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Relaxation of turbulent pipe flow downstream of
a square bar roughness element
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The relaxation of turbulent pipe flow downstream of a single square bar roughness element
is studied at distances up to 120R (R is the pipe radius). Three bar heights, h/R = 0.04, 0.1
and 0.2, are investigated. The data suggest three stages for the relaxing flow. Immediately
following the square bar is the development of a separated shear layer, where we find
that the peak Reynolds stress scales linearly with h/R and the disturbance profile is
characterised by h. The bulk shear stress and turbulence intensity in this stage scale as
(h/R)2 and reach their maximum near the reattachment point. The second stage features
the redistribution of turbulence towards the pipe centre and a power law in the decay
of turbulence. The extent of this region is characterised by a streamwise length scale,
xc, which measures the extent of the redistribution process. The final stage of recovery is
found to be long-lasting and oscillatory owing to asynchronous recovery between the mean
velocity and the Reynolds stress. The oscillation wavelength scales with xc and decreases
with increasing h/R. In contrast, the deficits in the mean shear and the bulk shear stress
increase with h/R. For all three bar sizes, the flow recovery is not complete until the
streamwise distance exceeds 500h–1000h.

Key words: pipe flow, turbulence modelling

1. Introduction

An important class of non-equilibrium flows commonly encountered in engineering
applications is wall-bounded turbulent flows subjected to abrupt perturbations, such
as changes in surface roughness, the presence of surface-mounted obstacles or steps,
suddenly imposed pressure gradients and/or surface curvature and flow divergence. Such
flows often exhibit complex behaviours that are not well understood, and are typically not
captured well by Reynolds-averaged Navier–Stokes (RANS) methods. For example, where
the disturbance is localised near the wall, such as in an abrupt change in roughness, the
response is characterised by the formation of an internal layer that grows at a rate that
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depends on the local time scale of the turbulence, and so it grows fast initially, and ever
more slowly as it expands into the outer region (Antonia & Luxton 1971, 1972; Smits &
Wood 1985). Other kinds of disturbances are predominantly observed in the outer region.
For example, the imposition of concave curvature can cause the turbulence to collapse in
the outer layer to levels that are below the equilibrium state, before a very slow relaxation
to reach the equilibrium level far downstream (Smits, Young & Bradshaw 1979): a kind of
second-order response. In the case of obstacles placed on the surface or steps in elevation,
the flow first separates and then reattaches, a process that has long represented a major
challenge for turbulence modelling and prediction (Good & Joubert 1968; Bradshaw &
Wong 1972; Eaton & Johnston 1981; Westphal, Johnston & Eaton 1984; Castro & Haque
1987; Adams & Johnston 1988; Le, Moin & Kim 1997; Tomas, Pourquie & Jonker 2015;
Mohammed-Taifour & Weiss 2016; van der Kindere & Ganapathisubramani 2018).

Here, we are interested in the response of turbulent pipe flow to a square bar roughness
element of varying height. The square bar initially causes the flow near the wall to
separate with the formation of a strong shear layer, followed by reattachment to the
wall. The phenomena of separation and reattachment in a wall-bounded flow have been
extensively studied in the past, with typical geometries including backward-facing steps
and surface-mounted obstacles. An important characteristic of such flows is that the
turbulence development in the separated shear layer scales with the reattachment length
(Westphal et al. 1984; Durst, Founti & Wang 1989). In this respect, numerous studies
have been conducted to understand the effects of various parameters on the reattachment
length (see Kuehn 1980; Armaly et al. 1983; Adams & Johnston 1988; Ötügen 1991,
among others). There are also a large number of studies focusing on other features in
the separation and reattachment regions, including form drag (Good & Joubert 1968),
turbulence length scales (Bradshaw & Wong 1972; Castro 1979), unsteady flapping motion
in the recirculation bubble (Mohammed-Taifour & Weiss 2016) and vortex dynamics
(Kostas, Soria & Chong 2002).

In contrast, the flow relaxation downstream of the reattachment point has received
relatively less attention. One striking feature of the relaxing flow is the sustained collapse
of turbulent stresses below their fully-developed values in the outer region, as identified by
Smits et al. (1979) and Castro & Epik (1998). The implications are of both fundamental
and practical importance in that the recovery process is non-monotonic and very slow.
In fact, in almost all previous measurements and simulations the flow at the farthest
downstream station was not even close to being fully recovered. For example, the studies of
strongly perturbed flows by Antonia & Luxton (1972), Efros & Krogstad (2011), Hanson
& Ganapathisubramani (2016), Ismail, Zaki & Durbin (2018) and Li et al. (2019) were
all conducted for a downstream distance of less than 15 boundary-layer thicknesses or
channel half heights. One exception is the experimental study by Van Buren et al. (2020)
who reported that the full recovery of turbulent pipe flow downstream of a step change in
surface roughness (rough-to-smooth step) took a distance of at least 120R.

To help advance our understanding of the relaxation process, especially in the far field,
we investigate the response of turbulent pipe flow to the presence of a square bar roughness
element with the farthest distance ∼ O(1000h); h is the bar height. Our goal is to identify
characteristic length scales, scaling laws and their representation in a RANS framework
over the entire relaxation process. In our experiment, the square bar is fitted to the surface
of the pipe as a circular ring, and the perturbation strength is varied by choosing three
bar sizes: h/R = 0.04, 0.1 and 0.2. The upstream flow condition is maintained to ensure
fully developed pipe flow, which would seem to be an ideal place to study the response
of turbulent flows to sudden perturbations because the upstream and far-downstream
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Turbulent flow downstream of a square bar roughness element
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Figure 1. Experimental set-up and test section geometry.

conditions are identical and well known, and the bulk-flow Reynolds number is fixed.
It should be noted that, although the pipe-flow response in some respects is similar to
that found in corresponding boundary-layer flows, there are important differences owing
to the confined geometry of a pipe (Chung et al. 2015). In the present study we will search
for similarities between the flow responses in pipe and boundary-layer flows while also
remarking on the attributes of the response that are unique to pipe flow.

