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In Achlioptas processes, starting from an empty graph, in each step two potential edges

are chosen uniformly at random, and using some rule one of them is selected and added

to the evolving graph. The evolution of the rescaled size of the largest component in such

variations of the Erdős–Rényi random graph process has recently received considerable

attention, in particular for Bollobás’s ‘product rule’. In this paper we establish the following

result for rules such as the product rule: the limit of the rescaled size of the ‘giant’

component exists and is continuous provided that a certain system of differential equations

has a unique solution. In fact, our result applies to a very large class of Achlioptas-like

processes.

Our proof relies on a general idea which relates the evolution of stochastic processes

to an associated system of differential equations. Provided that the latter has a unique

solution, our approach shows that certain discrete quantities converge (after appropriate

rescaling) to this solution.

2010 Mathematics subject classification: Primary 05C80

Secondary 34F05, 60C05

1. Introduction

More than 50 years ago Erdős and Rényi initiated the systematic study of the random

graph process, which is the random sequence of graphs obtained by starting with an

empty graph on n vertices and then in each step adding a new random edge. Already in

their seminal 1960 paper [13] they investigated the size of the largest component in great

detail. Suppressing, as usual, the dependence on n, let L1(m) denote the size of the largest

component after m steps. Their results imply, for example, that there is a continuous

function ρ = ρER : [0,∞) → [0, 1) such that for any fixed t � 0 we have L1(�tn�)/n
p

→ ρ(t)

as n → ∞, where
p

→ denotes convergence in probability. Nowadays the evolution of the
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component structure, in particular the size of the largest component, is one of the most

studied properties in the theory of random graphs; see, e.g., the many references in [8, 9].

In order to create processes with potentially different behaviour, in 2000 Dimitris

Achlioptas suggested certain variants of the classical random graph process (inspired

by the ‘power of random choices’ paradigm [3]). These also start with an empty graph

G(0) on n vertices. At each later step m � 1, two potential edges e1 and e2 are chosen

independently and uniformly at random from all
(
n
2

)
possible edges (or from those edges

not present in G(m − 1)). One of these edges is selected according to a rule R and added

to the graph, so G(m) = G(m − 1) ∪ {e} for e = e1 or e2. Processes of this type are now

known as Achlioptas processes; always adding e = e1 gives the Erdős–Rényi random graph

process.

During the past decade the evolution of the largest component in Achlioptas processes

has received considerable attention. In one line of research the location (and existence)

of the phase transition has been investigated; see, e.g., [6, 7, 28]. This is motivated

by Achlioptas’ original question, namely, whether the ‘freedom of choice’ in each step

can be used to substantially delay or accelerate the appearance of the linear-size ‘giant’

component. The above results answer this affirmatively by considering so-called ‘bounded-

size’ rules, whose decisions only depend on the sizes of the components containing the

endvertices of e1 and e2, with the restriction that all sizes larger than some constant B

are treated the same way.

A more recent direction of research concerns finer details of the phase transition in

Achlioptas processes (see, e.g., [4, 5, 19, 20]), investigating similarities and differences to the

well-understood classical random graph process. In this context in particular the product

rule (suggested early on by Bollobás as the best rule to delay the phase transition) has

received considerable attention: given two potential edges, it picks the one minimizing the

product of the sizes of the components of its endvertices. Based on extensive simulations,

Achlioptas, D’Souza and Spencer conjectured in Science [1] that the rescaled size of the

largest component undergoes a discontinuous phase transition for the product rule, that

is, there exists a constant δ > 0 so that L1(m)/n ‘jumps’ from o(1) to at least δ in o(n) steps.

Called explosive percolation, this phenomenon has been of great interest to physicists; see,

e.g., [10, 11, 12, 14, 22, 31]. However, recently it has been rigorously shown in [23, 25]

that the simulations were misleading, and that the phase transition is actually continuous

for all Achlioptas processes.

The discussion above, and much of the physics literature, takes an important question

for granted: Does the scaling limit even exist? More precisely, as in [23, 25] we say that a

rule R is globally convergent if there exists an increasing function ρ = ρR : [0,∞) → [0, 1]

such that for any t at which ρ is continuous we have

L1(�tn�)/n
p

→ ρ(t) (1.1)

as n → ∞. The function ρ = ρR is called the scaling limit of (the size of the giant

component of) R. Writing Nk(m) for the number of vertices of G(m) in components with k

vertices, we call a rule R locally convergent if there exist functions ρk = ρRk : [0,∞) → [0, 1]

such that, for each fixed k � 1 and t � 0, we have Nk(�tn�)/n
p

→ ρk(t) as n → ∞ (such
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functions, if they exist, are necessarily continuous). Spencer and Wormald [28] showed

that all bounded-size rules are locally convergent, and conjectured that they are globally

convergent. In [25] it was shown that global convergence (and continuity of ρ(t)) follows

from local convergence, settling this conjecture.

For general size rules, the problem of establishing convergence (local and hence global) is

still open, although there are partial results: in [26] convergence was established up to the

critical time tb at which the ‘susceptibility’ (the average size of the component containing

a random vertex) diverges. According to Achlioptas, D’Souza and Spencer [1], complex

rules such as the product rule seem to be ‘beyond the reach of current mathematical

techniques’, so it is not too surprising that for these no convergence results are known

beyond tb, that is, in the later evolution. Svante Janson [17] also remarks that most likely

new methods are needed to understand the detailed behaviour of such rules.

1.1. Main result

In this paper we address the convergence question for Achlioptas processes: we show that

rules such as the product rule are globally convergent (for all t ∈ [0,∞)) provided that a

certain associated system of differential equations (defined in Section 2.2) has a unique

solution. Our result applies to a very large class of Achlioptas processes, including all

bounded-size rules and the product rule. For the definitions of �-vertex rule, merging and

well-behaved, see Section 2.

