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SUMMARY
The motivation for this work is the state of modern
structural mechanisms that are characterized by growing
complexity and ever-increasing demands for rapid and
accurate motion. These contradictory requirements are
often achieved according to easier and easier structures
characterized by flexibility segments. In most of cases, the
elasticity of structures appears as an obstacle for a precise and
rapid control of motion. The aim of this paper is to explore
ways of implementation of structural properties of elasticity
with the application of high fidelity models during synthesis
and analysis of complex mechanisms. Precisely, the aim is to
explore the possibility of using Euler–Bernoulli equation, if
not in its original form, then to the same extent with the use
of modern knowledge in robotics (based on the knowledge
of classical mechanics), and to examine the affordability and
confirmation of the method through simulation results for a
typical robotic configuration.

KEYWORDS: Robot; Modeling; Elastic deformation; Link;
Coupling; Dynamics; Kinematics; Trajectory planning.

Nomenclature
DOF degree of freedom
t (s) time
dt = 0.0001 (s) sample time
T = 2 (s) whole period time
ps = [xyzψ℘ϕ]T Cartesian (external) coordinates
φ = [ρ1,1ρ1,2ρ1,3 vector of internal coordinates

ρ1,4 . . . ρ1,n]T

xi,j , yi,j , zi,j local coordinate frame, which is set in
the base of considered mode

xj , yj , zj local coordinate frame, which is set in
the base of the considered link

x, y, z basic coordinate frame, which is set
in the root of the considered robotic
system

j = 1, 2, 3, . . . , ni serial number of the mode of
considered link

i = 1, 2, 3, . . . , m ordinal number of the link
k = n1 + n2 +
· · · + nm

whole number of the modes in
considered robotics configuration

Mi,j ∈ R1 (Nm) load moment for the mode tip
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εi,j ∈ R1 (Nm) bending moment for the mode tip
εj ∈ Rni (Nm) bending moments vector for each

mode tip considered link
ε = [ε1,1ε1,2 . . . ε1,n1 vector of bending moments

ε2,1ε2,2 . . . ε2,n2

. . . . .εm,nm
]T

εm = [ε1,1ε2,1ε3,1

. . . . .εm,1]T

ς ∈ R1 (Nm) elasticity moment of the gear
#̂i,j quantities that are related to an

arbitrary point of the elastic line
of the mode, for example,
M̂i,j , x̂i,j , ε̂i,j

#i,j quantities that are not designated
by “ˆ” are defined for the mode
tip, for example, Mi,j , xi,j , εi,j

#j quantities that characterize link
#o quantities that define desired value
θ̄j ∈ R1 (rad) rotation angle of the motor shaft

after the reducer
ϑi,j ∈ R1 (rad) bending angle of the considered

mode
ωi,j ∈ R1 (rad) rotation angle of the considered

mode tip (see ref. [22])
ξj ∈ R1 (rad) deflection angle of the gear
βi,j ∈ R1 (Nm2) flexural rigidity
ηi,j ∈ R1 (s) factor that characterizes part of

damping in whole flexural
characteristics

H ∈ Rk×k inertial matrix
h ∈ Rk centrifugal, gravitational, Coriolis

vector
Fuk ∈ R6×1 [N(Nm)] external contact force
me = 1 (kg) equivalent mass
be = 30 [N/(m/s)] equivalent damping
ka1 = 104 (N/m) equivalent rigidity
μ = 0.1 friction coefficient
J Jacobian matrix mapping the

effect of the external contact
force

Tsti,j ∈ R1 (m) stationary part of flexible
deformation caused by
stationary moments that vary
continuously over time

Ttoi,j ∈ R1 (m) oscillatory part of flexible
deformation
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ai,j ∈ R1 (m) usually normal distance between j

th and j + 1 th joints
a1,1 = l1,1(m),

a1,2 = l1,2 (m)
αi,j ∈ R1(o) angle between the axes zj−1 and

zj about axis xj .
α1,1 = 0(o),

α1,2 = 0(o),
di,j ∈ R1 (m) distance between normal lj−1 and

lj along axis of j th joint
d1,1 = 0 (m),

d1,2 = 0 (m)
Rj = 0.272 (�) rotor circuit resistance
uj (V) voltage
ij (A) rotor current
CEj = 6.1

[V/(rad/s)]
proportionality constants of the

electromotive force
CMj = 6.1 (Nm/A) proportionality constants of the

moment
Buj = 0 [Nm/

(rad/s)]
coefficient of viscous friction

Ij = 4.52 (kgm2) inertia moments of the rotor and
reducer

Sj = 0.0446 expression defining the reducer
geometry

♦ ∈ Rk×k matrix characterizing the mutual
influence of the bending
moments modes of all the links

♦m ∈ Rm×m characterizes the influence of the
bending moment of each mode
on the motor dynamics

� ∈ Rk×k matrix characterizing the robot
configuration

li,j ∈ R1 (m) l1,1 =
l1,2 = 0.3 (m)

length of each mode

ci,j xbi,j cross-section of rectangular shape
c1,1xb1,1 = 0.017 ×

0.018 (m2)
c1,2xb1,2 = 0.0072 ×

0.0075 (m2)
ri,j ∈ R1 (m) flexure
� ∈ R1 (m) spatially distance
λ trajectory mark
mb = 1, ∈
R1 (kg), Jb =

