
Euro. Jnl of Applied Mathematics (2017), vol. 28, pp. 716–735. c© Cambridge University Press 2016

doi:10.1017/S0956792516000498
716

Determining the probability of correct resolution
of the left–right ambiguity in towed array sonar

K. KAOURI1 and D. J. ALLWRIGHT2

1Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology,

30 Archbishop Kyprianou Str., Limassol 3036, Cyprus

email: katerina.kaouri@cut.ac.cy
2Smith Institute for Industrial Mathematics and System Engineering, Mathematical Institute, University of Oxford,

Andrew Wiles Building, Radcliffe Observatory Quarter Woodstock Road, Oxford, OX2 6GG, UK

email: david.allwright@smithinst.co.uk

(Received 18 September 2015; revised 30 October 2016; accepted 02 November 2016;

first published online 5 December 2016)

When a towed sonar array is straight, it has the difficulty that it cannot distinguish a contact

on the left from one at the same angle on the right. When the array is not straight and its

shape known, we calculate the probability that the left–right ambiguity is resolved correctly,

using the Neyman–Pearson hypothesis testing framework, assuming a delay-sum beamformer,

a single-frequency contact, and Gaussian noise. We also initially consider the noise field to

be uncorrelated and show that the evaluation of the probability of correct resolution reduces

to evaluating a one-dimensional integral. We find, as expected, that the probability increases,

as the signal-to-noise ratio and the lateral deviation of the array from straight increase.

For demonstration purposes, we also evaluate the probability of correct resolution for two

representative shapes the array might assume in practice. Finally, we consider a more realistic,

correlated noise field and we show that the initial assumption of an uncorrelated noise field

provides a good approximation when the lateral deviation of the array is sufficiently large.

Key words: 62F03 (Hypothesis testing), 62P30 (applications in engineering and mathematics),

94B70 (error probability), 74J05 (linear waves).

1 Introduction

Sound is the main means of exploration and communication in the sea [16], and detection

and processing of sound signals plays a very important role in military and other

applications, such as depth sounders, fish detection, and divers’ equipment. The focus

of this work is the mathematical treatment of left–right (LR) ambiguity in towed array

sonar1, a problem encountered in submarine acoustics [11, 16].

A towed array is a long, flexible hose (500–1,000 m) attached to the submarine (50–

100 m) with a connecting cable (approximately 400 m). We consider a passive towed sonar2

set that consists of a one-dimensional array of hydrophones (underwater microphones)

that receive sound and a beamformer that processes the received sound—see Figure 1. The

1 Sonar is an acronym for sound navigation and ranging.
2 A passive sonar only listens to incoming sounds in contrast to the active sonar that also sends

out sound signals.
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Figure 1. A towed array is attached to the submarine with a connecting cable. The towed array has

hydrophones on it. We also show an incoming plane wave with wavelength λc, incident at an angle

θ coming from a sound source that is far compared to the array length. We assume, as discussed,

that the problem can be treated as two dimensional.

submarine, the towed array, and the sound source (the contact) are all submerged. When

the array is straight, there is a complete axisymmetry about it and so it cannot distinguish

sound sources on any circle about the array. For sources at a large distance compared

to the array length, this means that there is ambiguity between the cone of the source

directions making the same angle with the array axis. Since in practice a submarine is often

aiming to detect sources whose depth is comparable to its own but whose range is much

greater, this ambiguity shows up as an LR ambiguity. It is hence a good approximation

to treat the problem as two dimensional, just considering the horizontal plane. (Figure 1

illustrates the two-dimensional problem.) When LR ambiguity exists the response of the

beamformer is the same for the left and the right directions [11]. When the array is not

straight and the shape is known, we will show in this work how to calculate the probability

that the LR ambiguity is resolved correctly. Note that in this work we assume that the

array shape has already been determined; in practice determining the array shape in the

sea is a difficult task in itself and various methods of estimation have been presented in

the literature—see, for example [13] and references therein.

Various methods have been proposed for resolving the LR ambiguity in underwater

acoustics. For example, in [4], two or more line arrays are assumed towed at some sep-

aration, and both line arrays are beamformed together. Left and right cardioid responses

are created by forming dipole and monopole virtual elements between the hydrophones

of the two arrays. These cardioids are beamformed into left and right array responses,

and targets correspond to enhanced response from the corresponding beamformer and

suppressed response from the opposite beamformer. In [10], in the context of active sonar,
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the LR ambiguity is resolved through cardioid or triplet arrays that are towed arrays

consisting of a line of triplets instead of a single line of hydrophones. Each triplet consists

of three closely spaced omnidirectional hydrophones that are evenly mounted on a circle

perpendicular to the array axis. The problem of resolving an LR ambiguity appears also

in target tracking in astronomy, biomedical imaging, computer vision, etc. For example,

in [9], LR ambiguity is resolved in the context of particle physics, and in particular in the

use of HERA-B, a large-aperture high-rate spectrometer that studies collisions of protons

with nuclei.

