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SUMMARY
From a design point of view, it is crucial to predict singular
configurations of a manipulator in terms of inputs in order to
improve the dexterity and workspace of a manipulator. In
this paper, we present a simple, yet a systematic appoach to
obtain singularity contours for a class of five-bar planar
parallel manipulators which are based on five rigid links and
five single degree of freedom joints – revolute and prismatic
joints. The determinants of the manipulator Jacobian
matrices are evaluated in terms of joint inputs for a specified
set of geometric parameters, and the contours of the
determinants at 0.0 plane which are the singularity contours
in joint space are generated for the three types of
singularities reported in the literature. The proposed
approach/algorithm is simple and systematic, and the
resulting equations are easy to solve on a computer. The
singularity contours for all the class are presented in order to
demonstrate the method. It is concluded that the proposed
method is useful in trajectory planning and design of five-
bar planar parallel manipulators in order to improve their
dexterity and workspace.

KEYWORDS: Parallel manipulators; Five-bar; Singularity con-
tours; Revolute and prismatic joints.

1. INTRODUCTION
Robot manipulators are anthropomorphic open loop mecha-
nisms which usually have a longer reach, larger workspace,
and more dexterity than closed chain mechanisms. They
also have some disadvantages; the cantilever-type of
structure for open manipulators naturally has low stiffness
and therefore has undesirable dynamic characteristics,
especially at high speed and heavy loading conditions.
Mainly due to these disadvantages, many robotics tasks
based on the high level of accuracy in positioning of the
manipulators’ end point are not generally realisable by
conventional serially connected robot manipulators. One
approach to achieve the required level of accuracy is to
consider alternative structural designs which are more rigid
than serial manipulators. Parallel connection is an alter-
native type to the serial mechanisms where closed-loop
kinematics chains are included into a robot manipulator so
that the output can be produced by in parallel-actuated
closed-loop kinematics chains. Parallel manipulators have
the inherent advantages of better load carrying capability

and more precise positioning of the payload. The main
disadvantages are difficulties in trajectory planning and
control of such systems mainly due to singular configura-
tions which are sometimes referred to as “special” or
“critical” configurations.1,2 The determination of these
configurations will help us to understand the range of
motion of a manipulator.

This paper presents the problem of determination of
singular configurations of a class of five bar planar parallel
manipulator. Singular configurations of a mechanism are
undesirable due to the fact that the degree of freedom of the
mechanism changes instantaneously. While the singular
positions of serially connected manipulators result in the
loss of one or more degrees of freedom,3–5 those of parallel
manipulators result in either a gain or a loss of one or more
degrees of freedom.6–10 At singular configurations, the
determinant of the manipulator Jacobian becomes zero. The
singularities of several mechanisms have been obtained.
However, singularity analysis of parallel manipulators and
closed-loop mechanisms is still an active topic of research.
Gosselin and Angeles,6 introduced the concept of two
Jacobian matrices, which relate input velocities to output
velocities, for parallel manipulator having equal number of
inputs and outputs. The singularity of each matrix corre-
sponds to loss or gain of  degree of freedom and singularity
of both occurs only when the mechanism is architecturally
singular. Later, Daniali et al.,8 have claimed that the
singularity of both matrices is not necessarily architecture-
dependent; depending on Jacobian formulation any of the
three types of singularities described in reference [6] can
occur. Sefrioui and Gosselin,3 have reported on the quad-
ratic nature of the singularity curves of planar
three-degree-of-freedom parallel manipulators, the roots of
the determinants of the manipulator’s Jacobian are used to
obtain a graphical representation of these curves in
manipulator’s Cartesian workspace. Merlet,11 has explored
on the singular configurations of a six-degree of freedom
parallel manipulator using a geometric method rather than
finding the roots of the determinants of the manipulator
Jacobian matrix. Zlatanov et al.,12 have presented a
generalised approach to determine the singular configura-
tions of any mechanism with arbitrary chains and an equal
number of inputs and outputs. They use a velocity equation
including the velocities of active and passive joints in order
to determine singular configurations. Basu et al.,9 have
proposed two methods (algebraic and geometric) to deter-
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mine singular configurations of platform-type multi-loop
spatial mechanisms containing spherical joints on the
platform.