2. Experimental methods

Figure 1 shows the experimental set-up and the test section geometry. The experiment
was conducted in the recirculating water-pipe facility at Princeton University. The pipe
has an inner diameter of D = 2R = 38.1 mm and a development length of approximately
200D to ensure fully-developed flow upstream of the test section. The bulk velocity was
Ub = 4.1 m s−1, corresponding to a bulk Reynolds number ReD = 2UbR/ν = 165 000,
where ν is the kinematic viscosity of water at 22 ◦C. Using the friction-factor correlation
proposed by McKeon et al. (2004), the friction velocity in the upstream fully-developed
flow at this Reynolds number is uτ0 = 0.186 m s−1, and the friction Reynolds number is
Reτ0 = uτ0R/ν = 3760.

The square bar roughness element was held by friction on the pipe surface, and the
perturbation strength was varied by choosing three bar heights: h/R = 0.04, 0.1 and 0.2
(see figure 1). The medium and large bars (nylon) were machined with slightly oversized
outer diameters and carefully sanded down until they fitted in the glass pipe snugly. The
small bar was made by laser cutting a nylon sheet and applying some sanding on the
outer diameter. The three bar heights, in terms of viscous units, were huτ0/ν = 150, 376
and 752, respectively, bracketing the entire overlap region. The drag on each bar may
be estimated using the results on the drag of a fence immersed in a turbulent boundary
layer (Good & Joubert 1968; Castro & Fackrell 1978). In terms of minor loss coefficients,
the drag of the square bar is equivalent to an extra pipe length of 5R, 12R and 23R for
h/R = 0.04, 0.1 and 0.2, respectively, at this Reynolds number.

We examined the relaxation of the flow using particle image velocimetry (PIV) in
the axial-radial plane. The data were acquired at multiple downstream stations with the
farthest one at x = 120R (the origin for x is located at the downstream edge of each
bar). The full dataset comprises continuous panels for 0 < x/R < 20 and discrete panels
further downstream (see figure 2). At each station 10 000 image pairs were recorded with
a LaVision Imager sCMOS PIV camera at a magnification of 0.34 (52 pixel mm−1).
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Figure 2. Streamwise locations where PIV data were taken in terms of h and R.

A water-filled box was sealed around the pipe to reduce distortion owing to the refractive
index mismatch. A 1 mm thick laser sheet was orientated at 45◦ with respect to the pipe
(see figure 1), and surface reflections were minimised using a polarising filter.

The PIV images were processed in DaVis 8.3.0 with an iterative symmetric image
deformation algorithm. The final interrogation spot was 32 × 32 pixels with 50 % overlap,
corresponding to a spatial resolution of 0.6 mm with 0.3 mm vector spacing. Using the
method described in Adrian & Westerweel (2011) (§ 9.4.5), the root-mean-square (r.m.s.)
displacement error ranged between 0.05 and 0.15 pixel over 0 < y/R < 1 (decreasing with
y, where y is measured from the wall). This error translates to an uncertainty level of
less than 4 % of the local turbulence intensity. The statistical uncertainty is therefore
dictated by turbulent fluctuations; the standard deviation of the mean streamwise velocity
estimate is approximately 0.2 %, and that of the Reynolds shear stress is around 2.5 %.
Comprehensive details of the uncertainty analysis are given in the appendix of Van Buren
et al. (2020), in which the data were acquired in the same pipe facility with the same PIV
system and processing methods as in the present work.

3. Overview of the response

We begin by examining the flow reattachment and the pressure recovery, and provide
an overview of the development of mean flow and Reynolds stresses. The notation and
definitions used here are summarised in table 1.

3.1. Flow separation and reattachment
The mean streamlines in the region close to the separation bubble are shown in figure 3,
together with the corresponding shear-stress distributions. For all three bars, the flow
is seen to separate at the leading edge of the bar, and the mean dividing streamline
rises a little above the location where y = h before bending down toward the point of
reattachment. To estimate the mean reattachment length, xR, we determine the location
where U = 0 at the data point closest to the wall (y1/R ≈ 0.016). The velocity distribution
at this height is shown in figure 3(d), and we find xR = 4.5h, 8.6h and 9.3h for h/R = 0.04,
0.1 and 0.2, respectively.

How do we explain these differences in xR? By dimensional analysis xR/h will depend
only on h/R and huτ0/ν. At a fixed Reynolds number, as is the case here, there is only
one independent parameter: we can choose either h/R or huτ0/ν. In either case, the
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Turbulent flow downstream of a square bar roughness element

h square bar height
R pipe radius = D/2
xR mean reattachment length
xc convection length scale
U, V mean-axial and wall-normal velocity
u, v fluctuating-axial and wall-normal velocity
τ Reynolds shear stress = −uv

Δ (prefix) disturbance of a quantity relative to its equilibrium value
at the same wall-normal distance (e.g. Δτ , ΔU,y, . . .)

