQ score (Gong et al., 2014; Cui et al., 2018). The training
and testing procedures were repeated N times such that each sub-
ject was used once as the testing subject.

The accuracy of prediction was measured with three frequently
used statistics (Franke et al., 2010; Gong et al., 2014; Cui et al.,
2018): (i) mean absolute error (MAE): 1

n

∑n

i=1
|yi−ŷi|; (ii) root

mean squared error (RMSE):
�������������
1
n

∑n

i=1
(yi− ŷi)

2
√

; (iii) prediction R2:

1−
∑n

i=1
(yi− ŷi)

2

∑n

i=1
(yi− y)2

. Please note that n indicates sample size, yi indicates

Fig. 2. RVR findings of the multivariate regression analysis in dispositional worry prediction using leave-one-subject-out cross-validation procedures. (a) Line plot
showing consistency between actual and predicted dispositional worry scores. (b) Distribution of permutation of the mean absolute error. (c) Distribution of per-
mutation of the root mean squared error. (d) Distribution of permutation of the prediction R2. The values obtained using real scores are indicated by the blue
dashed line.

Table 1. Results of RVR prediction using combined WM features or a single WM feature

Feature

LOSOCV 10-fold CV

MAE RMSE Prediction R2 MAE RMSE Prediction R2

Combined 10.46 12.82 0.17 10.68 13.65 0.055

FA 11.47 14.48 −0.06 11.88 14.79 −0.11

MD 11.85 14.15 −0.01 12.01 14.3 −0.037

LOSOCV, leave-one-subject-out cross-validation; FA, fractional anisotropy; MD, mean diffusivity; MAE, mean absolute error; RMSE, root mean squared error.
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actual worry score of the ith subject, ŷi indicates predicted worry
score of the ith subject, and ȳ indicates mean of the actual
worry scores across all subjects. The permutation test was applied
to determine whether the obtained metrics were significantly bet-
ter than those expected by chance. More specially, we permuted

PSWQ scores across training samples without replacement 1000
times, and each time re-applied the above LOSOCV prediction
procedure. The permutation resulted in a distribution of MAE,
RMSE, and prediction R2 values reflecting the null hypothesis
that the model did not exceed chance level. The number of
times that the permuted value was greater than (or, with respect
to MAE and RMSE values, less than) the true value, was then
divided by 1000, providing an estimated p value for each statistic.

Contributing features and corresponding weights

To quantify the contribution of each feature to prediction, we
constructed a new RVR model using all subjects. The absolute
value of the RVR weight of each feature quantifies its contribution
to the model (Gong et al., 2014; Cui and Gong, 2018; Cui et al.,
2018). Please note that RVR calculates the weight for samples.
As RVR is a sparse model in the sample space, most weight will
be zero; remaining samples with non-zero weight were used to
fit the model. The regression coefficients of all features were deter-
mined as the weighted sum of the feature vector of the non-zero
weighted samples (see also Gong et al., 2014; Cui and Gong,
2018). A larger absolute value of weight indicates a greater contri-
bution of the corresponding feature to prediction, in the context
of every other feature (Gong et al., 2014; Erus et al., 2015; Cui
and Gong, 2018; Cui et al., 2018). The feature was selected for
visualization if the absolute value of its weight was higher than
30% of the maximum absolute weight value across features (i.e.
0.293, observed on the left posterior limb of internal capsule);
this was consistent with previous studies (Ecker et al., 2010;
Gong et al., 2014). We applied this threshold to eliminate noise
components for a better visualization of the most discriminating
regions (Ecker et al., 2010; Gong et al., 2014).

Validation

A 10-fold cross-validation was applied to validate our prediction
results. All subjects were divided into 10 subsets, in which nine
were used as the training set, and the remaining one was used
as the testing set. The training set was scaled and used to train
a RVR prediction model, which was then used to predict the
scores for the scaled testing data. The scaling of testing data
used parameters acquired from training data. This procedure
was repeated 10 times, so that each subset was used as testing
set once. Finally, the correlation r and MAE between the true
and predicted scores were calculated across all subjects. Since
the full dataset was randomly divided into 10 subsets, perform-
ance might have depended on data division. Therefore, the
10-fold cross-validation was repeated 100 times, and the results
were averaged to produce a final prediction performance. A per-
mutation test was applied 1000 times to test the significance of the
prediction performance.

Results

Multivariate RVR analysis

The application of RVR to the combined FA and MD features
allowed individualized prediction of PSWQ scores (MAE =
10.46, p < 0.001; RMSE = 12.82, p < 0.001; prediction R2 = 0.17,
p < 0.001; Fig. 2). Prediction performance worsened when using
the single-type metric (FA or MD) (Table 1). The permutation
test revealed a higher correlation coefficient and lower MAE

Table 2. Contributing white matter connectivity features with an absolute
weight score higher than 30% of the maximum absolute weight value for
RVR to predict dispositional worry

