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Abstract

Background. Despite a growing understanding of disorders of consciousness following severe
brain injury, the association between long-term impairment of consciousness, spontaneous
brain oscillations, and underlying subcortical damage, and the ability of such information
to aid patient diagnosis, remains incomplete.
Methods. Cross-sectional observational sample of 116 patients with a disorder of conscious-
ness secondary to brain injury, collected prospectively at a tertiary center between 2011 and
2013. Multimodal analyses relating clinical measures of impairment, electroencephalographic
measures of spontaneous brain activity, and magnetic resonance imaging data of subcortical
atrophy were conducted in 2018.
Results. In the final analyzed sample of 61 patients, systematic associations were found between
electroencephalographic power spectra and subcortical damage. Specifically, the ratio of beta-to-
delta relative power was negatively associated with greater atrophy in regions of the bilateral thal-
amus and globus pallidus (both left > right) previously shown to be preferentially atrophied in
chronic disorders of consciousness. Power spectrum total density was also negatively associated
with widespread atrophy in regions of the left globus pallidus, right caudate, and in the brain-
stem. Furthermore, we showed that the combination of demographics, encephalographic, and
imaging data in an analytic framework can be employed to aid behavioral diagnosis.
Conclusions. These results ground, for the first time, electroencephalographic presentation
detected with routine clinical techniques in the underlying brain pathology of disorders of
consciousness and demonstrate how multimodal combination of clinical, electroencephalo-
graphic, and imaging data can be employed in potentially mitigating the high rates of misdiag-
nosis typical of this patient cohort.

Introduction

When patients survive a severe brain injury, but fail to fully recover the two cardinal elements
of consciousness [i.e. awareness and arousal; (Laureys, 2005; Monti, 2012)], they are said to
enter a disorder of consciousness [DOC; (Monti, Laureys, & Owen, 2010)]. This label describes
a set of conditions including coma, a state of unarousable unresponsiveness, the vegetative
state (VS), a state of arousal in the absence of (self)awareness, and the minimally conscious
state (MCS), a state in which patients can demonstrate some level of (self)awareness, albeit
inconsistently. MCS can be further subdivided into MCS+, to indicate patients capable of
high-level behavioral responses such as command following and intelligible verbalizations,
and MCS−, to indicate patients only demonstrating low-level behaviors such as visual pursuit
and appropriate contingent behavior [e.g. smiling or crying in response to emotional stimuli;
(Bruno, Vanhaudenhuyse, Thibaut, Moonen, and Laureys, 2011)].

Over the past 20 years, electroencephalography (EEG) and magnetic resonance imaging
(MRI) have been increasingly employed to monitor neurological status (Brenner, 2005), residual
cognitive function (Chennu et al., 2013; Monti et al., 2015; Schnakers et al., 2008), state of aware-
ness (Crone et al., 2015; Demertzi et al., 2019; Owen et al., 2006), and potential for recovery
(Bagnato et al., 2010; Crone, Bio, Vespa, Lutkenhoff, & Monti, 2018; Schnakers et al., 2019)
in DOC patients. In the context of bedside EEG, analysis of the magnitude of oscillations at
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different frequencies (i.e. power spectrum analysis) has been shown
to be capable of differentiating DOC patients from patients with
the severe neurocognitive disorder but no consciousness impair-
ment (Leon-Carrion et al., 2008), as well as clinical categories of
chronic DOC (i.e. VS, MCS), with a depth of impairment correlat-
ing with slower, larger amplitude oscillations (Lechinger et al.,
2013; Lehembre et al., 2012). While this technique is sensitive to
different injury etiologies (Fingelkurts, Fingelkurts, Bagnato,
Boccagni, & Galardi, 2013), it is blind to the underlying anatomical
damage. At a theoretical level, the mesocircuit theory of recovery of
consciousness after brain injury predicts a relationship between
the slowing and amplitude of electrocortical oscillations and the
degree of pathologic changes taking place after trauma, hypoxia,
or multifocal ischemia (Schiff, 2016). While indirect evidence exists
in support of this model, with in vivo and post-mortem work dem-
onstrating a relationship between damage to thalamus, loss of
thalamo-cortical structural connectivity, and depth of impairment
(Adams, Graham, & Jennett, 2000; Lutkenhoff et al., 2015;
Zheng, Reggente, Lutkenhoff, Owen, & Monti, 2017), there are
no data directly connecting the patterns of EEG power spectra
and subcortical damage in long-term DOC patients, a gap which
is not only problematic for the clinician’s interpretation of the
observed EEG data but also hampers our ability to monitor,
through an inexpensive, bedside, repeatable technique interven-
tions, and their effects. In what follows, we address, in a large
cohort of patients with chronic DOC, the heretofore untested rela-
tionship between observed electrocortical rhythms, patterns of sub-
cortical brain atrophy (including thalamus, brainstem, and basal
ganglia), and clinical measures of awareness and arousal.