Δτ ∗ maximum Δτ (similar for Δu2∗
and Δv2∗

)
y∗ wall-normal location of Δτ ∗
subscripts
, derivative (e.g. U,y = ∂U/∂y, τ,yy = ∂2τ/∂y2, . . .)
0 equilibrium value (e.g. U0, U,y0, uτ0, . . .)

b bulk quantity (e.g. τb = 2
∫ R

0 τ(R − y)dy/R2, u2b, Ub, . . .)

Table 1. Notation and definitions.
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Figure 3. Mean streamlines near the separation bubble and flow reattachment distance. (a)–(c) h/R = 0.04,
0.1, 0.2; (d) mean streamwise velocity at the first data point away from the pipe wall (y1/R ≈ 0.016). The
reattachment length xR = 4.5h, 8.6h and 9.3h for the three bar sizes.

smaller the bar the more it is immersed in the intense turbulence present in the near-wall
region. Chapman, Kuehn & Larson (1958) argued that the size of the separation bubble
is determined by a balance between the pressure-driven reverse flow and the entrainment
by the separated shear layer. When the turbulence in the separated shear layer is more
intense, the separation bubble will shorten to account for enhanced mass entrainment. See
also Westphal et al. (1984) and Adams & Johnston (1988). Hence the considerably shorter
xR of the small bar compared to the others is likely a result of more highly turbulent fluid
in the near-wall layer being lifted up and carried over the bar, helping to intensify the
turbulent mixing in the shear layer.
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Figure 4. Recovery of the bulk mean pressure gradient as a function of x/h. −(P,x)b is normalised by its
equilibrium value, 2ρu2

τ0/R.

Although no direct comparison can be made between the present results on xR with
previous studies, we can contrast our measurements to those in pipe or boundary-layer
flows over small-aspect-ratio surface-mounted obstacles. Durst et al. (1989) measured
a turbulent pipe flow downstream of a wall-mounted ring (length-to-height ratio 2 : 1;
blockage ratio h/R = 0.5) and reported that 6.8 < xR/h < 8.2 over the same Reynolds
number range as in the present case (5000 < Reh < 20 000 based on h and the centreline
velocity). van der Kindere & Ganapathisubramani (2018) found xR/h ≈ 11 behind a square
block immersed in a moderately thin boundary layer (h/δ = 0.77) with Reh = 20 000,
which agrees with the trend of increasing xR when the upstream turbulence is less intense,
as observed in our measurement.

3.2. Pressure recovery
The pressure gradient P,x is given by the Reynolds-averaged momentum equation in the
axial direction. In a cylindrical coordinate system with r = (R − y), we have

UU,x + VU,y = −ρ−1P,x + ν∇2U − u2
,x − (R − y)−1[(R − y)uv],y, (3.1)

where an overbar indicates an ensemble/time average and derivatives are denoted by
commas in subscript (e.g. P,x = ∂P/∂x). Integrating over the pipe cross-section gives the
bulk mean pressure gradient (P,x)b, which is shown in figure 4 as a function of x/h. It
is evident that the recovery of the bulk mean pressure gradient scales with h, and that
it takes approximately 50h to recover regardless of the bar size (within experimental
uncertainty, our data indicates that the deviation from equilibrium at x/h = 45 is 13 %
of that at x/h = 20, and it decreases to 7 % at x/h = 50; over 50 < x/h < 100, the average
value is about 6 %). For x > 50h, therefore, the bulk pressure gradient plays little role in
the recovery of the velocity field, and so it must occur through an interaction between the
mean velocity and fluctuations in velocity and pressure, which will be further discussed in
§ 5.

3.3. Relaxation of mean velocity and Reynolds stress
The distributions of U and −uv at locations up to x/R = 120 are shown in figures 5–10
for each of the three bars. In these plots, U is normalised by the bulk velocity Ub

and −uv is normalised by u2
τ0. Dimensional analysis indicates that at fixed Reynolds
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Figure 5. Evolution of U for h/R = 0.04. The vertical dash-dot line in (a) indicates where
y = h (huτ0/ν = 150).

number U = f1(x, y, h, R, uτ0) so that U/uτ0 = f2(x/R, y/R, h/R). The same functional
dependence applies to the non-dimensional Reynolds stresses. This choice of parameters
is not unique. For instance, velocities can be normalised by either Ub or uτ0 (they are
directly related at a fixed Reynolds number), y and h can be normalised by either ν/uτ0 or
R, and both x/h and x/xR will be seen to be useful in revealing the scaling laws (by our
earlier analysis xR/h = f (h/R)).

Parts (a) of figures 5–10 show the results for the region that includes the separated
shear-layer development and the flow just downstream of reattachment (x/h ≤ 10). For all
three bars, the maximum mean shear and the peak shear stress in the separated shear layer
both occur at y/h ≈ 1.3, while the overall velocity difference across the layer and its width
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Figure 6. Evolution of −uv for h/R = 0.04. The vertical dash-dot line in (a) indicates where y = h

(huτ0/ν = 150).

increase with h/R. The obstruction owing to the bar accelerates the mean flow outside the
shear layer by continuity but the shear stress is nearly unaffected, implying a form of rapid
distortion response in this outer region.

