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Particle segregation is common in natural and industrial processes involving flowing
granular materials. Complex, and seemingly contradictory, segregation phenomena have
been observed for different boundary conditions and forcing. Using discrete element
method simulations, we show that segregation of a single particle intruder can be
described in a unified manner across different flow configurations. A scaling relation
for the net segregation force is obtained by measuring forces on an intruder particle in
controlled-velocity flows where gravity and flow kinematics are varied independently.
The scaling law consists of two additive terms: a buoyancy-like gravity-induced pressure
gradient term and a shear rate gradient term, both of which depend on the particle size
ratio. The shear rate gradient term reflects a kinematics-driven mechanism whereby larger
(smaller) intruders are pushed toward higher (lower) shear rate regions. The scaling is
validated, without refitting, in wall-driven flows, inclined wall-driven flows, vertical silo
flows, and free-surface flows down inclines. Comparing the segregation force with the
intruder weight results in predictions of the segregation direction that match experimental
and computational results for various flow configurations.

Key words: dry granular material, granular mixing

1. Introduction

Flowing granular mixtures tend to segregate by size, density, or other physical properties.
Understanding granular segregation is essential for industrial sectors where granular
materials are mixed and demixed (Ottino & Khakhar 2000; Ottino & Lueptow 2008).
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Segregation also plays an important role in natural processes such as geophysical mass
flows (Iverson 1997; Johnson et al. 2012) and bedload transport (Frey & Church 2009;
Ferdowsi et al. 2017). Recent decades have seen rapid development in both physical
interpretation and theoretical modelling of particle segregation, particularly in dense
granular flows (Gray 2018; Umbanhowar, Lueptow & Ottino 2019). However, fundamental
aspects of granular segregation at the particle level remain unclear.

Granular materials display a rich variety of segregation behaviours. In gravity-driven
flows, small particles tend to percolate downward under gravity through interstices
between large particles, displacing large particles upward. By contrast, systematic
evidence of reverse segregation (i.e. large particles sink) has been reported depending
on the size and density ratios of particle species, as well as the species concentration
(Thomas 2000; Félix & Thomas 2004). In the absence of gravity (e.g. lateral segregation
in vertical silo flows), large particles tend to migrate toward high shear rate regions (Fan &
Hill 2011; Itoh & Hatano 2019), but the tendency reverses when the flow becomes dilute
(Fan & Hill 2011). Although different mechanisms including geometric effects (Savage
& Lun 1988), mass effects (Félix & Thomas 2004) and shear gradient dependence (Fan
& Hill 2011) have been proposed, a unified picture remains elusive. As a result, current
theoretical predictions rely on ad hoc assumptions or phenomenological closures (Gray &
Thornton 2005; Marks, Rognon & Einav 2012; Fan et al. 2014; Hill & Tan 2014; Larcher
& Jenkins 2015; Schlick et al. 2015; Tunuguntla, Weinhart & Thornton 2016; Chassagne
et al. 2020).

The single intruder particle limit provides an avenue to investigate the physics
of granular segregation. Previous studies using this approach focused on segregation
kinematics (Tripathi & Khakhar 2011, 2013; van der Vaart et al. 2015; Jing, Kwok & Leung
2017; Trewhela, Gray & Ancey 2021) and forces (Tripathi & Khakhar 2011; Guillard,
Forterre & Pouliquen 2016; Staron 2018; van der Vaart et al. 2018; Kumar, Khakhar &
Tripathi 2019; Jing et al. 2020; Kiani Oshtorjani, Meng & Müller 2021; van Schrojenstein
Lantman et al. 2021). Guillard et al. (2016) were the first to propose and use a virtual
spring-based ‘force meter’ in numerical simulations, which allows measurement of the
segregation force on single intruder particles in sheared granular beds. In this approach, an
intruder particle is tethered to a virtual spring that acts only in the segregation (z) direction
(perpendicular to the shear flow in the x-direction). The spring applies a restoring force
on the intruder that opposes segregation. This restoring force can be used to determine
the segregation force Fseg, which, by definition, is nothing more than the net contact
force in the z-direction on the intruder due to particle–particle interactions. It is therefore
convenient, and unambiguous, to view segregation as a result of the imbalance between
Fseg and other forces such as the gravitational force (if present). The central goal of this
work is to characterize Fseg as a function of local flow conditions for various particle
properties and system flow parameters, and validate this description across a wide range
of different flow geometries.

Guillard et al. (2016) showed that, in two-dimensional (2-D) confined flows, Fseg can be
expressed as two additive terms that scale with the local pressure gradient (∂p/∂z) and the
local shear-stress gradient (∂τ/∂z),

Fseg
∣∣
confined flow = −A(μ, R)

∂p
∂z

Vi + B(μ, R)
∂τ

∂z
Vi, (1.1)

where A(μ, R) and B(μ, R) are dimensionless functions, μ = τ/p is the local effective
friction, R is the intruder-to-bed particle size ratio and Vi is the intruder volume. Note
that Guillard et al.’s original expression was applied to 2-D disks and given in terms of
the intruder ‘area’ instead of volume. Note also that here ‘pressure’ and ‘normal stress’ are
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Unified scaling for segregation forces

interchangeable (p = σzz) because small differences in normal stress components (σxx, σyy,
σzz) are neglected, and −∂p/∂z = φρgz indicates (positive) hydrostatic pressure gradients,
where φ is the bulk packing fraction, ρ is the material density of bed particles and gz is
the z-component of the gravitational acceleration.

Expression (1.1) describes gravity- and shear-driven segregation in confined, wall-driven
flows and has inspired follow-up studies including van der Vaart et al. (2018) and
Jing et al. (2020) for different flow geometries. However, several important questions
remain unexplored. First, although the two terms in (1.1) appear to separate normal-
and shear-stress gradient contributions, the dependence of both prefactors A and B on
μ indicates that the two effects remain coupled, since μ depends on both p and τ ,
and, hence, their gradients. The influence of shear-stress profiles seems to be unclear
in other geometries as well. For example, in three-dimensional (3-D) inclined chute
flows, van der Vaart et al. (2018) showed that the total segregation force is insensitive
to shear-stress gradients (which vary with the chute inclination), a finding we confirmed
using a controlled-velocity approach that allows shear-stress profiles to be specified (Jing
et al. 2020). Second, while it is generally accepted that the pressure gradient-induced
segregation force is related to ‘granular buoyancy’ (Guillard et al. 2016; van der Vaart et al.
2018; Jing et al. 2020), the physical origin of the shear-stress gradient contribution remains
unexplained (Guillard et al. 2016). Third, as noted by Guillard et al. (2016), the scaling law
described by (1.1) is based on 2-D confined flows and does not predict the sinking of very
large intruders observed in free-surface-flow experiments (Félix & Thomas 2004), which
raises the question of how (1.1) applies to 3-D unconfined flow configurations.

We recently developed a scaling law for Fseg that predicts whether an intruder rises
or sinks in free-surface flows (Jing et al. 2020), matching extensive experimental results
across the broad size–density parameter space explored by Félix & Thomas (2004) and
agreeing with inclined chute flow simulation results, including those of van der Vaart
et al. (2018). The scaling law has a simple, buoyancy-like form,

Fseg
∣∣
free surface flow ≈ Fseg

∣∣
‘linear’ flow = −f (R)

∂p
∂z

Vi, (1.2)

where f (R) is dimensionless and the flow velocity is ‘linear’ (elaborated below). In contrast
to A(μ, R) and B(μ, R) expressions in (1.1), f (R) is insensitive to local flow properties
(e.g. μ). This finding indicates that Fseg depends only on pressure gradients, but not
shear-stress gradients such as the second term of (1.1), in free-surface flows that have
an approximately linear velocity profile. Indeed, the buoyancy-like scaling of (1.2) on its
own captures the chute flow results of van der Vaart et al. (2018), although they further
decompose Fseg into separate lift- and buoyancy-like components.