Methods

Participants

A convenience sample of 116 patients was recruited from a
larger database (n = 153) (Nigri et al., 2017; Rosazza et al., 2016;
Rossi Sebastiano et al., 2015, 2018) of chronic DOC patients
with severe brain injury, who underwent a 1-week assessment at
the Coma Research Centre (CRC) of the Neurological Institute
C. Besta in Milan, Italy, between 2011 and 2013. The assessment
included (i) clinical evaluation, including the Coma Recovery
Scale-Revised [CRS-R; (Giacino, Kalmar, & Whyte, 2004)], (ii)
neurophysiological evaluation, including resting EEG, and (iii)
neuroradiological assessment, including MRI (see Table 1).

The acquisition of both resting EEG and structural MRI data-
sets constituted the inclusion criteria for the present study.
Experienced raters independently assessed each patient 4 times
with the Italian version of the CRS-R (Sacco et al., 2011). The
best-recorded performance was used to classify patients as VS
or MCS. As described below, 55 patients were discarded due to
the low quality of the MRI data, following previously established
procedures (Lutkenhoff et al., 2015). Specifically, 24 datasets were
excluded because of excessive movement artifacts, 16 datasets
were excluded due to software failure in segmenting subcortical
structures, 13 datasets were excluded due to poor quality in the
estimation of normalized brain tissue volume, and two subjects
were excluded due to large regions of signal dropout artifacts
(e.g. implants) preventing tissue segmentation (see Figure S1).
Importantly, as discussed below, exclusions do not bias the
analyzed sample as compared to the full cohort (see also online

Table 1. Analyzed sample summary statistics of demographic, clinical, and electroencephalographic data per diagnostic group

VS MCS− MCS+

Age (mean, S.D., y) 53 (±14.21) 54 (±18.77) 46 (±16.77)

MPI (mean, S.D., mo) 23 (±16.05) 44 (±37.17) 53 (±64.97)

Sex 14F, 23M 11F, 6M 0F, 7M

Etiology 12T, 9H, 1I, 1HI, 14TA 5T, 7H, 1I, 0HI, 4TA 3T, 3H, 1I, 0HI, 0TA

Coma Recovery Scale Revised (CRS-R)

Total score 6.24 (1.01) 9.24 (1.25) 10.43 (1.90)

Auditory 1.03 (0.50) 1.41 (0.51) 2.00 (1.15)

Visual 0.76 (0.43) 2.59 (0.71) 2.43 (1.40)

Motor 1.92 (0.28) 2.12 (0.33) 2.14 (0.90)

Orom/Verb 1.00 (0.33) 1.24 (0.56) 1.43 (0.98)

Communic 0.00 (0.00) 0.12 (0.33) 0.57 (0.53)

Arousal 1.54 (0.56) 1.76 (0.56) 1.86 (0.90)

Electroencephalography (Total power & frequency relative power)

Total power (μV2) 138.22 (140.35) 229.20 (261.81) 178.96 (148.15)

Delta (1–4 Hz) 49.46% (13.46%) 41.51% (14.35%) 42.57% (16.97%)

Theta (4–8 Hz) 30.21% (11.09%) 34.09% (9.73%) 33.23% (11.58%)

Alpha (8–13 Hz) 9.71% (5.64%) 11.89% (6.08%) 8.33% (4.48%)

Beta (13–30 Hz) 7.78% (7.09%) 9.59% (8.22%) 13.89% (17.23%)

Gamma (>30 Hz) 2.84% (3.00%) 2.91% (3.21%) 1.98% (1.63%)