In parts (b) of figures 5–10, we see the results for the region where the turbulence is
redistributed and begins to decay (x/h ≥ 10). The mean flow relaxes by ‘pivoting’, where
the flow accelerates near the wall and slows down away from the wall. The pivot point, that
is, the wall-normal location where U,x = 0, moves away from the wall as the flow develops
downstream. After the initial development, the region of high shear stress expands in
size as its peak level slowly decays. For the small bar, the disturbance amplitude is small
enough so that the recovery of −uv is confined to a region defined by y/R < 0.3. For the
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Figure 7. Evolution of U for h/R = 0.1. The vertical dash-dot line in (a) indicates where
y = h (huτ0/ν = 376).

medium and large bars, however, this redistribution process continues until the profile of
−uv reaches a more or less symmetric shape over the region 0 < y/R < 1. The shear
stress then decays towards the equilibrium state without further redistribution in the radial
direction.

The results in the region far downstream are shown in parts (c) of figures 5–10. For
the medium and large bars, the recovery of U is clearly non-monotonic and very slow.
To begin, the near-wall layer distribution overshoots and the outer layer undershoots the
equilibrium profile before gradually approaching the equilibrium state. For the small bar,
this oscillatory behaviour is not apparent, but it will become clear in figure 19 that the
overshoot also occurs for the small bar but with a much reduced amplitude. Interestingly, a
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similar overshoot/undershoot response was seen in the case of a thin laminar boundary
layer separating and reattaching downstream of a backward-facing step (Bradshaw &
Wong 1972).

The recovery of −uv is also long-lasting and oscillatory, which is most clearly observed
for the medium and large bars. The distribution of −uv first crosses the equilibrium profile
at 20R–30R, and stays below the equilibrium level for a distance of about 100R before
bouncing back. For the flow perturbed by the small bar, the recovery in U and −uv seems
to be complete by about x = 500h. For the larger bars, the flow is close to the equilibrium
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Figure 9. Evolution of U for h/R = 0.2. The vertical dash-dot line in (a) indicates where
y = h (huτ0/ν = 752).

state for x > 600h, and the remaining discrepancies are small so that the flow is likely to
be full recovered by 1000h.

Two features deserve further attention. We first consider the pivoting of U. The mean
momentum equation (3.1) indicates that changes in the mean velocity are dictated by the
pressure and Reynolds stresses (viscous forces are negligible away from the wall). For one
representative case (x/h = 20, h/R = 0.1, corresponding to the flow condition given in
figure 7b), the contributions of each term in the mean momentum equation are shown in
figure 11. For y/R > 0.6, the adverse pressure gradient is the dominant force that retards
the flow. For y/R < 0.2, the flow accelerates (UU,x > 0), and the shear stress plays a
central role in facilitating the momentum flux from upper layers of fast fluid. In the vicinity
of UU,x = 0, UU,x approximately coincides with −r−1(ruv),y, suggesting that the pivot

922 A34-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.515


L. Ding and A.J. Smits

10

20

30

40

5

10

15

20

25

30

0

10–2

10–1

100

101

x/h = 1
x/h = 4
x/h = 6
x/h = 8
x/h = 10

0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

y/R

–
uv

/u
2 τ

0
–
uv

/u
2 τ

0
–
uv

/u
2 τ

0

x/h = 12
x/h = 16
x/h = 22
x/h = 33

x/R = 7 (x/h = 35)
x/R = 10
x/R = 15
x/R = 30
x/R = 60

Equilibrium
x/R = 120

(c)

(b)

(a)

Figure 10. Evolution of −uv for h/R = 0.2. The vertical dash-dot line in (a) indicates where
y = h (huτ0/ν = 752).

point (U,x = 0) corresponds to a local equilibrium in momentum exchange, i.e. (ruv),y =
0, which is close to the peak location of −uv. As the flow evolves downstream, the pivot
point moves with the peak of −uv away from the wall, as is observed in figures 5–10.

Next, we consider the cessation of redistribution when the peak of −uv reaches y/R ≈
0.5. The origin lies in the wall-normal turbulent convection term, uv2

,y, in the transport
equation for τ = −uv, which, in a cylindrical coordinate system with axisymmetry, is
given by

Uτ,x + Vτ,y =
{
v2U,y + u2V,x + τV

R − y

}
+

{
u2v,x + uv2

,y + u(w2 − v2)

R − y

}

− p(u,y + v,x)/ρ + ν∇2τ − ε12, (3.2)
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Figure 11. Mean momentum budget ((3.1)) at x/h = 20 (h/R = 0.1). All terms are normalised by 2u2
τ0/R.

where a comma in subscript denotes a derivative (e.g. uv2
,y = ∂uv2/∂y). On the

right-hand side, production terms (v2U,y + . . . ) and turbulent convection terms (u2v,x +
. . . ) are grouped with curly braces, and the remaining three terms are, in order, pressure
strain, viscous diffusion and dissipation. Here, uv2

,y can be interpreted as the net flux
of −uv in the wall-normal direction, and it is primarily responsible for the redistribution
of −uv. Figure 12 shows this turbulent convection term in the medium bar case at four
streamwise locations leading up to the point where the convection stops. Each profile is
normalised by its own absolute maximum to reveal the radial distribution. We see that
uv2

,y is a sink close to the wall and a source away from the wall, redistributing −uv towards
the pipe centre. When −uv becomes more or less symmetric over 0 < y/R < 1, uv2

,y also
begins to exhibit a symmetric shape (corresponding to the profile labeled x/xc = 1 in
figure 12). Further downstream uv2

,y diffuses −uv but it does not move the peak of −uv

in the radial direction. A similar result is seen for the large bar, whereas for the small
bar our data suggest that the magnitude of excess −uv is so small that the redistribution
process ceases before the −uv profile becomes symmetric.