The scaling law (1.2) is based on controlled-velocity flows where a stabilizing algorithm
enforces a linear velocity profile (i.e. constant shear rate); gravity is also included
to introduce inhomogeneous pressure and shear-stress profiles (Jing et al. 2020). This
linear-velocity flow represents an elementary flow where the segregation force can be
easily connected with local flow properties, such as the shear rate, pressure and stress
gradients. A linear velocity profile is an accurate approximation for free-surface flows at
least over the extent of the profile in the vicinity of an intruder particle. However, for
wall-driven flows where the velocity profile can be highly nonlinear, the local shear rate
can vary significantly over a distance comparable to the intruder size (Fan & Hill 2011;
Guillard et al. 2016). In these cases, higher-order effects may occur and the linear velocity
assumption is not always appropriate.
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To extend the applicability of the scaling (1.2) to more general situations where the
velocity profile may be nonlinear, we propose in this paper that an additional contribution
to the segregation force is associated with the local curvature of the velocity profile (i.e. the
shear rate gradient ∂γ̇ /∂z, where γ̇ = ∂u/∂z and u is the flow velocity in the streamwise
x-direction). A unified form for Fseg is proposed,

Fseg
∣∣
unified = −f g(R)

∂p
∂z

Vi + f k(R)
p
γ̇

∂γ̇

∂z
Vi, (1.3)

where the first term is identical to (1.2) and is gravity induced (hence f g(R); note
that we only consider pressure gradients induced by gravity, although rotation or other
body forces can also induce pressure gradients), while the second term represents a
kinematics contribution (hence f k(R)) that is related to the curvature of the velocity profile.
Functional forms of f g(R) and f k(R) are established below as expressions (3.4) and (3.5),
respectively. It is important to note that, as demonstrated below, both f g(R) and f k(R)

are independent of μ and the kinematics contribution is universal for all flow geometries
that we consider, including confined and free-surface flows, for a wide range of flow
conditions from quasistatic to inertial. Interestingly, the kinematics description (1.3) and
the stress description (1.1) are approximately equivalent if (and only if) the flow obeys
a local rheology (Forterre & Pouliquen 2008), i.e. shear stresses depend only on local
shear rates, leading to the μ dependence in (1.1), see the Appendix (A). However, this
equivalence might break down in flow regions that exhibit a non-local rheology (Kamrin
2019). Lastly, the specific form of the second term in (1.3) is inferred from a dimensional
argument, and the relevance of all parameters (p, γ̇ , ∂γ̇ /∂z and Vi) is verified in this
paper based on a comprehensive parametric study. In particular, while f g(R) is studied
and established in our recent work (Jing et al. 2020), f k(R) is developed in this paper
by extending the controlled-velocity flow from constant shear rate (Jing et al. 2020) to
constant shear rate gradient (i.e. controlled curvature of the velocity profile), and varying
the curvature extensively.

In § 2 we introduce the simulation scheme that allows flow kinematics to be arbitrarily
controlled, as well as other flow geometries that we use for validation. Then, the approach
to measuring Fseg and model details are presented. In § 3 we first focus on R = 2 and
characterize the kinematics contribution to Fseg in the absence of gravity, after which
we introduce gravity and show that the two terms in (1.3) are indeed additive. The
proposed scaling law is then compared with results from other geometries, highlighting
the universality of gravity- and kinematics-induced segregation forces. Finally, results for
varying R are presented to establish the R dependence in scaling law (1.3). Conclusions
are drawn in § 4.

2. Methods

2.1. Flow configurations
We use the open-source discrete element method (DEM) code LIGGGHTS (Kloss et al.
2012) to simulate several different dense granular flows, which can be classified broadly
into ‘confined’ and ‘free-surface’ flows (figure 1). For confined flows, we vary the velocity
profile with two different approaches: first, by directly controlling the velocity field
(referred to as ‘controlled-velocity’ flows, see below); second, by varying the direction
of gravity in ‘wall-driven’ flows. In each flow, a single intruder particle is placed in the
middle of the flow depth to measure the segregation force Fseg (see figure 1i and § 2.2).
The focus is on how Fseg depends on the local curvature of the velocity profile.
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Figure 1. (a–h) Flow configurations and associated velocity profiles (see text for details). (i) Intruder particle
(red) in the flow and tethered to a virtual vertical spring for segregation force measurement.

As shown in figure 1, periodic boundaries are imposed in the streamwise (x) and
spanwise (y) directions and the domain is sufficiently wide in both directions that, in
steady state, gradients of the flow occur only in the normal (z) direction; that is, we only
consider segregation in the z-direction. For controlled-velocity flows, gravity is always
normal to the bottom wall, while for other flows, gravity may be tilted in the xz-plane
to an angle of θ with respect to the z-axis. The gravity vector is denoted as (gx, 0, gz) =
(g sin θ, 0, −g cos θ), where g is the magnitude of the gravitational acceleration. To aid
interpretation of the segregation direction, we use ‘up’ and ‘down’ (or similar terms) to
refer to the positive and negative directions of the z-axis consistent with that in figure 1,
even when gravity is turned off or is parallel to the flow (i.e. gz = 0). The same convention
applies to ‘top’ and ‘bottom’ walls. Bottom walls are always immobile, while top walls
(absent in free-surface flows) are reactive in the z-direction to maintain an overburden
pressure P0 and translate with velocity u0. All walls are roughened by randomly distributed
stationary particles to reduce slippage (Jing et al. 2016).

In the following, each flow type is described with an emphasis on the curvature of its
velocity profile and how the curvature is systematically varied.

2.1.1. Confined, controlled-velocity flows
Controlled-velocity flow, in which the flow velocity profile is specified, has been used
previously to study granular rheology. While linear velocity profiles are usually imposed
in the absence of gravity to achieve homogeneous shear (Lerner, Düring & Wyart 2012;
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Clark et al. 2018), it is also possible to impose arbitrary velocity profiles without gravity
(Saitoh & Tighe 2019) or to add gravity for linear velocity profile flows (Fry et al. 2018;
Duan et al. 2020). Controlling the velocity profile allows us to vary shear rate gradients
(i.e. curvatures of the velocity profile) independently of gravity, thereby isolating the
gravity- and kinematics-related contributions to the segregation force.

To impose a particular streamwise velocity profile u(z), a stabilizing force (in the
x-direction) is applied to each particle at each DEM time step (Fry et al. 2018), including
the intruder particle, and the top wall is translated at a matching speed u(h), where h
is the flow thickness. The stabilizing force applied to a particle is A(u(zp) − up), where
zp and up are the instantaneous particle position and velocity, respectively, and A is a
constant. We use A = 0.1 N s m−1 in the controlled-velocity flows below, but increasing
or decreasing A by an order of magnitude does not change the results significantly. Indeed,
as detailed below, controlled-velocity flows follow the same granular rheology (in terms
of the effective friction) as homogeneous shear flow, indicating that particle–particle
collisions dominate the particle rheology even when stabilizing forces are imposed. Note
that applying the velocity control reduces velocity fluctuations (or, granular temperature)
in the streamwise direction, but this does not affect the z-component of the granular
temperature or the segregation behaviour.

To generate a constant shear rate gradient flow, we specify u(z) as

u(z) =
(

γ̇0 − C0h
2

)
z + C0

2
z2, (2.1)

where γ̇0 and C0 are, respectively, a characteristic shear rate and the controlled curvature
(i.e. shear rate gradient). For this profile, we have

γ̇ (z) = γ̇0 − C0h
2

+ C0z (2.2)

and
∂γ̇

∂z
= C0. (2.3)

The specific form of (2.1) is chosen for several reasons. First, the local shear rate in the
middle of the flow (where the intruder is placed) is γ̇ (h/2) = γ̇0, independent of C0.
Second, the shear rate gradient in the simulation is homogeneous (except within a few
bed particle diameters of the upper and lower boundaries, see flow profiles in § 3.1) based
on (2.3); by varying C0 from negative to positive, the concavity and local curvatures of
the velocity profile around the intruder are systematically varied and precisely controlled
(figure 1d, f ). Third, the velocity at the upper boundary, z = h, is u0 = γ̇0h, which is
consistent with the top wall velocity in wall-driven flows (figure 1b). Furthermore, we
constrain gravity so that it is always in the z-direction – that is, gx = 0. Other forms of u(z),
such as power-law and exponential functions, could be used in place of (2.1), but these do
not have the advantage of a constant ∂γ̇ /∂z throughout the flow domain. Nevertheless,
we have verified that these alternative velocity profiles produce segregation forces that are
consistent with the scaling (1.3).

Apart from systematically varying the shear rate gradient C0, we also vary P0, γ̇0
and gz to explore their effects on the segregation force on a single intruder particle. A
key advantage of the controlled-velocity geometry is that the imposed velocity profile
is unaffected by gravity; the flow adjusts its shear-stress profiles in response to changed
gravitational fields while maintaining the same flow kinematics. As shown schematically
in figure 1(d, f ), identical velocity profiles are achieved for the gz = 0 and gz /= 0 cases
while keeping other system parameters constant.
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Unified scaling for segregation forces

2.1.2. Wall-driven flows
In wall-driven flows, overburden pressure P0 and velocity u0 = γ̇0h are imposed at the
top wall to drive the flow without directly controlling the velocity profile (note that in
wall-driven flows we use γ̇0 to characterize the top wall velocity, consistent with the
notation for controlled-velocity flows). The concavity of the velocity profile of wall-driven
flows is altered by varying the direction of gravity (figure 1e,g). With no gravity (gx =
gz = 0), the flow is simple shear with a nearly linear velocity profile (figure 1e), and
segregation does not occur because both the pressure gradient and shear rate gradient
are zero.