VS, Vegetative State; MCS−, Minimally conscious State ‘minus’; MCS+, Minimally Conscious State ‘plus’; MPI, months post-injury; T, traumatic; NT, non-traumatic; H, hemorrhagic injury, I,
ischemic injury, A, anoxic; Orom/Verb, oromotor/verbal; Communic, communication.
See online Supplementary Table S1 for a summary of demographic and clinical variables for the excluded datasets and comparison with the analyzed sample.
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Supplementary Table S1). No patients were excluded on the basis
of the EEG data. The final sample included 61 patients with DOC
(median age = 53 years, range age = 20–82 years, 36 males), 37 VS
and 24 MCS. Of these, 33% (n = 20) had a traumatic brain injury
(TBI) and 67% (n = 41) had non-traumatic etiology (non-TBI). In
particular, among non-TBI patients, 30% (n = 18) suffered from
anoxic brain injury and 37% (n = 23) from hemorrhagic and/or
ischemic brain injury. The median disease duration at the time
of the study was 24 months (range = 5–198 months) (see Tables
1 and online Supplementary Table S1). The local Ethics
Committee approved all aspects of this research and written
informed consent was obtained from the legally authorized repre-
sentative of the patients prior to their inclusion in the study.

Data acquisition and analysis

EEG data acquisition and processing
Patients underwent polygraphic recordings between 2 pm and
9 am on the following day (Rossi Sebastiano et al., 2018).
Recordings included electrooculography (EOG), electromyogra-
phy (EMG) from the sub-mental muscle, a bipolar precordial
electrocardiogram (ECG) derivation, and an impedance thoracic
pneumogram. EEG recordings were made with Ag/AgCl surface
electrodes (impedances <5 kΩ) and acquired at a sampling rate
of 256 Hz using a computerized system (Micromed SpA,
Mogliano Veneto, Treviso, Italy). Raw EEG signals were recorded
against a common reference electrode to allow off-line data
reformatting, using a 19 EEG electrode array placed according
to the 10–20 International System [including frontal (Fp1, Fp2,
F3, F4), central (C3, C4), parietal (P3, P4), and occipital (O1,
O2) electrodes)]. We preliminarily divided the awake from sleep
based on the polygraphic signal. Spectral EEG analysis was then
performed on one epoch of 5-minute, consecutive, artifact-free,
awake EEG signal. To minimize issues deriving from different
levels of arousal, we selected the EEG epochs as close as possible
to the beginning of the recording, in order to prevent signal deg-
radation due to the prolonged recording and to maintain, as
much as possible, the same reproducible characteristics between
recordings in different patients. The selected epochs were filtered
(1–70 Hz, 12 db/octave), followed by a 50 Hz notch filter to sup-
press the noise of the electrical power line, reformatted against the
linked ear-lobe reference. In order to remove blink-artifacts, we
applied an ICA-artifact rejection algorithm. Then, the selected
EEG activity was divided into 90 non-overlapping 2 s segments
and analyzed using the fast Fourier transform. Absolute total
power and relative power were evaluated in the delta (1–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma
(>30 Hz) bands, and averaged within each EEG channel.

MRI data acquisition and processing
Neuroimaging data were obtained with a 3T MRI machine (Achieva,
Philips Healthcare BV, Best, NL; 32-channel coil). The MRI protocol
included a high-resolution 3D-TFE T1-weighted sequence (185
sagittal slices, TR = 9.781ms, TE = 4.6ms, voxel size = 1mm3, flip
angle = 8◦). Analysis of subcortical structures was conducted using
a technique known as shape or vertex analysis, part of the FMRIB
software library (FSL; FMRIB, Oxford, UK), following a previously
established pipeline (Lutkenhoff et al., 2015; Schnakers et al.,
2019). Briefly, MR images were brain-extracted using optiBET
(Lutkenhoff et al., 2014), then the thalamus, caudate, putamen, glo-
bus pallidus, hippocampus, and brainstem were segmented using
FSL FIRST (Patenaude, Smith, Kennedy, & Jenkinson, 2011), for

each patient and structure separately, and reconstructed into three-
dimensional vertex meshes, as depicted in Fig. 1. In addition, the
normalized brain volume (NBV), a measure of global brain atrophy
including white and gray matter volume, was calculated for each
patient using FSL SIENA (Smith et al., 2002).

Statistical analyses

In what follows, we describe four analysis which was employed to
assess the relationship between clinical/behavioral measures of
impairment, electrophysiological recordings, and subcortical mea-
sures of atrophy.