WM labels Metric Weight score

FA features

Posterior limb of internal capsule (L) FA 0.293

Anterior corona radiata (L) FA 0.176

Cingulum (cingulate part) (R) FA 0.176

Inferior fronto-occipital fasciculus (L) FA 0.174

Genu of corpus callosum FA 0.162

Anterior corona radiata (R) FA 0.159

Superior cerebellar peduncle (R) FA 0.157

Sagittal stratum (R) FA 0.144

Uncinate fasciculus (L) FA 0.133

Retrolenticular part of internal capsule (R) FA 0.122

Posterior limb of internal capsule (R) FA 0.119

Corticospinal tract (L) FA 0.106

Superior cerebellar peduncle (L) FA 0.103

Pontine crossing tract FA 0.101

Inferior cerebellar peduncle (R) FA 0.099

Superior fronto-occipital fasciculus (L) FA 0.099

Cerebral peduncle (L) FA 0.088

MD features

Cerebral peduncle (R) MD 0.246

Fornix (cres)/stria terminalis (L) MD 0.243

Cerebral peduncle (L) MD 0.233

Inferior cerebellar peduncle (L) MD 0.203

Inferior fronto-occipital fasciculus (L) MD 0.183

Tapetum (L) MD 0.182

Genu of corpus callosum MD 0.180

Uncinate fasciculus (L) MD 0.153

Posterior limb of internal capsule (R) MD 0.146

Posterior thalamic radiation (L) MD 0.137

Superior cerebellar peduncle (L) MD 0.133

Cingulum (cingulate part) (L) MD 0.130

Body of fornix MD 0.124

Superior fronto-occipital fasciculus (L) MD 0.123

Posterior thalamic radiation (R) MD 0.102

Splenium of corpus callosum MD 0.089

Anterior corona radiata (L) MD 0.089

Superior corona radiata (L) MD 0.086

WM, white matter; L, left; R, right; FA, fractional anisotropy; MD, mean diffusivity.
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for the combined features, as compared with the FA or MD
feature alone (combined v. FA: pMAE = 0.029, pRMSE = 0.014,
pprediction R
2 = 0.019; combined v. MD: pMAE = 0.011, pRMSE =
0.027, pprediction R

2 = 0.039).

Contributing WM features

Thirty-five WM features were selected, including 17 FA features
and 18 MD features (Table 2 and Fig. 3). The 17 FA features
were derived from the following WM regions (Fig. 3a): bilateral
genu of corpus callosum, posterior limbic of internal capsule,
anterior corona radiata, superior cerebellar peduncle, and pontine
crossing tract; left inferior fronto-occipital fasciculus, left uncinate
fasciculus, left superior fronto-occipital fasciculus, and left cere-
bral peduncle; right cingulum, right sagittal stratum, right retro-
lenticular part of internal capsule, and right inferior cerebellar
peduncle. The 18 MD features were derived from the following
WM regions (Fig. 3b): bilateral genu of corpus callosum, splenium
of corpus callosum, and body of fornix; left fornix/stria terminalis,
left cerebral peduncle, left inferior cerebellar peduncle, left cingu-
lum, left superior corona radiata, left cerebral peduncle, left
inferior fronto-occipital fasciculus, left tapetum, left uncinate fas-
ciculus, left posterior thalamic radiation, left superior cerebellar
peduncle, left cingulum, left superior fronto-occipital fasciculus,
left anterior and superior corona radiate; right posterior thalamic
radiation, right cerebral peduncle, and right posterior limb of
internal capsule.

Validation

The 10-fold cross-validation was used to re-estimate the perform-
ance of prediction. The resultant correlation coefficient and MAE
values remained significant (MAE = 11.09, p < 0.005; RMSE =

13.65, p < 0.005; prediction R2 = 0.055, p < 0.005; Fig. 4), thus val-
idating the main findings derived from the LOSOCV approach.

Discussion

Excessive worry is a defining feature of GAD, and contributes to a
wide range of other psychiatric disorders (Ehring and Watkins,
2008; Sharp et al., 2015; Barlow et al., 2016). However, the neuro-
biological markers of worry propensity remain largely unknown.
In the current study, we employed WM microintegrity in a
machine learning framework to make continuously valued predic-
tions on dispositional worry. Our aim was to establish neuromar-
kers that are predictive of worry propensity at the individual level.
We demonstrated that multivariate patterns of WM structural
connectivity extracted from DTI data were sufficient to decode
individual worry tendencies. In particular, inter-individual vari-
ation in trait worry was predicted by microstructural properties
of widely distributed WM tracts. These tracts included the poster-
ior limb of internal capsule, anterior corona radiate, and cerebral
peduncle, as well as the corticolimbic pathways (e.g. uncinate fas-
ciculus, cingulum, and fornix) already known to be critical for
emotion processing and regulation.

It has been hypothesized that the neural pathways associated
with emotion processing and regulation play a critical role in
developing and maintaining chronic/dispositional worry and
GAD (Etkin et al., 2009; Schienle et al., 2009; Etkin et al., 2010;
Makovac et al., 2016; Meeten et al., 2016). This is in line with
our findings that WM tracts in the prefrontal–limbic pathway
contribute to the predictions of worry propensity. For instance,
the uncinate fasciculus is the primary WM tract that connects
the ventral regions of the prefrontal cortex and ACC to the amyg-
dala and other limbic regions (Ghashghaei et al., 2007). Disrupted
integrity of the uncinate fasciculus has been reliably identified in
anxiety and depression disorders (Kim and Whalen, 2009; Phan

Fig. 3. Contributing white matter connectivity features with an absolute weight score higher than 30% of the maximum absolute weight value for RVR to predict
dispositional worry. (a) FA features. (b) MD features.

