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Abstract

We give effective finiteness results for the power values of polynomials with coefficients composed of a
fixed finite set of primes; in particular, of Littlewood polynomials.
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1. Introduction

There is an extensive literature on polynomials with restricted coefficients, in
particular, with coefficients belonging to one of the sets {−1, 1}, {0, 1} or {−1, 0, 1}.
In the first case, the polynomials are called Littlewood polynomials, while, in the
second case (assuming that the constant term is nonzero), the polynomials are the
Newton polynomials. Here we mention only a few papers and directions. The zeros
(in particular, the number of real zeros) of polynomials with coefficients belonging to
{−1, 0, 1} have been studied by Bloch and Pólya [1], Schur [14], Szegő [16], Erdős and
Turán [8], and Drungilas and Dubickas [6] (see also papers of Borwein and Erdélyi [2,
3]). A related question concerning the order of vanishing of such polynomials at 1 has
been considered by Borwein and Mossinghoff [4]. For similar studies of Littlewood
polynomials, see Peled et al. [12]. Divisibility properties of such polynomials are also
of interest: see, for example, Dubickas and Jankauskas [7] for a question concerning
Newton and Littlewood polynomials, and Mossinghoff [11] for the case of described
cyclotomic factors.
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In this paper, we initiate the study of Diophantine equations involving polynomials
with restricted coefficients. As a generalisation of Littlewood polynomials, we con-
sider polynomials whose coefficients are composed of primes coming from a fixed
finite set. We are interested in perfect power values of such polynomials, that is, in
Schinzel–Tijdeman equations and hyper- and superelliptic equations related to them.
We provide effective upper bounds for the solutions of such equations. For this, we
need to combine the effective theory of such equations and the theory of S-unit
equations with new assertions concerning the root structures of such polynomials.
In view of the general interest (indicated above) in polynomials with restricted
coefficients, we find the latter results (Lemmas 3.3–3.7) of possible independent
interest. This is one of the main reasons why we split our research into parts: in
this way, we can present these ‘background’ results as well. In the continuation of
this paper, we take up the general problem of polynomial values of polynomials with
restricted coefficients (which requires different techniques and different background
knowledge about the root structures and decomposability properties).

2. Notation and main results

Let S = {p1 < p2 < · · · < pk} be a finite set of primes and write ZS for the set of
integers having no prime divisors outside S. Note that ±1 ∈ ZS but 0 � ZS for any S.
In particular, ZS = {−1, 1} for S = ∅. Write PS for the set of polynomials in Z[x] with
coefficients belonging to ZS.

Now we give our main results. The first theorem shows that, under a necessary con-
dition, the polynomials in PS may only attain power values with bounded exponents.

THEOREM 2.1. Let f (x) ∈ PS of degree d and let b be a nonzero rational number.
Then there exist effectively computable constants C1 = C1(pk) and C2 = C2(b, d, pk)
depending only on pk and on b, d, pk, respectively, such that if d > C1, then the
equation

f (x) = byn (2.1)

with x, y, n ∈ Z and |y| > 1 implies that n < C2.

REMARK 2.2. The condition d > C1 is necessary. Indeed, let d be arbitrary, and choose
S such that

(
d
i

)
∈ ZS for all i = 0, . . . , d. Then, for any a ∈ ZS, we have (x + a)d ∈ PS.

However, (2.1) clearly has infinitely many solutions x, y with any multiple n of d. So
we see that we do need a lower bound for d in order for the statement of Theorem 2.1
to be valid.

Now we would like to bound also the solutions x, y of (2.1). However, for this, we
need to switch to S = ∅, that is, to the case of Littlewood polynomials. This is, in fact,
necessary; a condition as in Theorem 2.1 saying that the degree of the polynomial
should be large enough is not sufficient (for the reason, see Remark 2.4(i) after the
statement of the theorem).
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THEOREM 2.3. Let f (x) ∈ PS with S = ∅ (that is, f (x) is a Littlewood polynomial,
with all coefficients being ±1). Assume, further, that deg f ≥ 3 and let b be a nonzero
rational number. Then all solutions x, y, n ∈ Z of the equation

f (x) = byn (2.2)

with n ≥ 2 satisfy

max(|x|, |y|, n) ≤ C4,

except when n = 2 and f is one of the forms

f (x) = ±(x2k+1 + · · · + xk+1 − xk − · · · − 1),

± (x2k+1 − x2k + · · · + (−1)k+2xk+1 + (−1)kxk + · · · + 1)

with some k ≥ 1. Here, C4 = C4(b, d) is an effectively computable constant depending
only on b and the degree d of f.