EEG analysis

To assess the relationship between EEG spectral power and clinical
grouping, we ran a mixed-model linear analysis with EEG (relative)
power as the dependent variable, laterality (left, right, middle),
channel position (Fp, F, C, P, O), and EEG features (total power,
delta, theta, alpha, beta, gamma bands) as the repeated measures,
diagnosis (VS, MCS−, MCS+), etiology (TBI, non-TBI), sex,
EEG frequency, age, and months post-injury as fixed variables
and subjects as the random variable. As described below, the
significant interaction between EEG features and diagnosis was fol-
lowed up with one mixed-model analysis per each EEG feature
(using the same model, albeit without the EEG feature as a repeated
variable). Individual mixed-models were followed up with pairwise
post-hoc comparisons between diagnostic groups (i.e. VS, MCS−,
MCS+), with Šidák correction for multiplicity.

EEG-MRI analysis

In the second analysis, we related EEG spectral features to subcortical
shape measures. However, because of significant correlations among
spectral characteristics across electrodes and frequency bands, spec-
tral data first were entered into a principal component analysis
(PCA), with varimax rotation. The PCA returned eight components
with eigenvalue greater than 1, cumulatively explaining 91.8% of the
total variance. The first three components presented a similar pat-
tern, each loading negatively, in all electrodes, on the delta band
and positively on beta, alpha, and theta bands, respectively (hence-
forth, β/δ ratio component, α/δ ratio component, and θ/δ ratio

Fig. 1. Sample structure extraction (left) and 3-dimensional triangle vertex mesh
(right). A, anterior; BrStem, brain stem; Caud, caudate; GP, globus pallidus; Hipp,
hippocampus; L, left; P, posterior; Putm, putamen; R, right; Thal, thalamus.
Figure from (Lutkenhoff et al., 2015).
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component, respectively). The fourth component loaded positively
on all gamma frequency electrodes (henceforth, γ component),
while the fifth component loaded positively on the total power for
each electrode (henceforth, total power component). Finally, the last
three components appeared to capture diffuse statistical covariance
between electrodes, although with a preference for loading, respect-
ively, positively on the delta band and negatively on the alpha band
in right hemispheric electrodes (henceforth, δ/αRH ratio component),
loading positively on delta band and negatively on the alpha band in
Fp electrodes (henceforth, δ/αFp ratio component), and loading nega-
tively on both the alpha and theta bands in the parietal and occipital
electrodes (henceforth, αθ(P,O)

− ). (See Figure S2 for a depiction of the
strength of each component for VS,MCS−, andMCS+.) EEG compo-
nents were then entered, as independent variables, in a general linear
model predicting local shape patterns (e.g. atrophy). Sex, age,
time-post-injury, etiology (i.e. TBI v. non-TBI), were included as cov-
ariates, along with NBV (to ensure that observed tissue displacement
reflect local subcortical shape changes independent of overall brain
atrophy [Lutkenhoff et al. 2015; Schnakers et al. 2019)]. Group-level
significance was assessed with a non-parametric permutation test at
a level of p < 0.05 corrected for multiplicity using family-wise cluster
correction and threshold-free cluster enhancement (TFCE) as imple-
mented in FSL randomize (Smith & Nichols, 2009).

CRS-R – MRI analysis

In this analysis, we related the patients’ behavioral presentation, as
captured by the CRS-R subscales, with subcortical atrophy.
Because of significant correlations between the subscales of
the CRS-R (i.e. the desired independent variables), behavioral
data were entered into a PCA performed analogously to the one
described above. The analysis returned three components with
an eigenvalue greater than 1, cumulatively explaining 69.57% of
the variance. The three components loaded on, respectively, the
auditory, visual, and arousal subscales (henceforth, audio-visual-
arousal component), the motor subscale (henceforth, motor
component), and the oromotor and communication subscales
(henceforth, oromotor-communication component). As in the
previous analysis, the three components were entered as inde-
pendent variables in a general linear model predicting subcortical
shape, along with the same covariates described above. Group-
level significance was assessed identically to the previous analysis.

Predicting DOC level from EEG spectral features

Finally, we employed a binary logistic regression to evaluate the
degree to which global atrophy and EEG measures related to diagno-
sis (i.e. VS v. MCS). With a 3-block model, we attempt to predict
diagnosis from a model including demographic variables only [i.e.
age, sex, months post-injury, etiology (TBI v. non-TBI)], a model
including demographics and a measure of global atrophy (including
global white matter and gray matter), and a model including demo-
graphic, global atrophy, and EEG variables (i.e. the eight EEG
components).