2004 Chunliang Feng et al.

https://doi.org/10.1017/S0033291718002763 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718002763


et al., 2009; Ayling et al., 2012; Carballedo et al., 2012; Hettema
et al., 2012; Tromp et al., 2012). Furthermore, integrity of the
uncinate fasciculus predicts the functional connectivity strength
of prefrontal regions and the amygdala (Tromp et al., 2012),

which has been associated with trait worry scores and emotion
regulation ability (Makovac et al., 2016). The cingulum bundle
is the most prominent WM tract in the limbic system, and con-
nects the ACC to the amygdala and hippocampus. Previous stud-
ies have revealed altered cingulum bundle integrity in
post-traumatic stress disorder, and found the correlation between
cingulum integrity and symptom severity (Abe et al., 2006; Kim
et al., 2006). The fornix is a fiber tract originating from hippo-
campus and projecting to the hypothalamus and cingulate cortex
among other regions (Saunders and Aggleton, 2007). As an
important part of the Papez circuit in the limbic system, the for-
nix is thought to contribute to emotion regulation through higher
order frontal regions (Dalgleish, 2004). In accordance with this,
WM tract integrity in the fornix has been related to trait anxiety,
depression, harm avoidance, and early trauma experiences
(Kazlouski et al., 2011; Modi et al., 2013; Hoogenboom et al.,
2014; Yu et al., 2017).

Notably, WM tracts in the prefrontal–limbic pathway are not
the only features contributing to the predictive model. Instead,
the current approach demonstrated the involvement of widely dis-
tributed WM tracts, in line with the multi-faceted nature of worry.
Specifically, we revealed the following fiber tracts as potential neu-
romarkers of dispositional worry: the inferior fronto-occipital fas-
ciculus, posterior thalamic radiation, corpus callosum, and those
in the motor system (e.g. corona radiata, internal capsule, cerebel-
lar peduncle, cerebral peduncle, and pontine crossing tract).

The microstructure of the inferior fronto-occipital fasciculus
has been linked to obsessive–compulsive disorder, depression,
and anxiety-related personality traits (Bae et al., 2006; Garibotto
et al., 2010; Westlye et al., 2011). This WM tract has been consid-
ered a ‘multi-function’ bundle that subserves semantic and emo-
tional processing among other functions (Martino et al., 2010;
Sarubbo et al., 2013). These putative functions fit well with
the abstract, verbal-linguistic, and valenced nature of worry
(Borkovec et al., 2004; Sibrava and Borkovec, 2006). Moreover, dis-
rupted integrity of the posterior thalamic radiation and corpus cal-
losum has been consistently identified in depression disorders
(Liao et al., 2013; Sarıçiçek et al., 2016; Hermesdorf et al., 2017),
suggesting the importance of these tracts in emotion processing.
Finally, abnormalities of WM connectivity in the motor system
have frequently been reported in a wide range of psychiatric disor-
ders, including depression (Bae et al., 2006; Shen et al., 2017) and
anxiety (Westlye et al., 2011; Zhang et al., 2011; Liao et al., 2014).
In particular, the fiber tracts in the corona radiata and internal cap-
sule of the motor system wire the cortex and thalamus (Goh et al.,
2011), and are critical in filtering sensory information and regulat-
ing emotions (Herrero et al., 2002). Furthermore, an increasing
body of empirical evidence has indicated the involvement of the
cerebellum in emotion processing and regulation (Schutter and
Van Honk, 2005), such that integrity of cerebellar fiber tracts has
been linked to emotion processing ability (Peng et al., 2013;
Laricchiuta et al., 2015). Taken together, these WM tracts might
contribute to different aspects of emotion appraisal and regulation
that are related to dispositional worry.

Interestingly, the current results reveal that WM features that
are predictive of PSWQ scores are predominantly located in the
left hemisphere. Many other studies have also found left hemi-
sphere asymmetry to be associated with worry, in both resting
state and during tasks (Hoehn-Saric et al., 2004, 2005;
Mohlman et al., 2009). For instance, Mohlman et al. (2009)
found a strong correlation between the activation of the left med-
ial orbitofrontal cortex and worry scores among GAD patients.

Fig. 4. RVR findings of the validation analysis using 10-fold cross-validation proce-
dures. (a) Distribution of permutation of the mean absolute error. (b) Distribution
of permutation of the root mean squared error. (c) Distribution of permutation of
the prediction R2. The values obtained using real scores are indicated by the blue
dashed line.
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Also, Hoehn-Saric et al. (2004) reported that after clinical treat-
ment using citalopram, GAD patients showed a reduction of
brain activation, mostly in the left hemisphere, in response to
experimental stimuli. To explain this pattern of asymmetry,
Hoehn-Saric et al. (2005) pointed out that worry is a thought pro-
cess that is primarily verbal-semantic. Therefore, the involvement
of verbal thought activity might be more predominately associated
with left hemisphere activation. That being said, it should be
noted that the current evidence on the worry and hemisphere
asymmetry is rather preliminary, and future studies are needed
to address the issue.