When gravity is parallel to the flow direction (θ = 90◦, gx /= 0, gz = 0), shear-stress
gradients develop along the z-direction and the velocity profile is concave up (negative
∂γ̇ /∂z), as shown in figure 1(e). Shear is localized near the bottom wall, above which is
a plug-flow zone. This flow is similar to half of a ‘vertical’ silo flow (GDR MiDi 2004),
albeit horizontally placed in our coordinate system. Segregation in the z-direction is driven
only by shear as there is no pressure gradient (gz = 0).

When gravity is perpendicular to the flow (θ = 0, gx = 0, gz /= 0), a flowing layer
develops near the top wall with concave-down (positive ∂γ̇ /∂z) velocity profiles
(figure 1g). Shear stress is homogeneous in this geometry, because the only external
forcing in the x-direction is applied from the top wall (Guillard et al. 2016). However,
both the pressure gradient due to gravity and the nonlinear velocity profile (or, the shear
rate gradient) are expected to contribute to segregation.

As θ increases from 0 toward 90◦ (θ > 0, gx /= 0, gz /= 0; ‘inclined wall-driven’ flows
in figure 1g), the velocity profile changes from concave down to concave up, and the
kinematics- and gravity-related segregation mechanisms can either compete or cooperate.

2.1.3. Free-surface, gravity-driven flows
Common free-surface flows include chute flow, heap flow and surface flow in rotating
tumblers. Here we study relatively thick flows (approximately 40 particles deep) down an
inclined streamwise and spanwise periodic chute that exhibit Bagnold-like, concave-up
velocity profiles (figure 1h). Thin chute flows (Louge 2003; Silbert, Landry & Grest
2003; Weinhart et al. 2012; Kamrin & Henann 2015) or shallow flowing layers in heap
and rotating-drum flows (GDR MiDi 2004; Kamrin & Koval 2012) will be addressed in
a separate work as these flows are likely to be strongly affected by bottom or sidewall
boundaries.

2.2. Segregation force measurement
We measure the segregation force on a single intruder particle in each flow simulation
following the approach of Guillard et al. (2016). The intruder is tethered to a virtual spring
that senses forces only in the z-direction, which allows the intruder to deviate from the
initial height z0 and fluctuate around an equilibrium position zeq (figure 1i). In equilibrium,
Fseg, the net contact force on the intruder perpendicular to the flow (in the z-direction),
is balanced by the spring force and the intruder weight, i.e. Fseg = k(zeq − z0) + migz,
where k is the spring stiffness and mi is the intruder mass. Note that Fseg represents the
mean segregation force, even though the random action of contacting particles fluctuates
in time. The uncertainty in Fseg (error bars) is estimated based on temporally correlated
fluctuations of the intruder position around zeq (Zhang 2006). The measurement of Fseg is
generally insensitive to k for 3-D configurations (van der Vaart et al. 2018) as the intruder
is free to explore the xy-plane. However, a softer spring has a longer relaxation time and
therefore requires longer computation time to obtain statistically significant results, and
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the measured force may vary if the intruder migrates too near boundaries. Here, we use
relatively stiff springs (typically, k = 100 N m−1) to ensure that zeq is close to z0 such
that local flow conditions around the intruder can be a priori controlled (or estimated in
flows without directly controlled velocity profiles). Increasing or decreasing k by an order
of magnitude gives the same results.

2.3. Model parameters and flow conditions
The flow domain in all simulations is 30d long (x), 20d to 30d wide (y) (adjusted to
avoid boundary effects) and 40d deep (z), and contains bed particles of diameter d and
density ρ. A single intruder particle of size ratio R = di/d and density ratio Rρ = ρi/ρ,
where di and ρi are the intruder diameter and density, is placed in the middle of the flow.
In previous work we varied both R and Rρ to study forces driving combined size and
density segregation (Jing et al. 2020). Here, to simplify the parameter space, we only
report results for d = 5 mm (with 10 % size polydispersity), ρ = 2500 kg m−3, Rρ = 1 and
0.2 � R � 8. However, varying d, ρ, or Rρ does not change the scaling of Fseg. Particle
interactions are calculated using the Hertz contact model with Young’s modulus 5 × 107

Pa, Poisson’s ratio 0.4, restitution coefficient 0.8 and friction coefficient 0.5; varying
these parameters has negligible influence on the results, except for friction � 0.3 (see
supplemental material for Jing et al. (2020)).

System parameters are varied for each flow geometry (figure 1) to achieve a wide range
of local flow conditions (e.g. ∂p/∂z, ∂γ̇ /∂z, p, γ̇ ) around the intruder, which are then
associated with Fseg according to the proposed relation (1.3). Local flow conditions are
estimated for each simulation at z = zeq based on spatially and temporally averaged flow
fields along the z-direction. Steady-state flow and stress profiles are estimated based on
1d-thick bins along the flow depth (z) that span the simulation domain in the xy-plane.
For a given instant at steady state, we first compute averaged velocity and contact stresses
(Silbert et al. 2001) in each bin based on particles centred in that bin, including the intruder
particle, and then smooth the depthwise profile spatially using a moving average filter
(typically spanning five equally weighted bins). The profiles are then averaged in time,
typically using 200 snapshots for steady state conditions. First- or second-order gradients
of the velocity and stress profiles (e.g. γ̇ , ∂γ̇ /∂z, ∂p/∂z) are calculated using central
differences. Although an intruder particle can change local flow structures in its vicinity
(van der Vaart et al. 2018; Jing et al. 2020), we verify that local disturbances due to the
presence of the intruder are smoothed out (see smoothed flow profiles in § 3.1) and details
of the averaging method do not affect the results.

The flow at z = zeq is characterized by the local inertial number I(zeq) =
γ̇ (zeq)d

√
ρ/p(zeq), which is varied broadly from 0.004 to 0.44 with 500 � P0 � 2500

Pa and 10 � γ̇0 � 40 s−1 for controlled-velocity and confined flows or 22◦ � θ � 28◦
for inclined chute flows; varying g also influences I(zeq). For brevity, we mainly report
I(zeq) (simply referred to as I below) instead of system parameters when identifying flow
characteristics; detailed simulation parameters (both controlled system parameters and
measured local parameters) for a total of more than 300 runs with approximately 25 000
particles per run are provided as supplementary material available at https://doi.org/10.
1017/jfm.2021.688.

3. Results and discussion

3.1. Segregation forces for R = 2
Focusing first on size ratio R = 2 and density ratio Rρ = 1, we vary local curvatures
in controlled-velocity flows following (2.1) in the absence of gravity (gz = 0) to study
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Unified scaling for segregation forces
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Figure 2. Typical results for controlled-shear-rate-gradient flows (gz = 0, P0 = 1000 Pa, γ̇0 = 30 s−1). (a–e)
Profiles of the normalized velocity, shear rate, shear rate gradient, pressure and shear stress, respectively. Darker
to lighter colours indicate C0 varying from negative to positive (−2 � C0h/γ̇0 � 2). Symbols in panel (a)
indicate the steady-state z-location of the intruder. ( f ) Measured dimensionless segregation force Fseg/P0h2

versus dimensionless shear rate gradient (∂γ̇ /∂z)h/γ̇0. Symbols correspond to those in panel (a), and the solid
line indicates a linear fit to the data through the origin. Error bars represent the uncertainty of Fseg due to its
fluctuations in time (see § 2.2).

the kinematics-dependent part of Fseg, and then add gravity (gz > 0) to study the
gravity-dependent part. Results from other flow geometries are used to validate the scaling.

3.1.1. Kinematics contribution (no gravity)
Figure 2 shows data from a representative set of controlled-velocity simulations with
varying C0 but fixed P0 and γ̇0 (thus fixed I around the intruder); γ̇0, P0 and h are used
for normalization. In figure 2(a), as C0 is varied from negative (darker curves) to positive
(lighter curves), the velocity profile varies from concave up to concave down, including a
linear case with no curvature (C0 = 0). A symbol marks the intruder position zeq on each
curve, which is always midway between the upper and lower walls to minimize wall effects.
Figure 2(b) shows that, although the shear rate profile varies with C0, the local shear rate
at the position of the intruder (z/h ≈ 0.5) is always γ̇0 due to the imposed velocity profile
(2.1). Figure 2(c) shows that the imposed velocity profile results in a constant local shear
rate gradient ∂γ̇ /∂z across nearly the entire flow domain (except at the upper and lower
walls) with dimensionless curvatures C0h/γ̇0 varying from −2 to 2. Since gz = 0, pressure
is uniform across the flow domain (p(z)/P0 ≈ 1), as shown in figure 2(d). However, the
shear stress in figure 2(e) varies somewhat with depth due to the imposed velocity profiles,
although its value at the location of the intruder is identical for all cases.

