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Abstract

We study the distributional properties of jumps in a continuous-state branching process
with immigration. In particular, a representation is given for the distribution of the
first jump time of the process with jump size in a given Borel set. From this result we
derive a characterization for the distribution of the local maximal jump of the process.
The equivalence of this distribution and the total Lévy measure is then studied. For the
continuous-state branching process without immigration, we also study similar problems
for its global maximal jump.
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1. Introduction

A continuous-state branching process (CB-process) is a nonnegative Markov process describ-
ing the random evolution of a population in an isolated environment. The branching property
means that if X = (Xt : t ≥ 0) and Y = (Yt : t ≥ 0) are two independent CB-processes with
the same transition semigroup, then X + Y = (Xt + Yt : t ≥ 0) is also a CB-process with that
transition semigroup. A continuous-state branching process with immigration (CBI-process)
is a generalization of the CB-process which considers the possibility of input of immigrants
during the evolution of the population. The transition semigroup of the CBI-process is uniquely
determined by its branching mechanism � and immigration mechanism �, both are functions on
the nonnegative half-line. We refer the reader to Kawazu and Watanabe (1971) and Lamperti
(1967a), (1967b) for early work on CB- and CBI-processes as biological models. See also
Duquesne and Le Gall (2002), Kyprianou (2014), and Li (2011) for up-to-date treatments of
those processes. We also mention that the CBI-process has been used widely in mathematical
finance as models of interest rate, asset price, and so on. A special form of the process is known
in the financial world as the Cox–Ingersoll–Ross model; see, e.g. Brigo and Mercurio (2006)
and Lamberton and Lapeyre (1996).

The CBI-process is a Feller process, so it has a càdlàg realization X = (Xt : t ≥ 0). Let
�Xs := Xs − Xs− (≥ 0) denote the size of the jump of X at time s > 0. In this work,
we are interested in distributional properties of jumps of the CBI-process. In particular, we
shall give a representation of the distribution of the first occurrence time τA of its jump with
jump size in some given Borel set A ⊂ (0, ∞). From this result we derive a characterization
for the distribution of the local maximal jump max0<s≤t �Xs for any t > 0. Under suitable
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assumptions, we prove that this distribution and the total Lévy measure of the process are
equivalent. For the CB-process, we also study similar problems for the global maximal jump
sup0<s<∞ �Xs . The tool of stochastic equations of the CBI-process established in Dawson
and Li (2006) and Fu and Li (2010) plays a key role in the proof of our main result. The
results obtained in this work are of clear interest in applications of the CB- and CBI-processes
as biological and financial models.

The paper is organized as follows. In Section 2, some basic facts on CB- and CBI-processes
are reviewed. In Section 3 we give the characterization of the distribution of the jump time τA

for A ⊂ (0, ∞). In Section 4 we establish a number of distributional properties of the local
and global maximal jumps of the process.

2. CB- and CBI-processes

In this section we review several basic facts on CB- and CBI-processes for the convenience
of the reader. Let us fix a branching mechanism �, which is a function on R+ := [0, ∞) with
the representation

�(z) = αz + βz2 +
∫

(0,∞)

π0(dθ)(e−zθ − 1 + zθ), z ≥ 0, (2.1)

where α ∈ R and β ∈ R+ are two constants, and π0 is a σ -finite measure on (0, ∞) satisfying∫
(0,∞)

π0(dθ)(θ ∧ θ2) < ∞. (2.2)

A CB-process with branching mechanism � is a nonnegative Markov process with transition
semigroup (Pt )t≥0 defined by∫

R+
e−λyPt (x, dy) = e−xvt (λ), λ ≥ 0,

where t 	→ vt (λ) is the unique nonnegative solution of

vt (λ) = λ −
∫ t

0
�(vs(λ)) ds, t ≥ 0,

or, in the equivalent differential form,

d

dt
vt (λ) = −�(vt (λ)), v0(λ) = λ.