Results

EEG results

The mixed-model analysis revealed a significant interaction
(F (10,1309.055) = 16.599, p < 0.001) between diagnostic group (i.e.
VS, MCS−, MCS+) and EEG features (i.e. total power, delta,

theta, alpha, beta, gamma frequency bands; see Fig. 2 and
Table 1), along with a significant main effect of diagnosis
(F (2,4389.124) = 5.158, p = 0.006), EEG features (F (5,1309.055) =
6.368, p < 0.001), and months post-injury (F(2,4220.566) = 5.407,
p = 0.020). Follow-up mixed-model analyses (one per EEG feature)
revealed a significant effect of diagnosis on total power (F(2,594.374)
= 19.115, p < 0.001; with pairwise-comparisons revealing that VS
patients show significantly less total power than bothMCS groups),
delta (F(2,770.006) = 4.620, p = 0.010; with VS patients having the
most relative delta power, significantly more than MCS− patients),
theta (F(2,779.789) = 12.268, p < 0.001; with VS patients showing sig-
nificantly less relative theta power than both MCS groups), alpha
(F(2,748.766) = 13.231, p < 0.001; with MCS− patients showing sig-
nificantly more relative alpha power than VS and MCS + patients,
and VS patients showing greater relative alpha power than MCS+
patients), and gamma (F (2,746.625) = 5.416, p = 0.005; with MCS+
patients showing significantly less relative gamma power than
MCS− patients). [For further description of the EEG data in this
cohort see (Rossi Sebastiano et al., 2018)].

EEG – MRI analysis

As shown in Fig. 3, three of the EEG factors exhibited significant cor-
relations with local atrophy measurements. Specifically, the β/δ ratio
component was negatively associated with greater atrophy in bilat-
eral thalamus [left: t = 3.28, p = 0.025, 1007 significant vertices,
(sig. vert.), right: t = 2.85, p = 0.041, 544 sig. vert.], bilateral globus
pallidus (left: t = 4.26, p = 0.002, 491 sig. vert.; right: t = 3.42, p =
0.025, 356 sig. vert.), left caudate (t = 3.37, p = 0.02, 793 sig. vert.),
and right hippocampus (t = 3.21, p = 0.02, 735 sig. vert.) (see
Fig. 3a). The θ/δ component was negatively associated with
increased atrophy in right putamen (t = 3.72, p = 0.037, 140 sig.
vert.) and right globus pallidus (t = 3.89, p = 0.037, 30 sig. vert.)
(see Fig. 3b). Finally, the total power component was negatively asso-
ciated with widespread atrophy in the brainstem (including the 4th

ventricle region; t = 4.41, p = 0.004, 3704 sig. vert.), as well as the
left globus pallidus (t = 4.00, p = 0.008, 365 sig. vert.) and right caud-
ate (t = 5.48, p = 0.018, 193 sig. vert.) (see Fig. 3c). No significant
associations were detected for the remaining components.

CRS-R – MRI analysis

As shown in Fig. 4a and b, two of the CRS-R components exhib-
ited significant correlations with local atrophy measurements.

Fig. 2. Summary of EEG data. Total and relative power at each frequency band (to
allow displaying on the same axis, values are normalized within each variable).
(Error bars represent standard errors.).
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Specifically, the motor component was negatively associated with
greater atrophy in broad regions of the brainstem (t = 3.69, p =
0.074, 4301 sig. vert.; see Fig. 4a) while the oromotor-
communication component was negatively associated with greater
atrophy in regions of the brainstem (t = 2.74, p = 0.05, 943 sig.
vert.), left putamen (t = 3.23, p = 0.023, 712 sig. vert.), and right
globus pallidus (t = 2.38, p = 0.049, 108 sig. vert.).

Predicting DOC level from EEG spectral features

As shown in Fig. 5a and Table 2, diagnosis (i.e. VS v. MCS) was
predicted significantly better by the model including EEG
components, overall brain atrophy (including both white

matter and gray matter), and demographic components [i.e.
age, sex, etiology (TBI v. non-TBI), and months post-injury;
χ2(54) = 29.09, p < 0.001, Nagelkerke pseudo-R2

Nag = 0.51)], com-
pared to the model with demographics and brain atrophy
[χ2(58) = 16.66, p < 0.001, R2

Nag = 0.32], as well as the model
with demographics only [χ2 (59) = 8.93, p = 0.003, R2

Nag = 0.18].
Indeed, the full model achieved better performance (i.e. area
under the curve, AUC = 0.87), sensitivity and specificity (sens/
spec; 0.79, 0.81, respectively) than both other models (AUC =
0.78, sens/spec 0.58/0.78 and AUC = 0.67, sens/spec 0.29/0.89
for the demographics and atrophy and the demographic only
models, respectively). Notably, the contribution of increasingly
complex models (i.e. adding brain atrophy and EEG

Fig. 3. Results for the rest EEG – MRI analysis. (a) Results for
the β/δ ratio component; (b) results for the θ/δ component;
(c) results for the total power component. Warmer colors
indicate regions with greater atrophy; gray indicates no sig-
nificant effect.