The approach proposed in this study consists of (i)
obtaining analytical expressions for the position of the
output point of a class of five-bar planar parallel manip-
ulators, (ii) generating the two Jacobian matrices relating
input velocity vector to the velocity vector of the output
point, (iii) evaluating and plotting the determinants of the
Jacobians in terms of the input positions for a given set of
geometric parameters, and (iv) obtaining the contours of the
determinants at 0.0 plane. These contours indicate the
singular configurations of the manipulators in terms of joint
inputs. This approach is simple, yet systematic and does not
necessitate to determine the explicit expressions for the
roots of the determinants in order to plot the singularity
contours/loci. A computer program prepared in MATLAB is
used to obtain the singularity contours. The proposed
method is useful in trajectory planning and design of five-
bar planar parallel manipulators in order to improve their
dexterity and workspace.

2.1 Five-bar manipulators with revolute and prismatic
joints
The number of the potential five-bar planar parallel
manipulators made up of revolute and prismatic joints is
thirty-two, which can be further reduced to six by
considering some constraints described in reference [13].
They are RRRRR, RRRRP, PRRRP, RPRPR, RRRPR and
RPRRP parallel manipulators, which are depicted in Figure
1. Their two joints are active and the rest are passive joints.
If a five-bar mechanism consists of a single closed-loop and
it has two active joints and three passive joints, such a
mechanism is controllable and can be employed to position
a point in a two dimensional space.14 In reference [13], the
workspace of these parallel manipulators are given, but their
singular configurations have not been described. It is
important to know their singularities before they can be
used. 

2.2 Forward Kinematics Equations
Consider the RRRRR parallel manipulator shown in Figure
2(a). For the provided joint inputs �1 and �2, and the
specified link lengths r0, r1, r2, r3, r4, the analytical
expressions for the coordinates of the output point P where
the end effector is assembled to is obtained. The coordinates
of A and B which are the x and y components of the �r1 and
�r5 vectors can be considered as the coordinates of the centers
of two circles of radii r2 and r3. Please note that the center
of two circles are expressed as functions of the inputs
provided by the actuators fixed to the ground. It is well-
known that the intersection of the two circles gives a
maximum of two solutions which are the possible locations
of point P. Referring to Figure 2(b), the analytical
expressions for these two solutions are obtained using the
following algorithm:

�r1 =r1 cos �1
�i+r1 sin�1

�j,
�r5 =(r0 +r4 cos �2) �i+r4 sin�2

�j,
(1)

�q=�r5 ��r1 =C �i+D �j (2)

C=r5x �r1x, D=r5y �r1y, q=�C2 +D2, (3)

Q=
r2

2 +q2 �r2
3

2q2 , (4)

and the coordinates of P1 and P2 are:

x1 =xA +QC�D � r2
2

q2 �Q2,

y1 =yA +QD+C � r2
2

q2 �Q2,

(5)

x2 =xA +QC+D � r2
2

q2 �Q2,

y2 =yA +QD�C � r2
2

q2 �Q2,

(6)

So, it is now possible to determine the position of the output
point for given joint inputs. Depending on the link lengths,
(x1, y1) and (x2, y2) can have real and imaginary values. If
they are imaginary, some kinematics constraints are not
satisfied; the mechanism can not be assembled in those
configurations. In the next section, link lengths not causing
this problem are used in determining singularity contours.Fig. 1. A class of five-bar planar parallel manipulators.

Fig. 2. Geometric representation of forward kinematics solu-
tions.
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3. SINGULARITY ANALYSIS BASED ON
JACOBIAN MATRIX
Gosselin and Angeles,6 have proposed a method based on
Jacobian matrix in order to evaluate the singularities of
closed-loop mechanisms. In their method, it is assumed that
the mechanism has an m-dimensional input vector �, which
represents the set of the position of actuated joints, and an
m-dimensional output vector X, which represents the
Cartesian coordinates of the output point. The nonlinear
kinematics equations, either forward or inverse kinematics
equations, describing the input-output position relationship
are expressed as;

F(�,X)=0 (7)

where F is two dimensional for the problem at hand and is
a function of inputs and the outputs. Taking the first time
derivative of Eq. 7 leads to the relationship between the
input and the output velocity vectors as follows;