Several limitations and future directions should be noted in rela-
tion to this study. First, our predictionwas obtained froma relatively
small subclinical sample. Therefore, generalization of the current
findings requires further validation using a larger independent sam-
ple and other cross-validation methods. Second, although our
results indicated that the performance of our model was signifi-
cantly better than chance level, the MAE and RMSE scores were
relatively large and the prediction R2 score was moderate.
Therefore, future studies are needed to improve the performance
of the model by combining data from different levels of measure
(e.g. behavioral and brainmeasures), differentmodalities (e.g. func-
tional and structural connectivity), and different statistics (e.g.
mean and variance). For instance, the current study employed the
mean values of FA and MD from each fiber tract as features, since
these metrics are known to reflect structural integrity (Assaf and
Pasternak, 2008; Khong et al., 2016; Martin et al., 2016).
However, other measures, such as the variance of these metrics
within each tract might also be biologically meaningful, and could
be explored in future studies. Nevertheless, the model proposed in
the present study serves as a starting point, and should inspire fur-
ther investigation to improve prediction accuracy and generalizabil-
ity. On a related note, predicted scores exhibited smaller variance
than the actual scores, which could be attributed to regression pre-
diction models shrinking estimates toward the mean, as well as the
fact that the current predictive model based on WM integrity did
not fit perfectly with the actual worry scores (for additional obser-
vation and discussion on this issue, see also Rowen et al., 2009;
Brazier et al., 2010; Versteegh et al., 2010; Fayers and Hays, 2014).
Finally, future clinical research should also examine whether the
effectiveness of treatments used to reduce worry (e.g. cognitive
behavior therapy; see Querstret and Cropley, 2013 for a review)
could be affected by the individual differences in structural net-
works revealed in this study.

Despite these limitations, we here demonstrate that integrity of
widely distributed WM tracts effectively predict dispositional
worryat individual level. As such, the currentwork provides potential
neuromarkers for clinical assessment of worry symptoms across a
wide range of psychiatric disorders. In addition to the potential clin-
ical applications, the current multivariate approach compared with
previousmass-univariate techniques revealedmore distributed path-
ways underlyingworry propensity. Thus, thesemove us toward a bet-
ter understanding of the neurobiological mechanisms of worry.

Acknowledgement. The authors thank two anonymous reviewers for their
comments, which have helped improve the quality of the manuscript.

Author contributions. CF and RX designed the study. CF and RX per-
formed the experiment. CF and ZC analyzed the data. CF, RX, ZC, and RG
wrote the manuscript. DC provided suggestions on the revision of manuscript.

Financial support. This study was funded by the National Natural Science
Foundation of China (81503480, 31571124, 31500920, 31700977), the Major

Program of Chinese National Social Science Foundation (17ZDA324), the
National Postdoctoral Program for Innovative Talents (BX201600019), the
China Postdoctoral Science Foundation (2017M610055), the Beijing
National Science Foundation (7154227), the Project of Institute of Basic
Research in Clinical Medicine, and the China Academy of Chinese Medical
Sciences (Z0414).

Conflict of interest. None.

References

Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Iwanami A, Ohtani T,
Masutani Y, Kato N and Ohtomo K (2006) Voxel-based diffusion tensor
analysis reveals aberrant anterior cingulum integrity in posttraumatic stress
disorder due to terrorism. Psychiatry Research: Neuroimaging 146, 231–242.

Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP,
Mossahebi P, Tromp DP, Zakszewski E and Field AS (2011)
Characterization of cerebral white matter properties using quantitative mag-
netic resonance imaging stains. Brain Connectivity 1, 423–446.

Andreescu C, Tudorascu D, Sheu LK, Rangarajan A, Butters MA, Walker S,
Berta R, Desmidt T and Aizenstein H (2017) Brain structural changes in
late-life generalized anxiety disorder. Psychiatry Research: Neuroimaging
268, 15–21.

Assaf Y and Pasternak O (2008) Diffusion tensor imaging (DTI)-based white
matter mapping in brain research: a review. Journal of Molecular
Neuroscience 34, 51–61.

Ayling E, Aghajani M, Fouche J-P and van der Wee N (2012) Diffusion ten-
sor imaging in anxiety disorders. Current Psychiatry Reports 14, 197–202.

Bae JN, MacFall JR, Krishnan KRR, Payne ME, Steffens DC and Taylor WD
(2006) Dorsolateral prefrontal cortex and anterior cingulate cortex white
matter alterations in late-life depression. Biological Psychiatry 60, 1356–
1363.

Barlow DH, Allen LB and Choate ML (2016) Toward a unified treatment for
emotional disorders – republished article. Behavior Therapy 47, 838–853.

Basser PJ (1995) Inferring microstructural features and the physiological state
of tissues from diffusion‐weighted images. NMR in Biomedicine 8, 333–344.

Basser PJ, Mattiello J and LeBihan D (1994) Estimation of the effective self-
diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance,
Series B 103, 247–254.

Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous sys-
tem – a technical review. NMR in Biomedicine 15, 435–455.

Bergamino M, Farmer M, Yeh H-W, Paul E and Hamilton JP (2017)
Statistical differences in the white matter tracts in subjects with depression
by using different skeletonized voxel-wise analysis approaches and DTI fit-
ting procedures. Brain Research 1669, 131–140.