Theorem 1.1. Let � � 2 and let R be a merging �-vertex rule that is well-behaved. Suppose

the associated system of differential equations given by (2.6)–(2.9) has a unique solution

(ρ̂k(t))k�1. Then R is locally and globally convergent. In particular, for each fixed k � 1 and

t � 0, we have

Nk(�tn�)/n
p

→ ρ̂k(t) (1.2)

as n → ∞. The scaling limit ρ = ρR is continuous and satisfies ρ(t) = 1 −
∑

k�1 ρ̂k(t).

Remark 1. We shall show that under the conditions of Theorem 1.1, the system of

differential equations has at least one solution (see Lemma 3.1). The key assumption of

the theorem is that it does not have more than one solution.

Remark 2. If we only assume uniqueness on an interval I = [0, t∗] or I = [0, t∗), then the

conclusions of Theorem 1.1 hold for any t ∈ I (see Section 4).

The merging assumption in Theorem 1.1 seems to be necessary (even for size rules):

in [24] examples of ‘natural’ non-merging rules are given, where simulations strongly

suggest that convergence fails. (This phenomenon is numerically much more robust than

the continuity question addressed in [1].) All rules for which convergence has previously

been established are merging and well-behaved, including the classical Erdős–Rényi

case [13], all bounded-size rules [28] (such as the Bohman–Frieze rule [19]) as well as

the dCDGM rule [11] and the adjacent edge rule [12]. In fact, for all such rules there is

a K � 1 such that each ρ′
k in (2.7) can be written as a function of ρ1, . . . , ρmax{k,K} (such
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rules are called nice in [25]). In this case the form of the differential equations (2.6)–(2.9)

implies by standard results (see, e.g., [16]) that their solution is unique. So Theorem 1.1

generalizes these previous convergence results.

Perhaps the main contribution of this paper is a new approach for proving convergence.

Previous results in this area apply Wormald’s ‘differential equation method’ [29, 30], which

is now widely used in probabilistic combinatorics. This shows that under certain conditions,

suitable sequences of random variables converge to the solution of a system of differential

equations. The key point is that these conditions imply that the differential equations have

a unique solution, but are not implied by this. By establishing a more direct connection

between the random process and the differential equations, we need only assume that the

system of differential equations has a unique solution. Thus, our method is potentially

applicable to a much larger class of Achlioptas processes. The general proof idea outlined

in Section 3 might also be useful to establish convergence in other stochastic processes.

In fact, our approach establishes more than convergence: for each ‘typical’ outcome,

it shows that the evolution of suitable random variables follows some solution of the

associated system of differential equations. Hence our method allows us to transfer

properties common to all solutions back to the random process. We demonstrate the

usefulness of this feature in Section 4, where for Achlioptas processes we narrow the

bounds on the interval in which the giant component emerges.

Theorem 1.1 may be seen as a first step towards resolving the convergence question

in Achlioptas processes. In particular, further investigation of the system of differential

equations (2.6)–(2.9) associated with the product rule (and other complicated rules) seems

to be needed: Does it have a unique solution? When the equations do have a unique

solution many questions remain, for example: Which conditions are needed to establish

asymptotic normality as in [27]?

In the next section we define the processes under consideration and state the system of

differential equations associated with them. In Section 3 we first outline a general idea for

proving convergence in stochastic processes, and then use this approach to establish our

main result. Finally, in Section 4 we investigate the emergence of the giant component via

properties of the differential equations.

2. Preliminaries and notation

Our core argument will involve considering sequences of points ωn in different probability

spaces. For this reason we indicate the dependence on n explicitly in the notation. We

now recall the relevant definitions from [25]. Fix � � 2. An �-vertex rule R yields for

each n a random sequence (Gn,m)m�0 of graphs with vertex set [n] = {1, . . . , n}, where

Gn,0 is the empty graph. For each m � 0 we draw � vertices vn,m+1 = (v1, . . . , v�) from [n]

independently and uniformly at random, and then obtain Gn,m+1 by adding a (possibly

empty) set of edges En,m+1 to Gn,m, where R selects En,m+1 as a subset of all pairs between

vertices in vn,m+1. To avoid ‘trivial’ rules (which never add edges) we require that En,m+1 �= ∅
if all � vertices in vn,m+1 are in distinct components of Gn,m (it would also suffice that

the conditional probability of this event is bounded away from 0). Formally, we assume

the existence of a sample space Ωn and a filtration Fn,0 ⊆ Fn,1 ⊆ · · · such that vn,m+1 is
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Fn,m+1-measurable and independent of Fn,m, and require En,m+1 (and hence Gn,m+1) to

be Fn,m+1-measurable. For later use we let cn,m+1 = (c1, . . . , c�) denote the sizes of the

components containing the chosen vertices vn,m+1 = (v1, . . . , v�) in Gn,m.

For the purposes of this paper the above definitions are robust with respect to small

changes, since our arguments have o(1) elbow room in each step of the process. So we

may weaken the conditions on vn,m+1: it suffices if, for m = O(n), say, the conditional

distribution of vn,m+1 given Fn,m is close to (at total variation distance αn = o(1) from) the

one defined above. This includes variations such as picking an �-tuple of distinct vertices,

or picking (the ends of) �/2 randomly selected (distinct) edges not already present in

Gn,m. Hence, as in [25], we may treat the original examples of Achlioptas as 4-vertex rules

where R always selects one of the pairs {v1, v2}, {v3, v4}; below we call such R Achlioptas

rules.

We say that an �-vertex rule is merging if, whenever C , C ′ are distinct components with

|C|, |C ′| � εn, then in the next step we have probability at least ε� of joining C to C ′ (this

can be slightly weakened; see [25]). In particular all Achlioptas rules are merging, since

with probability at least ε4 both potential pairs join C to C ′.

Turning to notation, we write Nn,k,m for the number of vertices of Gn,m in components

of size k, and let Nn,�k,m =
∑

1�j�k Nn,j,m. We define Nn,�k,m and L1,n,m in an analogous

way. To avoid clutter, in Sections 1 and 4 we sometimes suppress n (which is clear from

the context), writing, for example,

G(m) = Gn,m, (2.1)

Nk(m) = Nk,n,m, (2.2)

L1(m) = L1,n,m. (2.3)

Finally, throughout we write x = a ± b as shorthand for x ∈ [a − b, a + b].