0.00125 (kgm2)

mass in link base

m = 2 (kg), J =
0.0025 (kgm2)

mass in link tip

meli,j (kg), Jelzzi,j

(kgm2)
mass, moment of inertia of the

whole mode
mel1,1 =
0.2479 (kg),

Jelzz1,1 =
0.0056 (kgm2)

mel1,2 = 0.0437
(kg), Jelzz1,2 =
0.0010 (kgm2)

m̂eli,j (kg), Ĵelzz i,j

(kgm2)
equivalent mass, equivalent

moment of inertia of the mode
to the considered position on the
flexible line according to the
Strutt and Rayleigh (see ref. [22])

w̄i,j (kg/m), mass per unit of length,
w̄1,1 = 0.8262 (kg/m),
w̄1,2 = 0.1458 (kg/m)
Imomi,j (m4) inertia moments of the

cross-section of mode
Imom1,1 = 0.8262 ×

10−8 (m4)
Imom1,2 = 0.0253 ×

10−8 (m4)
Ekm (Nm) kinetic energy
Ep (Nm) potential energy
� (Nm/s) dissipative energy
φ generalized coordinate
g (m/s2) gravity acceleration
C ∈ R6×6 matrix of rigidity
B ∈ R6×6 matrix of damping
u ∈ R1 (V) control signal
Csi,j ∈ R1 (kg/s2) characteristics of stiffness of the

mode considered link
Cs1,1 = 6.3617 ×

104 (kg/s2),
Cs1,2 = 1.949 ×
103 (kg/s2)
Bsi,j ∈ R1 (kg/s) characteristics of damping of the

mode considered link
Bs1,1 = 10 (kg/s),
Bs1,2 = 100 (kg/s)
Cξ = 1.8143 ×
103 ∈ R1 (Nm/rad)

characteristics of stiffness of the
gear

Bξ = 10 ∈
R1 [Nm/(rad/s)]

characteristics of damping of the
gear

IO = 0.7854 ×
10−11 (m4)

polar moment of inertia, which we
obtain depending on diameter
and thickness of cross-section
joints

auv = 0.03 (m) length on which occurred
deflection joints

El = 69.3 ·
109 (N/m2)

module of elasticity for aluminium

δθ̄ (to) =
0 (rad), δ ˙̄θ (to) =

0 (rad/s)

initial exceptions of angles turning
powers

Klp = 900 ×
106, Klv = 60 × 103

position, velocity control gains for
movements stabilization

1. Introduction
A mathematical model of a mechanism with one DOF, with
one elastic gear that was defined by Spong (see ref. [1])
in 1987. On the basis of the same principle, the elasticity of
gears is introduced in the mathematical model in this paper, as
well in papers of refs. [2–7]. However, when the introduction
of link flexibility in the mathematical model is concerned,
it is necessary to point out some essential problems in this
domain.
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With the aim to exploit the experience of previous research,
Meirovitch theory was first analyzed. Meirovitch proposed
“modal technique,” more than 40 years ago, exactly in 1967.
The author elaborated a particular application of the Euler–
Bernoulli equation supposing that elastic deformation was a
quantity defined in advance with respect to amplitude and
frequency and, formed in this way, it was included into
a dynamics model. Not finding any other solutions, many
researchers in robotics (see refs. [8–16] etc.) applied the
solution (see ref. [17]) in the description of the real dynamics
of the robot system elastic deformations, or they used many
ways to modify the solutions from ref. [17].

Having not found agreement with Meirovitch and his
followers, the definition of elastic deformation was made
taking into account the first research studies, i.e., the original
form of Euler–Bernoulli equation.

Euler–Bernoulli equation was written in 1750. It was
written by Bernoulli, a physicist, and Euler, a mathematician,
his longtime friend and colleague. They did not even
dream about the robotics and the knowledge we have now
on disposal. Although it was made more than 250 years
ago, Euler–Bernoulli equation is still usable and it can be
connected logically with the contemporary knowledge from
the robotics.

In this paper, Euler–Bernoulli equation is formed but
“assumed modes technique” is not used in contrast
to contemporaries who deal with this issue as well.
The elastic deformation cannot be defined in advance
(with both amplitude and frequency) and put in the
system completely inversely. That means that the elastic
deformation amplitude and its frequency change depending
on the moments (perturbation, inertial moments, Coriolis,
centrifugal moments, gravity moments as well as coupling
moments between the present modes, and the play of the
external forces). It, of course, depends on the mechanism
configuration, weight, length of the segments of the reference
trajectory choice, dynamic characteristics of the motor
movements, etc.

This has been elaborated in detail in the work, but it is not
the only essential problem existing in the pertinent literature.

In the previous papers, (see refs. [8–16] etc.) the general
solution of the motion of an elastic robotic system has been
obtained by considering flexural deformations as transversal
oscillations that can be determined by the method of
particular integrals of Bernoulli.

It is taken into consideration that any elastic deformation
can be presented by superimposing Bernoulli’s particular
solutions of the oscillatory character and stationary solution
of the forced character (see refs. [2–7]).

The motion equation at any point of considered mode
(see refs. [18, 19]) follows directly from the Euler–Bernoulli
equation for the preset boundary conditions.

Nowadays, taking into consideration significantly
improved knowledge in the robotics (classical mechanics),
Euler–Bernoulli equation can not be used anymore in its
original form, as a purpose of synthesis and analysis of
elastic robotic systems. Therefore, with respect to Euler and
Bernoulli, it is necessary to further improve the equation.
It is the only way for not losing information of complexity
of movement dynamics of every mode within a segment

(and broader within the total robotic configuration). Thus, it
very important to connect original Euler–Bernoulli equation
and modern robotic knowledge on the principles of classical
mechanics. The foundations of classical mechanics are
particularly emphasized because synthesis and analysis of
kinematics and dynamics of robotic configurations in stiff
and elastic elements are based on them. The elasticity
of segments on the principles of classical mechanics is
implemented in this paper.

This research has theoretical and practical significance.
The purpose is to define as realistically as possible both
kinematic and dynamic model of the mechanism with stiff
and elastic elements that will describe the real system very
well.