Borkovec T, Ray WJ and Stober J (1998) Worry: a cognitive phenomenon
intimately linked to affective, physiological, and interpersonal behavioral
processes. Cognitive Therapy and Research 22, 561–576.

Borkovec TD, and Inz J, (1990) The nature of worry in generalized anxiety
disorder: A predominance of thought activity. Behaviour Research and
Therapy 28, 153–158.

Borkovec TD, Alcaine O and Behar E (2004) Avoidance theory of worry and
generalized anxiety disorder. In Heimberg RG, Turk CL and Mennin DS
(eds), Generalized Anxiety Disorder: Advances in Research and Practice,
New York: Guilford Press, pp. 77–108.

Brazier JE, Yang Y, Tsuchiya A and Rowen DL (2010) A review of studies
mapping (or cross walking) non-preference based measures of health to
generic preference-based measures. The European Journal of Health
Economics 11, 215–225.

Brosschot JF, Gerin W and Thayer JF (2006) The perseverative cognition
hypothesis: a review of worry, prolonged stress-related physiological activa-
tion, and health. Journal of Psychosomatic Research 60, 113–124.

Brown TA, Antony MM and Barlow DH (1992) Psychometric properties of
the Penn State Worry Questionnaire in a clinical anxiety disorders sample.
Behaviour Research and Therapy 30, 33–37.

Carballedo A, Amico F, Ugwu I, Fagan A, Fahey C, Morris D, Meaney J,
Leemans A and Frodl T (2012) Reduced fractional anisotropy in the uncin-
ate fasciculus in patients with major depression carrying the met‐allele of

2006 Chunliang Feng et al.

https://doi.org/10.1017/S0033291718002763 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718002763


the Val66Met brain‐derived neurotrophic factor genotype. American
Journal of Medical Genetics Part B: Neuropsychiatric Genetics 159, 537–548.

Chelminski I and Zimmerman M (2003) Pathological worry in depressed and
anxious patients. Journal of Anxiety Disorders 17, 533–546.

Cui Z and Gong G (2018) The effect of machine learning regression algo-
rithms and sample size on individualized behavioral prediction with func-
tional connectivity features. NeuroImage 178, 622–637.

Cui Z, Zhong S, Xu P, Gong G and He Y (2013) PANDA: a pipeline toolbox
for analyzing brain diffusion images. Frontiers in Human Neuroscience 7, 42.

Cui Z, Su M, Li L, Shu H, Gong G, (2018) Individualized prediction of read-
ing comprehension ability using gray matter volume. Cerebral Cortex 28,
1656–1672.

Cui Z, Xia Z, Su M, Shu H and Gong G (2016) Disrupted white matter con-
nectivity underlying developmental dyslexia: a machine learning approach.
Human Brain Mapping 37, 1443–1458.

Dai ZJ, Yan CG, Wang ZQ, Wang JH, Xia MR, Li KC and He Y (2012)
Discriminative analysis of early Alzheimer’s disease using multi-modal
imaging and multi-level characterization with multi-classifier (M3).
NeuroImage 59, 2187–2195.

Dalgleish T (2004) The emotional brain. Nature Reviews Neuroscience 5, 583–
589.

Damoiseaux JS and Greicius MD (2009) Greater than the sum of its parts: a
review of studies combining structural connectivity and resting-state func-
tional connectivity. Brain Structure and Function 213, 525–533.

Dubois J and Adolphs R (2016) Building a science of individual differences
from fMRI. Trends in Cognitive Sciences 20, 425–443.

Ecker C, Marquand A, Mourao-Miranda J, Johnston P, Daly EM,
Brammer MJ, Maltezos S, Murphy CM, Robertson D, Williams SC and
Murphy DG (2010) Describing the brain in autism in five dimensions –
magnetic resonance imaging-assisted diagnosis of autism spectrum disorder
using a multiparameter classification approach. Journal of Neuroscience 30,
10612–10623.

Ehring T and Watkins ER (2008) Repetitive negative thinking as a transdiag-
nostic process. International Journal of Cognitive Therapy 1, 192–205.

Erus G, Battapady H, Satterthwaite TD, Hakonarson H, Gur RE,
Davatzikos C and Gur RC (2015) Imaging patterns of brain development
and their relationship to cognition. Cerebral Cortex 25, 1676–1684.

Etkin A, Prater KE, Schatzberg AF, Menon V and Greicius MD (2009)
Disrupted amygdalar subregion functional connectivity and evidence of a
compensatory network in generalized anxiety disorder. Archives of
General Psychiatry 66, 1361–1372.

Etkin A, Prater KE, Hoeft F, Menon V and Schatzberg AF (2010) Failure of
anterior cingulate activation and connectivity with the amygdala during
implicit regulation of emotional processing in generalized anxiety disorder.
American Journal of Psychiatry 167, 545–554.

Fayers PM and Hays RD (2014) Should linking replace regression when map-
ping from profile-based measures to preference-based measures? Value in
Health 17, 261–265.

FonzoGAandEtkinA (2017)Affective neuroimaging in generalized anxiety dis-
order: an integrated review. Dialogues in Clinical Neuroscience 19, 169–179.

Franke K, Ziegler G, Klöppel S, Gaser C and Initiative ASDN (2010)
Estimating the age of healthy subjects from T1-weighted MRI scans using
kernel methods: exploring the influence of various parameters. Neuroimage
50, 883–892.