Fig. 4. Results for the CRS-R – MRI analyses. (a) Results for
the CRS-R motor component; (b) results for the CRS-R
oromotor-communication component. (See Fig. 3 for color
interpretation.).
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components) is to increase the model’s sensitivity to MCS (at the
cost of a loss of specificity).

Finally, in terms of individual variables, as shown in Fig. 5b
and Table 2, the full model selected one demographic component
(age/sex; β = 1.44, OR = 1.06, p = 0.002), overall brain atrophy
(β = 1.27, OR = 3.56, p < 0.001), as well as the EEG total power
(β = 0.66, OR = 1.94, p = 0.017).

Discussion

We report three main findings addressing the relationship
between the severity of the impairment of consciousness, EEG
spectral profile, and subcortical atrophy. First, our results show
that spectral profiles recorded with conventional EEG map onto

specific patterns of subcortical brain pathology (as observed
with MRI), in line with theoretical proposals (Schiff, 2010,
2016). Indeed, we find that the ratio of fast (i.e. beta) to slow
(i.e. delta) frequencies component is negatively related to atrophy
in thalamic regions well known to be associated with severity of
impairment after brain injury, as shown in post-mortem (Adams
et al., 2000) and in vivo (Lutkenhoff et al., 2013, 2015) studies.
Damage within thalamus, along with functional (Monti et al.,
2015) and/or structural (Zheng et al., 2017) disconnection of
thalamo-cortical projections, is indeed central to current theories
of recovery from severe brain injury (Schiff, 2010), with greater
de-afferentiation leading to a state of functional thalamic quies-
cence and, through cell-intrinsic mechanisms (Crunelli et al.,
2018), delta oscillations (Schiff, 2016; Schiff, Nauvel, & Victor,

Fig. 5. (a) ROC curve for the three binary logistic models classifying patient diagnosis (i.e. VS v. MCS) on the basis of demographic components alone (M1), demo-
graphic components and overall brain atrophy (M2), and demographic components, overall brain atrophy, and EEG components (M3). (b) Conditional estimate
plots for each of the significant variables selected in the full model; top row: demographic (age, sex) component, brain overall atrophy (i.e. NBV); bottom row:
EEG total power component, EEG theta/delta component.