2.1. Well-behaved rules

We say that an �-vertex rule R is well-behaved (at infinity) if there are functions

dk : (N ∪ {∞})� → R and g : N → N with g(s) � s

such that the following conditions hold.

(i) Whenever all vertices vj are in different components we have

E(Nn,k,m+1 − Nn,k,m | Fn,m, vn,m+1) = dk(c1, . . . , c�), (2.4)

where cn,m+1 = (c1, . . . , c�) lists the sizes of the components containing the selected

vertices.

(ii) Suppose there are I ⊆ [�] and S � k such that all vj with j ∈ I are in the same

component of size cj > g(S), whereas all other vertices are in different components

with sizes cj � S . Whenever this holds we have

E(Nn,k,m+1 − Nn,k,m | Fn,m, vn,m+1) = dk(c̃1, . . . , c̃�), (2.5)

where c̃j = ∞ for j ∈ I and c̃j = cj otherwise.
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In fact, taking I = ∅ in (2.5) gives (2.4), but we note (2.4) separately for clarity. As we

shall discuss below, these conditions are very mild and hold for essentially all Achlioptas

processes previously studied, including ‘unbounded rules’ such as the product and sum

rules (the latter is a variant of the product rule which minimizes the sum as opposed

to the product). All rules which have been considered so far are size rules, which only

use cn,m+1 to decide which edge(s) to add. For these the change of Nn,k,m in (2.4) is

deterministic given cn,m+1, but considering the conditional expected change is slightly

more general (we can also allow for small deviations in (2.4) and (2.5), but leave this

to the interested reader). Intuitively, the second condition ensures that whenever one

component is significantly larger than all others, then we can decide which relevant pairs

are joined without knowing its exact size (this fails, for example, if the change depends

on the parity of �log(maxj∈[�] cj)�). This mild assumption holds for a large class of rules;

for example, g(s) = s2, g(s) = 2s and g(s) = max{s, K} suffice for the product rule, the

sum rule, and all nice rules as defined in [25] (which includes bounded-size rules, where

K = B). Note that since Nn,k,m always changes by at most �k per step, we have |dk(·)| � �k.

Remark 3. One might also consider rules R that depend on n in a limited way, such as

‘truncated’ versions of size rules with a cutoff B = B(n) that grows with n (these follow

the original rule when all vertices vj are in components of size at most B). Our results

extend to this case with modified (weaker) conditions (2.4) and (2.5). Given B(n) satisfying

B(n) → ∞ and B(n)/n → 0, for (2.5) we modify the size condition to cj > max{g(S), B(n)}
for all j ∈ I and cj � min{S, B(n)} for all j ∈ [�] \ I; the special case (2.4) is modified

similarly. (Note that the functions dk cannot depend on n.)

2.2. An associated system of differential equations

Suppose that R is a well-behaved �-vertex rule. In the following equations, each ρk(t) is

a (differentiable) function on [0,∞) satisfying

0 � ρk(t) � 1 and 0 �
∑
k�1

ρk(t) � 1. (2.6)

The system of differential equations associated with R is given by

ρ′
k(t) =

∑
c1 ,...,c�∈N∪{∞}

dk(c1, . . . , c�)
∏
j∈[�]

ρcj (t) (2.7)

for all k � 1, where

ρ(t) = ρ∞(t) = 1 −
∑
k�1

ρk(t), (2.8)

together with the initial conditions

ρk(0) =

{
1 if k = 1,

0 otherwise.
(2.9)

For t = 0, the derivative in (2.7) is taken to be the right-derivative. Note that for all t � 0

we have |ρ′
k(t)| � maxc |dk(c)| � �k.
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As a basic example, consider the Erdős–Rényi random graph process, for which we

have dk(c1, c2) ∈ {−2k,−k, 0, k}. It is not difficult to see that in this case (2.7) simplifies to

ρ′
k(t) = −2kρk(t) + k

∑
c1+c2=k

ρc1
(t)ρc2

(t), (2.10)

which is a special case of Smoluchowski’s coagulation equations in a form where sol-gel

interaction is considered; see, e.g., [2, 21] and the references therein. Here uniqueness

follows easily from standard results (see, e.g., [16]), since ρ′
k depends only on ρ1, . . . , ρk .

3. Proof of the main result

We start by outlining a rather general idea for proving convergence to the unique solution

of a system of differential equations, which we shall later use to establish Theorem 1.1. We

consider a discrete stochastic process with sample space Ωn and filtration Fn,0 ⊆ Fn,1 ⊆ · · · .

For each (discrete) step m we introduce (continuous) time t = m/sn, where the scaling

satisfies sn → ∞ as n → ∞. Suppose our objective is to find a collection of random

variables Xn,k,m and (continuous) functions xk(t) together with (deterministic) scaling

parameters Sn,k , such that for each fixed k � 1 and t � 0, we have

Xn,k,tsn/Sn,k
p

→ xk(t)

as n → ∞, where we ignore the rounding to integers. The two main steps of our approach

are as follows.

(1) Defining the one-step change as ΔXn,k,m+1 = Xn,k,m+1 − Xn,k,m, we use martingale

techniques (the Azuma–Hoeffding inequality along with an absolute bound on

|ΔXn,k,m+1|) to show that, with probability tending to 1 as n → ∞, the following

holds: for each fixed k and all m1, m2 � 0 with m2 − m1 = O(sn) we have

Xn,k,m2
− Xn,k,m1

=
( ∑
m1�m<m2

E(ΔXn,k,m+1 | Fn,m)
)

+ o(Sn,k). (3.1)