The key measurement here, the dimensionless force Fseg/P0h exerted by bed particles
on the intruder based on the measured virtual spring force, is plotted in figure 2( f ) against
the dimensionless local curvature (∂γ̇ /∂z)h/γ̇0. It is evident that a nonlinear flow velocity

925 A29-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

68
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.688


L. Jing, J.M. Ottino, R.M. Lueptow and P.B. Umbanhowar

–500 –250 0 250 500
–0.01

0

0.01

0.1

0.2

0.3

0.4

–0.02 0 0.02 0.04

0 0.25 0.50
0.3

0.4

0.5

0.6

F se
g 

(N
)

μ
(z

eq
)

I(zeq)

I

∂γ̇/∂z (m–1 s–1) (p/γ̇)(∂γ̇/∂z)Vi (N)

(a) (b)

Figure 3. Influence of P0 and γ̇0 on Fseg in controlled-velocity flows (gz = 0). A range of local inertial
numbers, 0.05 � I � 0.44 (colourbar), is explored with 500 Pa � P0 � 2000 Pa and 10 s−1 � γ̇0 � 40 s−1;
for each (P0, γ̇0) combination, C0h/γ̇0 is varied from −2 to 2 to generate negative to positive curvatures
∂γ̇ /∂z. (a) Non-collapse of Fseg vs ∂γ̇ /∂z. (b) Collapse of Fseg vs ( p/γ̇ )(∂γ̇ /∂z)Vi. The solid line is a
linear fit through (0, 0) with slope 0.57. Inset: local μ(I) measurements at z = zeq. Reference curve μ(I) =
0.36 + (0.94 − 0.36)/(0.8/I + 1) is obtained using our simple shear data far from boundaries and with no
intruder.

profile alone induces a net contact force on the intruder that drives segregation. Since Fseg
is the only (net) force acting on the intruder in the no-gravity situation, negative values
of Fseg correspond to the large intruder ‘sinking’ (in the coordinate system of figure 1)
toward high-shear regions, consistent with the trend of shear-driven segregation in dense
vertical silo flows (Fan & Hill 2011). Similarly, positive values of Fseg indicate the large
intruder ‘rising’, again, toward high-shear regions (see ‘rise’ and ‘sink’ in figure 2 f ).
The relationship between Fseg and ∂γ̇ /∂z is linear and through the origin, indicating no
segregation force when there is no shear rate gradient, as would be expected. Note that
both negative and positive curvatures are considered here despite the apparent symmetry
of the segregation behaviour because the flow system we use is slightly asymmetric; the
bottom wall is fixed whereas the top wall moves slightly in the z-direction in response to
the constant P0 boundary condition.

To explore the effect of local flow conditions on Fseg, we repeat the cases in figure 2
with nine different combinations of P0 and γ̇0 (in total 59 simulations), leading to local
inertial numbers I varying from 0.05 to 0.44 (see figure 3b inset for μ(I) data). As shown
in figure 3(a), the dependence of Fseg on ∂γ̇ /∂z varies with I when presented in physical
units; the slope of the linear correlation tends to decrease as I increases (from blue to red
symbols). Note that since data have more scatter for small I approaching the quasistatic
limit (< 0.1), a finer variation of ∂γ̇ /∂z is used in these cases resulting in more data points
for small I.

To collapse the data, we consider the rescaled curvature from (1.3), ( p/γ̇ )(∂γ̇ /∂z)Vi, in
units of force, which results in excellent collapse for the full range of I that we examine,
as shown in figure 3(b); that is,

Fk
seg := Fseg

∣∣
gz=0 ∝ p

γ̇

∂γ̇

∂z
Vi, (3.1)

where Fk
seg denotes the kinematics-induced part of Fseg. The proportionality constant is

0.57 based on the linear fit in figure 3(b), and the correlation passes through the origin,
indicating that no other effects are present.
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Unified scaling for segregation forces

The force scaling in (3.1) is based on dimensional analysis. Indeed, when gz = 0,
natural choices for normalizing Fk

seg and ∂γ̇ /∂z are pd2
i and γ̇ /di, respectively, and the

resulting scaling, Fk
seg/pd2

i ∝ (∂γ̇ /∂z)di/γ̇ , or Fk
seg ∝ ( p/γ̇ )(∂γ̇ /∂z)d3

i , is equivalent to
(3.1). However, here we prefer the volume-based expression (3.1) for consistency with the
buoyancy-like term in (1.3) and following the previous scaling law (1.1). Moreover, the
scaling Fk

seg/pd2
i ∝ (∂γ̇ /∂z)di/γ̇ is similar to the normalization in figure 2( f ) except that

the system length scale h is replaced by the intruder diameter di (giving rise to Vi) and that
local flow conditions are used. To confirm that di is the relevant length scale, we verified
(omitted for brevity) that varying the flow thickness h does not change the scaling of Fk

seg,
but doubling both d and di (with fixed R = 2) leads to a segregation force eight times
larger, as the scaling predicts.

The curvature-based scaling (3.1) indicates that the shear rate gradient drives
segregation in the absence of gravity. Although it is also possible to express a force scale
in other ways (note that no pressure gradient is present so far), such as one related to the
gradient of shear stress (Guillard et al. 2016), granular temperature (Fan & Hill 2011) or
the effective flow viscosity (van Schrojenstein Lantman 2019), we have verified that the
current form (3.1) results in the simplest scaling while other choices do not collapse the
data as well as the scaling used here. For instance, using ∂τ/∂z leads to scaling factors
that depend on I (or μ), similar to those reported in Guillard et al. (2016), which not only
complicates the function but also reduces the generality of the scaling because μ(I) is
not necessarily unique across flow geometries or in regions where non-local effects occur
(GDR MiDi 2004), see also § 3.1.3. Nevertheless, in the Appendix (A) we demonstrate
that if the flow obeys a local rheology (e.g. μ(I)), our ∂γ̇ /∂z-based scaling is equivalent
to the ∂τ/∂z-based scaling proposed by Guillard et al. (2016).

3.1.2. Adding gravity
With gravity (gz > 0), Fseg changes due to the induced pressure gradient. Figure 4 shows
the same set of controlled-velocity flows as in figure 2 except with gz = 5 m s−2. The
kinematics profiles (solid curves in figures 4a–c) are nearly identical to their no-gravity
counterparts (dashed curves) because velocity profiles are imposed. Stress profiles, on
the other hand, change significantly in response to the added gravitational field (while
granular rheology remains the same, see below). Both pressure and shear-stress fields in
figure 4(d,e) now include a hydrostatic component that is proportional to φρgz. With these
changes in the stress fields, Fseg remains proportional to the rescaled curvature (symbols
and solid line in figure 4 f ), but with a substantial positive offset compared with the
no-gravity results (dashed line in figure 4 f ); the slopes of the two lines are nearly identical,
indicating that the gravity-induced contribution to Fseg does not change the kinematics
contribution. Thus, the two terms in (1.3) are additive.

Next we consider a broader range of cases than in figure 4 by varying P0 and γ̇0 as well as
gz (75 simulations in total). Figure 5(a) shows that the data for Fseg at different values of P0
and γ̇0, when plotted against ( p/γ̇ )(∂γ̇ /∂z)Vi, collapse onto lines corresponding to each
non-zero value of gz (similar to figure 3b for gz = 0). As gz is increased from 0 (dashed
line), the dependence of Fseg on p/γ̇ (∂γ̇ /∂z)Vi remains linear (solid lines) with a slope
independent of gz but shifted upward due to the imposed gravity. This further confirms
the conclusion from figure 4( f ) that the two terms in (1.3) are additive. Furthermore,
Fseg remains insensitive to I (indicated by the symbol colours) over the range examined
(0.05 < I < 0.35, note that varying gz tends to affect the range of I), and the rheological
data of controlled-velocity flows (when gravity is turned on) still follow the μ(I) curve for
simple shear (figure 5b inset).
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Figure 4. Same as figure 2 except with additional data for gz = 5 m s−2 (solid curves). Dashed curves are the
gz = 0 data in figure 2.
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Figure 5. (a) Measured segregation force in controlled-velocity flows with gz = {5, 9.81, 15} m s−2. For each
gz, a range of local inertial numbers (colourbar) and local curvatures (horizontal axis) are explored with
500 Pa � P0 � 1500 Pa, 10 s−1 � γ̇0 � 40 s−1 and −2 � C0h/γ̇0 � 2. Solid lines are linear fits for the same
gz (gz increases from bottom to top), while the dashed line represents gz = 0 results; all lines have the same
slope of 0.57. (b) Plot of Fseg − Fk

seg versus −(∂p/∂z)Vi. The solid line is a linear fit with slope 2.28 that
extends through the origin. Inset: local μ(I) measurements at z = zeq, compared with simple shear results
(curve; see caption of figure 3).