The behaviour of uv2
,y observed here generally agrees with conventional

gradient–diffusion models that relate the triple correlation to the gradient of Reynolds
stress (see, e.g. Daly & Harlow (1970)). Such modelling approaches assume that uv2

,y
behaves like the curvature of −uv, which is consistent with our data; the profile of −uv

before the cessation is convex (negative curvature) close to the wall and concave (positive
curvature) away from the wall.

For all three bar sizes, the normal stresses broadly follow the development of the shear
stress, with some significant differences. The profiles of u2 and v2 for the medium bar are
shown in figures 13 and 14 as a representative case. Three distinct features stand out. First,
entering the second stage (x/h > 10), Δu2 and Δv2 evolve nearly in proportion to Δτ .
The ratio of their peak values is 3.5 : 1.4 : 1 for the small bar and 2.8 : 1.6 : 1 for the
larger bars. Second, the wall damping makes the near-wall variations of v2 and −uv much
less pronounced compared with that of u2 (see figures 13a and 13b). Third, the convection
of u2 and v2 continues all the way to the centreline, in contrast to the convection of −uv.
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Figure 12. The turbulent convection term, uv2
,y, in the transport equation of −uv. h/R = 0.1. Each profile is

normalised by its own absolute maximum to reveal the radial distribution. The scale xc is defined in (4.2) and
(4.3).

Again, we can gain insight from the turbulent convection terms, which are −u2v,y and
−v3

,y for u2 and v2, respectively. Both of these convection terms are even functions of
y − R, and they are positive near the centreline and negative away from it, so that they
tend to redistribute u2 and v2 to the pipe centreline. Subsequently, u2 and v2 near the
centreline decay and undergo an oscillatory recovery, much like −uv.

4. Three stages in the flow response

Our observations identified three stages for the flow response: (I) shear layer development,
(II) turbulence redistribution and decay and (III) oscillatory and long-lasting recovery. We
now consider how these regions may scale. Based on our observations, we seek the scaling
for the maximum excess shear stress in a given profile, Δτ ∗, and its wall-normal location
denoted by y∗.

4.1. Stage I: shear layer development
Stage I encompasses the region where the separation bubble and flow reattachment occur,
and it occurs for x < 10h or x < xR, which will be further explained in what follows.

Figure 15(a) shows y∗/h as a function of x/h, where the scaling with h is revealed, in
that the disturbance is confined near the wall until x/h = 10 for all three bars. There are
some considerable differences in y∗ for x/h < 6 among the three bars which may be a
result of the limited resolution of the data in this region (the vector spacing in the PIV data
corresponds to 0.4h, 0.16h and 0.08h for the three bars, respectively). A recent RANS study
in a related flow by Goswami & Hemmati (2020), for example, found an excellent collapse
of y∗ when scaled by h, which may constitute some indirect evidence for an expected
collapse in our case as well.

Figure 15(b) shows the development of Δτ ∗. For x/xR > 0.1 the data collapse well
in terms of Δτ ∗/(h/R) and x/xR. The growth of Δτ ∗ follows (x/xR)0.25, reaching a
maximum value at approximately 0.8xR followed by a short plateau until x = xR. While
the 0.25 power-law growth and the proportionality to h/R seem to be peculiar to the
present flow, xR is clearly the correct scale for the development of a separated shear layer
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Figure 13. Evolution of u2 for h/R = 0.1. The vertical dash-dot line in (a) indicates where
y = h (huτ0/ν = 376).

in wall-bounded turbulence (Eaton & Johnston 1981; Castro & Haque 1987; Durst et al.
1989).

As proposed by Yakhot, Bailey & Smits (2010), it can also be revealing to examine the
bulk turbulence, where Δτb and Δu2b are the area-averaged values of the shear stress and
streamwise turbulence intensity, respectively (see also table 1). Given that both y∗ and Δτ ∗

scale as h/R, Δτb and, by extension, Δu2b are expected to scale as (h/R)2. In figure 16,
we see that these two bulk parameters scale as expected, and that they both reach their
maximum values at x ≈ xR. They also develop at a similar rate, where Δτb ∼ (x/xR)0.75

and Δu2b ∼ (x/xR)0.7, which is entirely consistent with the similarity observed between
their profiles.
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It becomes clear by the previous discussion that stage I is bounded by either 10h or xR,
depending on whether the flow is characterised by y∗ or Δτ ∗. This holds true even for the
small bar where xR is noticeably smaller than 10h, that is, turbulence in the shear layer
stops amplifying well before it starts to spread outwards.

4.2. Stage II: turbulence redistribution and decay
Stage II is dominated by the redistribution of turbulence, and it exists for xR (or 10h)
< x < xc. Here xc is the convection length scale defined in (4.2). We see from figures 15(a)
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Figure 16. Development of (a) the bulk shear stress, Δτb and (b) the bulk streamwise turbulence intensity,
Δ(u2)b. Both are plotted against the near-field scaling, x/xR.

and 15(b) that in the early part of stage II the stage I scaling for y∗ and Δτ ∗ continues to
collapse the data. For all bars, we find initially that

y∗/h = 0.28(x/h)0.65. (4.1)

Then for the medium and large bars, the value of y∗/h levels out at a fixed point where
y∗/R ≈ 0.55 (the trend for the small bar is unclear because we have insufficient data). This
is the point where the redistribution or convection ceases, and we can use the intersection
of (4.1) with this point to define the convection length xc. That is, we have

xc/h = 2.83(h/R)−1.54, (4.2)

or equivalently

xc/R = 2.83(h/R)−0.54. (4.3)