In refs. [5, 6], the general form of the mathematical model
of the robotic system with elastic segments (Euler–Bernoulli
equation) is given for the first time. This paper has the aim to
make known this topic to the scientific community through
modeling one “simple” example as well as to discover new
phenomena in this field.

The future work should be directed to the implementation
of gears elasticity and the flexibility of links on any model of
a rigid robot and also on the model of a reconfigurable rigid
robot as given in ref [20] or any other type of mechanism. The
mechanism would be modeled to contain elastic elements and
generate vibrations, which are used for conveying particulate
and granular materials in ref. [21].

The procedure of defining the dynamic model of the system
under the influence of external force with all elements of
coupling is completely presented as well as with dynamic
effects of present moments defined in Section 2. The
kinematic model of the system is created (direct and inverse
kinematics) in Section 3. Section 4 analyzes a simulation
example for a dynamic movement of a multiple DOF elastic
robotic pair with elastic gear and flexible link in the presence
of the second mode and external force. Section 5 gives some
concluding remarks.

2. Dynamics
“Original form of Euler–Bernoulli equation”of the elastic
line of beam bending has the following form:

β1,1 · ∂2ŷ1,1

∂x̂2
1,1

+ m̂el1,1 · d2ŷ1,1

dt2
· (x1,1 − x̂1,1) = 0, (1)

where M̂1,1 = m̂el1,1 · d2ŷ1,1

dt2 · (x1,1 − x̂1,1) (Nm) is the load
moment, in these source equations encompassing only iner-

tia, ε̂1,1 = β1,1 · ∂2ŷ1,1

∂x̂2
1,1

(Nm) is bending moment (see Fig. 1).

Equation (1) is defined under the assumption that the
bending moment is opposed only by the proper inertial
moment. Besides, it is supposed by definition that the
motion in Eq. (1) is caused by an external force F1,1,

suddenly added and then removed. Euler–Bernoulli Eq. (1)
is expanded in refs. [5, 6] from several aspects in order to
be applicable in a broader analysis of elasticity of robot
mechanisms. The load moment is composed of all moment
acting on the first mode of the link and these are perturbation
moments, inertial moments (single and coupled moments),
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centrifugal, gravitational, Coriolis moments (single and
coupled), coupled bending moments of the other modes, as
well as the external force (which can be defined as static or
dynamic force), which is via Jacobian matrix transferred to
the motion of the first mode that come out directly from the
motion dynamics of elastic bodies.

They become more complex. This means that all these
moments participate in generation of bending moment, i.e.,
in forming elastic deformation as well as in forming the
elasticity line of the first mode. In that case, the model of
elastic line of the elastic link’s first mode has Euler–Bernoulli
equation

Ĥ1,j

d2ŷ1,j

dt2
+ ĥ1,1 + jT

1,1Fuk + ♦1,j · ε1 + β1,1

·∂
2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

= 0. (2)

Let us consider a robotic system with m links, where by the
first link contains n1 modes, the second link n2 modes, . . .

the m th link contains nm modes. The model of the elastic
line of this complex elastic robotic system is given in the
matrix form by the following Euler–Bernoulli equation:

Ĥ · d2ŷ

dt2
+ ĥ + jT

e · Fuk + ♦ · � · ε + ε̂ = 0. (3)

Detailed explanation of all components of Eqs. (2) and (3)
can be find in ref. [5, 6]. Robotics researchers are especially
interested in the first mode’s tip motion.

The equation of the motion of the moments involved at
any point of elastic line of the first mode, including the point
of the first mode’s tip, can be defined from Euler–Bernoulli
Eq. (2). The equation of motion of all moments at the first
mode’s tip for the given boundary conditions can be defined
by the following equation:

H1,j

d2y1,j

dt2
+ h1,1 + jT

e1,1 · F T
uk + ♦1,j · ε1,j + ε1,1

= 0

∣∣∣∣∣∣
∑

F=0(
∑

M=0)

at the point of

first mode tip

. (4)

Equation (4) is interesting because it allows one to
calculate the position of the first mode’s tip. If we know
the position of each mode’s tip, we can always calculate the
position of the link’s tip too and eventually the position of
the robot’s tip.

The equation of motion of all the moments at the point
of each mode’s tip of any link can be defined from Euler–
Bernoulli Eq. (3) by setting boundary conditions. The vector
equation of motion of all the moments involved for each
mode’s tip of any link is

H
d2y

dt2
+ h + jT

e · Fuk + ♦ · � · ε + ε

= 0

∣∣∣∣∣∣∣
∑

F=0(
∑

M=0)

at the tip of

any mode of the

link considered

. (5)

Fig. 1. Idealized motion of elastic body according to Bernoulli.

Fig. 2. Robotic mechanism.

The mathematical model of all m motors can be written in
a vector form as

u = R · i + CE · ˙̄θ

CM · i = I · ¨̄θ +Bu · ˙̄θ − S · (♦m · ε + εm)

∣∣∣∣∣∣
∑

M=0

about the rotation axis

of the each motors

.

(6)

Example. Let us analyze the behavior of the robotic pair
consisting of elastic gear and flexible link in the presence of
the second mode, as depicted in Fig. 2.

The link has two modes (the lower one and the upper one)
and each of them is considered as a mode of rectangular
cross-section ci,j xbi,j .

The presence of the second mode is introduced into the
analysis of the robotic pair behavior. The relations between
the important angles are defined in Fig. 3.

q = θ̄ + ξ + ϑ1,1, γ = θ̄ + ξ, δ = ϑ1,2 + ω1,1,

ω1,j = ϑ1,j

2
. (7)

The dynamic model (both the model of flexible line and
model of the motion of each mode’s tip) is defined according
to classical principles but with the previously introduced new
DH parameters, using Lagrange’s equations.