Because the gravity- and kinematics-related terms are additive, it is possible to use (3.1)
to characterize the gravity-induced portion of the segregation force by simply subtracting
Fk

seg from Fseg, which is plotted against −(∂p/∂z)Vi in figure 5(b). All data collapse onto a
line passing through the origin, which indicates a buoyancy-like scaling consistent with the
one we proposed (Jing et al. 2020) based only on constant-shear-rate flows (i.e. Fk

seg = 0).
That the fit passes through the origin indicates that Fseg is completely described by the
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Unified scaling for segregation forces

additive combination of gravitational and kinematic contributions, as indicated by (1.3).
Note that the quadratic controlled-velocity profiles (2.1) reduce to linear-velocity profiles
for C0 = 0, and using only C0 = 0 data produces the same linear fit as that in figure 5(b)
(not shown as they are virtually identical). This again supports the assumption in (1.3) that
the gravity- and kinematics-induced segregation forces are additive, and indicates that the
gravity-related part can be measured using linear controlled-velocity flows, as in Jing et al.
(2020). Specifically,

Fg
seg := Fseg

∣∣
∂γ̇ /∂z=0 ∝ −∂p

∂z
Vi, (3.2)

where the proportionality constant is 2.28 according to figure 5(b).

3.1.3. Validation in other flow geometries
In the previous two sections we establish scaling laws for the gravity- and
kinematics-induced segregation forces that determine the net segregation force (for
R = 2),

Fseg = Fg
seg + Fk

seg = −f g ∂p
∂z

Vi + f k p
γ̇

∂γ̇

∂z
Vi, (3.3)

with f g = 2.28 and f k = 0.57 based on controlled-velocity results for a wide range
of inertial numbers (0.05 < I < 0.35). The two terms depend on several local flow
properties, including ∂p/∂z, ∂γ̇ /∂z, p and γ̇ , but the relative magnitude of the two terms
can vary significantly for different flow geometries. Hence, we now show that (3.3) remains
valid in other geometries, including confined and free surface flows, while keeping R = 2.

Following the naming convention in figure 1, we measure Fseg in vertical silo (confined,
gz = 0), horizontal wall-driven (confined, gx = 0), inclined wall-driven (confined, gx /= 0,
gz /= 0) and inclined chute flows (free-surface), each with broadly varied system
parameters covering a wide range of inertial numbers, shear rate gradients (curvatures)
and pressure gradients (for gz /= 0) for R = 2. Results from 52 simulations across all
flow geometries are reported in figure 6(a), in which the values for Fseg measured in
the simulations are plotted against predictions of (3.3). The agreement between the
measured values and the predictions is remarkable, especially given the broad range
of flow geometries and flow conditions that are considered. The broad range of flow
conditions is further amplified in figure 6(b), where local rheological data for the cases
are presented, ranging from quasistatic (I < 0.1) to inertial flow regimes.

Three key points of figure 6 merit elaboration before the results are discussed in greater
detail. First, the scaling (3.3) used to predict Fseg has only two independently determined
parameters ( f g and f k), yet its predictions are accurate across flow geometries with widely
varying boundary conditions and forcing. Second, vertical silo results of Fseg in figure 6(a)
are always negative due to the negative curvatures of the velocity profile (figure 1e),
whereas horizontal wall-driven results of Fseg are positive due to the added effect of
positive curvatures (figure 1g) and gravity-induced contributions. For inclined wall-driven
flows, Fseg is either positive or negative due to the net effect of the flow velocity curvature
(depending on θ ) and gravity. Inclined chute flow results in figure 6(a) are always positive
and span a much narrower range; in fact, as illustrated below, Fk

seg is nearly negligible in
free-surface flows compared with Fg

seg. Third, rheological data in figure 6(b) for different
flow geometries deviate slightly from the simple shear rheology, yet this deviation does
not affect the accurate prediction of Fseg in figure 6(a). Specifically, compared with the
reference curve for simple shear, the confined flows without a controlled-velocity profile
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Figure 6. (a) Comparison of predicted Fseg (3.3) and measured Fseg in four flow geometries, each with
widely varied system parameters (see § 2.3 for the range of parameters). The line corresponds to a perfect
match between predicted and measured values. (b) Measured μ(I) from simulations at z = zeq compared with
reference curve from simple shear simulations (see caption of figure 3).

show systematic deviations that can be attributed to non-local effects near the edge of
a localized shear layer (Kamrin & Koval 2012). In contrast, inclined chute flows and
controlled-velocity flows (see insets in figures 3 and 5) closely follow the μ(I) curve for
simple shear. Nevertheless, the prediction made by (3.3) remains accurate despite these
variations in rheology; comparable predictions in the stress-based scaling (1.1) are likely
more challenging because it is μ dependent (Guillard et al. 2016).

To better illustrate how gravity and flow kinematics contribute to the net segregation
force in different flow geometries, we select representative cases for each geometry and
present their velocity profiles, rheological data and the two components of Fseg in figure 7.
A length scale h and a velocity scale

√
g0h are consistently used for normalization, where

g0 = 9.81 m s−2 is fixed even though g is case specific.
(i) Vertical silo flows. Figure 7(a) shows velocity profiles (curves) and steady-state

locations of the intruder (symbols) for three (out of a total of eight) representative vertical
silo simulations (with varying u0 but the same P0 and gx). In vertical silo flows, shear
is localized near the bottom wall with a concave-up velocity profile (negative curvature)
connected to a plug-flow zone. The intruder is placed in the shear zone (zeq/h ≈ 0.25).
Figure 7(b) shows rheological measurements around the intruder (symbols), which deviate
from the simple shear reference curve (solid line) due to non-local effects in localized
shear. The small deviation of the rheological data in this flow geometry is robust (e.g.
increasing particle stiffness by a factor of 10 does not change the result significantly).
Nevertheless, the scaling of Fseg is unaffected by this variation in rheology.

Figure 7(c,d) show scaling of gravity- and kinematics-components of Fseg in the vertical
silo flow simulations. To obtain measured (meas.) Fg

seg and Fk
seg (vertical axes), we subtract

0.57( p/γ̇ )(∂γ̇ /∂z)Vi and −2.28(∂p/∂z)Vi from the total measured Fseg, respectively,
using local flow properties. The measured Fg

seg and Fk
seg are then compared with force

scales −(∂p/∂z)Vi and ( p/γ̇ )(∂γ̇ /∂z)Vi, showing excellent agreement with the predicted
solid lines in figure 7(c,d). More specifically, data in figure 7(c) cluster around (0, 0)

because gz = 0, whereas data in figure 7(d) spread along the negative portion of the
predicted line because of differing negative curvatures. Therefore, the net effect of the
total Fseg for vertical silo flows is negative, meaning that an intruder tends to be pushed
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Figure 7. Representative results from vertical silo flows (a–d), horizontal and inclined wall-driven flows (e–h)
and inclined chute flows (i–l); colour schemes match those in figure 6. Curves in panels (b, f, j) are reference
μ(I) curves based on simple shear results. The predicted lines in panels (c,g,k,d,h,l) have slopes of 2.28 and
0.57, respectively, based on (3.3).

toward the immobile wall (high shear rate regions), agreeing with previous dense silo flow
simulations (Fan & Hill 2011).

(ii) Horizontal wall-driven flows. Thick curves in figure 7(e) are velocity profiles of
selected horizontal wall-driven flows (three of 16 simulations for this condition) that are
concave down (positive curvature) in the shear zone close to the top moving wall. The
selected cases differ only in gz but have the same u0 and P0; the intruder fluctuates either
around zeq/h ≈ 0.75 or zeq/h ≈ 0.5 (blue symbols). Figure 7( f ) shows that the rheological
measurements for wall-driven flows deviate only slightly from the simple shear reference
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curve. This, again, does not affect the scaling of the two components of Fseg, which follow
the predictions in both figure 7(g,h). Results of Fk

seg for these positive-curvature velocity
profiles fall along the positive portion of the predicted line in figure 7(g), adding to Fg

seg,
which is also positive. This indicates that the intruder tends to be pushed upward by the
net Fseg in wall-driven flows; imbalances between Fseg and the intruder weight (migz)
determine whether the intruder rises or sinks (Jing et al. 2020).