Rewriting (4.1) in terms of x/xc yields

y∗/R = 0.55(x/xc)
0.65, (4.4)

922 A34-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.515


L. Ding and A.J. Smits

10–2

104

x –1

103

102

101

104

103

102

101

x/xc

100 10–2

x/xc

100

h/R = 0.04
h/R = 0.1
h/R = 0.2

x –0.7

�
τ*

/[
u2 τ

0(
x R

/x
c)

(h
/R

)]
(b)(a)

�
τ b

/
[u

τ2 0(
x R

/x
c)

0.
7 (

h/
R

)2 ]

Figure 17. Development of Δτ ∗ and Δτb in terms of the far-field scaling, x/xc.

which can be considered as the far-field scaling for the disturbance shape (as characterised
by y∗) up until x = xc. It represents a transition from scaling with h and xR in the near field
to R and xc in the far field.

As for Δτ ∗, we see from figure 15(b) that for x > xR it scales as (h/R)(x/xR)−1 up to a
point that corresponds to x = xc. This is shown more explicitly in figure 17(a) where the
data of figure 15(b) have been rescaled in terms of xc. The normalisation of Δτ ∗ in this
figure is a convenient scaling that helps to collapse the data and illustrate the important
role of xc in scaling the streamwise variation, and it is not meant to provide further insight
on the behaviour of the amplitude. The −1 power-law decay is somewhat similar to that
found by Castro (1979) in the boundary-layer relaxation downstream of a two-dimensional
block, although in that case the decay rate also depended on h/δ.

We conclude that for the x-dependence of y∗ and Δτ ∗, h and xR are the appropriate
near-field scales and xc is the correct far-field scale. Equations (4.2) and (4.3) also indicate
that both xc/h and xc/R scale inversely with h/R, that is, the redistribution process for a
larger bar takes a shorter distance. From the small to the large bar, xc/h is approximately
400, 100 and 33, and xc/R is approximately 16, 10 and 6.7.

As may be expected, xc also scales the bulk turbulence, as observed for Δτb in
figure 17(b). As in figure 17(a) the non-dimensionalisation of the amplitude used here is
done only for convenience. The collapse for the medium and large bars is impressive, and
we believe that the departures seen for the small bar are attributable to the small amplitude
of Δτ . For u2 and v2 (not shown here), the power-law decay and the extent of power-law
behaviour are found to be almost identical to those of Δτ , consistent with our observation
that u2 and v2 develop in proportion to −uv away from the wall. We also examined the
wall-normal distribution of Δτ at three representative x/xc values (figure 18), showing that
the scaling collapses the profiles in addition to the location and magnitude of their peak
values.

4.3. Stage III: oscillatory and long-lasting recovery
Stage III describes the recovery process for x > xc. We characterise this final stage in
terms of the mean velocity gradient U,y near y/R = 0.5 and the bulk Reynolds shear stress
τb. The first term was chosen because the mean gradient is a sensitive measure of mean
flow recovery and it plays an obvious role in the transport equations. The second term is
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Figure 18. Comparison of Δτ profiles in terms of the far-field scaling, x/xc. Red lines are for the medium bar
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Figure 19. Development of U,y at y/R = 0.5 in the far field. (a) U,y as a function of x/h; (b) ΔU,y as a
function of x/xc.

a representative measure of the bulk-flow response, and it nicely illustrates the far-field
stress recovery.

The development of U,y with x/h is given in figure 19(a). The data again demonstrate
the slow recovery downstream of each bar. As found earlier with respect to U and −uv, the
equilibrium state is only recovered by 500 < x/h < 1000. We also see the characteristic
damped second-order response, where U,y initially falls below its equilibrium value
followed by an overshoot with a reduced amplitude. In addition, depending on the
perturbation strength as characterised by h/R, the deficit in U,y can be significant: for
the medium bar it is about 50 % of the equilibrium value, and for the large bar it is about
80 %.

The development of U,y with x/xc is given in figure 19(b). The convection scale
collapses the data in terms of the locations of the first and second zero crossings, which are
located at approximately x/xc = 1.3 and 13, respectively. The maximum deficit in U,y (i.e.
ΔU,yx = 0) also occurs at the same value of x/xc (≈ 2.5) for all three bar sizes. Although
xc was derived based on the redistribution of turbulence in stage II, the observation that it
also scales the recovery in stage III makes it the true far-field length scale. In particular,
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Figure 20. Development of τb in the far field. (a) τb as a function of x/h; (b) Δτb as a function of x/xc.

we see that for x/xc > 1.3 the oscillation half wavelength is constant (≈ 12xc) and that the
oscillation amplitude scales as h/R.

The recovery of the bulk shear stress τb is presented in figure 20 against x/h and x/xc.
The maximum deficit in τb is as much as 30 % of the fully-developed value, as seen for
the large bar. As seen for ΔU,y, the convection scale xc collapses Δτb in the far field,
where Δτb crosses zero at approximately x/xc = 2.5 and 15, so that the oscillation half
wavelength for Δτb is approximately the same as that of U,y. We also find that Δτb in
this region is proportional to h/R, although the results for the small bar may be subject to
significant measurement error associated with the small values of Δτ in stage III.