The paper is organised as follows. In Section 2, we first show how the LR ambiguity

arises in the beamforming process in passive sonar. We then develop an appropriate

hypothesis testing framework assuming an uncorrelated, Gaussian ambient noise field

and obtain an expression for the probability of correct resolution (PCR) of the LR

ambiguity, which can be conveniently cast as a one-dimensional integral, for any array

shape. We subsequently study two model array shapes that mimic shapes the array might

assume in practice. In Section 3, we consider the more realistic assumption of correlated

noise and we modify our initial hypothesis testing framework, obtaining again the PCR

as a one-dimensional integral, valid for any array shape. In Section 4, we summarise our

conclusions and present further directions of work.

The methodology we use in this article has been developed in the M.Sc. dissertation

of Kaouri [12] (University of Oxford); the second author was the supervisor of the

dissertation3.

2 Beamformer, signal, and noise models for an uncorrelated noise field

In this section, we are going to develop a model that will lead us to the evaluation of

the PCR of the LR ambiguity. Therefore, we are going to first present our modelling

assumptions.

• We treat the problem as two dimensional, which is a good approximation as discussed

in Section 1. Therefore, we consider a two-dimensional array with the hydrophones

at xj = (xj, yj) and we consider incident plane waves p(x, t) = �(p0 exp(i(ωt − k.x))),

where k is the incident wavevector k = k0(cos θ, sin θ) and k0 = ω/c is the acoustic

wavenumber, where c, the sound speed, is assumed constant. We assume narrowband

processing, so the acoustic wavenumber k0 is fixed by the frequency of the sound source.

• The submarine has a delay-sum beamformer forming beams of the form

b(t) =

Nh∑
j=1

wjp(xj , t− Δj), (2.1)

where Nh is the total number of hydrophones, wj are the shading weights that play a

role analogous to a windowing function in the Fourier transform [11, 16], and Δj are

the delays that steer the beam in a particular direction.

3 Note that [12] has been cited in subsequent work—see, for example, [2, 3, 5–7, 15].
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Figure 2. Visualisation of the left–right ambiguity when the array is straight; we see that the

beamformer has equal response for θ = π/2 and θ = −π/2 due to the symmetry of G(θ). (We take

Nh = 50, θb = π/2, k0 = 1, wj = 1.)

• We assume that the array shape is known and that its shape has been determined using

one of the methods developed for this purpose (see [13] and references therein).

• The noise field n(x, t) is assumed to be spatially and temporally uncorrelated and

Gaussian with zero mean and variance σ2.

In the beamforming process, we wish the array to have maximum response for incident

waves from direction θb, and then Δj = A + (xj cos θb + yj sin θb)/c for some constant A.

The response of the beamformer to the incident plane wave is

b(t) = � (p0 exp(−iωA) exp(iωt)Gb(θ)) , (2.2)

where the beamformer gain, or directivity function, is

Gb(θ) =

Nh∑
j=1

wj exp
(
ik0(xj(cos θ − cos θb) + yj(sin θ − sin θb))

)
. (2.3)

If the shading weights wj are all positive, then clearly |Gb(θ)| � Gb(θb) =
∑

j wj . However,

if the array is straight, yj = 0, and G(θ) = G(−θ), dropping the subscript b from now on.

Therefore, the array has equally large response to waves incident from directions θb and

−θb. This is the ambiguity problem that arises for a straight array. In order to visualise

the LR ambiguity in Figure 2, we plot |G(θ)| for −π � θ � π for a straight array and a

wave incident at angle θb = π/2. Note that in practice, the beam pattern is obtained by

plotting the function D(θ) = 20 log10(|G(θ)|/maxθ|G(θ)|), i.e., converting to decibels.

If the array is not straight, then G(θ) does not have this symmetry, and the beams

formed with steer directions θb and −θb are different. Consequently, it is natural to attempt

to resolve the LR ambiguity by reporting a contact on the right if the right beam has

greater amplitude than the left, and vice versa.
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In this work, we assume that a sound source has already been detected by the

submarine using some of the available methods, and that it is at a signal-to-noise ratio

(SNR) large enough to resolve that its bearing is close to either θR on the right or

θL = −θR on the left. The positions of the peaks in the left and right responses will not

be at exactly the angle of the source—that is the bearing-accuracy problem—but since

our concern here is only with the ambiguity problem, not with bearing accuracy, we

focus only on the question of distinguishing between ±θR . Our goal is to quantify the

accuracy of the detection method by determining the probability of correctly resolving

between the following two hypotheses.