Under the integrability condition (2.2), the CB-process started from any deterministic initial
value has finite expectation. This, in particular, allows us to compensate large jumps of the
process generated by the branching mechanism; see the stochastic integral equation (3.1).

We say that the CB-process is subcritical if α > 0, critical if α = 0, and supercritical if
α < 0. In view of (2.1), we have

�′(z) = α + 2βz +
∫ ∞

0
π0(dθ)θ(1 − e−zθ ),

which is increasing in z ≥ 0. Then � is a convex function. Consequently, the limit �(∞) :=
limz→∞ �(z) exists in [−∞, 0]∪{∞}. The limit �′(∞) := limz→∞ �′(z) exists in (−∞, ∞].
In fact, we have

�′(∞) = α + 2β · ∞ +
∫ ∞

0
θπ0(dθ)
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with 0·∞ = 0 by convention. Observe that �(∞) ∈ [−∞, 0] if and only if �′(∞) ∈ (−∞, 0],
and �(∞) = ∞ if and only if �′(∞) ∈ (0, ∞]. For λ ≥ 0 let

�−1(λ) = inf{z ≥ 0 : �(z) > λ}.
Of course, we have �−1(λ) = ∞ for all λ ≥ 0 if �(∞) ∈ [−∞, 0]. If �(∞) = ∞ then
�−1 : [0, ∞) → [�−1(0), ∞) is the inverse of the restriction of � to [�−1(0), ∞).

The CBI-process generalizes the CB-process given above. Let � be an immigration mech-
anism, which is a function on R+ with representation

�(z) = γ z +
∫

(0,∞)

π1(dθ)(1 − e−zθ ), z ≥ 0, (2.3)

where γ ∈ R+ and π1 is a σ -finite measure on (0, ∞) satisfying
∫

(0,∞)

π1(dθ)(1 ∧ θ) < ∞.

A nonnegative Markov process is called a CBI-process with branching mechanism � and
immigration mechanism � if it has transition semigroup (Qt )t≥0 given by

∫
R+

exp{−λy}Qt(x, dy) = exp

{
−xvt (λ) −

∫ t

0
�(vs(λ)) ds

}
, λ ≥ 0. (2.4)

This reduces to a CB-process when � ≡ 0. We refer the reader to Kawazu and Watanabe
(1971) for a discussion of CB- and CBI-processes with more general branching and immigration
mechanisms.

From (2.4), we see that (Qt )t≥0 is a Feller semigroup, so the CBI-process has a Hunt process
realization; see, e.g. Chung (1982, p. 75). Let X = (
, F , Ft , Xt , Px) be such a realization.
Then the sample path {Xt : t ≥ 0} is Px-almost surely càdàg for every x ≥ 0. Let Ex denote
the expectation with respect to the probability measure Px .

Proposition 2.1. For t ≥ 0, x ≥ 0, and λ ≥ 0, we have

Ex

[
exp

{
−λ

∫ t

0
Xs ds

}]
= exp

{
−xut (λ) −

∫ t

0
�(us(λ)) ds

}
, (2.5)

where t 	→ ut (λ) is the unique nonnegative solution of

ut (λ) = tλ −
∫ t

0
�(us(λ)) ds, t ≥ 0, (2.6)

or, in the equivalent differential form,

d

dt
ut (λ) = λ − �(ut (λ)), u0(λ) = 0. (2.7)

Proof. As special cases of Li (2011, Theorem 9.16), we have (2.5) with t 	→ ut (λ) being
the unique nonnegative solution of (2.6), which is equivalent to its differential form (2.7). �
Proposition 2.2. For λ > 0, the mapping t 	→ ut (λ) is strictly increasing and limt→∞ ut (λ) =
�−1(λ).
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Proof. Consider a Hunt realization X of the CB-process with branching mechanism �. By
Proposition 2.1, we have

Ex

[
exp

{
−λ

∫ t

0
Xs ds

}]
= exp{−xut (λ)}. (2.8)