(iii) Inclined wall-driven flows. Thin curves in figure 7(e) are velocity profiles of inclined
wall-driven flows that transition from concave down (dotted) to concave up (dashed and
solid) for θ = {10, 30, 45}◦. The rheology (figure 7 f ) and Fg

seg (green symbols in figure 7g)
results are similar to normal wall-driven flows (θ = 0), but Fk

seg (figure 7h) for inclined
wall-driven flows varies from negative to positive due to the changed sign of ∂γ̇ /∂z.
Results match predictions (figure 7g,h) even when intruders are repositioned at different
locations from zeq/h ≈ 0.25 to zeq/h ≈ 0.75, resulting in a wide range of local inertial
numbers including a quasistatic case near the bottom of the flow (star symbol on the thin
dotted curve in figure 7e).

(iv) Inclined chute flows. Finally, results of selected free-surface, inclined chute
flows with θ = {22, 24, 28}◦ and corresponding g = {5, 9.81, 15} m s−2 are presented
in figure 7(i–l), covering a wide range of inertial numbers and pressure gradients. The
Bagnold-type velocity profiles are always concave up (figure 7i), and local rheological
measurements match the simple shear reference curve (figure 7 j). Interestingly, as shown
in figure 7(l), the rescaled local curvatures are always nearly zero even though the shear
rate varies extensively (characterized by the span of I in figure 7 j). As such, Fk

seg is
negligible compared with Fg

seg (figure 7k). This finding matches our recent results (Jing
et al. 2020) showing that segregation forces in inclined chute flows scale primarily with
pressure gradients but not shear rate gradients.

3.2. Variation of segregation force with R

3.2.1. Scaling based on controlled-velocity results
To this point, the fitting constants f g and f k in scaling law (3.3) are specific to R = 2.
However, we previously showed (Jing et al. 2020) in constant-shear-rate flows (Fk

seg = 0)
and free-surface flows (Fk

seg ≈ 0) that the scaling factor for Fg
seg is a function of R, see

also (1.2). To illustrate this, our data for f g := Fg
seg/[−(∂p/∂z)Vi] (Jing et al. 2020) are

reproduced in figure 8(a) for 0.05 � I � 0.24. With this background, we now explore
Fk

seg for 0.2 � R � 7 using controlled-velocity, constant-curvature flows, where gravity
is turned off (Fg

seg = 0), P0 and γ̇0 are varied for a wide range of I (0.03 � I � 0.43),
and C0h/γ̇0 = ±2 is fixed to control the local curvature. In figure 8(b), results for f k :=
Fk

seg/[( p/γ̇ )(∂γ̇ /∂z)Vi] plotted versus R collapse onto a master curve, despite widely
varying local inertial numbers (indicated by colours). Note that the f k(R) data diverges
somewhat for R � 4, but with no systematic dependence on I; this diverging behaviour
is discussed in § 3.2.2. In general, the f k(R) curve is negative for R < 1, increases
toward a peak at R ≈ 2, and declines as R is further increased; its shape is similar to
its gravity-related counterpart f g(R) in figure 8(a).

The forms of f g(R) and f k(R) have interesting implications in relation to the underlying
physics of gravity- and kinematics-induced segregation. As we previously noted (Jing
et al. 2020), the gravity-induced segregation force approaches Archimedes’ buoyancy
force in the continuum limit (i.e. f g(∞) → 1); this force appears to be enhanced by
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Figure 8. Prefactors of (a) gravity- and (b) kinematics-related components of Fseg versus R for
controlled-velocity flows. Data in panel (a) are from Jing et al. (2020) where constant-shear-rate flows with
gravity (C0 = 0, g = 9.81 m s−2) are used, while simulations in panel (b) are constant-curvature, no-gravity
flows (C0h/γ̇0 = ±2, g = 0). In both configurations, γ̇0 and P0 are varied to generate a range of local inertial
numbers (colourbar). The solid curves in panels (a,b) are semiempirical fits described by (3.4) and (3.5),
respectively, and the dotted curves indicate unexplored ranges of R. The dashed curve in panel (b) is a fit based
only on data with P0 � 1000 Pa (see § 3.2.2). Dash–dotted horizontal lines in panels (a,b) indicate reference
values for f g(R) and f k(R), respectively, when R = 1 (monodisperse flow).

finite-size effects and the discrete nature of particle contacts for 1 � R � 10 but weakened
by kinetics-driven percolation for R � 1, giving rise to the peak at R ≈ 2.

The kinematics-induced segregation force might follow a similar geometric argument
but with some unique characteristics. A key observation is that f k(R) changes sign at
R ≈ 1. Indeed, no net segregation force (perpendicular to shear) is expected for R = 1,
which is simply a monodisperse flow. The physical implications of the negative and
positive parts of f k(R) for R < 1 and R > 1, respectively, are discussed below.

(i) Collision dominant for small intruders. For R < 1, f k(R) is negative, indicating that
a small intruder is pushed from higher shear rate regions toward lower shear rate regions;
this is reminiscent of a collisional argument in dilute granular flows whereby particles
migrate from higher to lower granular temperatures (Jenkins & Yoon 2002; Trujillo, Alam
& Herrmann 2003; Fan & Hill 2011). Although the flows described here are dense (I �
0.5), contact forces acting on a small intruder are primarily collisional (as opposed to
enduring) as a small intruder tends to percolate through voids (Silbert et al. 2007; Jing
et al. 2017). As a result, small intruders experience larger contact forces from the ‘hotter’
(higher shear rate and hence higher granular temperature) side and are thereby pushed
toward the ‘cooler’ side, corresponding to f k(R) < 0 for R < 1.

(ii) Friction dominant for large intruders. For R > 1, intruder particles tend to undergo
more enduring frictional contacts rather than collisional contacts (Fan & Hill 2011; Jing
et al. 2017). Enduring contact forces are expected to be enhanced by a lower shear rate
due to the increase in force correlation length, or cluster size (Lois, LemaÎtre & Carlson
2006; Fan & Hill 2011), as well as the increase in contact duration (Silbert et al. 2007). As
a result, large intruders experience larger contact forces from lower shear rate regions and
are thereby pushed toward higher shear rate regions, which corresponds to f k(R) > 0 for
R > 1. The peak of f k(R) at R ≈ 2 indicates that the frictional effect is enhanced due to
finite-size effects similar to those for f g(R) (Jing et al. 2020).
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(iii) Continuum limit as R → ∞. The flow of bed particles surrounding an intruder can
be viewed as a continuum (a complex fluid) as R → ∞, and it is intriguing to consider
whether the segregation force has a parallel in Newtonian fluid flows. However, unlike the
Archimedean buoyancy limit for the gravity-induced segregation force, i.e. f g(∞) → 1
(see figure 8a), the behaviour of f k(R) for R → ∞ is less straightforward (figure 8b). The
force (perpendicular to shear and toward higher shear rates) induced by the curvature of
a flow velocity profile is reminiscent of the ‘shear gradient lift force’, FSG, for inertial
focusing in microfluidics (Martel & Toner 2014), which is also known as the tubular pinch
effect (Segré & Silberberg 1961; Matas, Morris & Guazzelli 2004). Despite the complex
dependence of FSG on the flow Reynolds number Re and the particle distance to the
channel wall z/Dh, where Dh is the hydraulic diameter of the channel, a scaling law for FSG
has been derived for small particle Reynolds numbers (Asmolov 1999) and empirically
determined in microfluidic systems (Di Carlo et al. 2009) as FSG = CSGρf U2

ma3/Dh,
where ρf is the fluid density, Um is the maximum channel flow velocity, a is the particle
radius (i.e. a = di/2 here) and the lift coefficient CSG is a dimensionless function of Re,
z/Dh and a/Dh. Note that for channel flows of a Newtonian fluid, the velocity profile
is typically parabolic (similar to our velocity profile (2.1)) with Um appearing at the
centreline and has a constant shear rate gradient ∂γ̇ /∂z ∝ Um/D2

h. For a shear rate scale
Um/Dh and a (hydrodynamic) pressure scale ρf U2

m, we have Fk
seg ∝ ( p/γ̇ )(∂γ̇ /∂z)V3

i ∝
ρf U2

ma3/Dh, consistent with the scaling of FSG. Therefore, it seems plausible to connect
our kinematics-induced segregation force (in the large R limit) with the shear gradient lift
force that is partly responsible for cross-streamline migration of particles in confined fluid
flows from lower to higher shear rate regions. Of course, further investigation is warranted
to shed more light on this connection as well as to consider other inertial lift forces as a
possible continuum limit for Fk

seg, such as those induced by wall effects (Martel & Toner
2014; Ekanayake et al. 2020), slip velocity (Asmolov 1999; Ekanayake et al. 2020) and the
Saffman lift effect (Saffman 1965; van der Vaart et al. 2018). Nevertheless, based on the
understanding and scaling arguments above, we assume that f k(R) approaches a positive
finite value (denoted as f k∞) as R → ∞ and use this assumption to constrain our empirical
fit in the subsequent analysis.