Null Hypothesis: H0:“Contact is on the Right”.

Alternative Hypothesis: H1:“Contact is on the Left”.

Under the null hypothesis, the complex amplitudes from the right-pointing (R) and

left-pointing (L) beams, in the presence of sea noise, will be, respectively,

XR = a0GR(θR) + NR, XL = a0GL(θR) + NL, (2.4)

where GR(θR) =
∑Nh

j=1 wj , GL(θR) =
∑Nh

j=1 wj exp (−2ik0yj sin θR), and a0 =

p0 exp(−iωA) exp(iωt). The noise in the beams is denoted by N and, since the sea noise is

modelled as Gaussian, NL and NR are the complex Gaussian, with mean 0 and a circularly

symmetric distribution characterized by the variance V = �(|Ni|2) = σ2 where i = R or

L. When the array is not straight, we shall see in the discussion in Section 3 that NR and

NL are approximately independent. Although this assumption is not always true, and for

small lateral displacements of the array the correlation between the right and left lobes

corresponding to the right and left beam is almost perfect, we are going to show that

our analysis provides a good approximation in those parameter ranges for which there is

sufficiently high PCR.

Under the alternative hypothesis, we form again the L and R beams, respectively XL

with gain GL(θL) =
∑Nh

j=1 wj , and XR with gain GR(θL) =
∑Nh

j=1 wj exp (2ik0yj sin θR), with

everything else being the same as in the null hypothesis.

In practice, the kth component of the discrete Fourier transform (DFT) of the beams

is taken [11]. We change the subscripts to 1 and 2 for right and left, respectively. Also,

from now on we will call the frequency of interest f for symbolic reasons. Therefore, the

null hypothesis H0 is recast as follows; for beam 1

b1 = a + N1,

where a = (p0M/2) exp(−iωA)
∑Nh

j=1 wj . We denote by N1 the DFT of the noise component

of beam 1; N1 is a complex Gaussian random variable with zero mean and variance

�(|N1|2) = ξ2 = Mσ2, where M is the number of sampling times of the DFT [17]. For

beam 2

b2 = c0a + N2,

with c0 containing the information about the array shape. Since the noise is assumed

spatially uncorrelated, it is isotropic, and since the only difference between N2 and N1 is
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that the beam is steered in a different direction, N2 will have exactly the same probability

distribution as N1. For a general choice of shading weights wj ,

c0 =
G2(θ1)

G1(θ1)
=

∑
j wj exp(−2ik0yj sin θ1)∑

j wj

. (2.5)

Under the alternative hypothesis H1, we have b1 = c̄0a + N1, b2 = a + N2.

The next step in the sound processing process in a passive sonar involves squaring

the k th component of the DFT vector (square-law detector). The random variable |b1|2,
arising through the square-law detector, has mean

�(|b1|2) = |a|2 + ξ2, (2.6)

and the SNR is given by (SNR)1 = |a|2/ξ2 where |a|2 = |p0|2M2
(∑

j wj

)2

. (Note that the

information about the phase A is lost at this stage.) The random variable |b2|2 has mean

E(|b2|2) = |c0|2|a|2 + ξ2, (2.7)

and the SNR now is given by (SNR)2 = |c0|2a2/ξ2 = |c0|2(SNR)1. For the unshaded case,

wj = 1 and we have c0 = 1
Nh

∑
j exp

(
4πifyj/c

)
and therefore

|c0|2 =
1

N2
h

((∑
j

cos(4πfyj/c)
)2

+
(∑

j

sin(4πfyj/c)
)2

)
. (2.8)

We notice that we have |c0| � 1, as we expect under the null hypothesis; |c0|2 = 1

corresponds to yj = 0, i.e., to a straight array. Under the alternative hypothesis |b1|2, |b2|2
switch the expressions they assume under the null hypothesis.

We are now going to scale the random variables |b1|2 and |b2|2 by defining Ti = 2|bi|2/ξ2,

where the subscript i is 1 or 2. T follows a standard non-central chi-squared distribution

with two degrees of freedom and with non-centrality parameter λ, which we will denote by

χ′22(λ). (Note that we can easily prove this by evaluating the moment generating function

of the variables Ti and observing that it is the moment generating function of a non-

central chi-squared distribution—detailed calculations can be found in [12], pp 20–21.)