The following quantities are adopted: q, δ, γ , and θ̄ as
generalized coordinates (see Fig. 3).
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Small bending angles should be taken into consideration
and it should be adopted that lsi,j = li,j and if tan ϑi,j = ri,j

li,j
,

then ϑi,j ≈ tan ϑi,j and ri,j = li,j · ϑi,j , i = 1, j = 1, 2

ϑi,j = ri,j

li,j
. (8)

The magnitude ri,j is the maximal deflection, i.e., the
deflection at the each mode’s tip.

The bending angles are expressed in Fig. 3 via generalized
coordinates, Eqs. (7) and (8)

r1,1 = l1,1 · (q − γ ), r1,2 = l1,2 ·
(

δ − q − γ

2

)
, (9)

m̂el1,1 = 33

140
· w̄1,1 · (x1,1 − x̂1,1),

m̂el1,2 = 33

140
· w̄1,2 · (x1,2 − x̂1,2), (10)

Ĵelzz1,1 = m̂el1,1 ·
(

x1,1 − x̂1,1

2

)2

,

Ĵelzz1,2 = m̂el1,2 ·
(

x1,2 − x̂1,2

2

)2

. (11)

Equation (10) sources from ref. [22]. Kinetic and potential
energies of the mechanism presented in Fig. 2 are denoted

as ˆ̂Ekm and ˆ̂Ep. All the angles in the expression for kinetic
and potential energies characterizing flexibility of the links
should also be expressed via generalized coordinates.

The bending moment is expressed at any point of mode in

the form ε̂i,j = βi,j · ∂2(ŷi,j +ηi,j · ˙̂yi,j )

∂ x̂2
i,j

.

So that total potential energy is

ˆ̂Ep = Epo + Epels + Epelξ . (12)

So that total dissipative energy is

� = �els + �elξ . (13)

Potential, dissipative energy as a result of elasticity of the first
and second link is Epels = 1

2 · Cs1,1 · r2
1,1 + 1

2 · Cs1,2 · r2
1,2,

�els = 1
2 · Bs1,1 · ṙ2

1,1 + 1
2 · Bs1,2 · ṙ2

1,2 on the top of each link.
To bring previous expressions into the adequate form,

or in other words, in the form dependent on generalized
coordinates, multiplication and division of the same
expressions are introduced with l2

1,1, l2
1,2, etc. Epels = 1

2 ·
Cs1,1 · r2

1,1

l2
1,1

· l2
1,1 + 1

2 · Cs1,2 · r2
1,2

l2
1,2

· l2
1,2, �els = 1

2 · Bs1,1 · ṙ2
1,1

l2
1,1

·
l2
1,1 + 1

2 · Bs1,2 · ṙ2
1,2

l2
1,2

· l2
1,2. By applying expression (7)–(9) in

previous equations, potential energy of elastic link is needed:

Epels = 1

2
Cs1,1(q − γ )2l2

1,1 + 1

2
Cs1,2

(
δ − q − γ

2

)2

l2
1,2,

(14)

�els = 1

2
Bs1,1(q̇ − γ̇ )2l2

1,1 + 1

2
Bs1,2

(
δ̇ − q̇ − γ̇

2

)2

l2
1,2.

(15)

Potential, dissipative energy of elastic joint is Epelξ = 1
2 ·

Cξ · ξ 2 and �elξ = 1
2 · Bξ · ξ̇ 2. If it is expressed depending

on the generalized coordinate (7) than it is

Epelξ = 1

2
· Cξ · (γ − θ̄ )2, (16)

�elξ = 1

2
· Bξ · (γ̇ − ˙̄θ)2. (17)

Let us define the equation of a flexible line of the first mode.

The expressions ˆ̂Ekm and ˆ̂Ep should be defined for the full
length of the second mode and for any point of the first mode

l1,2 = x1,2, mel1,2 = 33

140
· w̄1,2 · l1,2,

Jelzz1,2 = mel1,2 ·
(

l1,2

2

)2

, (18)

and receive expressions Êkmel q, Êpel q, Epels, Epel ξ , �els,

�els ξ .

The original form of Euler–Bernoulli equation is the
motion equation, but defined for every point of the considered
mode. Just under defined conditions (18), the load torque
M̂1,1 is defined using the Lagrangian equation, for every
point of the considered mode. This means that the Lagrangian
equation is used as an aid in order to form the elastic line of the
first mode, or extended forms of Euler–Bernoulli equation.
Instead of Lagrangian equation, any other motion equation
could have been used.

By applying the Lagrange’s equation with respect to the
first generalized coordinate q, the load moment is obtained

M̂1,1 = [ Ĥ1,1 Ĥ1,2 Ĥ1,3 0 ] · φ̈ + ĥ1 + Ĵ1,1 · Fuk x + Ĵ2,1

·Fuk y − 1

2
· Cs1.2 · l1,2 · r1,2 − 1

2
· Bs1,2 · l1,2 · ṙ1,2

,

which represents the sum of all moments that cause flexible
deformation of the first mode and which is opposed by
bending moment

ε̂1,1 = β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

.

The magnitude M̂1,1 includes the external force Fuk that
across the Jacobi matrix Ĵ maps on the direction of the
first generalized coordinate. This is just the procedure for
obtaining Euler–Bernoulli equation by which the motion of
any point on the flexible line of the first mode is performed

[Ĥ1,1 Ĥ1,2 Ĥ1,3 0] · φ̈ + ĥ1 + Ĵ1,1 · Fuk x + Ĵ2,1 · Fuk y

− 1

2
· Cs1.2 · l1,2 · r1,2 − 1

2
· Bs1,2 · l1,2 · ṙ1,2 + β1,1

· ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

= 0. (19)

Fuk (N) is the dynamic force of the contact (in this case).

https://doi.org/10.1017/S0263574711000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000324


6 Relation between Euler–Bernoulli equation and contemporary knowledge in robotics

The component of the entire external force in the radial
direction (see Fig. 3) is Fc = (me · �̈ + be · �̇ + ·Fo

c + ka1 ·
��), whereas the friction force is Ff = −μ

ṗs

|ṗs | · Fc, as in
ref [23]. The friction coefficient is μ. The velocity of the
robot tip is ṗs .