�F
��

�̇+
�F
�X

Ẋ=0 ⇒ A�̇+BẊ=0 (8)

where A and B are configuration dependent 2� 2 Jacobian
matrices. The singular positions are the singular values of
the A and B matrices. Based on the singularities of A and B
matrices, Gosselin and Angeles,6 have reported on three
kinds of singularities for closed-loop kinematic chains. The
first kind of the singularity is faced when det[A]=0 and
det[B]≠0. This implies that the output point P loses one or
more degrees of freedom – regardless of the values of �̇1 and
�̇2, the values of ẋ and ẏ are zero.  The second kind happens
when det[A]≠0 and det[B]=0. This implies that the output
point gains one or more degrees of freedom; the output is
movable even when all the actuated joints are locked. The
third kind is encountered when det[A]=0 and det[B]=0,
simultaneously. The third kind of singularity corresponds to
configurations where the manipulator can undergo finite
motions when its actuators are locked or where a finite input
does not produce output motion. So, the singularities occur
whenever A, B or both become singular.

4. Singularity Contours
First of all, the forward kinematics equations for the
manipulator under consideration is obtained from Eq. 5, and
next their first derivative is taken and the resulting equations
are expressed in the form of Eq. 8. Then, A and B matrices
and their determinants are obtained for a range of joint
inputs, and the specified link lengths ri. Finally, the contours
for the determinants at 0.0 plane, which denote the loci of
singular configurations, are plotted as function of joint
inputs. This same procedure is applied for the six planar
parallel manipulators considered in this paper.

4.1 RRRRR manipulator
The forward kinematics equations for the RRRRR manip-
ulator shown in Figure 2(a) in the form of Eq. 7 are:

r1 cos �1 +
1
2

[r0 +r1(cos �2 �cos �1)]

�r1(sin �2 �sin �1) � r2
2

q2 �
1
4

�x=0

(9)
r1 sin �1 +

r1

2
(sin �2 �sin �1)

+[r0 +r1(cos �2 �cos �1)] � r2
2

q2 �
1
4

�y=0

where

q2 =r2
0 +2r0r1(cos �2 �cos �1)+2r2

1[1�cos(�1 ��2)]

Note that for a parallel RRRRR manipulator r1 =r4 and
r2 =r3. Taking the first derivative of Eq. 9 and then
expressing the resulting equations in the form of Eq. 8
yields the following expressions:

a11�̇1 +a12�̇2 +b11ẋ+b12ẏ=0
a21�̇1 +a22�̇2 +b21ẋ+b22ẏ=0 �⇒ A�̇+BẊ=0 (10)

where

a11 =0.5Kr1q
4 sin�1 � (2Er0 +q4K2)r1 cos�1

�2Er2
1 sin(�1 ��2)

a12 =0.5Kr1q
4 sin�2 + (2Er0 +q4K2)r1 cos�2

+2Er2
1 sin(�1 ��2)

a21 =�0.5Kr1q
4 cos�1 �q4K2r1 sin �1 +2Fr0r1cos�1

+2Fr2
1 sin(�1 ��2)

a22 =K2r1q
4 sin�2 � (2Fr0 +0.5q4K) r1 cos�2

�2FG2
1 sin(�1 ��2)

and

b11 =Kq2, b12 =0, b21 =0, b22 =Kq2

and

K= � r2
2

q2 �
1
4

, E=0.5r1r
2
2 sin(�2 ��1),

F=0.5r2
2 [r0 +r1(cos �2 �cos �1)]

The expressions for the determinants of the A and B
Jacobian matrices are used to generate singularity contours
for a given set of geometric parameters of the manipulator,
and for 0≤�1, �2 ≤360°.

For r0 =r1 =r2 =10, det[B] can be zero for certain joint
inputs, but K becomes imaginary. This follows that the
kinematics constraints are not satisfied; the manipulator can
not be assembled in those configurations. However, it is
possible to find link lengths making K and q2 zero, but not
making them smaller than zero for all the configurations.
Such a study is out of scope of this study, and will be
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reported later. On the other hand, for r0 =r1 =10 and r2 =15,
det[B] does not become zero, and K>0, and q2 >0. This
implies that the output point does not gain a degree of
freedom for the provided geometric parameters. But, det[A]
becomes zero for certain joint inputs, and thus the output
point lose one degree of freedom. The corresponding
singularity contours are shown in Figure 3.

It is also possible to obtain the singularity contours for the
third type provided that the kinematics constraints are
satisfied and the manipulator can be assembled in all the
configurations. The singularity contours for the third type of
singularity consists of the intersection of singularity con-
tours for type 1 and type 2. This explanation is also valid for
the singularity contours for third type of singularity of the
rest of the manipulators to be presented in the next
subsections.