The probability density function (pdf) of T ∼ χ′22(λ) is given in [14]:

f(t|2, λ) = exp(−(λ + t/2))I0(
√
λt)/2, (2.9)

where I0 is the modified Bessel function of zero order. Therefore, our hypotheses H0 and

H1 are recast as follows:

H0 : T1 ∼ χ′
2
2(λ1), T2 ∼ χ′

2
2(λ2),

H1 : T1 ∼ χ′
2
2(λ2), T2 ∼ χ′

2
2(λ1),

where λ1 = |μ|2 = 2a2/ξ2 = 2(SNR)1, λ2 = |c0|2 λ1. Under the approximation of treating

N1 and N2 as independent, T1 and T2 are also independent random variables.
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Figure 3. The pdfs of T1 and T2 under H0 (SNR= 5, |c0|2 = 0.5).

In Figure 3, we plot the pdfs of T1 and T2 under H0. Under H1, Figure 3 would look

the same except that T1 and T2 would switch labels because of the symmetry of the

hypothesis test.

2.1 The likelihood ratio rest

The likelihood ratio L of the data vector t = (t1, t2) under the two hypotheses H0 and H1

is given in [17]:

Lt(H0, H1) =
f(t1, t2|H1)

f(t1, t2|H0)
=

f1

f0
, (2.10)

where f0 and f1 are, respectively, the joint pdfs of T1 and T2 under H0 and H1, where

t = (t1, t2) = 2(|b1|2, |b2|2)/ξ2. Hence (2.10), using (2.9), reduces to

L =
f(t1|H1)f(t2|H1)

f(t1|H0)f(t2|H0)
=

I0(
√
λ2t1)I0(

√
λ1t2)

I0(
√
λ1t1)I0(

√
λ2t2)

. (2.11)

According to the likelihood ratio test, we are going to reject H0 if L > l, where l is the

critical value of the test. Consequently, H1 will be rejected if f0/f1 > 1/l. Due to the

symmetry between H0 and H1, we conclude that l = 1, and we reject the null hypothesis

if L > 1. The size of the critical or rejection region is given by P (L > 1), and P (L < 1) is

the PCR and it is equal to the power of the test. Now, if we receive a louder signal in the

left beam intuitively, we would deduce that the contact is on the left and we would reject

the null hypothesis. Hence, we expect that we have L > 1 when λ2 < λ1 and t2 > t1. To

https://doi.org/10.1017/S0956792516000498 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000498


Determining the probability of correct resolution 723

prove this, we consider the difference of the numerator and the denominator of L:

D = I0(
√

λ2t1)I0(
√

λ1t2) − I0(
√

λ1t1)I0(
√

λ2t2)

=

∞∑
r=0

∑
0�s<r

λs1λ
s
2t

s
1t

s
2(λ

(r−s)
2 − λ

(r−s)
1 )(t(r−s)

1 − t
(r−s)
2 )Cr,s

using the power series for I0 (see [1]), where Cr,s = 1/(22(r+s)r!2s!2). For λ2 < λ1 and

t2 > t1, we have D > 0, and hence L > 1 as expected.

2.2 The probability of correct resolution

We have, thus, proved that with confidence quantified by P (L < 1) we accept the

hypothesis that the contact is on the right/left if the response is stronger on the right/left

beam. We can write the PCR as the integral

P (L < 1) =

∫∫
f0(t1, t2)dt1dt2,

where the region of integration is t1 � t2, as proved above. Since f0(t1, t2) = pdf(t1)pdf(t2),

P (L < 1) can be rewritten as the one-dimensional integral

P (L < 1) =

∫ ∞

0

pdf(t1)cdf(t1)dt1, (2.12)

where cdf stands for the cumulative density function and is given by

cdf(t) =

∫ t

0

pdf(̃t)d̃t =

∫ t

0

1

2
e−

λ+t̃
2 I0(

√
λ̃t)d̃t. (2.13)

Expression (2.12) is valid for any array shape. In Figure 4, we plot the PCR as a function

of the two parameters SNR and |c0|2 (Matlab, conveniently, has the required pdf and cdf

as built-in fuctions). We see that we have high PCR in the region of simultaneously high

values of SNR and small values of |c0|2, which corresponds to large distortions of the array.

As an example, we consider |c0|2 ≈ 0; we see that PCR ≈ 0.9 when SNR ≈ 3.2. To achieve

PCR ≈ 0.9, for a larger value of |c0|2 ≈ 0.38, a larger value of SNR, SNR ≈ 10 is required.

Also, when |c0|2 ≈ 1, i.e., for an almost straight array, we confirm, that as expected, PCR ≈
0.5 for all values of SNR, i.e., we have a 50–50 chance to resolve the ambiguity correctly.