Choosing xc for the far-field scaling highlights the important role of turbulent diffusion.
In stage II, turbulence redistribution up until x = xc is driven by turbulent diffusion; in
stage III the redistribution term is small and the decay and the subsequent oscillatory
recovery become the principal characteristics of the flow. Using xc does not imply new flow
physics. By dimensional analysis, the flow development depends on four dimensionless
parameters: h/R, Reτ , x/h and y/R. The choice for non-dimensionalisation is not unique,
and we have chosen what best reveals the flow dynamics in each stage – x/h and x/xR for
stage I (and early part of stage II) and x/xc for the far-field dynamics. Note that xc is related
to h/R by by (4.2) or (4.3).

Regarding the anomalous behaviour seen for the small bar, we are inclined to attribute
it to limitations in measurement accuracy. The scaling in stages I and II works well for all
bar sizes, and only in the final stage do we begin to see different trends for the small bar
(the differences are still not large). In Stage III the disturbance amplitude is so small for
the small bar that even a small bias error may appear to be significant, so it is probable
that the true trend is obscured by errors in our measurements. It is certainly possible, of
course, that different mechanisms emerge as the perturbation becomes weaker. Further
study of flows subject to such weak perturbations would require diagnostic tools having an
enhanced dynamic range/accuracy.

5. Recovery scaling in terms of the governing equations

Smits et al. (1979) demonstrated that the far-field development of ΔU,y was approximately
governed by a second-order ordinary differential equation (ODE), and thus the recovery
resembled a damped harmonic oscillation. Van Buren et al. (2020) further developed this
concept and successfully modelled the recovery of turbulent pipe flow following a step
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Turbulent flow downstream of a square bar roughness element

change in wall roughness. It will now be argued that the far-field recovery of wall-bounded
flows downstream of a strong perturbation display a common behaviour that is mostly
independent of the strength and form of the initial perturbation.

We start by examining the governing equations. The derivation generally follows that
given by Van Buren et al. (2020), where further details are available, but with some
important simplifications.

Far downstream of the perturbation (approximately x > xc) and in the outer layer of the
flow, ΔU,y evolves according to

ΔU,yx = 1
U0

Δτ,yy, (5.1)

which is obtained by differentiating the mean momentum equation (3.1) with respect to y
and neglecting small terms. From the shear-stress transport equation (3.2), the evolution of
Δτ for x > xc is predominantly governed by the interaction between the production, v2U,y,
and the pressure strain, −p(u,y + v,x)/ρ. We adopt the basic LRR-IP model (where ‘LRR’
represents Launder, Reece & Rodi 1975, and ‘IP’ represents isotropisation of production)
for the pressure strain, which combines Rotta’s linear return-to-isotropy model for the slow
term (the first term on the right-hand side in the equation below) with a model for the fast
term that is in proportion to the production (Launder, Reece & Rodi 1975; Pope 2001).
That is

− p(u,y + v,x)/ρ = −CR
ε

k
τ − C2v2U,y, (5.2)

where CR and C2 are model constants. Using (5.2) and by linearisation and subtraction of
the equilibrium equation, we arrive at a simple model for the evolution of Δτ :

Δτ,x = 1 − C2

U0
(U,y0Δv2 + v20ΔU,y) − CR

ε

U0k
Δτ, (5.3)

in which ε and k are the isotropic dissipation rate and the turbulent kinetic energy,
respectively, and subscript ‘0’ denotes equilibrium values. As in Smits et al. (1979) and
Van Buren et al. (2020), we make the approximation Δv2 = A2Δτ (A2 is a constant),
which is at least partially justified by our data. In (5.3) k/ε corresponds to a time scale
associated with the decay of the energy-containing motions, so it is expected to scale with
xc/U0. If we assume a simple proportionality so that U0k/ε = A1xc, then

Δτ,x =
[

A2(1 − C2)
U,y0

U0
− CR

A1xc

]
Δτ + (1 − C2)

v20

U0
ΔU,y. (5.4)

Equations (5.1) and (5.4) together show that the oscillatory behaviour is a result of
the recovery being asynchronous between the mean velocity and the Reynolds stress.
It was observed that when ΔU,y decreases to zero at x/xc ≈ 1.3, τ is far from the
equilibrium state for the medium and large bars (figures 19 and 20). At this point the
curvature of Δτ is negative (figures 8 and 10) and thus continues lowering U,y to below
its fully-developed value ((5.1)). Likewise, when Δτ reaches zero, it continues reducing
because Δτ,x ∼ ΔU,y < 0 ((5.4)). Then, further downstream where Δτ is negative and
exhibits positive curvature, ΔU,y bounces back. Smits et al. (1979) noted that ‘Δτ varies
in quadrature with ΔU,y’, and it is a characteristic of recovering wall-bounded flows that
is evident in the governing equations.

Equation (5.1) also shows that the maximum negative value of ΔU,y corresponds to
ΔU,yx ∼ Δτ,yy = 0. Given the shape of Δτ as observed in figures 8 and 10, Δτ,yy = 0
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indicates that Δτ = 0. Thus, we see from (5.4) that the maximum negative value of ΔU,y
is proportional to Δτ,x at the point where Δτ crosses zero, and therefore it increases with
h/R. Similar arguments can be made for the maximum negative value of Δτ , and these
trends are in accordance with our experimental data.