As observed in the proof of Li (2011, Proposition 3.1), we have Px(Xt > 0) > 0 for x > 0
and t ≥ 0. By (2.8), we see that t 	→ ut (λ) is strictly increasing, so (∂/∂t)ut (λ) > 0 for
all λ > 0. Let u∞(λ) = limt→∞ ut (λ) ∈ (0, ∞]. In the �(∞) ∈ [−∞, 0] case, we have
�(z) ≤ 0 for all z ≥ 0. Then (∂/∂t)ut (λ) ≥ λ and u∞(λ) = ∞. In the �(∞) = ∞
case, we note that �(ut (λ)) = λ − (∂/∂t)ut (λ) < λ, and, hence, ut (λ) < �−1(λ), implying
u∞(λ) ≤ �−1(λ) < ∞. It follows that

0 = lim
t→∞

∂

∂t
ut (λ) = λ − lim

t→∞ �(ut (λ)) = λ − �(u∞(λ)).

Then, we have u∞(λ) = �−1(λ). �

Corollary 2.1. Let X = (
, F , Ft , Xt , Px) be a Hunt realization of the CB-process with
branching mechanism �. Then for x > 0 and λ > 0, we have

Ex

[
exp

{
−λ

∫ ∞

0
Xs ds

}]
= exp{−x�−1(λ)}. (2.9)

Note that (2.9) can also be derived from the theory of Lévy processes; see, e.g. Kyprianou
(2014, Corollary 12.10).

3. Distributional properties of jump times

Let � and � be the branching and immigration mechanisms with representations (2.1)
and (2.3), respectively. Suppose that on a suitable filtered probability space (
, G, Gt , P)

satisfying the usual hypotheses, we have a standard Gt -Brownian motion (Bt : t ≥ 0), a
Gt -Poisson point process (pt : t ≥ 0) on (0, ∞)2 with characteristic measure π0(dz) dy, and a
Gt -Poisson point process (qt : t ≥ 0) on (0, ∞) with characteristic measure π1(dz). Suppose
that (Bt : t ≥ 0), (pt : t ≥ 0), and (qt : t ≥ 0) are independent. Let N0(ds, dz, dy) denote
the Poisson random measure on (0, ∞)3 associated with (pt : t ≥ 0), and Ñ0(ds, dz, dy) the
compensated measure of N0(ds, dz, dy). Let N1(ds, dz) denote the Poisson random measure
on (0, ∞)2 associated with (pt : t ≥ 0). By the results of Dawson and Li (2006) and Fu and Li
(2010), for any G0-measurable nonnegative random variable X0 there is a unique nonnegative
strong solution X = (Xt : t ≥ 0) of the stochastic equation

Xt = X0 +
∫ t

0

√
2βXs dBs +

∫
(0,t]

∫
(0,∞)

∫
(0,Xs−]

zÑ0(ds, dz, dy) +
∫ t

0
(γ − αXs) ds

+
∫

(0,t]

∫
(0,∞)

zN1(ds, dz). (3.1)

It was also proved in Dawson and Li (2006) and Fu and Li (2010) that X is a CBI-process
with branching mechanism � and immigration mechanism �. For x ≥ 0, let Px denote the
conditional law of X given X0 = x.
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In the sequel, we provide some results on the distributional properties of the first jump time
of the CBI-process with jump size in some given sets. To present the results, let us introduce
some notation. For any Borel set A ⊂ (0, ∞) with π0(A) + π1(A) < ∞, we define

�A(z) = �(z) −
∫

A

π1(dθ)(1 − e−zθ ) (3.2)

and

�A(z) = �(z) +
∫

A

π0(dθ)(1 − e−zθ ). (3.3)

Then �A is also a branching mechanism and �A an immigration mechanism. For example, we
have

�A(z) = αAz + βz2 +
∫

(0,∞)\A
π0(dθ)(e−zθ − 1 + zθ), (3.4)

where αA = α + ∫
A
θπ0(dθ).