It is convenient to fit the collapsed data in figure 8 to functions, but it is unclear how
to derive such functions analytically because they would need to bridge two unrelated
physical phenomena: brief intermittent collisions at small R and enduring multiple
contacts at large R. In our previous work (Jing et al. 2020), we use a double-exponential
function to fit the data in figure 8(a) based on the understanding that the two geometric
effects explained above (percolation for R � 1 and enhanced frictional contacts for R �
1) tend to saturate as R increases, and that exponential decays are not uncommon in
segregation phenomena (Savage & Lun 1988; Khola & Wassgren 2016; Schlick et al.
2015). The semiempirical fit for f g(R) is

f g(R) =
[

1 − cg
1 exp

(
− R

Rg
1

)][
1 + cg

2 exp

(
− R

Rg
2

)]
, (3.4)

where Rg
1 = 0.92, Rg

2 = 2.94, cg
1 = 1.43 and cg

2 = 3.55 are fitting parameters (Jing et al.
2020). A detailed explanation for the expression (3.4), along with evidence for an
exponential decay of an enhanced contact number density around the intruder as R
increases, is provided by Jing et al. (2020). Briefly, the first term accounts for necessary
percolation at small R and the second term accounts for enhanced enduring contacts acting
on the intruder at large R.
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Here we fit the data for f k(R) in figure 8(b) to a functional form similar to (3.4),

f k(R) = f k
∞

[
tanh

(
R − 1

Rk
1

)][
1 + ck

2 exp

(
− R

Rk
2

)]
, (3.5)

where f k∞ = 0.19, Rk
1 = 0.59, Rk

2 = 5.48 and ck
2 = 3.63 are fitting parameters. Compared

with (3.4), a non-unity prefactor f k∞ is used to match the assumption that f k(∞) → f k∞, and
the first exponential function is replaced by a hyperbolic tangent function (i.e. tanh[(R −
1)/Rk

1], which passes through zero at R = 1 and approaches 1 and −1 for R � 2 and R →
0, respectively) to better match the data for 0 < R � 2 in figure 8(b). Although the latter
modification is phenomenological, it is interesting to note that the fitted ‘shape factor’ Rk

1
for the tanh function in (3.5) is similar to Rg

1 in the first exponential function of (3.4) in that
the values are similar in magnitude and less than one. The similarity comes about because
both indicate that the geometric effects related to small intruders (percolation and collision
dominant for R < 1) decay with a ‘characteristic size ratio’ of order one. Likewise, the
second exponential function of (3.4) and (3.5) each decay with a ‘characteristic size ratio’
(Rg

2 and Rk
2, respectively) that has a physically relevant value, considering the observation

that the contact number density around an intruder increases sharply with R for R � 3 and
saturates for R � 5, see Jing et al. (2020).

Despite the physical intuition associated with our semiempirical models (3.4) and (3.5),
one might choose other forms to fit the data in figure 8. Ideally, a theoretical approach for
determining f g(R) and f k(R) may be possible, perhaps one that extends kinetic theories for
segregation (Jenkins & Yoon 2002; Trujillo et al. 2003; Duan et al. 2020) into the dense
limit.

3.2.2. Validation of R-scaling in other flow geometries
Although the unified scaling (1.3) is based on a wide range of flow conditions in
figure 1(a–c), the dependence of the semiempirical relations (3.4) and (3.5) on R shown in
figure 8 is exclusively based on controlled-velocity confined flow conditions (figure 1a),
where parameters for f g(R) and f k(R) are calibrated separately by eliminating velocity
profile curvatures and gravity, respectively. To validate the R-scaling for flow geometries
where gravity and flow curvatures coexist, we focus on an inclined chute flow and a
horizontal wall-driven confined flow, varying R in each case and comparing the predicted
Fseg with simulation results (figure 9).

First, consider results for varying R in an inclined chute flow (θ = 24◦, g = 9.81 m s−2)
in figure 9, where local flow properties at z = zeq are −∂p/∂z = 1.3 × 104 Pa m−1 and
( p/γ̇ )(∂γ̇ /∂z) = −0.6 × 104 Pa m−1. The resulting kinematic term is nearly 10 times
smaller than the gravity term, noting that the prefactor f k is approximately one-fourth of
f g (figure 8). Calculating the appropriate prefactors using (3.4) and (3.5) based on R and
substituting them into (1.3) yields a prediction (blue solid curve in figure 9) that agrees
well with simulation results (blue circles). Note that we report Fseg/migz in figure 9 to
indicate whether an intruder tends to rise or sink; if Fseg/migz > 1, the segregation force
is greater than the intruder weight and thereby pushes the intruder upward, whereas if
Fseg/migz < 1, the segregation force is insufficient to support the intruder weight and the
intruder sinks. For the inclined chute flow, a large intruder with 1 < R < 4 tends to rise,
while a small intruder (R < 1) sinks, agreeing with the tendency of ‘normal’ segregation.
However, for R > 4 the intruder tends to sink due to its large weight, known as ‘reverse’
segregation (Félix & Thomas 2004).
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Figure 9. Validation of predicted Fseg/mig versus R in inclined chute flow (blue circles) (h/d ≈ 40, θ = 24◦,
and g = 9.81 m s−2) and wall-driven flow (red squares) (h/d ≈ 40, P0 = 1500 Pa, γ̇0 = 20 s−1 and g =
3 m s−2) with varying R. Solid curves are predictions based on the scaling law (1.3) and the empirical fitting
functions (3.4) and (3.5). Dashed curves are predictions based on a refitted f k(R) curve considering only a
subset of data with P0 � 1000 Pa (see figure 8 and text). Model inputs for predictions are local flow properties
at the height of the intruder zeq ≈ 0.5h taken from corresponding simulations. Areas above and below the
dotted horizontal line at Fseg/mig = 1 indicate where the intruder tends to rise and sink, respectively.

For the second case of a wall-driven flow (P0 = 1500 Pa, γ̇0 = 20 s−1, g = 3 m s−2)
with local flow properties −∂p/∂z = 0.4 × 104 Pa m−1 and ( p/γ̇ )(∂γ̇ /∂z) = 3.3 ×
104 Pa m−1, the kinematics contribution is approximately two times larger than its gravity
counterpart, and, importantly, both terms are positive. This leads to a much larger predicted
segregation force (red solid curve), which agrees well with simulation results (red squares)
for R � 2. However, the agreement beyond R > 2 is not as good. Recalling that the f k(R)

data in figure 8(b) show growing scatter for R � 4, the mismatch may be attributed to
additional mechanisms not considered in our scaling, especially for this range of R. To
understand this, we have examined the effects of the inertial number (which considers
case-specific γ̇ and p), stiffness of the virtual spring that is attached to the intruder,
the thickness of the flowing layer, and the domain size (particularly in the spanwise
direction), but none of these explain the mismatch. One possible mechanism lies in the
overburden pressure: for P0 � 1000 Pa, f k(R) values in figure 8(b) tend to appear near the
lower edge of the scatter, especially for R > 2, regardless of the local shear rate varying
from 10 s−1 to 40 s−1. This becomes evident when fitting (3.5) to only the data with
P0 � 1000 Pa, corresponding to the dashed curve in figure 8(b). On the other hand, all
wall-driven flows we consider (including those in figure 9) fall into this higher overburden
pressure category (which have P0 � 1500 Pa) in order to ensure a flowing layer that is
10d to 30d thick (wall-driven flows tend to localize near the top wall). Hence, using the
fit to (3.5) based on the subset of the f k(R) data with P0 � 1000 Pa (dashed curve in
figure 8b) significantly improves the agreement of the predicted (red dashed) curve with
wall-driven data in figure 9. Although we do not have an explanation for this secondary
overburden pressure dependence (which is not characterized by the inertial number and is
reminiscent of non-local effects in granular flows), it appears to be only significant for very
large intruders in shear-dominant cases. It might be plausible to examine if local velocity
fluctuations (relative to local pressure) play a role (Kim & Kamrin 2020), but this is beyond
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Unified scaling for segregation forces

the scope of this work. Note that the prediction for the inclined chute flow (blue dashed
curve in figure 9) is not affected by this treatment, because the kinematics contribution
associated with f k(R) is negligible in free-surface flows (Jing et al. 2020).