Below we present some cross sections of Figure 4. In Figure 5, we fix SNR = 10 and

vary |c0|2 from 0 to 1—we see that the PCR decreases as |c0|2 increases. In Figure 6, we

fix |c0|2 = 0.5 and vary SNR. As SNR increases from 1 to 10, the PCR increases from

approximately 0.59 to approximately 0.82 with a trend faster than linear.

2.3 Two model array shapes

In this section, we are going to analyse further the dependence of |c0|2 on the array shape

by considering two model array shapes that are relevant in practice. When the array

shape changes, we have a different dependence of |c0|2 on the parameter measuring the

lateral displacement of the array from straightness.
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Figure 5. PCR as |c0|2 varies from 0 to 1, SNR = 10.

2.3.1 First model array shape: sinusoid

First, we model the array shape as one cycle of a sine wave, as might happen if the towing

vessel undergoes oscillatory corrections to a steady course. We take the array shape

y = 2αd sin(2πx/L0), (2.14)
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Figure 6. PCR for |c0|2 = 0.5 and SNR varying from 1 to 10.

where d is the horizontal spacing between adjacent hydrophones and L0 is the total length

of the array, and α � 0 is dimensionless and constant. Using d = λc/2, as most often in

practice, the coordinates of the jth hydrophone are xj = jd, yj = 2αd sin(2πxj/L0), i.e.,

we assume that the hydrophones are always equally spaced in the x-direction that is valid

for small deviations of the array.

2.3.2 Second model array shape: arc-of-a-circle

As a second model array shape, we consider an arc of a circle with the angle subtended

by the arc being 2θs. This is an appropriate model for the array shape when the towing

vessel executes a turn of the appropriate radius. We consider the array at a time t < τ

where τ is the characteristic timescale of the array dynamics and therefore the shape does

not change. The length of the array is fixed, and the radius of the circular arc, R0, satisfies

R0 = L0/(2θs) that is as θs increases, the curvature of the arc increases. In this case, using

plane polar geometry we can treat the hydrophones equispaced along the arclength s

instead of along the horizontal distance x, so d is equal to R0θ0 where θ0 = 2θs/(Nh − 1).

The maximum angle subtended by the arc is π so 0 � θs � π
2
.

We see that the parameters α and θs for the first and second model array shapes, on

which the size of the lateral displacement of the array depends respectively, enter the test

through |c0|2 that appears in the non-centrality parameter λ = |c0|2 |μ|2. When the array

tends to become straight, α and θs tend to zero, and |c0| tends to 1, the likelihood ratio

tends to 1, and PCR tends to 0.5. In other words, the difference in the response of the

left and right beam is decreasing, and it is therefore increasingly harder to resolve the LR

ambiguity.

In Figure 7, we plot |c0|2 as a function of W/λc where W = 4αd is the lateral

displacement of the array, with no shading (wj = 1). We take Nh = 32, f = 100 Hz,

c = 1, 500 m/s and θ1 = π/2. We observe that |c0|2 exhibits an oscillatory and decaying
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Figure 7. No shading; |c0|2 as a function of W/λc (32 hydrophones, c = 1, 500 m/s, f = 100 Hz,

θ1 = π/2, d = λc/2).

behaviour as W/λc is increasing. As W/λc is increasing from 0 to approximately 0.25, |c0|2
decreases monotonically from 1 to approximately 0.12. For values of |c0|2 lower than 0.12,

the graph is oscillatory and hence a particular value of |c0|2 may correspond to a set

of increasing values of W/λc. However, when 0 � |c0|2 � 0.12, for all possible values of

W/λc, we can see in Figure 4 that we have a satisfactory probability of resolution since

PCR � 0.67, for any value of SNR.

We further notice that |c0(α)|2 ≈ J2
0 (4πα) since

c0 =
1

Nh

Nh∑
j=1

exp(4πiα sin(2πj/Nh)) ≈
1

2π

∫ 2π

0

exp(4πiα sin θ)dθ = J0(4πα),

where J0 is the Bessel function of zero order [1]. Exploring the latter approximation for

|c0|2 and using that J0(x) = 0 when x = 2.4, we find that for α = 2.4
4π

≈ 0.19 we have

|c0(α)| = 0. This corresponds to W
λc

= 4αd
λc

= 2.4
π

d
λc

. The values of W/λc that correspond

to the zeros of |c0| give the best value of PCR out of all possible W/λc. Hence, for a

given lateral displacement of the array, there are some frequencies at which we get best

resolution.