REMARK 2.4. Here we mention two things.
(i) The statement is not valid for arbitrary S. The restriction S = ∅ cannot be omitted,

even if we restrict to polynomials whose degrees are ‘large enough’. To see this, let
f1(x) ∈ Z[x] be any not identically zero polynomial. Let S be an arbitrary, finite set of
primes, containing 2, such that both f1(x) and ( f1(x))2 belong to PS. Then, inductively,
define

fi+1(x) = ((xdi+1 + 1) fi(x))2 (for all i ≥ 1),

where di = deg( fi) (i ≥ 1). Observe that, then, all the polynomials fi(x) (i ≥ 1) are full
squares in PS and, clearly, the sequence d1, d2, d3, . . . of their degrees is unbounded:
that is, for this set S, there exists a polynomial of arbitrarily large degree in PS that
is a square. Hence, clearly, equation (2.2) with b = 1 and n = 2 has infinitely many
solutions in x, y ∈ Z.

(ii) In the exceptional cases, equation (2.2) (with appropriate choices of b) has
infinitely many solutions with n = 2 in x, y ∈ Z. Indeed, for any k ≥ 1,

±(x2k+1 + · · · + xk+1 − xk − · · · − 1) = ±(x − 1)(xk + · · · + x + 1)2,

which gives a square value whenever ±(x − 1) is a square. Similarly, for any k ≥ 1,

± (x2k+1 − x2k + · · · + (−1)k+2xk+1 + (−1)kxk + · · · + 1)

= ±(x + 1)(xk − xk−1 + · · · + (−1)k)2,

which gives a square value whenever ±(x + 1) is a square.

3. Lemmas, auxiliary results and proofs

To prove Theorem 2.1, we need two lemmas. Here and later on, by the height
H(F(x)) of a polynomial F(x) with integer coefficients we mean the maximum of the
absolute values of its coefficients.
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LEMMA 3.1. Let F(x) ∈ Z[x] having two distinct (complex) roots of degree D and
height H, and let B be a nonzero rational number. Then the equation

F(x) = Byn

with x, y ∈ Z, |y| > 1 implies that n < C4, where C4 = C4(B, D, H) is an effectively
computable constant depending only on B, D and H.

PROOF. The statement immediately follows from the Schinzel–Tijdeman theorem (the
main result of [13]; see also [17] and [15, Ch. 9]). �

LEMMA 3.2. Let S be as above and let A, B be nonzero rational numbers. Then the
solutions x, y ∈ ZS of the equation

Ax − By = 1

satisfy

max(|x|, |y|) < C5,

where C5 = C5(A, B, pk) is an effectively computable constant depending only on A, B
and pk.

PROOF. The statement is an immediate consequence of a classical result of Győry
[10]; see also [9, Ch. 4]. �

PROOF OF THEOREM 2.1. The statement immediately follows by Lemma 3.1 as soon
as f (x) has two distinct roots. Therefore, we can assume that f (x) is of the form
f (x) = u(x + v)d, with some u ∈ Z and v ∈ Q. Writing v = v1/v2 in its primitive form,
we clearly have vd

2 | u and u, v1, v2 ∈ ZS. Then, checking the coefficients of xd−1 and
xd−2 in f, we easily see that d,

(
d
2

)
∈ ZS. Hence, either d − 1 ∈ ZS, or d − 1 is even and

(d − 1)/2 ∈ ZS. In the first case, d, d − 1 ∈ ZS satisfy the equation

w1 − w2 = 1, (3.1)

while, in the second case, d, (d − 1)/2 ∈ ZS satisfy the equation

w1 − 2w2 = 1 (3.2)

with w1, w2 ∈ ZS. However, by Lemma 3.2, for the solutions of these equations,

max(|w1|, |w2|) < C6,

where C6 = C6(pk) is an effectively computable constant depending only on pk. So, if
d > C6, then d cannot come from a solution of either (3.1) or (3.2), which implies that
f (x) is not of the form u(x + v)d. Hence, taking C1 = C6, the statement follows. �

Now we turn to the proof of Theorem 2.3. For this, we shall need five further
lemmas. The first four of them are new and of possible independent interest.