Gabrieli JD, Ghosh SS and Whitfield-Gabrieli S (2015) Prediction as a
humanitarian and pragmatic contribution from human cognitive neurosci-
ence. NEURON 85, 11–26.

Garibotto V, Scifo P, Gorini A, Alonso CR, Brambati S, Bellodi L and
Perani D (2010) Disorganization of anatomical connectivity in obsessive
compulsive disorder: a multi-parameter diffusion tensor imaging study in
a subpopulation of patients. Neurobiology of Disease 37, 468–476.

Ghashghaei H, Hilgetag C and Barbas H (2007) Sequence of information
processing for emotions based on the anatomic dialogue between prefrontal
cortex and amygdala. Neuroimage 34, 905–923.

Goh S, Bansal R, XuD,Hao X, Liu J and PetersonBS (2011) Neuroanatomical
correlates of intellectual ability across the life span. Developmental Cognitive
Neuroscience 1, 305–312.

Gong Q, Li L, Du M, Pettersson-Yeo W, Crossley N, Yang X, Li J, Huang X
and Mechelli A (2014) Quantitative prediction of individual psychopathology
in trauma survivors using resting-state FMRI. Neuropsychopharmacology 39,
681–687.

Hermesdorf M, Berger K, Szentkirályi A, Schwindt W, Dannlowski U and
Wersching H (2017) Reduced fractional anisotropy in patients with major
depressive disorder and associations with vascular stiffness. NeuroImage:
Clinical 14, 151–155.

Herrero M-T, Barcia C and Navarro J (2002) Functional anatomy of thal-
amus and basal ganglia. Child’s Nervous System 18, 386–404.

Hettema JM, Kettenmann B, Ahluwalia V, McCarthy C, Kates WR,
Schmitt JE, Silberg JL, Neale MC, Kendler KS and Fatouros P (2012)
Pilot multimodal twin imaging study of generalized anxiety disorder.
Depression and Anxiety 29, 202–209.

Hilbert K, Lueken U and Beesdo-Baum K (2014) Neural structures, function-
ing and connectivity in generalized anxiety disorder and interaction with
neuroendocrine systems: a systematic review. Journal of Affective Disorders
158, 114–126.

Hilbert K, Pine DS, Muehlhan M, Lueken U, Steudte-Schmiedgen S and
Beesdo-Baum K (2015) Gray and white matter volume abnormalities in
generalized anxiety disorder by categorical and dimensional characteriza-
tion. Psychiatry Research: Neuroimaging 234, 314–320.

Hoehn-Saric R, Schlund MW and Wong SH (2004) Effects of citalopram on
worry and brain activation in patients with generalized anxiety disorder.
Psychiatry Research: Neuroimaging 131, 11–21.

Hoehn-Saric R, Lee JS, McLeod DR and Wong DF (2005) Effect of worry on
regional cerebral blood flow in nonanxious subjects. Psychiatry Research:
Neuroimaging 140, 259–269.

Hoogenboom WS, Perlis RH, Smoller JW, Zeng-Treitler Q, Gainer VS,
Murphy SN, Churchill SE, Kohane IS, Shenton ME and Iosifescu DV
(2014) Limbic system white matter microstructure and long-term treat-
ment outcome in major depressive disorder: a diffusion tensor imaging
study using legacy data. The World Journal of Biological Psychiatry 15,
122–134.

Huang H, Fan X, Williamson DE and Rao U (2011) White matter changes in
healthy adolescents at familial risk for unipolar depression: a diffusion ten-
sor imaging study. Neuropsychopharmacology 36, 684–691.

Huys QJ, Maia TV and Paulus MP (2016) Computational psychiatry: from
mechanistic insights to the development of new treatments. Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging 1, 382–385.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW and Smith SM
(2012) Fsl. Neuroimage 62, 782–790.

Kazlouski D, Rollin MD, Tregellas J, Shott ME, Jappe LM, Hagman JO,
Pryor T, Yang TT and Frank GK (2011) Altered fimbria-fornix white mat-
ter integrity in anorexia nervosa predicts harm avoidance. Psychiatry
Research: Neuroimaging 192, 109–116.

Khong E, Odenwald N, Hashim E and Cusimano MD (2016) Diffusion ten-
sor imaging findings in post-concussion syndrome patients after mild trau-
matic brain injury: a systematic review. Frontiers in Neurology 7, 156.

Kim MJ and Whalen PJ (2009) The structural integrity of an amygdala–pre-
frontal pathway predicts trait anxiety. Journal of Neuroscience 29, 11614–
11618.

Kim SJ, Jeong D-U, Sim ME, Bae SC, Chung A, Kim MJ, Chang KH, Ryu J,
Renshaw PF and Lyoo IK (2006) Asymmetrically altered integrity of cin-
gulum bundle in posttraumatic stress disorder. Neuropsychobiology 54,
120–125.

Laricchiuta D, Petrosini L, Picerni E, Cutuli D, Iorio M, Chiapponi C,
Caltagirone C, Piras F and Spalletta G (2015) The embodied emotion
in cerebellum: a neuroimaging study of alexithymia. Brain Structure and
Function 220, 2275–2287.

Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, Lui S, Yue Q, Chan RC
and Kemp GJ (2013) Is depression a disconnection syndrome? Meta-
analysis of diffusion tensor imaging studies in patients with MDD.
Journal of Psychiatry & Neuroscience: JPN 38, 49–56.

Liao M, Yang F, Zhang Y, He Z, Su L and Li L (2014) White matter abnor-
malities in adolescents with generalized anxiety disorder: a diffusion tensor
imaging study. BMC Psychiatry 14, 41–41.

Psychological Medicine 2007

https://doi.org/10.1017/S0033291718002763 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718002763


Makovac E, Meeten F, Watson DR, Herman A, Garfinkel SN, Critchley HD
and Ottaviani C (2016) Alterations in amygdala-prefrontal functional con-
nectivity account for excessive worry and autonomic dysregulation in gen-
eralized anxiety disorder. Biological Psychiatry 80, 786–795.

Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L,
Smith N, Cadotte DW, Crawley A, Ginsberg H and Mikulis DJ (2016)
Translating state-of-the-art spinal cord MRI techniques to clinical use: a
systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and
fMRI. NeuroImage: Clinical 10, 192–238.

Martino J, Brogna C, Robles SG, Vergani F and Duffau H (2010) Anatomic
dissection of the inferior fronto-occipital fasciculus revisited in the lights of
brain stimulation data. Cortex 46, 691–699.

MathWorks (2016) MATLAB documentation. URL: http://www.mathworks.
com/access/helpdesk/help/techdoc/.

Meeten F, Davey GC, Makovac E, Watson DR, Garfinkel SN, Critchley HD
and Ottaviani C (2016) Goal directed worry rules are associated with dis-
tinct patterns of amygdala functional connectivity and vagal modulation
during perseverative cognition. Frontiers in Human Neuroscience 10, 553.

Meyer TJ, Miller ML, Metzger RL and Borkovec TD (1990) Development
and validation of the penn state worry questionnaire. Behaviour Research
and Therapy 28, 487–495.

Modi S, Trivedi R, Singh K, Kumar P, Rathore RK, Tripathi RP and
Khushu S (2013) Individual differences in trait anxiety are associated
with white matter tract integrity in fornix and uncinate fasciculus: prelim-
inary evidence from a DTI based tractography study. Behavioural Brain
Research 238, 188–192.

Mohlman J, Price RB, Eldreth DA, Chazin D, Glover DM and Kates WR
(2009) The relation of worry to prefrontal cortex volume in older adults
with and without generalized anxiety disorder. Psychiatry Research:
Neuroimaging 173, 121–127.

Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV,
Mahmood A and Woods R (2008) Stereotaxic white matter atlas based on
diffusion tensor imaging in an ICBM template. Neuroimage 40, 570–582.

Newman MG, Llera SJ, Erickson TM, Przeworski A and Castonguay LG
(2013) Worry and generalized anxiety disorder: a review and theoretical
synthesis of evidence on nature, etiology, mechanisms, and treatment.
Annual Review of Clinical Psychology 9, 275–297.

Paulesu E, Sambugaro E, Torti T, Danelli L, Ferri F, Scialfa G, Sberna M,
Ruggiero G, Bottini G and Sassaroli S (2010) Neural correlates of worry
in generalized anxiety disorder and in normal controls: a functional MRI
study. Psychological Medicine 40, 117–124.

Paulus MP (2015) Pragmatism instead of mechanism: a call for impactful bio-
logical psychiatry. JAMA Psychiatry 72, 631–632.

Paulus MP (2017) Evidence-based pragmatic psychiatry – a call to action.
JAMA Psychiatry 74, 1185–1186.

Peng H-J, Zheng H-R, Ning Y-P, Zhang Y, Shan B-C, Zhang L, Yang H-C,
Liu J, Li Z-X and Zhou J-S (2013) Abnormalities of cortical-limbic-cere-
bellar white matter networks may contribute to treatment-resistant depres-
sion: a diffusion tensor imaging study. BMC Psychiatry 13, 72.

Phan KL, Orlichenko A, Boyd E, Angstadt M, Coccaro EF, Liberzon I and
Arfanakis K (2009) Preliminary evidence of white matter abnormality in
the uncinate fasciculus in generalized social anxiety disorder. Biological
Psychiatry 66, 691–694.

Querstret D and Cropley M (2013) Assessing treatments used to reduce
rumination and/or worry: a systematic review. Clinical Psychology Review
33, 996–1009.

Ross A and Jain A (2003) Information fusion in biometrics. Pattern Recognition
Letters 24, 2115–2125.

Rowen D, Brazier J and Roberts J (2009) Mapping SF-36 onto the EQ-5D
index: how reliable is the relationship? Health and Quality of Life
Outcomes 7, 27.

Sarıçiçek A, Zorlu N, Yalın N, Hıdıroğlu C, Çavuşoğlu B, Ceylan D, Ada E,
TuncaZandÖzerdemA (2016)Abnormalwhitematter integrityas a structural
endophenotype for bipolar disorder. Psychological Medicine 46, 1547–1558.

Sarubbo S, De Benedictis A, Maldonado IL, Basso G and Duffau H (2013)
Frontal terminations for the inferior fronto-occipital fascicle: anatomical
dissection, DTI study and functional considerations on a multi-component
bundle. Brain Structure and Function 218, 21–37.