In Figure 8, we plot |c0|2 as a function of W/λc with the Dolph–Chebyshev shading, vari-

ants of which are used in practice to improve the beam shape and reduce sidelobes [16]. To

implement the Dolph–Chebyshev shading, we use the Matlab command chebwin(Nh, 50)

that returns the Nh-point Chebyshev window with 50 dB of relative sidelobe attenuation.

For illustration, a plot of the Chebyshev window is shown in Figure 9.

For the second model array shape, we plot |c0(θs)|2 against W/λc, in Figure 10 for no

shading, and in Figure 11 with the Dolph–Chebyshev shading, where we again take the

Chebyshev window with 50 dB of relative sidelobe attenuation. In this case, the lateral
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Figure 8. Dolph–Chebyshev shading; |c0|2 as a function of W/λc (32 hydrophones, c = 1, 500 m/s,

f = 100 Hz, θ1 = π/2, d = λc/2).

Figure 9. Chebyshev window for Nh = 32 and 50 dB of relative sidelobe attenuation.

displacement of the array is given by W (θs) = R(1 − cos θs). We take again Nh = 32,

f = 100 Hz, c = 1, 500 m/s, θ1 = π/2, and d = λc/2. (An approximate expression for

|c0(θs)|2 is not available in this case.) We see that for no shading when W/λc = 1 we have

|c0|2 ≈ 0.28 and with shading when W/λc = 1 we have |c0|2 ≈ 0.73, which corresponds

to a lower value of PCR. So although shading is introduced to improve the beam shape

and reduce sidelobes, we see that it can also have adverse effects on the PCR. Taking the

case of no shading, we observe that when the lateral deviation is of the order of λc we

already have a quite good resolution of the LR ambiguity since we can see from Figure 4

that when |c0|2 = 0.28, PCR� 0.7 for SNR� 1.8. In Figures 12 and 13, we again plot

|c0|2 as a function of W/λc for Nh = 32, c = 1, 500 m/s, f = 100 Hz, and θ1 = π/2, but
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Figure 10. No shading; |c0|2 as a function of W/λc (32 hydrophones, c = 1, 500 m/s, f = 100 Hz,

θ1 = π/2, d = λc/2).
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Figure 11. Dolph–Chebyshev shading; |c0|2 as a function of W/λc (32 hydrophones,

c = 1, 500 m/s, f = 100 Hz, θ1 = π/2, d = λc/2).

d = 0.4λc. We see that for no shading when W/λc = 1 we have |c0|2 ≈ 0.1 and with the

Dolph–Chebyshev shading when W/λc = 1 we have |c0|2 ≈ 0.45. Here, for the case of no

shading, the resolution of the LR ambiguity is even more successful than when d = λc/2

since when W is of the order of λc that corresponds to |c0|2 = 0.1 we can see from

Figure 4 that PCR� 0.7 for an even smaller value of SNR, SNR� 1.3.
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Figure 12. No shading; |c0|2 as a function of W/λc (32 hydrophones, c = 1, 500 m/s, f = 100 Hz,

θR = π/2, d = 0.4λc).
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Figure 13. Dolph–Chebyshev shading; |c0|2 as a function of W/λc (32 hydrophones,

c = 1, 500 m/s, f = 100 Hz, θR = π/2, d = 0.4λc).

Up to now, we have assumed that the beams are uncorrelated for all values of α and

θs. However, when the array is almost straight α and θs are close to zero, and the beams

are almost perfectly correlated. In Section 3, the beam correlation will be quantified

appropriately and we will show that our uncorrelated-noise analysis indeed gives a good

approximation to the PCR if α or θs are sufficiently large, which is often the case when

resolving the LR ambiguity in practice.
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3 Resolution of the left-right ambiguity for a correlated noise field

We now drop the assumption that the noise field is spatially and temporally uncorrelated

and we assume that the noise follows a stationary, homogeneous Gaussian process with

zero mean and correlations given by

�(n(x1, t1)n(x2, t2)) = φn(x1 − x2, t1 − t2), (3.1)

so φn is translationally invariant in space and time. Hence, the noise part of the right and

left beams is given, respectively, by

b1(t) =

Nh∑
j=1

n
(
xj , t− Δ

(1)
j

)
, b2(t) =

Nh∑
j=1

n
(
xj , t− Δ

(2)
j

)
.