LEMMA 3.3. Let m be a nonnegative integer and let

G(x) = b0xt + b1xt−1 + · · · + bt−1x + bt (3.3)
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with b0, b1, . . . , bt ∈ Z such that all the coefficients of the polynomial (x − 1)mG(x)
belong to {−1, 1}. Then b1 = 0 implies that m = 1.

PROOF. Clearly, without loss of generality, we may assume that b0 = 1. We shall
do so during the proof, without further mention. Write Bm (m ≥ 0) for the set of
coefficients b1 that occur in some polynomial G(x) (which is monic, of arbitrary
degree) satisfying the conditions of the statement. We prove the lemma by describing
the sets Bm inductively.

Obviously, we have B0 = {−1, 1}. Assume that we have already described the set
Bm for some m ≥ 0, and consider a polynomial G(x) given by (3.3), such that all the
coefficients of (x − 1)m+1G(x) belong to {−1, 1}. Then, of course, the same is true for
the polynomial

(x − 1)m+1G(x) = (x − 1)m((x − 1)G(x))

= (x − 1)m(xt+1 + (b1 − 1)xt + · · · + (bt − bt−1)x − bt).

Thus, b1 − 1 ∈ Bm. It follows immediately that

Bm+1 = Bm + {1} (= {h + 1 : h ∈ Bm}) for all m ≥ 0,

which inductively gives

Bm = {m − 1, m + 1} for all m ≥ 0.

Hence, the statement follows. �

The next lemma describes how the coefficients of a polynomial G(x) can ‘spread’
if (x − 1)mG(x) is a Littlewood polynomial. In fact, for our present purposes, we only
need a specific consequence of this statement (namely, for the coefficient of the second
largest power of x), but we find it interesting to describe this phenomenon completely.

LEMMA 3.4. Let G(x) ∈ Z[x] and let m be a nonnegative integer. If all the coefficients
of (x − 1)mG(x) belong to {−1, 1}, then, writing

G(x) = b0xt + b1xt−1 + · · · + bt−1x + bt

for all i = 0, 1, . . . , t, we have

−min
((

m + i
m

)
,
(
m + t − i

m

))
≤ bi ≤ min

((
m + i

m

)
,
(
m + t − i

m

))
.

Here we use the convention
(

0
0

)
= 1.

REMARK 3.5. We note that, as one can easily check by following the proof, the bounds
given for the coefficients of G(x) are sharp.

PROOF. First, we show that

−
(
m + i

m

)
≤ bi ≤

(
m + i

m

)
(for i = 0, 1, . . . , t), (3.4)
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by induction on m. For m = 0, the statement is obvious. Assume that (3.4) holds for
some m ≥ 0, and assume that all the coefficients of (x − 1)m+1G(x) belong to {−1, 1}.
In view of

(x − 1)m+1G(x) = (x − 1)m((x − 1)G(x))

= (x − 1)m(b0xt+1 + (b1 − b0)xt + · · · + (bt − bt−1)x − bt),

the induction hypothesis by bi = (bi − bi−1) + bi−1 (i ≥ 1) successively yields

−1 ≤ b0 ≤ 1, − 1 −
(
m + 1

1

)
≤ b1 ≤ 1 +

(
m + 1

1

)
,

− 1 −
(
m + 1

1

)
−

(
m + 2

2

)
≤ b2 ≤ 1 +

(
m + 1

1

)
+

(
m + 2

2

)
, . . . .