Table 2. Binary logistic regression results

Model df ΔΧ2 p R2 AUC Sens Spec Prec

Intercept 60

DEM 59 8.93 0.003 0.18 0.67 0.29 0.89 0.64

DEM + Brain 58 16.66 <0.001 0.32 0.78 0.58 0.78 0.64

DEM + Brain + EEG 54 29.09 <0.001 0.51 0.87 0.79 0.81 0.73

95% CI

Parameter b S.E. β OR z p LB UB

(Intercept) −1.92 0.50 −0.79 0.15 −3.86 <0.001 −2.89 −0.95

DEM: Sex-Age 0.05 0.02 1.44 1.06 3.15 0.002 0.02 0.09

Normalized Brain 1.27 0.37 1.27 3.56 3.44 <0.001 0.55 1.99

EEG: Total power 0.66 0.28 0.66 1.94 2.39 0.017 0.12 1.21

EEG: δ/α(RH) 0.63 0.57 0.63 1.88 1.11 0.269 −0.49 1.75

EEG: θ/δ 0.61 0.32 0.61 1.84 1.88 0.060 −0.03 1.25

EEG: αθ(P,O)(Neg.) 0.59 0.36 0.59 1.80 1.65 0.100 −0.11 1.29

AUC, Area under the curve; sens., sensitivity; spec., specificity; prec., precision.
Top: comparison of the area under the curve, sensitivity, specificity, and precision of the model with demographic components only, the model with demographic components and the
global brain atrophy factor, and the model with demographic components, global brain atrophy factor, and EEG components. Bottom: Individual predictors selected for the full model
(i.e. DEM + Brain + EEG).
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2014). Indeed, interventions aimed at up-regulating thalamic
activity have been shown capable of enhancing behavioral respon-
siveness in DOC patients (Schnakers & Monti, 2017). The origin
of beta frequency oscillations in the thalamo-cortical circuit
remains unclear (Koelman & Lowery, 2019), nonetheless, there
are at least two lines of evidence connecting them to DOC. On
the one hand, a lesser state of thalamic de-afferentiation might
result, through circuit-level interactions, in a thalamic bursting
component expected in the beta frequencies (Schiff et al., 2014).
On the other hand, beta oscillations have been associated with
the globus pallidus (and subthalamic nucleus), a region which
we find strongly negatively associated (particularly in its lateral
segment), with the beta/delta component, and which has been
previously implicated in electrocortical and behavioral arousal
in animal models (Qiu, Vetrivelan, Fuller, & Lu, 2010) and behav-
ioral arousal in several pathologies including DOC (Lutkenhoff
et al., 2015). Some evidence suggests that beta oscillations can
be induced by increased inhibition of the globus pallidus
(Mirzaei et al., 2017), which, in DOC, would imply a lesser dys-
function within the mesocircuit (i.e. greater inhibitory input
from the striatal medium spiny cells towards the pallidum;
Schiff, 2010). Thus, whether of thalamic or pallidal origin, or a
superposition of the two, beta oscillations in DOC might mark
a comparatively less disconnected mesocircuit.

Second, similarly to results obtained in a different (large)
cohort of chronic DOC patients (Lutkenhoff et al., 2015), sub-
scales of the CRS-R mapped onto different underlying patterns
of atrophy, with oromotor/verbal and communication subscales
component loading on left thalamic and bilateral putamen, as
well as subregions of the brainstem, and the motor component
loading mainly on extensive brainstem atrophy. While the present
results are similar to those reported previously (Lutkenhoff et al.,
2015), there also are important differences. For example, no asso-
ciation was found between clinical measurement and brainstem
atrophy in our previous work, and the pattern of thalamic atrophy
in the two studies is not fully overlapping. It is difficult, however,
to fully evaluate the meaning of these differences since the PCA
components extracted in the two studies loaded differently on
each CRS-R subscale. Therefore, although we do find a consistent
set of regions correlating with CRS-R communication subscale in
the two studies, spanning left thalamus and putamen, the details
of the associations between all subscales and subcortical brain
pathology remain to be fully characterized. Third, consistent
with prior work (Corchs et al., 2019; Estraneo et al., 2016;
Lechinger et al., 2013), we find that EEG spectral features are rele-
vant to diagnosing a patient’s chronic state of consciousness (i.e.
VS v. MCS), a decision known to be susceptible to a relatively
high misdiagnosis rate (Monti et al., 2015; Monti & Owen,
2010; Schnakers et al., 2009; Schnakers, Giacino, Kalmar, Piret,
& Lopez, 2006). Specifically, EEG components, together with
demographic information, could correctly classify patients across
the conscious/unconscious line (as behaviorally defined) with
∼87% success, leveraging on demographic information (i.e. sex,
age), overall brain atrophy, and EEG features (i.e. total power
and θ/δ components). It is also noteworthy that in our data com-
bination of EEG and MRI data is additive in terms of enhancing
discriminability across groups, strengthening the idea that multi-
modal approaches are a desirable way of assaying different – and
complementary – aspects of DOC pathology (Coleman,
Bekinschtein, Monti, Owen, & Pickard, 2009; Schiff, 2006) and,
more broadly, brain function and health (Kumral et al., 2020;
Nentwich et al., 2020), particularly in the context of deriving

predictive models from brain data (Engemann et al., 2020).
Despite the good concordance between behavior-based diagnosis
and the classification based on demographic, brain atrophy, and
EEG variables, the two approaches still disagree over one-third
of the cases. Seven MCS patients were classified as being in VS
and seven VS patients were classified as being MCS. The MCS
patients classified as VS by our analysis could reflect the fact
that behavioral diagnoses compress very different EEG profiles
(e.g., patients with traumatic or anoxic etiology) into the same
clinical category. Similarly, the VS patients classified as MCS by
our algorithm could either be a reflection of the variance in the
spectrum of oscillations that are compatible with a state of uncon-
sciousness, or a genuine misdiagnosis (Edlow et al., 2017; Monti
et al., 2015; Owen et al., 2006).