(2) Suppose we are given a sequence of sample points ωn ∈ Ωn, defined for some infinite set

of n ∈ N, for which (3.1) and some additional typical properties (technical conditions)

hold. Proceeding as in the proof of Helly’s selection theorem (see, e.g., Theorem 5.8.1

in [15]), we pick a subsequence (ωñ) such that for each t � 0 and k � 1, for some

limiting value xk(t) we have

Xñ,k,tsñ(ωñ)/Sñ,k → xk(t) (3.2)

as ñ → ∞ (here we exploit that each Xñ,k,tsñ(ωñ)/Sñ,k satisfies a Lipschitz condition as

a function of t). For this subsequence, we show that for all t � 0, k � 1 and ε > 0

there exists δ > 0 such that for ñ large enough the following holds: for each m � 0

satisfying |m − tsñ| � δsñ we have

E(ΔXñ,k,m+1 | Fñ,m)(ωñ) = (fk(t) ± ε/3)Sñ,k/sñ, (3.3)

where fk(t) = fk(t, x1(t), x2(t), . . .) is a function of the scaling limits of the selected sub-

sequence. To establish (3.3) we combine coupling arguments with ‘typical’ properties

of the underlying stochastic process.
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Now, using (3.1)–(3.3) it is straightforward to show that for all t � 0, k � 1 and ε > 0

there exists δ > 0 such that for all h with 0 < |h| � δ and t + h � 0 we have∣∣∣∣xk(t + h) − xk(t)

h
− fk(t)

∣∣∣∣ < ε,

that is, the xk(t) satisfy the differential equation

x′
k(t) = fk(t, x1(t), x2(t), . . .).

If the associated system of differential equations has a unique solution, then this implies

that the limiting functions xk(t) in (3.2) do not depend on the selected subsequence, which

establishes the desired convergence (by the well-known subsubsequence principle; see,

e.g., Section 1.2 in [18]). Finally, let us remark that by comparison with the underlying

process we can (typically) derive additional properties of the xk; it suffices to establish

uniqueness of the solution to the system of differential equations augmented by these

extra restrictions.

In the rest of this section we use the above approach to establish Theorem 1.1. Aiming

at Nn,k,tn/n
p

→ ρk(t), we closely follow steps (1) and (2) in Sections 3.1 and 3.2, respectively,

with Xn,k,m = Nn,k,m, xk(t) = ρk(t), Sn,k = n and sn = n.

3.1. Proof of Theorem 1.1

Our proof of Theorem 1.1 relies on a technical lemma which requires some preparation.

To this end we shall introduce several events needed to implement step (1) from our proof

outline, which capture various typical properties of Gn,m. For concreteness, set

η(n) = (log log log n)−1, (3.4)

say (the particular form does not matter, we shall later only use that η(n) → 0 as n → ∞).

Let Un denote the event that at every step m there is at most one component of size at

least η(n)n. Since R is merging, by the discussion following Theorem 2 in [25] we know

that P(Un) → 1 as n → ∞. By Theorem 2 of [25], for any constant γ > 0 there is a constant

K(γ) such that

P
(
∀m : Nn,�K(γ),m < L1,n,m + γn

)
→ 1

as n → ∞, where L1,n,m is the number of vertices in the largest component of Gn,m. By a

standard argument (considering, say, γ = 2−i for each i ∈ N), we may allow γ to tend to

zero at some rate. More precisely, there exist functions K(γ) and ξ(n) with ξ(n) → 0 as

n → ∞ such that, defining Kn as the event that for all m � 0 we have

∀γ � ξ(n) : Nn,�K(γ),m < L1,n,m + γn, (3.5)

we have P(Kn) → 1 as n → ∞ (note that K(γ) does not depend on n).

Fix 0 < λ < 1/4, say λ = 1/8 for concreteness. For each m � 0 set

ΔNn,k,m+1 = Nn,k,m+1 − Nn,k,m

and

Yn,k,m+1 = ΔNn,k,m+1 − E(ΔNn,k,m+1 | Fn,m).
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Set

Zn,k,j =
∑

0�m<j

Yn,k,m+1.

Let Dn denote the event that for all 1 � k � nλ and 1 � m1 � m2 � n2 with m2 − m1 � n1+λ

we have |Zn,k,m2
− Zn,k,m1

| < n1/2+2λ. Note that by rearranging terms, for all such k, m1, m2

the event Dn implies

Nn,k,m2
− Nn,k,m1

=
( ∑
m1�m<m2

E(ΔNn,k,m+1 | Fn,m)
)

± n1/2+2λ, (3.6)

which is the rigorous analogue of (3.1) from step (1) of our proof outline. Since the number

of vertices in components of size k changes by at most �k per step, we have |ΔNn,k,m+1| �
�k and thus |Zn,k,m+1 − Zn,k,m| = |Yn,k,m+1| � 2�k. Furthermore E(Yn,k,m+1 | Fn,m) = 0, so

(Zn,k,j)j�m1
is a martingale. Thus, for fixed k, m1, m2 satisfying the conditions above, by the

Azuma–Hoeffding inequality we have, say,

P(|Zn,k,m2
− Zn,k,m1

| � n1/2+2λ) � 2e−n3λ/(8�2k2) � 2e−nλ/(8�2) � n−9

for n large enough. Taking a union bound (to account for all choices of k, m1, m2) yields

P(Dn) → 1 as n → ∞, with room to spare.

Finally, define the ‘good’ event Gn = Dn ∩ Kn ∩ Un; we have shown that P(Gn) → 1 as

n → ∞. We are now ready to state the main technical lemma. As usual, we ignore the

irrelevant rounding to integers.

Lemma 3.1. Let � � 2 and let R be a merging �-vertex rule that is well-behaved. Let (ωn)

with ωn ∈ Gn ⊆ Ωn be defined for an infinite set of n ∈ N. Then there exists a subsequence

(ωñ) of (ωn) such that for each t � 0 and k � 1 we have Nñ,k,tñ(ωñ)/ñ → ρk(t), where the

(ρk(t))k�1 are functions on R+ satisfying the system of differential equations (2.6)–(2.9)

associated to R.