Then, we calculate φ12, the correlation function between the two beams and using (3.1)

we write

φ12(τ) = �(b1(t)b2(t− τ)) =

Nh∑
m=1

Nh∑
j=1

φn(xj − xm,−Δ
(1)
j + Δ(2)

m + τ). (3.2)

We take the DFT of beams b1 and b2 and denote their noise components by N1 and N2,

respectively. The covariance of N1 and N2 is given by

�(N1N2) =

∫
G1(ω, u)G2(ω, u)Φnn(ω, u) dA, (3.3)

where u is a unit vector (ranging over the directions of incidence on the array), G1 and

G2 are the beamformer gain functions for b1 and b2, and dA is the element of area

on the unit sphere of u-vectors. The expectation of |N1|2 and |N2|2 will be given by

similar expressions but with |G1|2 and |G2|2 in place of G1G2. When G1 and G2 are

separated enough that �(N1N2) is small compared with �(|N1|2) and �(|N2
2 |), N1 and

N2 will be approximately independent and the analysis in Section 2 holds good. But for

an array that is closer to being straight, G1 and G2 will be more similar, �(N1N2) will

be larger, and one will need the analysis that follows. When Φnn(ω, u) is isotropic, i.e.,

independent of the direction of u, the correlation between the noise in the two beams is

given by

�(N1N2) = Φnn(ω)4π
∑
j,m

wjwm exp(ik0(b2.xm − b1.xj) sinc(k0|xj − xm|), (3.4)

where b1 and b2 are the steer directions of the two beams.

The covariance matrix of the complex Gaussian vector N is now given by

V = �(NN†) =

(
�(|N1|2) �(N1N2)

�(N2N1) �(|N2|2)

)
=

(
ξ2 ξ2β

ξ2β̄ ξ2

)
(3.5)
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Figure 14. |β| versus α, α from 0 to 1.5.

which is no longer diagonal and β = �(N1N2)/�(|N1|2) quantifies the strength of the

correlation between N1 and N2. Using (3.4), and assuming an unshaded array, we obtain

β =

∑
j

∑
m e−i ω

c
(yj+ym)sinc

(
ω
c
|xm − xj |

)
∑

j

∑
m ei

ω
c
(yj−ym)sinc

(
ω
c
|xm − xj |

) , (3.6)

where ei
ω
c
(yj−ym) and ei

ω
c
(yj+ym) hold the information about the array shape.

For the two model array shapes considered earlier, we plot |β| as a function of α

in the range [0, 1.5] in Figure 14 and |β| as a function of θs in the range [0, π/2] in

Figure 15. For the first, sinusoidal, model shape |β| decreases in an oscillatory manner, as

α increases. We see that when α exceeds about 0.2, the value of |β| is less than 0.5 so the

correlation is not very strong and in this regime, the PCR obtained under the assumption

of uncorrelated noise in Section 2 is a good approximation. For the second model array

shape |β| decreases in an oscillatory manner until approximately θs ≈ π/3, and for larger

values of θs the peaks start increasing. Nevetheless, the uncorrelated-noise approximation

is again valid for this model, since for the maximum angle θs = π/2 the amplitude of the

closest peak is still less than 0.5 as seen in Figure 15. Therefore, we can deduce that for

both array shapes, the uncorrelated noise assumption leads to good estimates of the PCR

when the lateral deviation of the array is sufficiently large.

To derive an expression for the PCR for any correlation coefficient |β|, we will again

construct a hypothesis test with the same null and alternative hypotheses as in Section 2:

H0 : b1 = a + N1, b2 = c0a + N2

H1 : b1 = c̄0a + N1, b2 = a + N2,

where a is in general complex due to an arbitrary phase added to it depending on how the

signal is sampled and Fourier transformed. Scaling b1, b2 as in Section 2, we obtain the
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Figure 15. |β| versus θs, θs from 0 to π/2.

vector z = (z1, z2) = (
√

2
ξ

)(b1, b2) and z has a multivariate complex Gaussian distribution

given in [8]:

f(z1, z2) =
1

π2 detV
exp

(
−(z − a)†V−1(z − a)

)
=

1

π2ξ4(1 − |β|2)

× exp

(
− 1

ξ2(1 − |β|2)

(
|z1 − a1|2 + |z2 − a2|2 − 2�(β(z1 − a1)(z2 − a2))

))
.

(3.7)

The generalised likelihood ratio is given by

LG =
maxa f(z1, z2, a|H1)

maxa f(z1, z2, a|H0)
=

maxa(f1)

maxa(f0)
,

where the vector a is unknown. We will obtain the optimum values of â0 and â1 that

maximises f0 and f1, respectively. We find that

f0 = exp

{
−|z1 − a|2 − |z2 − c0a|2 + 2�(β(z1 − a)(z2 − c0a))

1 − |β|2
}

is maximized by

â0 =
z1 + c̄0z1 − β̄c̄0z1 − β̄z2

1 + |c0|2 − 2�(βc0)

and, similarly, f1 is maximised by

â1 =
z2 + c0z1 − βc0z2 − β̄z1

1 + |c0|2 − 2�(βc)
.
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Using

z1 − â0 =
(β − c̄0)(z2 − c0z1)

1 + |c0|2 − 2�(βc)
and z2 − c0â0 =

(z2 − c0z1)(1 − β̄c̄0)

1 + |c0|2 − 2�(βc0)
,

we find that

(f0)max = k0 exp

(
−|z2 − c0z1|2

1 + |c0|2 − 2�(βc0)

)
and (f1)max = k0 exp

(
−|z2 − c̄0z1|2

1 + |c0|2 − 2�(βc0)

)
.