By a well-known identity,

−
(
m + 1 + i

m + 1

)
≤ bi ≤

(
m + 1 + i

m + 1

)
for 0 ≤ i ≤ t,

that is, (3.4) is valid also with m replaced by m + 1. So, (3.4) holds for all m. Now,
observing that bt = ±1 and starting the argument at the constant term and going
backwards (or, alternatively, working with reciprocal polynomials), a similar argument
gives

−
(
m + t − i

m

)
≤ bi ≤

(
m + t − i

m

)
for i = 0, 1, . . . , t.

Hence, the lemma follows. �

LEMMA 3.6. Let n ≥ 2 and let g(x) ∈ Z[x] be a nonzero polynomial. If all the
coefficients of (x − 1)n−1gn(x) belong to {−1, 1}, then n = 2.

PROOF. Write

F(x) = (x − 1)n−1gn(x),

and assume that all the coefficients of F(x) belong to {−1, 1}. Then

(x − 1)F(x) = ((x − 1)g(x))n,

and hence

H(((x − 1)g(x))n) = H((x − 1)F(x)) ≤ 2. (3.5)

Put

G(x) = (x − 1)g(x).

Obviously, the constant term of G(x) is ±1. Let � be the smallest positive exponent
for which the coefficient of x� in G(x) is nonzero. (Clearly, such an � exists because
deg G ≥ 1.) Write u� for the coefficient of x� in G(x). Then the coefficient of x� in

((x − 1)g(x))n = (G(x))n
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is ±nu�. Then, by (3.5), we get | ± nu�| ≤ 2. This implies that n ≤ 2 (in fact, n = 2), and
the statement follows. �

LEMMA 3.7. Let g(x) ∈ Z[x] be a nonconstant polynomial and let m, n be integers with
0 ≤ m < n. If all the coefficients of the polynomial (x − 1)m(g(x))n belong to {−1, 1},
then n = 2, m = 1 and g(x) is of the form

g(x) = ±(x� + · · · + x + 1)

with some � ≥ 1.

PROOF. Write

g(x) = u0x� + u1x�−1 + · · · + u�−1x + u�

and

G(x) = (g(x))n = b0xt + b1xt−1 + · · · + bt−1x + bt.

Clearly, u0 = ±1 and b0 = ±1. Further, b1 = ±nu1. However, Lemma 3.4 implies that

|b1| ≤ m + 1.

Hence, either u1 = b1 = 0, or, by m < n, we obtain m = n − 1. In the former case, m = 1
by Lemma 3.3. Then the property that (x − 1)G(x) has only ±1 coefficients easily
implies that b2 = ±1. On the other hand (as t ≥ 2 and u1 = 0), we also have

b2 = ±nu2,

which is not possible because n ≥ 2. Hence, u1 = 0 cannot hold, and we are left with
the case m = n − 1. Then n = 2 by Lemma 3.6. Thus, b0 = 1. Further, without loss
of generality, we may also assume that u0 = 1. (Then, having described the possible
polynomials g(x), we only need to insert a ± sign in front of them.) So, we can write

xt + b1xt−1 + · · · + bt−1x + bt = (x� + u1x�−1 + · · · + u�−1x + u�)2

= x2� + 2u1x2�−1 + (u2
1 + 2u2)x2�−2 + (2u3 + 2u1u2)x2�−3 + · · · . (3.6)

We show that here we necessarily have ui = 1 (i = 1, . . . , �). For this, recall that all the
coefficients of (x − 1)(g(x))2, that is, of

(x − 1)(xt + b1xt−1 + · · · + bt−1x + bt) = (xt+1 + (b1 − 1)xt + · · · + (bt − bt−1)x − bt)

are ±1. That is,

b1 − 1, bt, bi − bi−1 ∈ {−1, 1} for 2 ≤ i ≤ t. (3.7)

In particular, bi is even if i is odd, and bi is odd if i is even. Since b1 � 0, b1 − 1 = 1
and hence b1 = 2. Comparing the coefficients of xt−1 in (3.6) gives u1 = 1. Inductively,
assume that bi = i + 1 and ui = 1 for some i with 1 ≤ i < �. Then (3.7) yields bi+1 ∈
{i, i + 2}, while (3.6) gives

bi+1 = u0ui+1 + u1ui + · · · + ui+1u0.

https://doi.org/10.1017/S0004972722000132 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000132


[8] Polynomials with restricted coefficients 261

This shows that ui+1 ∈ {0, 1}. However, ui = 0 is impossible. Indeed, otherwise, again
by (3.6), b2(i+1) is even, since, in the coefficient of x2(i+1), all products uju2(i+1)−j occur
twice except for u2

i , which is assumed to be zero. However, b2(i+1) is known to be odd.
Thus, we see that ui+1 = 1 (and bi+1 = i + 2). So, the only possibility is given by

g(x) = ±(x� + · · · + x + 1).