Note that Lemma 3.1 implies that the system of differential equations (2.6)–(2.9) has at

least one solution. By comparison with the underlying process we can establish additional

properties of the ρk(t), for example that ρ�k(t) =
∑

1�j�k ρj(t) is monotone decreasing in

t. Before giving the proof of Lemma 3.1, we first show how it implies Theorem 1.1 (as we

shall see, by Theorem 3 in [25] it suffices to establish (1.2), i.e., local convergence). Aiming

at a contradiction, suppose that (1.2) fails, that is, there exists t0 � 0, k0 � 1, ε > 0 and

an infinite set of n̄ ∈ N such that |Nn̄,k0 ,t0n̄/n̄ − ρ̂k0
(t0)| > ε holds with probability at least ε,

where ρ̂k0
(t) is given by the (by assumption) unique solution to (2.6)–(2.9). Since P(Gn) → 1

as n → ∞, this implies (by discarding a finite number of elements in the beginning) that

there exists an infinite sequence of sample points (ωn̄) with ωn̄ ∈ Gn̄ ⊆ Ωn̄ that satisfy

|Nn̄,k0 ,t0n̄(ωn̄)/n̄ − ρ̂k0
(t0)| > ε. (3.7)

Now Lemma 3.1 gives a subsequence (ωñ) satisfying Nñ,k,tñ(ωñ)/ñ → ρk(t) for each t � 0

and k � 1, where the (ρk(t))k�1 solve (2.6)–(2.9) on R+. But by (3.7) we also have

|ρk0
(t0) − ρ̂k0

(t0)| > ε/2,
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contradicting uniqueness of the solution to (2.6)–(2.9). It follows that (1.2) holds for each

fixed k � 1 and t � 0, that is, R is locally convergent. Now Theorem 3 in [25] implies

that R is also globally convergent, with continuous scaling limit ρR(t) = 1 −
∑

k�1 ρ̂k(t),

completing the proof of Theorem 1.1.

3.2. Proof of Lemma 3.1

Following step (2) of our proof outline, we start by selecting a ‘nice’ subsequence of

(ωn), proceeding as in the proof of Helly’s selection theorem (see, e.g., Theorem 5.8.1

in [15]). Define Fn(k, t) = Nn,k,tn(ωn)/n if 1 � k � n; otherwise set Fn(k, t) = 0. Clearly,

Fn(k, t) ∈ [0, 1]. Furthermore, Fn(1, 0) = 1 and Fn(k, 0) = 0 for k � 2. Let (qr)r�1 be an

enumeration of Q+. A standard diagonal argument yields a subsequence (ωñ) such that

for all (k, qr) ∈ N × Q+ the value of Fñ(k, qr) converges to some limit sk,qr . For each k ∈ N

we now define ρk(qr) = sk,qr for all qr ∈ Q+. Since Nn,k,m changes by at most �k per step,

as a function of t each Fn(k, t) is Lipschitz on R+ with constant �k, so ρk has this property

on Q+. For each k ∈ N we can thus extend ρk to a Lipschitz-continuous function on R+.

Henceforth we always work with the subsequence selected above, but write n instead of ñ

for ease of notation. For each t ∈ R+ and k ∈ N we then have

Nn,k,tn(ωn)/n → ρk(t), (3.8)

which is the rigorous analogue of (3.2) from our proof outline. Turning to some basic

properties of the ρk(t), by counting vertices we see that 0 � ρk(t) � 1 and

0 �
∑
k�1

ρk(t) � 1. (3.9)

Furthermore, the initial conditions ρk(0) = 1{k=1} hold for k � 1. To summarize, so far we

have established (2.6) and (2.9).

For the proof of Lemma 3.1 it remains to show that the
(
ρk(t)

)
k�1

satisfy the differential

equations (2.7). Here our main ingredient will be the deterministic result Lemma 3.2

below, which is the rigorous analogue of (3.3) from our proof outline. Recall that

ΔNn,k,m+1 = Nn,k,m+1 − Nn,k,m. For brevity, we write fk(t) = fk(t, ρ1(t), ρ2(t), . . .) for the right-

hand side of (2.7).

Lemma 3.2. Let ωn ∈ Gn ⊆ Ωn be defined for an infinite set of n ∈ N, and suppose that

(3.8) holds. Then for all t � 0, k � 1 and ε > 0 there exists 0 < δ � 1 such that for n large

enough the following holds: for all m � 0 satisfying |m − tn| � δn we have

E(ΔNn,k,m+1 | Fn,m)(ωn) = fk(t) ± ε/3. (3.10)

Proof. Recall that ωn ∈ Kn ∩ Un satisfies (3.8). Given t � 0, k � 1 and ε > 0, pick 0 <

γ � ε/(90�2k). Recall that by definition ρ(t) = 1 −
∑

k�1 ρk(t) ∈ [0, 1]; see (2.8) and (3.9).

Let ρ<s(t) =
∑

1�k<s ρk(t), which is increasing in s with limit 1 − ρ(t). Choose an integer

S � k such that S � K(γ) and ρ<S (t) � 1 − ρ(t) − γ, and let 0 < δ � min{γ/(9�S2), 1}. By
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choice of S we have∑
k�S

ρk(t) =
∑
k�1

ρk(t) − ρ<S (t) = 1 − ρ(t) − ρ<S (t) � γ. (3.11)

Consider m � 0 satisfying |m − tn| � δn. Since η(n) � γ for n large enough (see (3.4)) using

ωn ∈ Un we see that

Nn,�γn,m(ωn) > 0 implies Nn,�γn,m(ωn) = L1,n,m(ωn). (3.12)

Furthermore, since ωn ∈ Kn and S � K(γ), by (3.5) we have Nn,�S,m(ωn) � L1,n,m(ωn) + γn

for n large enough. So, by distinguishing whether L1,n,m(ωn) is larger or smaller than γn,

we infer

Nn,�S,m(ωn) − Nn,�γn,m(ωn) � 2γn. (3.13)

We shall now evaluate E(ΔNn,k,m+1 | Fn,m)(ωn). For this we regard the graph Gn,m(ωn) as

fixed, and the vertices vn,m+1 = (v1, . . . , v�) as random. So, in the following all probabilities

P(∗) are shorthand for P(∗ | Fn,m)(ωn). Recall the definitions of vn,m+1 = (v1, . . . , v�) and

cn,m+1 = (c1, . . . , c�): the vertices v1, . . . , v� are chosen independently and uniformly at

random from [n], and cj denotes the size of the component in Gn,m(ωn) containing vj . So,

for each s ∈ [n] we have

P(cj = s) = Nn,s,m(ωn)/n.