We can now combine (5.1) and (5.4) to obtain an equation for ΔU,y. We will assume that
the disturbance Δτ is shape-preserving, and that it can be separated in the streamwise and
wall-normal directions so that Δτ = u2

τ0f (ỹ)g(x̃), with ỹ = y/R and x̃ = x/xc. We then
obtain a second-order ODE in x̃ for the parameter ΔŨ,y = (h/R)−1ΔU,y, such that

∂2ΔŨ,y

∂ x̃2 + b
∂ΔŨ,y

∂ x̃
+ cΔŨ,y = 0, (5.5)

with

b = CR

A1
− A2(1 − C2)

U,y0

U0
xc, (5.6)

and

c = −(1 − C2)
xc

2

R2
f ′′

f
v20

U2
0

. (5.7)

Equation (5.5) is essentially the same as the one presented in Van Buren et al. (2020),
except that the coefficients b and c are different in that different models were chosen for
the fast pressure strain term and ε/k. (The equations are presented in Cartesian form for
the purpose of simplicity. Using a cylindrical coordinate system as in a pipe, f ′′ is replaced
by f ′′ − f ′/(1 − ỹ) − f /(1 − ỹ)2. This choice does not affect the discussion of scaling.)
Furthermore, taking a derivative of (5.5) with respect to x̃ and combining it with (5.1) gives
a second-order ODE for the streamwise variation of g̃ = (h/R)−1g (i.e. the normalised
disturbance amplitude for τ ):

g̃′′ + bg̃′ + cg̃ = 0. (5.8)

We see that (5.5) and (5.8) are identical in form, implying identical wavelength and
damping rate for ΔU,y and Δτ . The former is consistent with our data that showed the
half wavelength to be approximately 12xc for both ΔU,y and Δτ . However, the linear
model fails to predict the similarity in terms of x/xc. That is, when scaled by h/R, both
ΔU,y and Δτ from our experimental data exhibit similarity as a function of x/xc. On the
other hand, b and c in the equations depend on h/R, implying that the wavelength (in terms
of xc) also depends on h/R.

Despite the inconsistency, it is still of interest to examine the model in terms of
the recovery distance (oscillation wavelength). We adopt CR = 1.8 and C2 = 0.6 in the
LRR-IP model (Pope 2001), A2 = 1.5 according to our data and A1 = 1. Here, f =
1 − 0.25(1 − ỹ)2 is a parabola following Van Buren et al. (2020). Then the half wavelength
predicted by (5.5) at ỹ = 0.5 is 4.1xc for the medium bar and 7.8xc for the large bar, which
are considerably smaller than the experimental value of ≈ 12xc. Figure 21 compares the
solution of (5.5) with h/R = 0.2 to the experimental data. The first zero-crossing and the
maximum deficit in the data were used to determine the constants in the solution. The
agreement is somewhat encouraging for the large bar, but not for the smaller bars. Further
improvement of the model may require the use of nonlinear models for the pressure strain
and involve nonlinear ODEs for ΔU,y and Δτ , but this would undoubtedly obscure the
simple ideas put forward here.
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Figure 21. Comparison between the model ((5.5) and (5.8) with h/R = 0.2) and the experimental data in the
final stage of recovery. (a) ΔU,y; (b) Δτb.

6. Conclusions

The response of turbulent pipe flow to a square bar roughness element was characterised
by three distinct stages: shear layer development, turbulence redistribution and decay, and
oscillatory and long-lasting recovery. In terms of the wall-normal extension of each stage,
the disturbance is initially confined close to the wall on a scale of h, followed by diffusion
to the outer region until the disturbance occupies the entire pipe. Far-field relaxation then
occurs as a bulk behaviour.

In stage I and the early part of stage II, h and xR were found to be the near-field
streamwise scales governing the flow development. The disturbance shape of −uv evolved
as a function of h, and the onset of turbulence redistribution occurred at 10h. The
turbulence intensity and Reynolds shear stress featured a power-law growth until x ≈ xR,
followed by a power-law decay for x > xR. In addition, the peak Reynolds shear stress and
the bulk turbulence were shown to scale as h/R and (h/R)2, respectively.

During the second stage, the turbulence development transitioned from the near-field
scales h and xR to the far-field scale xc. We derived xc based on the distance over which
the convection or redistribution of −uv is important. This convection scale was found
to be remarkably useful in characterising the flow development: the disturbance shape,
the extent of power-law decay and the development of normal stresses were all found to
collapse when viewed in terms of xc.

The final stage of recovery is oscillatory and long-lasting (O(100R)) as compared
with the extent of the first two stages (10R–20R). Here, ΔU,y and Δτb recovered
asynchronously, which appears to be the mechanism responsible for the oscillatory
recovery. Their zero-crossings as well as oscillation half-wavelengths (≈ 12xc) collapsed
when viewed in terms of x/xc, suggesting xc to be the true far-field streamwise scale.
The oscillation half-wavelength decreased with increasing h/R (xc ∼ (h/R)−0.54), but the
oscillation amplitude scaled as h/R for both ΔU,y and Δτb.

It is somewhat surprising that xc continues to be the scale for the far-field recovery of
the flow, as was seen in stage III. This result is not an obvious implication of the governing
equations, at least within the framework of linearised RANS models. What is even more
striking is that no simple scaling was found for the decay of turbulence downstream of
x = xc, although Δτb changes sign at a fixed value of x/xc for all three bars. In this
regard, the linear far-field recovery model that we derived from the transport of U and
−uv proved insufficient. It was shown to successfully predict the damped oscillation, the
same wavelength for ΔU,y and Δτ and the increasing magnitude of ΔU,y and Δτ as
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h/R increases. However, the model fails to identify the important role in the recovery
played by redistribution as reflected in the collapse of the data with xc in stages II and III.
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