� is the distance from the point “0” to the trajectory,
marked with λ on Fig. 2, and �� = l − �, l = l1,1 + l1,2.

me (kg) is the equivalent mass, be (N/(m/s)) is the equivalent
damping, ka1 (N/m) is the equivalent rigidity.

ς = Cξ · ξ + Bξ · ξ̇ is the elasticity moment of gear and
εi,j = (Csi.j

· ri,j + Bs
i,j

· ṙi,j ) · li,j is the bending moment of
each mode’s tip motion

φ = [q δ γ θ̄]T,

Ĥ1,1 = m̂el1,1 · (x1,1 − x̂1,1)2 + (m + mel1,2) · l2
1,1

+ (m + mel1,2) · l2
1,2 + 2 · (m + mel1,2) · l1,1 · l1,2

· cos δ + 9

4
· Ĵelzz1,1 + 9

16
· (Jzz + Jelzz1,2),

Ĥ1,2 = . . . , Ĥ1,3 = . . . , ĥ1 = . . . .

Now it is seen how many elements should be used in order
to extend Euler–Bernoulli equation with the aim to get real
information about the dynamics of motion of each point on
the elastic line of the considered mode.

There is a full analogy between Eqs. (2) and (19).
In an analogous way, the equation of flexible line of the

second mode should be defined.

The expressions ˆ̂Ekm and ˆ̂Ep need to be defined for the
full length of the first mode and for any point of the second
mode

l1,1 = x1,1, mel1,1 = 33

140
· w̄1,1 · l1,1,

Jelzz1,1 = mel1,1 ·
(

l1,1

2

)2

. (20)

By applying Lagrange’s equation with respect to the
second generalized coordinate δ using the expressions Êkmel δ ,
Êpel δ , Epels, Epel ξ , �els, and �els ξ , the load moment is
obtained

M̂1,2 = [ Ĥ2,1 Ĥ2,2 Ĥ2,3 0 ] · φ̈ + ĥ2 + Ĵ1,2 · Fuk x

+ Ĵ2,2 · Fuk y,

which represents the sum of all moments that cause flexible
deformation of the second mode and which is opposed to

the bending moment ε̂1,2 = β1,2 · ∂2(ŷ1,2+η1,2· ˙̂y1,2)
∂ x̂2

1,2
. The

magnitude M̂1,2 includes also external force Fuk. This is
just the procedure for obtaining Euler–Bernoulli equation of
flexible line of the second mode. This is Euler–Bernoulli
equation by which the motion of any point on the flexible

line of the second mode could be defined

[
Ĥ2,1 Ĥ2,2 Ĥ2,3 0

] · φ̈ + ĥ2 + Ĵ1,2 · Fuk x

+ Ĵ2,2 · Fuk y + β1,2 · ∂2(ŷ1,2 + η1,2 · ˙̂y1,2)

∂ x̂2
1,2

= 0. (21)

There is a full analogy between the Eqs. (2) and (21).
Robotics researchers are especially interested in the mode
tip’s motion. At this point, perturbation moments, inertial
moments (single and coupled ones of other modes), centri-
fugal, gravitational, Coriolis moments (single and coupled),
coupled bending moments of other modes, as well as the
external force, the effect of the latter motion of the considered
link being transferred through the Jacobian matrix.

The equation of motion of moments involved at any point
of elastic line of the first mode, including the point of the first
mode’s tip, can be defined in the following way.

In order to form motion equations, Lagrangian equations
are also used but only under boundary conditions, for the
considered point of type modes, l1,1 = x1,1 and l1,2 = x1,2.
Following this idea, the mathematical model of the observed
mechanism in the classical form is formed.

The expressions ˆ̂Ekm and ˆ̂Ep need to be defined for the full
length of the first mode l1,1 = x1,1 and for the full length of
the second mode l1,2 = x1,2. The expressions Ekmel and Epel

are derived in this way. The equation of the motion of tip
point of considered elastic line of the first mode is obtained
by applying Lagrange’s equation with respect to the first
generalized coordinate q and using the expressions Ekmel,
Epel, Epels, Epel ξ , �els, and �els ξ :

[H1,1 H1,2 H1,3 0] · φ̈ + h1 + Je1,1 · Fukx

+ Je2,1 · Fuky − 1

2
· Cs1.2 · l1,2 · r1,2 − 1

2
· Bs1,2 · l1,2 · ṙ1,2

+ Cs1,1 · r1,1 · l1,1 + Bs1,1 · ṙ1,1 · l1,1 = 0. (22)

Following the same procedure by applying Lagrange’s
equation with respect to the second generalized coordinates,
δ obtains the equation of motion at the tip point of the
considered elastic line’s second mode.