Proposition 3.1. Suppose that A ⊂ (0, ∞) is a Borel set with π0(A) + π1(A) < ∞. For
t > 0 let Jt (A) := card{s ∈ (0, t] : �Xs = Xs − Xs− ∈ A}. Then, for any x ≥ 0, we have
Px(Jt (A) < ∞) = 1.

Proof. Let NA
0 and NAc

0 be the restrictions of N0 to (0, ∞) × A × (0, ∞) and (0, ∞) ×
((0, ∞) \ A) × (0, ∞), respectively. Similarly, let NA

1 and NAc

1 be the restrictions of N1 to
(0, ∞) × A and (0, ∞) × ((0, ∞) \ A), respectively. Then we can express (3.1) as

Xt = X0 +
∫ t

0

√
2βXs dBs +

∫
(0,t]

∫
(0,∞)\A

∫
(0,Xs−]

zÑAc

0 (ds, dz, dy)

+
∫ t

0
(γ − αAXs) ds +

∫
(0,t]

∫
(0,∞)\A

zNAc

1 (ds, dz)

+
∫

(0,t]

∫
A

∫
(0,Xs−]

zNA
0 (ds, dz, dy) +

∫
(0,t]

∫
A

zNA
1 (ds, dz).

Note that the last two terms on the right-hand side of the above equation never jump simulta-
neously, so we have

Jt (A) =
∫

(0,t]

∫
A

∫
(0,Xs−]

NA
0 (ds, dz, dy) +

∫
(0,t]

∫
A

NA
1 (ds, dz).

For any k ≥ 1 let

Jt (k, A) =
∫

(0,t]

∫
A

∫
(0,k]

NA
0 (ds, dz, dy) +

∫
(0,t]

∫
A

NA
1 (ds, dz).

It follows that
Ex[Jt (k, A)] = ktπ0(A) + tπ1(A) < ∞,

and so Px(Jt (k, A) < ∞) = 1. Since s 	→ Xt is càdlàg, we have sup0<s≤t Xs < ∞. Note
also that Jt (A) ≤ Jt (k, A) on the event sup0<s≤t Xs < k. It follows that

Px(Jt (A) = ∞) ≤
∞∑

k=1

Px

(
{Jt (A) = ∞} ∩

{
sup

0<s≤t

Xs < k
})

=
∞∑

k=1

Px

(
{Jt (A) = Jt (k, A) = ∞} ∩

{
sup

0<s≤t

Xs < k
})
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≤
∞∑

k=1

Px(Jt (k, A) = ∞)

= 0.

Then Px(Jt (A) < ∞) = 1. �
Theorem 3.1. Suppose that A ⊂ (0, ∞) is a Borel set with π0(A) + π1(A) < ∞. Let
τA = min{s > 0 : �Xs = Xs−Xs− ∈ A}, which is well defined by the result of Proposition 3.1.
Then, for any x ≥ 0 and t ≥ 0, we have

Px(τA > t) = exp

{
−tπ1(A) − xuA

t (π0(A)) −
∫ t

0
�A(uA

s (π0(A))) ds

}
, (3.5)

where uA
t (λ) is the unique nonnegative solution of

d

dt
uA

t (λ) = λ − �A(uA
t (λ)), uA

0 (λ) = 0. (3.6)

Proof. We shall use the notation introduced in the proof of Proposition 3.1. Let (XA
t : t ≥ 0)

be the solution of

XA
t = X0 +

∫ t

0

√
2βXA

s dBs +
∫

(0,t]

∫
(0,∞)\A

∫
(0,XA

s−]
zÑAc

0 (ds, dz, dy)

+
∫ t

0
(γ − αAXA

s ) ds +
∫

(0,t]

∫
(0,∞)\A

zNAc

1 (ds, dz). (3.7)