4.2 RRRRP manipulator
As depicted in Figure 1(b), the inputs are � and d. The
forward kinematics equations for the RRRRP manipulator
in the form of Eq. 7 are given below:

r1 cos �+
r2

2 +q2 �r2
3

2q2 [r0 +d cos��r1 cos �]

�� d sin ��r1 sin �

2q2 ��4q2r2
2 � (r2

2 +q2 �r2
3 )2

�x=0

r1 sin �+
r2

2 +q2 �r2
3

2q2 (d sin ��r1 sin �)

+� r0 +d cos ��r1 cos �

2q2 ��4q2r2
2 � (r2

2 +q2 �r2
3 )2

�y=0
(11)

where

q2 =r2
0 +r2

1 +d2 +2r0(d cos ��r1 cos �)�2r1 d cos(���)

Taking the first derivative of Eq. 11 and then expressing the
resulting equations in the form of Eq. 8 yields the following
expressions:

a11�̇+a12ḋ+b11ẋ+b12 ẏ=0

a21�̇+a22ḋ+b21ẋ+b22 ẏ=0 �⇒ A�̇+BẊ=0 (12)

where

a11 =E[2r0r1 sin �+2r1d sin(���)]

+r1K(r2
2 �q2 �r2

3)sin �+r1K
2 cos �

a12 =E[2d+2r0 cos ��2r1 cos(���)]

+K(r2
2 +q2 �r2

3)cos ��K2 sin �

a21 =F[2r0r1 sin �+2r1d sin(���)]

�r1K(r2
2 �q2 �r2

3)cos �+r1K
2 sin �

a22 =F[2d+2r0 cos ��2r1 cos(���)]

+K(r2
2 +q2 �r2

3)sin �+K2 cos �

and 

b11 =�2Kq2, b12 =0, b21 =0, b22 =�2Kq2

where

K=�4q2r2
2 � (r2

2 +q2 �r2
3)2

E=2r1K cos �+K(r0 +d cos ��r1 cos �)

� (d sin ��r1 sin �)(r2
2 �q2 +r2

3)�2Kx

F=2r1K sin �+K(d sin ��r1 sin �)

+(r0 +d cos ��r1 cos �)(r2
2 �q2 +r2

3)�2Ky

The determinants of the A and B matrices are used to
generate singularity contours for various values of the
geometric parameters of the manipulator, and for
0≤�≤360°, 5≤d≤15, �=150°. For these values, det[B] is
nonzero, and K>0, and q2 >0, but det[A] becomes zero and
thus the output point loses one degree of freedom for some
joint inputs. The resulting singularity contours are shown in
Figure 4.

4.3 PRRRP manipulator
As given in Figure 1(c), the inputs are d1 and d2. The
forward kinematics equations for the PRRRP manipulator in
the form of Eq. 7 are given below:
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Fig. 3. Singularity contours (type I) for RRRRR manipulator for
0≤�1, �2 ≤360°, r0 =r1 =10, and r2 =15.
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d1 cos �1 +
r2

1 +q2 �r2
2

2q2 [r0 +d2 cos �2 �d1 cos �1]

�� d2 sin �2 �d1 sin �1

2q2 �
�4q2r2

1 � (r2
1 +q2 �r2

2 )2 �x=0

d1 sin �1 +
r2

1 +q2 �r2
2

2q2 [d2 sin �2 �d1 sin �1]

+� r0 +d2 cos �2 �d1 cos �1

2q2 �
�4q2r2

1 � (r2
1 +q2 �r2

2 )2 �y=0

(13)

where

q2 =r2
0 +d2

1 +d2
2 +2r0(d2 cos �2 �d1 cos �1)

�2d1d2 cos(�1 ��2)

Taking the first derivative of Eq.13 and then expressing the
resulting equations in the form of Eq.8 yields the following
expressions;

a11ḋ1 +a12ḋ2 +b11ẋ+b12ẏ=0
a21ḋ1 +a22ḋ2 +b21ẋ+b22ẏ=0 �⇒ A�̇+BẊ=0 (14)

where

a11 =2E[d1 �r0 cos�1 �d2 cos(�1 ��2)]
+K(q2 �r2

1 +r2
2) cos �1 +K2 sin �1

a12 =2E[d2 +r0 cos�2 �d1 cos(�1 ��2)]
+K(q2 +r2

1 �r2
2) cos �2 �K2 sin �2

a21 =2F[d1 �r0 cos�1 �d2 cos(�1 ��2)]
+K(q2 �r2

1 +r2
2) sin �1 �K2 cos �1

a22 =2F[d2 +r0 cos�2 �d1 cos(�1 ��2)]
+K(q2 +r2

1 �r2
2) sin �2 +K2 cos �2

and

b11 =�2Kq2, b12 =0, b21 =0, b22 =�2Kq2

where

K=�4q2r2
1 � (r2

1 +q2 �r2
2)