[H2,1 H2,2 H2,3 0 ] · φ̈ + h2 + Je1,2 · Fuk x

+ Je2,2 · Fuk y + Cs1.2 · l1,2 · r1,2 + Bs1,2 · l1,2 · ṙ1,2 = 0.
(23)

Lagrange’s equation with respect to the third generalized
coordinate γ, equation of motion is defined

[H3,1 H3,2 H3,3 0] · φ̈ − Cs1,1 · r1,1 · l1,1

− Bs1,1 · ṙ1,1 · l1,1 + 1

2
· Cs1.2 · l1,2 · r1,2

+ 1

2
· Bs1,2 · l1,2 · ṙ1,2 + Bξ · ξ̇ + Cξ · ξ = 0. (24)

There is a full analogy between Eqs. (4) and (22)–(24).
By applying Lagrange’s equation with respect to the fourth
generalized coordinates, θ̄ obtains the equation of the motor’s
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Fig. 3. Planar geometry of the mechanism in the vertical plane.

motion

u = R · i + CE · ˙̄θ,

CM · i = I · ¨̄θ + B · ˙̄θ − S · (Bξ · ξ̇ + Cξ · ξ ). (25)

Equations (22)–(25) that will be written in the matrix form
obtain the mathematical model of the system

U = H · φ̈ + h + C · φ + B · φ̇ + J T · Fuk. (26)

By Eq. (26) motions q, δ, γ, and θ̄ can be defined and
through them the angle of deflection, as well as the bending
angle for the each mode’s tip, but the motions of particular
points on the flexible line of present modes can not be defined.
Equation (19) can not be equated to Eq. (22), because they
are equations of different types. Equation (19) is the equation
of flexible lines (Euler–Bernoulli equation) of the first mode,
while Eq. (22) is the equation of motion at the point of the
first mode’s tip. Equation (21) is Euler–Bernoulli equation
of the second mode, while Eq. (23) is the equation of motion
at the point of the second mode’s tip. Other equations of the
model (24) and (25) are also equations of motion at a certain
point. The system (26) consists of equations of the same type.
Through them the motion of the robot’s tip can be analyzed.

H ∈ R4×4, h ∈ R4, C ∈ R4×4, B ∈ R4×4, and
J ∈ R4×4. Control is denoted by U = [ 0 0 0 u ]T. Control
via local feedbacks of motor motion with respect to position
and velocity was applied

u = Klp · (θ̄ o − θ̄ ) + Klv · ( ˙̄θo − ˙̄θ). (27)

3. Kinematics
First, the solution of Euler–Bernoulli Eq. (1) original form
can be analyzed. A general solution of motion, i.e., the form
of transversal oscillations of flexible beams can be found in
the method of particular integrals of Bernoulli, i.e.,

ŷto1,1(x̂1,1, t) = X̂1,1(x̂1,1) · T̂to1,1(t). (28)

Besides, it is supposed that according to the definition, the
motion in Eq. (1) is caused by an external force F1,1, added
and then removed with the solution (28) of Bernoulli and it
satisfies these assumptions.

By superimposing the particular solutions (28), any
transversal oscillation can be presented in the following form:

ŷto1(x̂1,j , t) =
∞∑

j=1

X̂1,j (x̂1,j ) · T̂to1,j (t). (29)

Bernoulli wrote Eq. (29) based on “vision.” Euler and
Bernoulli did not define the mathematical model of a link
with an infinite number of modes, but Bernoulli defined the
motion solution (shape of an elastic line) of such a link, which
is presented in Eq. (29). Euler and Bernoulli left the task of
a link modeling with an infinite number of modes to their
successors (see ref. [5, 6]).

The equation of Bernoulli (29) (see Fig. 4) defines a
geometrical position of any spot on the elastic body line
ŷto1 in direction y1-axis, and in a direction of x1-axis it
would be a x̂to1 coordinate that is also a geometrical size
and it can be presented in an analog way as well as the size
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Fig. 4. Possible positions of the tip of elastic line with infinite number of modes.

ŷto1. The position of a tip of a presented body with indefinite
number of modes is defined by coordinates xto1, yto1 in x1, y1

level. It is supposed that all movements are made in x1 − y1

level, and a coordinate is z1 = 0 in this case. Equation (29)
is actually the solution of dynamics of the presented body’s
movement during the time. However, in order to calculate the
coordinates x̂to1, ŷto1 in some specific moment of time (as is
seen from Fig. 4), it is necessary (except from angles ω1,1,
ω1,2, ω1,3 . . . ω1,j ) to know sizes of elastic deformations of
all modes yto1,1, yto1,2, yto1,3 . . . yto1,j . . . defined in a space
of local coordination system xi,j , yi,j , zi,j .

Generally, coordinates xto1, yto1 are the total of elastic
deformations, but precisely, in geometrical terms, it is the
total of projected elastic deformations on axes x1 and y1,

respectively.
Equation (29) has a significance as elastic deformation

for each mode for Meirovitch (ref. [17]) and his followers
(refs. [8–16]). Elastic deformation defined in this way as
in (29) is entered in the total dynamic system model. This
is essentially different interpretation of the Eq. (29) in
comparison with the interpretation of the same equation in
this manuscript.

In this paper, as explained above, Eq. (29) has completely
new meaning. Equation (29) is a solution of dynamic models,
i.e., form of elastic lines in space of Cartesian coordinates.

The motion of the considered robotic system mode is far
more complex (see ref. [5, 6]) than motion of the body
presented in Fig. 1. This means that the equations that
describe the robotic system (its elements) must be also more

complex than Eq. (1), formulated by Euler and Bernoulli.
This fact is overlooked, and the original equations are
widely used in the literature to describe the robotic system
motion. This is very inadequate because valuable pieces
of information about the complexity of the elastic robotic
system’s motion are thus lost.

Hence, we should emphasize the necessity of expanding
the source equations for the purpose of modeling robotic
systems and this should be done as in ref. [5, 6]. By
superimposing the particular solutions of oscillatory cha-
racter and stationary solution of forced character, position,
and orientation of any elastic deformation can be presented
in the following basic form (solution of Eq. (2))

ŷ1,1 = â1,1(x̂1,1, T̂st1,1, T̂to1,1, θ̄ , α, t),

ψ̂1,1 = d̂1,1(x̂1,1, T̂st1,1, T̂to1,1, θ̄ , α, t).
(30)

The solution of the system Eq. (3) and dynamic motor
motion, i.e., the form of its elastic line, can be obtained in
the presence of dynamics (angle) of rotation of each motor,
as well as by taking into account the robotic configuration.