Then (XA
t : t ≥ 0) is a CBI-process with branching mechanism �A and immigration mecha-

nism �A. By Dawson and Li (2012, Theorem 2.2), we have XA
t ≤ Xt for all t ≥ 0. (Intuitively,

we can obtain (XA
t : t ≥ 0) by removing from (Xt : t ≥ 0) all masses produced by jumps of

sizes in the set A.) We claim that, up to a null set,

{τA > t} =
{∫

(0,t]

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +
∫

(0,t]

∫
A

NA
1 (ds, dz) = 0

}
. (3.8)

Indeed, since Xs = XA
s for 0 ≤ s < τA, we have

{τA > t} = {τA > t} ∩
{∫

(0,t]

∫
A

∫
(0,Xs−]

NA
0 (ds, dz, dy) +

∫
(0,t]

∫
A

NA
1 (ds, dz) = 0

}

⊂
{∫

(0,t]

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +
∫

(0,t]

∫
A

NA
1 (ds, dz) = 0

}
.

Since �XτA
∈ A when τA ≤ t , we have

{τA ≤ t} ⊂ {τA ≤ t} ∩
{∫

{τA}

∫
A

∫
(0,Xs−]

NA
0 (ds, dz, dy) +

∫
{τA}

∫
A

NA
1 (ds, dz) > 0

}

= {τA ≤ t} ∩
{∫

{τA}

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +
∫

{τA}

∫
A

NA
1 (ds, dz) > 0

}

⊂
{∫

(0,t]

∫
A

∫
(0,XA

s−]
NA

0 (ds, dz, dy) +
∫

(0,t]

∫
A

NA
1 (ds, dz) > 0

}
.
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Then (3.8) holds. Since (XA
t : t ≥ 0) is a strong solution of (3.7), it is progressively measurable

with respect to the filtration generated by B, NAc

0 , and NAc

1 , which is independent of NA
0

and NA
1 . Then we have

Px(τA > t) = exp{−tπ1(A)}Ex

[
exp

{
−π0(A)

∫ t

0
XA

s ds

}]
.

Finally, we obtain (3.5) by Proposition 2.1. �
Corollary 3.1. (i) If A and B are Borel subsets of (0, ∞) such that A ⊂ B and π0(B) < ∞,
then uA

t (π0(A)) ≤ uB
t (π0(B)) for t ≥ 0.

(ii) If A ⊂ (0, ∞) is a Borel set satisfying π0(A) + π1(A) = 0, then Px(τA = ∞) = 1 for
x ≥ 0.

(iii) If � �= 0 and A ⊂ (0, ∞) is a Borel set satisfying π0(A) + π1(A) > 0, then Px(τA <

∞) = 1 for x ≥ 0.

Proof. (i) By applying Theorem 3.1 to the special case � ≡ 0, we have

exp{−xuA
t (π0(A))} = Px(τA > t) ≥ Px(τB > t) = exp{−xuB

t (π0(B))}.
Taking any x > 0, we obtain the result.

(ii) By Theorem 3.1, we have Px(τA > t) = 1 for every t ≥ 0. Then Px(τA = ∞) =
limt→∞ Px(τA > t) = 1.

(iii) By choosing a smaller set if it is necessary, we may assume that 0 < π0(A)+π1(A) < ∞.
If π1(A) > 0 then tπ1(A) → ∞ as t → ∞. In the π1(A) = 0 case, we must have π0(A) > 0,
so s 	→ uA

s (π0(A)) is strictly increasing by Proposition 2.2. Since � �= 0, one can see that

lim
t→∞

∫ t

0
�A(uA

s (π0(A))) ds = ∞.

In view of (3.5), we have Px(τA = ∞) = limt→∞ Px(τA > t) = 0 in both cases. �
Corollary 3.2. Suppose that � ≡ 0. Then, for any x ≥ 0 and Borel set A ⊂ (0, ∞) satisfying
0 < π0(A) < ∞, we have

Px(τA = ∞) = exp{−x�−1
A (π0(A))}.