Finally, in evaluating the above results, the reader should be
mindful of some limitations. First, our results are skewed by sur-
vivor bias effects; we might thus be representing a spectrum of
impairment which, while severe, excludes the even greater damage
present in patients who do not survive later than a year post
injury. The same is true with respect to the fact that 55 datasets
had to be excluded from the collected sample. While it would
have been ideal to be able to retain more of the sample, conven-
tional quality control limited our ability to analyze the full dataset.
Nonetheless, the final analyzed sample is similar to that of other
MR-based work in the field [e.g., (Demertzi et al., 2015; Monti,
Vanhaudenhuyse, et al., 2010; Stender et al., 2014;
Vanhaudenhuyse et al., 2010)]. Furthermore, as shown in online
Supplementary Table S1, the analyzed sample and the excluded
sample are matched on almost all demographic and clinical vari-
ables, suggesting that our procedure, while affecting statistical
power, is not introducing additional bias to the collected sample.
Second, while VS and MCS− subgroups exhibit the expected
imbalance across male and female patients [cf., (Lutkenhoff
et al., 2015; Monti, Vanhaudenhuyse, et al., 2010; Stender et al.,
2014)], it should be noted that the MCS+ subgroup is entirely
composed of male patients, thus inviting caution in extrapolating
results exclusive to this subgroup (e.g. differences in relative power
distribution). Second, unexpectedly, we observe that MCS+
patients exhibit lower-alpha relative power compared to MCS−
patients. Nonetheless, considering that the two groups are
matched in terms of overall relative power across alpha and beta
frequencies (24.4 and 24.2% for MCS− and MCS+, respectively),
it is possible that the decreased relative power in the alpha band
observed in MCS+ is simply the converse of the increased relative
power observed in the beta band (both relative to MCS−).
Although caution should be exercised in making such inferences
from a small subset of our data, it is conceivable that MCS−
patients could have a more ‘rigid’ rhythmic EEG less susceptible
to variations as compared to MCS+ patients. Third, due to signifi-
cant correlations across channels within and across power bands,
in order to perform the regression analyses presented above, we
had to first reduce the independent variables by means of a
PCA. While conventional, it does affect the interpretation of
our results in as much as we cannot directly assess whether the
effects we report in mixed component (e.g. the β/δ component)
are principally due to either frequency or to their combination.
Nonetheless, each of the three ratio components correlates
strongly with the ‘raw’ ratio of each pair of frequencies (calculated
by taking the ratio of the average relative power across all chan-
nels; specifically, r = 0.97, r = 0.87, and r = 0.85 for β/δ, α/δ, and
θ/δ, respectively) as well as with each numerator and denominator
variable (albeit numerically more with the nominator for β/δ and
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α/δ components; see online Supplementary Table S2). This sug-
gests that our results can be reasonably interpreted as reflecting
actual ratios in relative power. Third, gamma frequencies are
known to often contain residual muscle artifacts. We decided to
keep them in the analysis mainly because, even if they do contain
artifacts, including this component still contributes to explaining
variance in the signal. Had we not included it, any variance across
patients due to motion would have de facto been subsumed by the
unexplained variance term. In this sense, our approach is analo-
gous to the conventional inclusion of motion parameters in func-
tional MRI analysis. Fourth, while we report associations between
brain damage in subcortical regions and EEG spectral features,
this does not necessarily imply that the pinpointed areas are
themselves the generators of specific oscillatory rhythms at rest.

Finally, it should also be pointed out that the present work did
not include an additional independent sample to confirm the
classification results, thus inviting caution in the extrapolation
of the results towards new cohorts. As multi-site efforts increase,
larger cohorts of high-quality data will permit full application of
such approaches.

In conclusion, this work bridges different levels of analysis of
patients surviving a severe brain injury, uniting DOC brain path-
ology (Adams et al., 2000; Lutkenhoff et al., 2015; Lutkenhoff
et al., 2020), clinical evaluation (Giacino et al., 2004), and
power spectral features (Brenner, 2005; Fingelkurts et al., 2013;
Schnakers et al., 2019) in a framework that makes use of routine
multimodal clinical data and informs both basic science and the
diagnostic process. Furthermore, the present data also show that
the pattern of association between spectral profile, brain damage,
and clinical variables observed in the acute setting (Schnakers
et al., 2019) persist through the chronic timeframe, in line with
the idea that brain injury is best thought of as a long-term disease
as opposed to an ‘event’ (Masel & DeWitt, 2010).
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be found at https://doi.org/10.1017/S003329172000330X
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