ŷ = â(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t),

x̂ = b̂(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t),

ẑ = ĉ(x̂i,j , T̂sti,j , T̂sti,j , θ̄ , α, t),

ψ̂ = d̂(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t),

ξ̂ = ê(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t),

ϕ̂ = f̂ (x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t).

(31)
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Thus, the position and orientation of each point of the
elastic line is defined in the space of Cartesian coordinates.
It should be pointed out that the form of elastic line comes
out directly from dynamics of system’s motion. The motion
of the mode’s tip, its position and orientation, is defined by
the sum of stationary and oscillatory motion (solution of
Eq. (4))

y1,1 = a1,1(x1,1, Tst1,1, Tto1,1, θ̄ , α, t),

ψ1,1 = d1,1(x1,1, Tst1,1, Tto1,1, θ̄ , α, t).
(32)

The robot tip’s motion is defined by the sum of the
stationary and oscillatory motion of each mode’s tip plus
the dynamics of motion of the motor powering each link, as
well as by included robot configuration (solution of Eqs. (5)
and (6))

y = a(xi,j , Tsti,j , Ttoi,j , θ̄ , α, t),

x = b(xi,j , Tsti,j , Ttoi,j , θ̄ , α, t),

z = c(xi,j , Tsti,j , Tsti,j , θ̄ , α, t),

ψ = d(xi,j , Tsti,j , Ttoi,j , θ̄ , α, t),

ξ = e(xi,j , Tsti,j , Ttoi,j , θ̄ , α, t),
ϕ = f (xi,j , Tsti,j , Ttoi,j , θ̄ , α, t).

(33)

From Eq. (33), the motion of each mode’s tip and
link’s tip can be calculated and finally of the robot tip’s
motion.

Example. In order to define the shape and position of elastic
line of the first and second mode link from Fig. 2, during
the realization of robot’s task in the space of Cartesian
coordinates, it is necessary to find the solution Eqs. (19),
(21), (24), and (25). The general solution of the dynamics
movement of the observed model is given

ŷ = â(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t),

x̂ = b̂(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t),

ψ̂ = d̂(x̂i,j , T̂sti,j , T̂toi,j , θ̄ , α, t).

(34)

Furthermore, the position and orientation of any point on
the link elastic line during the robot’s task realization need to
be defined. Especially interesting point for robotics’ experts
is the position and orientation of the observed mechanism’s
tip. If its position is defined in every selected moment,
then the trajectory of the tip’s movement of the observed
elastic mechanism is defined. First, the limit conditions
for the selected point should be defined, and these are
conditions (18) and (20). Then, Eqs. (22)–(25) will be
valid and according to these conditions, all generalized
coordinates could be calculated. According to Eqs. (7)–(9),
all elastic system deformations could be defined. According
to the analogy with robot systems, these values can be
named “internal coordinates.” A geometric link between
these characteristics (internal coordinates) and the space of
Cartesian coordinates (external coordinates) has been defined
by using the transformation matrix, or so-called “direct
kinematics” in the robotics.

The rotation matrix that describes the change of position
(Cartesian coordinates) and orientation (Euler angles) of the

tip of every mode of segment has the form

Te
i−1
i =

⎡
⎢⎢⎢⎣

cos ρi,j − sin ρi,j cos αi,j sin ρi,j sin αi,j li,j · cos ρi,j

sin ρi,j cos ρi,j cos αi,j − cos ρi,j sin αi,j li,j · sin ρi,j

0 sin αi,j cos αi,j di,j

0 0 0 1

⎤
⎥⎥⎥⎦.

(35)

ρi,j , li,j , αi,j , and di,j are the new DH parameters that also
encompass the rigidity characteristics, see Fig. 3 and Eq. (7)
(αi,j = 0o and di,j = 0 (m)):

Te
0
1 =

⎡
⎢⎢⎢⎢⎣

cos q − sin q 0 l1,1 · cos q

sin q cos q 0 l1,1 · sin q

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (36)

The matrix rotation (36) describes position change and
orientation of the top of the first mode’s tip of the
link

Te
1
2 =

⎡
⎢⎢⎢⎢⎣

cos δ − sin δ 0 l1,2 · cos δ

sin δ cos δ 0 l1,2 · sin δ

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (37)

The matrix rotation (37) describes position and orientation
change of the top of the second mode’s tip of the
link.

For thirty matrix rotations adopted l1,3 = 0:

Te
2
3 =

⎡
⎢⎢⎢⎢⎣

cos ω1,2 − sin ω1,2 0 0

sin ω1,2 cos ω1,2 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (38)

The matrix rotation (38) describes orientation change of
the top of the second mode’s tip of the link in a local
coordinate frame x1,3, y1,3, z1,3.

The overall transformation matrix describes the change of
the position and orientation of segment tip in a coordinate
frame x, y, z :

Te
0
3 = Te

0
1 · Te

1
2 · Te

2
3. (39)

The Jacobi matrix for a manipulator with elastic joints and
links maps the velocity vector of external coordinates ṗs into
the velocity vector of internal coordinatesφ̇ :

φ̇ = J−1(φ) · ṗs, (40)

where ṗs = [ẋ ẏ ż ψ̇ ℘̇ ϕ̇]T defines the velocity of
a given point of the robotic system in Cartesian coordinates,
whereas φ̇ = [ρ̇1,1 ρ̇1,2 ρ̇1,3 ρ̇1,4 . . . ρ̇1,n]T defines
the velocity vector of internal coordinates. In this example,
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see Fig. 3 and Eq. (40) have the form

[
q̇

δ̇

]

=
[
l1,2 · sin(q + δ) + l1,1 · sin δ l1,2 · sin(q + δ)

l1,2 · cos(q + δ) l1,2 · cos(q + δ) + l1,1 · cos q

]−1

·
[

ẋ

ẏ

]
. (41)

Elements of the Jacobian are only functions of the elements
of the homogenous transformation matrix Te

0
3.