We define T as the event that (i) all vertices vj with cj � S are in different components,

and (ii) there are no vertices vj with S < cj < γn. Let g(·) be the function appearing

in the definition (2.5) of well-behaved, which satisfies g(S) � S . Clearly, g(S) < γn for n

large enough. Note that whenever T holds, by (3.12) all vj in components of size at least

γn > g(S) are in the same component (the largest), so (2.4) or (2.5) applies, giving

E(ΔNn,k,m+1 | Fn,m, vn,m+1) = dk(c̃1, . . . , c̃�), (3.14)

where c̃j = ∞ if cj � γn, and c̃j = cj otherwise. Whether or not T holds, the two sides of

(3.14) are bounded by �k. Using (3.13) we see that P(¬T ) � �2S/n + 2�γ (by separately

estimating the probability that (i) or (ii) fails), and so by choice of γ we have, say,

4�k · P(¬T ) � 4�k · (�2S/n + 2�γ) � 10�2kγ � ε/9

for n large enough. Setting S = [S] ∪ {s ∈ [n] : s � γn}, by taking expectations of both

sides of (3.14), it follows that

E(ΔNn,k,m+1 | Fn,m)(ωn) =
∑

s1 ,...,s�∈S

dk (̃s1, . . . , s̃�)
∏
j∈[�]

P
(
cj = sj

)
± ε/9, (3.15)

where s̃j = ∞ if sj � γn, and s̃j = sj otherwise.

For the reader interested in the robustness remark of Section 2, we point out that in the

estimates above we had plenty of elbow room. In particular, if the conditional distribution

of vn,m+1 is at total variation distance αn = o(1) from the one used above, then (recalling

|ΔNn,k,m+1| � �k and |dk(·)| � �k) a simple coupling argument shows that this only adds

an additive error of at most, say, 4�kαn, which is negligible (say at most ε/99) for n large

enough. With this in mind, (3.15) is easily seen to still hold in such slight variations.
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After this short interlude, we define a probability distribution Y as follows for s ∈
N ∪ {∞}:

P
(
Y = s

)
=

⎧⎪⎪⎨
⎪⎪⎩
Nn,�γn,m(ωn)/n if s = ∞,

Nn,s,m(ωn)/n if s < γn,

0 otherwise.

(3.16)

Let Y1, . . . , Y� be i.i.d. with distribution Y and observe that P(Yj = s) = P(cj = s) for s �
S < γn. Since s̃j = ∞ for sj � γn, using

∑
s�γn P

(
cj = s

)
= P

(
Y = ∞

)
it follows that (3.15)

gives

E(ΔNn,k,m+1 | Fn,m)(ωn) =
∑

s1 ,...,s�∈[S ]∪{∞}

dk(s1, . . . , s�)
∏
j∈[�]

P
(
Yj = sj

)
± ε/9. (3.17)

From (3.13) and the definition of Y we have P(S < Y < ∞) = P(S < Y < γn) � 2γ. Since

|dk(·)| � �k, we can extend the sum to all s1, . . . , s� ∈ N ∪ {∞} at the price of an additive

error of 4γ�2k, say. Since 4γ�2k � ε/18 by choice of γ, this gives

E(ΔNn,k,m+1 | Fn,m)(ωn) = E(dk(Y1, . . . , Y�)) ± ε/6. (3.18)

For s � S note that Nn,s,m changes by at most �s � �S in each step, so |m − tn| � δn

implies |Nn,s,m(ωn) − Nn,s,tn(ωn)| � �Sδn. Hence, using the definition of δ and (3.8), for

s � S and n large enough we have

|Nn,s,m(ωn)/n − ρs(t)| � �Sδ + γ/(2S) � γ/S. (3.19)

Using this observation we shall now show that the right-hand side of (3.18) is essentially

determined by the (ρk(t))k�1; this is key for our approach. To this end consider the

probability distribution Z , which is defined as follows for s ∈ N ∪ {∞}:

P
(
Z = s

)
=

{
ρ(t) = 1 −

∑
k�1 ρk(t) if s = ∞,

ρs(t) otherwise.
(3.20)

Claim 3.3. For n large enough we have

dTV

(
Y ,Z

)
� 4γ.

Proof. Recall that the total variation distance is given by

dTV

(
Y ,Z

)
=

1

2

∑
s∈N∪{∞}

|P(Y = s) − P(Z = s)|. (3.21)

For s � S , by (3.19) we have ∑
s∈[S ]

|P(Y = s) − P(Z = s)| � γ

for n large enough. Next, we consider the summands where s ∈ N \ [S]. Recalling (3.16)

and (3.13), we have P
(
Y ∈ N \ [S]

)
� 2γ. Similarly, from (3.20) and (3.11) we have
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P
(
Z ∈ N \ [S]

)
� γ. Thus ∑

s∈N\[S ]

|P(Y = s) − P(Z = s)| � 3γ.

Finally, since Y and Z are probability distributions, they differ on s = ∞ by no more than

the sum of the differences of the other values, that is, by at most 4γ. In view of (3.21),

the claim follows.

Taking Z1, . . . , Z� i.i.d. with distribution Z , using Claim 3.3 the distributions of

(Y1, . . . , Y�) and (Z1, . . . , Z�) can be coupled such that they agree with probability at

least 1 − 4�γ. So, since |dk(·)| � �k, in (3.18) we may replace all occurrences of Yj by Zj

at the price of an additive error of 8γ�2k, say. Since 8γ�2k � ε/6 by choice of γ, it follows

that

E(ΔNn,k,m+1 | Fn,m)(ωn) = E(dk(Z1, . . . , Z�)) ± ε/3.

Recall that fk(t) = fk(t, ρ1(t), ρ2(t), . . .) is shorthand for the right-hand side of (2.7). By

definition of the Zj (see (3.20)), it follows that E(dk(Z1, . . . , Z�)) = fk(t), completing the

proof of (3.10), that is, of Lemma 3.2.