Proof. By applying Theorem 3.1 to the special case � ≡ 0, we have

Px(τA = ∞) = lim
t→∞ Px(τA > t) = lim

t→∞ exp{−xuA
t (π0(A))}.

Then the result follows by Proposition 2.2. �

4. Local and global maximal jumps

Let X = (
, F , Ft , Xt , Px) be a Hunt realization of the CBI-process with branching
mechanism � and immigration mechanism � given by (2.1) and (2.3), respectively. In this
section we shall give some characterizations of the local and global maximal jumps of the
process.
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Theorem 4.1. Suppose that r ≥ 0 and π0(r, ∞) + π1(r, ∞) < ∞. Then, for any x ≥ 0 and
t > 0, we have

Px

(
max

s∈(0,t] �Xt ≤ r
)

= exp

{
−tπ1(r, ∞) − xur

t (π0(r, ∞)) −
∫ t

0
�(r,∞)(u

r
s (π0(r, ∞))) ds

}
,

where ur
t (λ) is the unique nonnegative solution of

d

dt
ur

t (λ) = λ − �(r,∞)(u
r
t (λ)), ur

0(λ) = 0.

Proof. Since Px(maxs∈(0,t] �Xt ≤ r) = Px(τ(r,∞) > t), the result follows by Theorem 3.1.
�

Corollary 4.1. Suppose that � �= 0. Then Px(sups∈(0,∞) �Xs = sup(π0 + π1)) = 1 for any
x ≥ 0, where sup(π0 + π1) = sup sup(π0 + π1).

Proof. Since (π0 +π1)(sup(π0 +π1), ∞) = 0, for any t > 0, we have Px(sups∈(0,t] �Xs ≤
sup(π0 + π1)) = 1 by Theorem 4.1. Then

Px

(
sup

s∈(0,∞)

�Xs ≤ sup(π0 + π1)
)

= lim
t→∞ Px

(
sup

s∈(0,t]
�Xs ≤ sup(π0 + π1)

)
= 1.

For any z < sup(π0 + π1), we have (π0 + π1)[z, sup(π0 + π1)] > 0. By Corollary 3.1(iii),

Px

(
sup

s∈(0,∞)

�Xs ∈ [z, sup(π0 + π1)]
)

≥ Px(τ[z,sup(π0+π1)] < ∞) = 1.

Since z < sup(π0 + π1) was arbitrary, it follows that Px(sup �X = sup(π0 + π1)) = 1. �
Corollary 4.2. Suppose that � ≡ 0. Then, for any x ≥ 0 and r ≥ 0 satisfying 0 < π0(r, ∞) <

∞, we have

Px

(
sup

s∈(0,∞)

�Xs ≤ r
)

= exp{−x�−1
(r,∞)(π0(r, ∞))}.

Proof. This follows by Theorem 4.1 and Proposition 2.2. �
Corollary 4.3. Suppose that � ≡ 0 and let sup(π0) = sup sup(π0). Then, for any x ≥ 0, we
have

Px

(
sup

s∈(0,∞)

�Xs = sup(π0)
)

= 1 − exp{−x�−1
{sup(π0)}(π0({sup(π0)}))}

with �{0} = �{∞} = � and π0({0}) = π0({∞}) = 0 by convention.

Proof. By the proof of Corollary 4.1, we have Px(sups∈(0,∞) �Xs ≤ sup(π0)) = 1. For
any z < sup(π0), we have π0(z, sup(π0)] > 0. By Corollary 4.2, it follows that

Px

(
sup

s∈(0,∞)

�Xs ∈ (z, sup(π0)]
)

= 1 − exp{−x�−1
(z,sup(π0)](π0(z, sup(π0)])}.