Nevertheless, we stress that even without the overburden pressure-specific treatment,
the overall agreement in figure 9 is still promising, especially given that the prediction
for two very different flow geometries (wall-driven and free-surface) is based purely on
independent velocity-controlled flows, and the discrepancy is not larger than the inherent
scatter of the data in figure 8. More interestingly, it is clear from figure 9 that Fseg/migz
in wall-driven flows is well above one for R > 1 due to the strong positive kinematics
contribution (as predicted by our scaling law), and, as a result, the reverse segregation
regime (Fseg/migz < 1) is difficult to reach by varying R alone; indeed, our model predicts
that a crossover will occur at R ≈ 13 for this wall-driven flow. The significant difference
between the rise–sink transitions indicated by Fseg/migz in inclined chute and wall-driven
flows may explain why results based on confined flow simulations alone fail to predict
the sinking of very large intruders as noted by Guillard et al. (2016), even though this
behaviour is observed in free-surface-flow experiments (Félix & Thomas 2004).

4. Conclusion

In this paper, we have used extensive DEM simulations to develop a unified description
of the gravity- and kinematics-induced segregation forces on an intruder particle in dense
granular flows. It is based on a fundamental scaling law (1.3) that has been validated for
flows in various confined and free-surface geometries. The scaling law has two additive
terms, one related to gravity (buoyancy-like) and the other related to flow kinematics
(specifically, the shear rate gradient); semiempirical prefactors for both terms depend only
on the particle size ratio but not local flow properties, although the overburden pressure
might cause a slight secondary effect for very large intruders. The relative significance
of the two contributions vary, and this unified description of segregation forces enhances
our understanding of the tendency and physical origin of segregation in different flow
geometries. For free-surface flows where the velocity profile typically has small shear rate
gradients, the gravity-induced segregation force dominates. In fact, rising and sinking of
intruders in free-surface flows can be predicted by comparing the size-corrected buoyancy
force alone with the intruder weight, resulting in a phase diagram determined only by
the size and density ratios (Jing et al. 2020). For vertical silo flows where segregation is
normal to gravity, kinematics-induced segregation forces cause large (small) intruders to
migrate toward (away from) the wall, consistent with previous results (Fan & Hill 2011).
Both mechanisms are significant in wall-driven flows (where they cooperate) and inclined
wall-driven flows (where they either cooperate or compete, depending on the angle of
inclination).

The physical origin of the kinematics-induced segregation force is clarified by
considering its shear rate gradient-based scaling and the nature of contact forces acting
on an intruder: for large intruders (R > 1), which experience enduring frictional forces,
larger forces are possible for lower shear rates (more persistent), whereas for small
intruders (R < 1), which preferentially receive collisional forces, larger forces occur in
higher shear rate regions (more impulsive). It is also interesting that for wall-driven
flows, which are relevant to annular shear (Golick & Daniels 2009) and fluid-driven
bedload transport (Ferdowsi et al. 2017), both segregation-driving mechanisms
(gravity- and kinematics-induced) act in the same direction against gravity and, therefore,
sinking of large particles due to weight effects does not occur as readily as in free-surface
flows (Félix & Thomas 2004). From a practical standpoint, our results suggest that it
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may be possible to design experimental or industrial devices that minimize segregation
(or, equivalently, enhance particle mixing) by manipulating the velocity profile (e.g.
inclined wall-driven flows with appropriate inclinations), such that the kinematics-induced
contribution to the segregation force counteracts gravitational contributions.

The unified description of segregation forces presented here is based on the limit
where the intruder concentration approaches zero. However, the question naturally arises
as to its applicability at higher intruder concentrations. We have already demonstrated
(Jing et al. 2020) that it compares well with free-surface-flow experiments (Félix &
Thomas 2004) for larger concentrations (approximately 10 %) where intruder particles
interact with each other infrequently and gravity-induced segregation forces dominate
over kinematics-induced forces. Recent work also indicates that under certain conditions
combined size and density segregation can be nearly independent of either the particle
size or density ratio at small concentrations, but further increasing the concentration leads
to significant changes in the segregation behaviour (Duan et al. 2021). Understanding
how segregation forces depend on the particle concentration is of great interest due to
the complex concentration dependence of segregation fluxes (Gajjar & Gray 2014; Gray &
Ancey 2015; van der Vaart et al. 2015; Jing et al. 2017; Jones et al. 2018; Duan et al. 2021).
Extending the current model toward finite intruder particle concentrations has the potential
to further elucidate the underlying physics of granular segregation as well as to enhance
continuum modelling of granular segregation (Tripathi et al. 2021; Rousseau et al. 2021),
which will be addressed in future work.

Finally, the segregation force studied in this paper, as well as in Guillard et al. (2016), van
der Vaart et al. (2018) and Jing et al. (2020), is measured on intruder particles tethered to
a virtual spring, which effectively prevents segregation. That is, the mean relative velocity
between the intruder and bed particles is zero in the segregation (z) direction once the
intruder reaches an equilibrium z-position. If the intruder is untethered and the net force
is unbalanced, a relative velocity between the intruder and its surrounding bed particles
will develop (Tripathi & Khakhar 2011; Staron 2018), leading to a resistive force (often
viewed as the drag force) that can be associated with the relative velocity as well as other
parameters. Previous studies on the drag force during particle segregation have focused
on density-bidisperse but size-monodisperse flows (Tripathi & Khakhar 2011, 2013; Duan
et al. 2020) due to the lack of a general description of the segregation force. With the
segregation force model developed here, it is now possible to study the drag force in more
general segregation situations where particles differ in both size and density (Duan et al.
2021; Tripathi et al. 2021).

Supplementary data. Supplementary material is available at https://doi.org/10.1017/jfm.2021.688.
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Appendix A. Connection with a previous model

Here we demonstrate how our ∂γ̇ /∂z-based scaling (1.3) is connected with the previous
scaling (1.1) where ∂τ/∂z is used (Guillard et al. 2016) when a local rheology is assumed.
For simplicity, we adopt a linear rheological law,

μ(I) = μs + bI, (A1)

where μs and b are constants. The linear form (da Cruz et al. 2005) is a good
approximation of our μ(I) data, at least for I < 0.3 (see figure 6).

Expressing ∂τ/∂z using (A1) with τ = μp and I = γ̇ d/
√

p/ρ, we have

∂τ

∂z
= μ

∂p
∂z

+ p
∂μ

∂z
= μ

∂p
∂z

+ p
∂

∂z

(
b

γ̇ d√
p/ρ

)
. (A2)

Expanding (A2) and eliminating b by identifying b = (μ − μs)/I yields

∂τ

∂z
= 1

2
(μ + μs)

∂p
∂z

+ (μ − μs)
p
γ̇

∂γ̇

∂z
. (A3)

Rearranging and substituting (A3) into (1.3), we have

Fseg = −
[

f g(R) + 1
2

f k(R)
μ + μs

μ − μs

]
︸ ︷︷ ︸

∼A(μ,R)

∂p
∂z

Vi + f k(R)

μ − μs︸ ︷︷ ︸
∼B(μ,R)

∂τ

∂z
Vi, (A4)

where f g(R) and f k(R) are prefactors of our scaling (1.3), while the under-braced terms
are rational functions of μ with shapes similar to A(μ, R) and B(μ, R) in (1.1), which are
described by exponential functions in Guillard et al. (2016).

From this analysis, it is clear that the μ dependence in (1.1) emerges as a result of
the adopted μ(I) rheology that connects τ and γ̇ via a unique function. Although our
kinematics-based scaling (1.3) can be transformed into the stress-based scaling (1.1) with
certain assumptions, we note that our scaling decouples gravity- and shear-induced (or
kinematics-induced) segregation forces. Consequently, each of the resulting terms requires
fewer fitting parameters (insensitive to μ). Moreover, the shear-rate-gradient-based scaling
helps reveal important aspects of the underlying physics of kinematics-induced segregation
in dense granular flows. Nevertheless, both stress- and shear-rate-based formulations can
be useful in certain practical situations, such as experiments where either the stress
or kinematics profiles are more conveniently controlled or measured, and numerical
implementations where the stress or shear rate profiles may not be readily accessible as
part of the solution.
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