According to the generalised likelihood ratio test, we are going to reject H0 if LG > l,

where l is the critical value of the test. Due to the symmetry of the test, the critical value

will be l = 1 (as in the case of uncorrelated noise). Therefore, we accept H0 if

(f0)max > (f1)max ⇒ |z2 − c0z1|2 < |z1 − c̄0z2|2. (3.8)

We rearrange (3.8) as

|z2|2 − 2�(z2c̄0z̄1) + |c0|2|z1|2 < |z1|2 − 2�(z1c0z̄2) + |c0|2|z1|2

⇒ |z2|2(1 − |c0|2) < |z1|2(1 − |c0|2)
and since |c0|2 < 1 we accept H0 when

|z1|2 > |z2|2 ⇒ t1 > t2. (3.9)

This decision criterion is exactly the same as the decision criterion we derived for the

uncorrelated noise field in Section 2, and therefore the intuitive decision procedure is still

optimal. (So although it looked appealing in the beginning to use the additional available

phase information, the calculation does not improve the test.) We again write the PCR as

the integral

P (LG < 1) =

∫∫
f0(t1, t2)dt1dt2,

where the region of integration is t1 � t2, as given in (3.9). To derive the joint pdf

of T1 = |z1|2, T2 = |z2|2, we substitute in f0 the polar forms z1 = r1e
iθ1 , z2 = r2e

iθ2 ,

β = |β|eiφ1 , c0 = |c0|eiφ2 , where r1 = |z1| and r2 = |z2|, and integrate f0(r1, r2, θ1, θ2) over θ1

and θ2, from 0 to 2π. Evaluating the integral over θ1 first we obtain the one-dimensional

integral∫ 2π

0

exp

(
− 1

ξ2(1 − |β|2) (cos(θ2 − θ1 + φ1) − 2ar1 cos θ1 + 2a|β||c0|r1 cos(−θ1 + φ1 + φ2))

)
× I0(θ2, φ1, φ2)dθ2, (3.10)

which can be evaluated numerically. We have thus obtained an expression for the PCR as

a one-dimensional integral. As discussed earlier, in cases where there is a useful PCR, the

array distortion has to be large that corresponds to the correlation between the beams

being small. Hence, the results for the uncorrelated case are a good approximation in those

parameter ranges where there is useful probability of resolution.
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4 Conclusions and discussion

The resolution of the left–right ambiguity problem for a towed array sonar set has been

considered theoretically. The successful resolution of the ambiguity always depends on

using the fact that the array is not straight and depends on having some independent

estimate of the array shape, such as that provided by heading sensors on the array. We

have assumed a simple scenario where a single frequency contact has been detected and

has been located in direction apart from the question of resolving the left–right ambiguity.

Intuitively, the most natural way of resolving the ambiguity is to form left-pointing and

right-pointing beams and decide that the contact is on the left or right according to which

beam detects the greater amplitude.

We have analysed this problem mathematically and find that it is considerably simplified

if it is assumed that there is no correlation between the noise in the left and right beams.

In that case, the intuitive procedure has been shown to be justified by the likelihood

ratio test, and the probability of correct resolution of the ambiguity has been calculated.

It depends on the SNR of the contact, and it also depends on how much the array

deviates from a straight line. If the acoustic wavelength is λc, we considered the case

where the array shape is sinusoidal with lateral displacement W = 4αd, and calculated

the probability of correct resolution of the ambiguity. We showed, for instance, that in

order to have 80% probability of correct resolution, the value of W when d = λc/2 must

be at least 2λc, i.e., the array deviates from straight by ±λc on each side.

We further considered the problem when correlation between the noise in the two

beams is taken into account. We have shown that even in this case the intuitive decision

procedure is still optimal, and we have again obtained an expression for the probability

of correct resolution as a one-dimensional integral. In fact, in cases where there is a useful

probability of resolution, the lateral deviation parameter α has to be large, and this in

itself causes the correlation between the beams to be small. Hence, the results for the

uncorrelated case should be a good approximation in those parameter ranges where there

is good probability of resolution.
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