Saunders RC and Aggleton JP (2007) Origin and topography of fibers con-
tributing to the fornix in macaque monkeys. Hippocampus 17, 396–411.

Schienle A, Schäfer A, Pignanelli R and Vaitl D (2009) Worry tendencies
predict brain activation during aversive imagery. Neuroscience Letters 461,
289–292.

Schutter DJ and Van Honk J (2005) The cerebellum on the rise in human
emotion. The Cerebellum 4, 290–294.

Servaas MN, Riese H, Ormel J and Aleman A (2014) The neural correlates of
worry in association with individual differences in neuroticism. Human
Brain Mapping 35, 4303–4315.

Sharp PB, Miller GA and Heller W (2015) Transdiagnostic dimensions of
anxiety: neural mechanisms, executive functions, and new directions.
International Journal of Psychophysiology 98, 365–377.

Shen X, Reus L, Adams M, Cox S, Deary I, Liewald D, Bastin M, Smith D,
Whalley H and McIntosh A (2017) Subcortical volume and white matter
integrity abnormalities in major depressive disorder: findings from UK
Biobank imaging data. Scientific Reports 7, 5547.

Sibrava NJ and Borkovec T (2006) The cognitive avoidance theory of worry.
In Davey CG and Wells A (eds), Worry and its Psychological Disorders:
Theory, Assessment and Treatment. West Sussex, England: Wiley & Sons,
pp. 239–256.

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE,
Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM and
Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of
multi-subject diffusion data. Neuroimage 31, 1487–1505.

Tipping ME (2001) Sparse Bayesian learning and the relevance vector
machine. Journal of Machine Learning Research 1, 211–244.

Tromp DP, Grupe DW, Oathes DJ, McFarlin DR, Hernandez PJ, Kral TR,
Lee JE, Adams M, Alexander AL and Nitschke JB (2012) Reduced struc-
tural connectivity of a major frontolimbic pathway in generalized anxiety
disorder. Archives of General Psychiatry 69, 925–934.

Tseng BY, Gundapuneedi T, Khan M, Diaz-Arrastia R, Levine B, Lu H,
Huang H and Zhang R (2013) White matter integrity in physically fit
older adults. Neuroimage 82, 510–516.

Versteegh MM, Rowen D, Brazier JE and Stolk EA (2010) Mapping onto
Eq-5 D for patients in poor health. Health and Quality of life Outcomes 8,
141.

Wee C-Y, Yap P-T, Li W, Denny K, Browndyke JN, Potter GG,
Welsh-Bohmer KA, Wang L and Shen D (2011) Enriched white matter
connectivity networks for accurate identification of MCI patients.
Neuroimage 54, 1812–1822.

Westlye LT, Bjørnebekk A, Grydeland H, Fjell AM and Walhovd KB (2011)
Linking an anxiety-related personality trait to brain white matter micro-
structure: diffusion tensor imaging and harm avoidance. Archives of
General Psychiatry 68, 369–377.

Xie Y, Cui Z, Zhang Z, Sun Y, Sheng C, Li K, Gong G, Han Y and Jia J
(2015) Identification of amnestic mild cognitive impairment using multi-
modal brain features: a combined structural MRI and diffusion tensor
imaging study. Journal of Alzheimer’s Disease 47, 509–522.

Yarkoni T and Westfall J (2017) Choosing prediction over explanation in
psychology: lessons from machine learning. Perspectives on Psychological
Science 12, 1100–1122.

Yu S-T, Lee K-S and Lee S-H (2017) Fornix microalterations associated with
early trauma in panic disorder. Journal of Affective Disorders 220, 139–
146.

Zhang L, Zhang Y, Li L, Li Z, Li W, Ma N, Hou C, Zhang Z, Zhang Z and
Wang L (2011) Different white matter abnormalities between the first-
episode, treatment-naive patients with posttraumatic stress disorder and gen-
eralized anxiety disorder without comorbid conditions. Journal of Affective
Disorders 133, 294–299.

Zhang Y, Li L, Yu R, Liu J, Tang J, Tan L, Liao M, Yang F and Shan B
(2013a) White matter integrity alterations in first episode, treatment-
naive generalized anxiety disorder. Journal of Affective Disorders 148,
196–201.

Zhang Y, Liao M, Tang J, Yang F, Liao Y, Shan B, Liu J and Li L (2013b)
White matter microstructure alterations in patients with first episode,
treatment-naive generalized anxiety disorder. Chinese Journal of Psychiatry
46, 199–203.

2008 Chunliang Feng et al.

https://doi.org/10.1017/S0033291718002763 Published online by Cambridge University Press

http://www.mathworks.com/access/helpdesk/help/techdoc/
http://www.mathworks.com/access/helpdesk/help/techdoc/
https://doi.org/10.1017/S0033291718002763

	Individualized prediction of dispositional worry using white matter connectivity
	Introduction
	Material and methods
	Participants
	Penn State Worry Questionnaire
	MRI data acquisition
	Image preprocessing
	Multivariate relevance vector regression analysis
	Contributing features and corresponding weights
	Validation

	Results
	Multivariate RVR analysis
	Contributing WM features
	Validation

	Discussion
	Acknowledgement
	References