2

E=2d1K cos �1 +K(r0 +d2 cos �2 �d1 cos �1)
� (d2 sin �2 �d1 sin �1)(r

2
1 �q2 +r2

2)�2Kx

F=2d1K sin �1 +K(d2 sin �2 �d1 sin �1)
� (r0 +d2 cos �2 �d1 cos �1)(r

2
1 �q2 +r2

2)�2Ky

The determinants of the A and B matrices are used to
generate singularity contours for various values of the
geometric parameters of the manipulator, and for
5≤d1,d2 ≤20, and �1 =70°, �2 =120°. For these values,
det[B] is nonzero, and K>0, and q2 >0,  but det[A] can
become zero for some joint inputs and thus the output point

loses one degree of freedom. The corresponding singularity
contours are given in Figure 5.

4.4 RPRPR manipulator
As seen in Figure 1(d), the inputs are d1 and d2. Note that
the centers A and B of the two circles are fixed to the
ground. The forward kinematics equations for the RPRPR
manipulator in the form of Eq.7 are given below;

d2
1 +r2

0 �d2
2

2r0

�x=0

1
2r0

�4d2
1r

2
0 � (d2

1 +r2
0 �d2

2)
2 �y=0

(15)

Taking the first derivative of Eq.15 and then expressing the
resulting equations in the form of Eq.8 yields the following
expressions;

a11ḋ1 +a12ḋ2 +b11ẋ+b12ẏ=0
a21ḋ1 +a22ḋ2 +b21ẋ+b22ẏ=0 �⇒ A�̇+BẊ=0 (16)

where

a11 =d1, a12 =�d2, a21 =d1(r
2
0 �d2

1 +d2
2),

a22 =d2(r
2
0 +d2

1 �d2
2),

b11 =�r0, b12 =0, b21 =0, b22 =�2r2
0y

Note that det[A]=2r2
0d1d2 and det[B]=2r3

0y. In order to
make det[A] zero, either d1 or d2 must be zero, r0 is
assumed to be nonzero for the sake of practical reasons. But,
in reality both actuator inputs cannot be zero. They can only
reach their limit positions. So, this type of singularity occurs
at either the internal or external boundary of the workspace.
On the other hand, in order to make det[B] zero, y must be
zero. This implies that the output point P is on the x axis.
This singularity is avoided if the value of r0 is chosen such
that (d1)min +(d2)min >r0. This fact is in agreement with the
results presented before,7. As given in Figure 6, when the
actuator/joint inputs reach their limits, det[B] becomes zero.
In such a configuration, the mechanism gains a degree of
freedom; the output point P can have a nonzero velocity in

Contours for det(A) at "0.0 Plane" for alfa1=70, alfa2=120, r0=r1=r2=10

15

20

10

0
0 10 15 20

Actuator Length, d1

A
ct

ua
to

r 
Le

ng
th

, d
2

Fig. 5. Singularity contours (type I) for PRRRP manipulator for
5≤d1,d2 ≤20 and �1 =70°, �2 =120°, r0 =r1 =r2 =10.
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the direction perpendicular to the x-axis even if the
velocities (ḋ1 and ḋ2) of the actuators are zero.

4.5 RRRPR manipulator
The inputs are � and d, as given in Figure 1(e). The forward
kinematics equations for the RRRPR manipulator in the
form of Eq.7 are given below;

r1 cos �+
r2

2 +q2 �d2

2q2 (r0 �r1 cos �)