Finally, we are now ready to complete the proof of Lemma 3.1. As discussed previously

in Lemma 3.2, passing to a subsequence we may assume (3.8), and it remains to

establish (2.7). Aiming at a contradiction, suppose that (2.7) fails for some t � 0 and

k � 1. By definition of ρ′
k(t) and fk(t) = fk(t, ρ1(t), ρ2(t), . . .) this implies that there exists

ε > 0 such that for all δ > 0 there is an h with 0 < |h| < δ such that∣∣∣∣ρk(t + h) − ρk(t)

h
− fk(t)

∣∣∣∣ � ε, (3.22)

where if t = 0 we may also assume t + h > 0 (since we only consider the right-derivative

for t = 0.) For these t � 0, k � 1 and ε > 0, we now pick 0 < δ � 1 as given by Lemma 3.2.

Decreasing δ if necessary, in the case of t > 0 we may also assume that δ � t/2 holds,

say. For each h with 0 < |h| � δ and t + h � 0 we now write m1, m2 for the minimum

and maximum of {(t + h)n, tn}, which satisfy m1 � 0 and 0 < m2 − m1 < n1+λ. Recall that

ωn ∈ Dn, and note that k � nλ for n large enough. Now, using (3.6) and (3.10) we see that

for n large enough

Nn,k,(t+h)n(ωn) − Nn,k,tn(ωn)

= sgn(h) ·
( ∑
m1�m<m2

E(ΔNn,k,m+1 | Fn,m)(ωn)
)

± n1/2+2λ

= hn · (fk(t) ± ε/3) ± n1/2+2λ.

Rearranging terms, using (3.8) and λ < 1/4 we deduce that for n large enough we have,

say, ∣∣∣∣ρk(t + h) − ρk(t)

h
− fk(t)

∣∣∣∣ � ε/2 + n−1/2+2λ/|h| < ε, (3.23)
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contradicting (3.22) above. This establishes (2.7) for all t � 0 and k � 1, completing the

proof of Lemma 3.1.

4. Emergence of the giant component

In this section we demonstrate that our approach may still yield useful information in the

presence of multiple solutions to the associated system of differential equations: using the

emergence of the giant component as an example, we show that properties common to

all solutions of the differential equations often transfer to the discrete random process.

We start by briefly recalling the strategy used in the proof of Theorem 1.1. Namely,

we first defined events Gn with P(Gn) → 1 as n → ∞, and then showed that any sequence

(ωn) of ‘runs’ of an Achlioptas process with ωn ∈ Gn has a subsequence (ωñ) where

(Nñ,k,tñ(ωñ)/ñ)k�1 converges to a solution (ρk(t))k�1 of the associated system of differential

equations, also with continuous ρ(t) = 1 −
∑

k�1 ρk(t) by Theorem 3 in [25]. With this

in mind, Remark 2 follows since the proof of Theorem 3 in [25] carries over mutatis

mutandis to any interval of form I = [0, t∗] or I = [0, t∗). In other words, for any such

interval I we obtain convergence to the (by assumption) unique solution (ρ̂k(t))k�1, with

continuous ρ(t) = 1 −
∑

k�1 ρk(t). This is important since it may well be that uniqueness

for the system of differential equations can be established only up to some point; in

particular, uniqueness after ‘gelation’ (see, e.g., [2]), that is, when
∑

k�1 ρk(t) < 1, seems

to be much harder to establish.

In general, we do not know if there is a unique ‘critical’ gelation point tc (with∑
k�1 ρk(t) = 1 for t < tc and

∑
k�1 ρk(t) < 1 for t > tc); different solutions might give

different gelation points in some range. However, with Theorems 4.1 and 4.2 we shall show

that the giant component emerges at some point within this range (without assuming any

uniqueness).

Our first result gives conditions sufficient to guarantee that all components have

sublinear size. In view of (2.8) our assumption is natural: that every solution to the

differential equations satisfies
∑

k�1 ρk(t) = 1 (i.e., ρ(t) = 0).

Theorem 4.1. Let � � 2 and let R be a merging �-vertex rule that is well-behaved. Assume

that for some t∗ ∈ [0,∞) every solution (ρ̃k(t))k�1 to the associated system of differential

equations given by (2.6)–(2.9) satisfies
∑

k�1 ρ̃k(t
∗) = 1. Then for any 0 � t � t∗ we have

L1(tn)/n
p

→ 0.

Proof. By monotonicity it suffices to show that L1(t∗n)/n
p

→ 0. Recall that in the proofs

we indicate the dependence on n explicitly, writing, for example, L1,n,t∗n for L1(t∗n);

see (2.1)–(2.3). Proceeding along the lines of the proof of Theorem 1.1, suppose there

exists δ > 0 and an infinite set of n̄ ∈ N with P(L1,n̄,t∗n̄/n̄ � δ) � δ. Then, since P(Gn) → 1

as n → ∞, there exists an infinite sequence of sample points (ωn̄) with ωn̄ ∈ Gn̄ ⊆ Ωn̄ and

L1,n̄,t∗n̄(ωn̄)/n̄ � δ. (4.1)

Now Lemma 3.1 gives a subsequence (ωñ) with Nñ,k,tñ(ωñ)/ñ → ρk(t) for each t �
0 and k � 1, where the (ρk(t))k�1 solve (2.6)–(2.9). Hence, by assumption we have
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∑
k�1 ρk(t

∗) = 1, and so for some K we have
∑

1�k�K ρk(t
∗) � 1 − δ/4. Since

L1,ñ,m � max{Nñ,�K+1,m, K} � ñ − Nñ,�K,m + K,

for ñ sufficiently large we infer

L1,ñ,t∗ñ(ωñ)/ñ � 1 − Nñ,�K,t∗ñ(ωñ)/ñ + K/ñ

� 1 −
∑

1�k�K

ρk(t
∗) + δ/4 � δ/2, (4.2)

contradicting (4.1).