Finally, we have to check that the polynomial g(x) given above satisfies the require-
ments of the lemma (with n = 2 and m = 1). Indeed,

(x − 1)(g(x))2 = (x − 1)
(x�+1 − 1

x − 1

)2

= (x�+1 − 1)
x�+1 − 1

x − 1
= x2�+1 + · · · + x�+1 − x� − · · · − x − 1.

Thus, the lemma is proved. �

The following lemma is a theorem of Brindza [5]. For its statement, we need some
further notation. For any finite set S of primes, write QS for those rationals whose
denominators (in their primitive forms) are composed exclusively from the primes
in S. By the height h(s) of a rational number s we mean the maximum of the absolute
values of the numerator and the denominator of s (written again in primitive form).

LEMMA 3.8. Let F(x) ∈ Z[x] of degree D and height H and write

F(x) = A
�∏

i=1

(x − γi)ri ,

where A is the leading coefficient of F, and γ1, . . . , γ� are the distinct complex roots
of F(x), with respective multiplicities r1, . . . , r�. Further, let n be an integer with n ≥ 2,
and put

qi =
n

(n, ri)
for i = 1, . . . , �.

Suppose that (q1, . . . , q�) is not a permutation of any of the �-tuples

(q, 1, . . . , 1) for all q ≥ 1 and (2, 2, 1, . . . , 1).

Then, for any finite set S of primes and nonzero rational B, the solutions x, y ∈ QS of
the equation

F(x) = Byn

satisfy

max (h(x), h(y)) < C7(B, n, D, H, S),

where C7(B, n, D, H, S) is an effectively computable constant depending only on
B, n, D, H, S.
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PROOF OF THEOREM 2.3. First, we show that n can be bounded in the required way.
Following the lines of the proof of Theorem 2.1, we see that it is sufficient to exclude
the case when f (x) is of the form (x ± 1)d. (In the notation of the proof of Theorem 2.1,
we need to have u = ±1 and v = ±1.) However, this is clearly impossible.

Hence, from this point on, we may suppose that n ≥ 2 is fixed. Thus, our statement
immediately follows from Lemma 3.8, except in the following two cases:

(i) n = 2 and f (x) = h(x)(g(x))2, where deg h = 2 and h(x), g(x) ∈ Z[x]; and
(ii) n is arbitrary and f (x) = (h(x))m(g(x))n, where deg h ≤ 1, 0 ≤ m < n and

h(x), g(x) ∈ Z[x].

Clearly, without loss of generality, we may assume that all the polynomials f, g, h are
monic.

In case (i), write h(x) = x2 + v1x + v2 and g(x) = x� + u1x�−1 + · · · + u�. Clearly,
v2 = ±1. Further,

g2(x) ≡ x2� + u2
1x2�−2 + · · · + u2

� (mod 2).

Thus, if v1 is even, then all odd coefficients of h(x)g2(x) are even, which is a
contradiction. So, v1 must be odd. However, then

h(x)g2(x) ≡ x2�+2 + u2
1x2�+1 + (u2

1 + 1)x2� + · · · (mod 2).

Thus, either the coefficient of x2�+1 or that of x2� is even, but this is impossible. So,
case (i) cannot hold.

Now, consider case (ii). We can suppose that the polynomials f, g, h are monic and
h(x) = x − 1. (Indeed, if h(x) = x + 1, which is the only other possibility, then, after
the substitution x→ −x and multiplying equation (2.2) by an appropriate power of −1,
we are easily back to this case.) Thus, the statement follows from Lemma 3.7. (The
second possibility for f (x) comes from the case h(x) = x + 1.) �
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