��r1 sin �

2q2 ��4q2r2
2 � (r2

2 +q2 �d2)2 �x=0

r1 sin ���r2
2 +q2 �d2

2q2 �r1 sin �

+�r0 �r1 cos �

2q2 ��4q2r2
2 � (r2

2 +q2 �d2)2 �y=0

(17)

where

q2 =r2
0 +r2

1 �2r0r1 cos �

Taking the first derivative of Eq.17 and then expressing the
resulting equations in the form of Eq.8 yields the following
expressions;

a11�̇+a12ḋ+b11ẋ+b12 ẏ=0

a21�̇+a22ḋ+b21ẋ+b22 ẏ=0 �⇒ A�̇+BẊ=0 (18)

where

a11 =2Er0r1 sin �+(r2
2 �q2 �d2)r1K sin �+r1K

2 cos �
a12 =2r1d(q2 �d2 +r2

2) sin ��2dK(r0 �r1 cos �)
a21 =2Fr0r1 sin �+(q2 �r2

2 +d2)r1K cos �+r1K
2 sin �

a22 =2Kdr1 sin �+2d(r0 �r1 cos �)(r2
2 +q2 �d2)

b11 =�2Kq2, b12 =0, b21 =0, b22 =�2Kq2

where

K= � 4q2r2
2 � (r2

2 +q2 �d2 )2

E=2r1K cos �+K(r0 �r1 cos �)

+r1 sin �(r2
2 �q2 +d2)�2Kx

F=r1K sin �+(r0 �r1 cos �)(r2
2 �q2 +d2)�2Ky

For a set of geometric parameters of the manipulator, and
for 0≤�≤360°, 5≤d≤15, det[B] is nonzero, K>0, and
q2 >0, but det[A] becomes zero for some joint inputs. This
implies that the output point loses one degree of freedom in
those configurations. The resulting singularity contours are
given in Figure 7.

4.6 RPRRP manipulator
As shown in Figure 1(f), the inputs are d1 and d2. The
forward kinematics equations for the RPRRP manipulator in
the form of Eq.7 are given below;

d2
1 +q2 �r2

1

2q2 (r0 +d2 cos �)

��d2 sin �

2q2 �� 4q2d2
1 � (d2

1 +q2 �r2
1 )2 �x=0

(19)

d2
1 +q2 �r2

1

2q2 d2 sin �

+�r0 +d2 cos �

2q2 �� 4q2d2
1 � (d2

1 +q2 �r2
1 )2 �y=0

where

q2 =r2
0 +d2

2 +2r0d2 cos �

Taking the first derivative of Eq.19 and then expressing the
resulting equations in the form of Eq.8 yields the following
expressions;

Fig. 6. Variation of det[B] with actuators lengths d1 and d2 for
RPRPR manipulator for 5≤d1, d2 ≤15 and r0 =10.
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a11ḋ1 +a12ḋ2 +b11ẋ+b12ẏ=0
a21ḋ1 +a22ḋ2 +b21ẋ+b22ẏ=0 �⇒ A�̇+BẊ=0 (20)

where

a11 =2Kd1(r0 +d2 cos �)�2d1d2(r
2
1 +q2 �d2

1) sin �
a12 =2E(d2 +r0 cos �)+K cos �(q2 +d2

1 �r2
1)�K2 sin �

a21 =2Kd1d2 sin ��2d1(r0 +d2 cos �)(r2
1 +q2 �d2

1)
a22 =2F(d2 +r0 cos �)+K sin �(q2 +d2

1 �r2
1)+K2 cos �

b11 =�2Kq2, b12 =0, b21 =0, b22 =�2Kq2

where

K= � 4q2d2
1 � (d2

1 +q2 �r2
1 )2

E=K(r0 +d2 cos �)�d2 sin �(r2
1 �q2 +d2

1)�2Kx
F=Kd2 sin �+(r0 +d2 cos �)(r2

1 �q2 +d2
1)�2Ky

For various values of the geometric parameters of the
manipulator, and for 5≤d1, d2 ≤15, det[B] is nonzero, and
K>0, and q2 >0, but det[A] becomes zero for some joint
inputs and thus the output point loses one degree of freedom
in those configurations. The corresponding singularity
contours are given in Figure 8.

5. Conclusions
Based on the determinants of the Jacobian matrices, a
method is proposed to generate the singularity contours of a
class of five-bar planar parallel manipulators in terms of
input positions. The singularity contours for all the class are
presented in order to demonstrate the method. With such a

tool, the singularity configurations of a parallel manipulator
under design can be predicted by changing the geometrical
parameters of the manipulator, and thus a better optimiza-
tion of the dexterity and workspace of the manipulator is
obtainable. This approach contributes to previously pub-
lished work from the point of view of being simple and
systematic, and requiring small computation time.
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