Our next result gives conditions sufficient to guarantee the emergence of a linear-size

component. The main assumption will be that every solution to the differential equations

has ρ(t∗) > 0 (i.e.,
∑

k�1 ρk(t
∗) < 1). This can be restated as the non-existence of a solution

with ρ(t∗) = 0; when effectively (as here) imposing the condition ρ(t∗) = 0, we may simplify

the equations, replacing (2.7) by

ρ′
k(t) =

∑
c1 ,...,c�∈N

dk(c1, . . . , c�)
∏
j∈[�]

ρcj (t). (4.3)

This generalizes the Smoluchowksi coagulation equations (see, e.g., [2, 21]) in a form

without sol-gel interaction. The advantage is that it allows us to drop condition (2.5) in

the following theorem.

Theorem 4.2. Let � � 2 and let R be a merging �-vertex rule that satisfies assumption (2.4).

Assume that for some t∗ ∈ [0,∞) every solution (ρ̃k(t))k�1 on [0, t∗] to the associated system

of differential equations given by (2.6), (2.9) and (4.3) satisfies
∑

k�1 ρ̃k(t
∗) < 1. Then for any

t∗ � t < ∞ and ε > 0 there exist α, n0 > 0 such that P(L1(tn) � αn) � 1 − ε for all n � n0.

Proof. By monotonicity it suffices to establish the claim for t = t∗. As in earlier proofs,

we make the dependence on n explicit; see Theorem 4.1 and (2.1)–(2.3). Aiming at a

contradiction, suppose there exists ε > 0 such that for all α, n0 > 0 we have P(L1,n,t∗n �
αn) � ε for some n � n0. It follows as usual that there exists α̂(n) → 0 as n → ∞ and

an infinite set of n̄ ∈ N such that P(L1,n̄,t∗n̄ � α̂(n̄)n̄) � ε. Define Ln as the event that

L1,n,t∗n � α̂(n)n. Since P(Gn) → 1 as n → ∞ there exists an infinite sequence of sample

points (ωn̄) with ωn̄ ∈ Gn̄ ∩ Ln̄ ⊆ Ωn̄, for which we now prove the following variant of

Lemma 3.1.

Claim 4.3. There is a subsequence (ωñ) of (ωn̄) such that for each 0 � t � t∗ and k � 1 we

have

Nñ,k,tñ(ωñ)/ñ → ρk(t), (4.4)

where the (ρk(t))k�1 are functions satisfying the system of differential equations (2.6), (2.9),

(4.3) on [0, t∗].
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Proof. Defining dk(c1, . . . , c�) = 0 if any argument is infinite, note that (4.3) equals (2.7).

So, in view of Section 3.2, it suffices to prove Lemma 3.2 for 0 � t � t∗. We closely follow

the original argument, only changing some minor details (we also write n instead of ñ for

ease of notation). When selecting the parameters γ, S , δ we use S � K(γ/9) instead of

S � K(γ). Observe that Nn,�S,m increases by at most �S in each step, so by choice of δ we

have

Nn,�S,(t∗+δ)n � Nn,�S,t∗n + �δSn � Nn,�S,t∗n + γn/9.

Since ωn ∈ Kn ∩ Ln and S � K(γ/9), we also have

Nn,�S,t∗n(ωn) � L1,n,t∗n(ωn) + γn/9 � (α̂(n) + γ/9)n � γn/3, (4.5)

for n large enough. For t � t∗, by combining these estimates with monotonicity, we deduce

that for n sufficiently large we have

L1,n,m(ωn) � L1,n,(t∗+δ)n(ωn) � max{Nn,�S,(t∗+δ)n(ωn), S} � γn/2 (4.6)

for every m � 0 with |m − tn| � δ.

When establishing (3.14) the assumption (2.4) thus always applies (whenever the event

T holds all vertices are in different components and satisfy cj � S by (4.6)). Consequently

(3.15) holds, since dk(c1, . . . , c�) = 0 if ∞ ∈ {c1, . . . , c�}. Now the remainder of the argument

leading to Lemma 3.2 is unchanged, which, as discussed, completes the proof of Claim 4.3.

Now consider a subsequence (ωñ) with the properties guaranteed by Claim 4.3. From

(4.5), for n large we have

Nñ,�S,t∗ñ(ωñ) � n − Nñ,�S,t∗ñ(ωñ) � (1 − γ/3)n,

so from (4.4) it follows that ∑
k�1

ρk(t
∗) �

∑
1�k�S

ρk(t
∗) � 1 − γ.

Since we could choose the constant γ to be arbitrarily small, we have
∑

k�1 ρk(t
∗) � 1. Since

(ρk(t))k�1 is a solution to (2.6), (2.9) and (4.3) on [0, t∗], this contradicts the assumptions

of the theorem.

Remark 4. Of course, in the assumptions of Theorem 4.2 we may replace (4.3) by (2.7).

Indeed, using (3.9), the (ρk(t))k�1 constructed above satisfy
∑

k�1 ρk(t) = 1 for 0 � t � t∗.

Thus they also solve (2.7), since ρ(t) = 0 for 0 � t � t∗.

Remark 5. Theorem 4.2 also holds without the merging assumption; we outline the

minor modifications needed for the proof. Using Remark 9 in [25], we replace ‘at most

one component’ by ‘at most � − 1 components’ in the definition of Un, and replace L1,n,m

by Ln,m in the definition of Kn, where Ln,m denotes the sum of the sizes of the � − 1 largest

components. Now, thinking of all ‘infinity’ terms as the probability of being in one of the
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� − 1 largest components (of size � γn), using Ln,m � � · L1,n,m it is not difficult to push

the argument through; we omit the details.

It might be surprising that the sol-gel interaction and condition (2.5) are used in

Theorem 4.1 but not Theorem 4.2 (rather than the other way round). The explanation

is that our proofs proceed by contradiction, showing the existence of a gelating solution

in the case of Theorem 4.1, and a non-gelating solution in the case of Theorem 4.2.

Nevertheless, since condition (2.5) essentially ensures that the giant component, once it

emerges, evolves in a regular way, it may well not be needed in Theorem 4.1.
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