It is clear that each branched chain in the complex
mechanism has its finite transformation matrix, as well as
its Jacobi matrix.

The term “kinematics” is commonly used in the terms
of rigid robot systems because, in this case, mechanisms
geometry defines the position and orientation of the robot tip.

However, when both joint and link elasticity are present,
then elastic deformation values, which are by their nature
dynamic values, take part in the definition of the position
and orientation of every point on the robot system’s elastic
line.

And for that reason, in order to keep the familiar
terminology, in future, that solution of “direct kinematics”
will be implied, “inverse kinematics” in elastic robot systems
means the presence of elastic deformations.

It is clear now that Eq. (33), generally, and in
the mentioned example, Eqs. (39) and (41), serve for
the calculation of the robot tip’s movement during the
robot task realization and that it is based on motor
rotating angles, elastic deformation values and all other
kinematics and dynamic robot mechanism characteristics
(such as its geometry, configuration, weight disposal, motor
characteristics, reference trajectory choice as well as many
other important characteristics that influence the robot
system movement dynamics). In robotics, this procedure
is called the solution of “direct kinematics” and “inverse
kinematics.”

That way we present the analogue

between

the “Original form of the
Euler–Bernoulli
equation solutions”
that were defined by
Bernoulli by Eq. (28)
(i.e., Euler–Bernoulli
equation solutions
Eq. (31) or the form of
equation of motion
solutions of robot tip
Eq. (33))

and the procedure of the “dir-
ect kinematics” Eq. (39)
and “inverse kinematics”
solutions Eq. (41) in
Robotics

In this way, the complete analogy between Eqs. (28), (39),
and (41) is established. The analogue between the “Original
form of the Euler–Bernoulli equation” and its solution and
modern knowledge from Robotics is presented in this way.

4. Simulation Example for Elastic Mechanism
Tip of robot started from the position “A” and moves directly
to the point “B” in the predicted time of T = 2 (s), (see
Fig. 2). The trapezoidal profile of velocity together with time
of acceleration and deceleration from 0.2 · T is adopted.

The characteristics of stiffness and damping of gear in the
real and reference regimes are not the same nor are stiffness
and damping characteristics of the link Cξ1 = 0.99 · Co

ξ1,
Bξ1 = 0.99 · Bo

ξ1, Cs1,1 = 0.99 · Co
s1,1, Bs1,1 = 0.99 · Bo

s1,1,
Cs1,2 = 0.99 · Co

s1,2, Bs1,2 = 0.99 · Bo
s1,2.

The only disturbance in the system is the ignorance of the
rigidity characteristics and damping. The elastic deformation
is a quantity that is at least partly encompassed by the
reference trajectory.

The first detailed presentation of the procedure for creating
reference trajectory is given in ref. [24].

As may be seen from Fig. 5, during its motion in the
direction from the point “A” to the point “B” the robot
tip tracks properly the reference trajectory in the Cartesian
coordinate’s space.

The presence of oscillations during robot’s task
performance is evident (if the change in velocity is taken into
consideration with respect to the reference in the x-direction).

The position control law for controlling local feedback has
been applied, so the tracking of reference external forces Fo

c ,
Fo

f depends directly on the deviation of the position from
the reference, see Fig. 6. In the same figure, the total action
of mechanism dynamics M1,1 on “the first” (q) and M1,2

on “the second” (δ) DOF is presented. Elastic deformations,
joint deflection angle ξ , bending angle of the lower link part
(the first mode) ϑ1,1, and bending angle of the upper link
part (the second mode) ϑ1,2 are presented in Fig. 7. As the
rigidity of the second mode is about 10 times smaller than
the rigidity of the first one, it is logical that the bending angle
of the second mode is about 10 times bigger.

5. Conclusions
The paper describes the methods of expanding Euler–
Bernoulli equation with multiple points of view. Elastic
deformation (moment of load) not only to build a
perturbation and inertial moments, but there is the influence
of gravitational, centrifugal, Coriolis torques (single and
coupled), bending moments of other modes (which due to the
coupling effect affect the motion of the considered mode),
and moments that are caused by the action of external forces.
Due to the strong coupling, there is diversity in the structure
of the extended form of Euler–Bernoulli equation of each
mode. The stiffness matrix is a full matrix as well as the
damping matrix not only in the Euler–Bernoulli equation
but also in equations of a motor. Damping is an integral
part of the characteristics of elasticity of real systems and is
naturally included in Euler–Bernoulli equation. All of these
features and this whole discussion are not just related to
Euler–Bernoulli equation, but also to motion equation for any
point (and the top point) of the elastic line. This is the case
because the motion equation follows directly from Euler–
Bernoulli equation defining boundary conditions.

It is concluded that the definition of kinematic models is of
particular importance. The dynamics of mechanism just over
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Fig. 5. Deviation of real robot tip position (velocity) from the reference.

Fig. 6. External force and load moment.
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Fig. 7. Elastic deformations.

the sizes of elastic deformation is included into its definition,
resulting from the dynamics of the motion of mechanism.
This makes possible the process of defining new Denavit–
Hartenberg parameters, a new form of matrix transformations
and Jacobi matrix and the reference trajectory.

Analysis of simulation results of the selected mechanism
confirms the possibility of using the extended form of Euler–
Bernoulli equation, which realistically depicts the dynamics
of motion of mechanism.
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