Then we obtain the desired result by letting z → sup(π0). �
Corollary 4.4. Suppose that α > 0 and � ≡ 0. If the measure π0 has unbounded support
then, for any x > 0, we have, as r → ∞,

Px

(
sup

s∈(0,∞)

�Xs > r
)

= 1 − exp{−x�−1
(r,∞)(π0(r, ∞))} ∼ x

α
π0(r, ∞).
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Proof. By (3.4), we see by dominated convergence that (∂/∂z)�(r,∞)(0) = α(r,∞). It fol-
lows that (∂/∂z)�−1

(r,∞)(0) = 1/α(r,∞). Then, as r → ∞,

�−1
(r,∞)(π0(r, ∞)) ∼ π0(r, ∞)

α(r,∞)

∼ π0(r, ∞)

α
,

and the desired result follows from Corollary 4.2. �
We remark that a special form of Corollary 4.2 has been obtained by Bertoin (2011). In

the next theorem we establish the equivalence of the distribution of the local maximal jump of
the CBI-process and the total Lévy measure π0 + π1. In view of Theorem 4.1, we may have
Px(maxs∈(0,t] �Xs = 0) > 0, so we discuss the absolute continuity only on the set (0, ∞).

Theorem 4.2. Suppose that x + γ > 0. Then, for any t > 0, the measure π0 + π1 and the
distribution Px(maxs∈(0,t] �Xs ∈ ·)|(0,∞) are equivalent.

Proof. Recall that � and �A are defined by (2.3) and (3.2), respectively. If A ⊂ (0, ∞) is
a Borel set with π0(A) + π1(A) = 0, by Theorem 3.1, we have

Px

(
max

s∈(0,t] �Xs ∈ A
)

≤ Px(τA ≤ t) = 1 − Px(τA > t) = 0.

Then Px(maxs∈(0,t] �X ∈ ·)|(0,∞) is absolutely continuous with respect to π0 + π1. To prove
the absolute continuity of π0 +π1 with respect to Px(maxs∈(0,t] sup �X ∈ ·)|(0,∞), we consider
a Borel set A ⊂ (0, ∞) and a constant r > 0. Since{

max
s∈(0,t] �Xs ∈ A

}
⊃

{
max

s∈(0,t] �Xs ∈ A ∩ [r, ∞)
}

⊃ {τA∩[r,∞) ≤ t} ∩ {τ[r,∞)\A > t}
= {τ[r,∞) ≤ t} \ {τ[r,∞)\A ≤ t},

we have
Px

(
max

s∈(0,t] �X ∈ A
)

≥ Px(τ[r,∞) ≤ t) − Px(τ[r,∞)\A ≤ t).

Suppose that Px(sups∈(0,t] �X ∈ A) = 0. Then Px(τ[r,∞) ≤ t) = Px(τ[r,∞)\A ≤ t), so the
result of Theorem 3.1 implies that

tπ1[r, ∞) + xu
[r,∞)
t (π0[r, ∞)) +

∫ t

0
�[r,∞)(u

[r,∞)
s (π0[r, ∞))) ds

= tπ1([r, ∞) \ A) + xu
[r,∞)\A
t (π0([r, ∞) \ A))

+
∫ t

0
�[r,∞)\A(u

[r,∞)\A
s (π0([r, ∞) \ A))) ds. (4.1)

By Corollary 3.1(i), we have

u
[r,∞)
t (π0[r, ∞)) ≥ u

[r,∞)\A
t (π0([r, ∞) \ A)), t ≥ 0. (4.2)

Then (4.1) implies that

tπ1[r, ∞) + xu
[r,∞)
t (π0[r, ∞)) +

∫ t

0
�[r,∞)(u

[r,∞)
s (π0[r, ∞))) ds

≤ tπ1([r, ∞) \ A) + xu
[r,∞)
t (π0[r, ∞)) +

∫ t

0
�[r,∞)\A(u[r,∞)

s (π0[r, ∞))) ds.
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By reorganizing the terms in the above inequality, we obtain

tπ1([r, ∞) ∩ A) ≤
∫ t

0
ds

∫
[r,∞)∩A

(1 − exp{−θu[r,∞)
s (π0[r, ∞))})π1(dθ).

It follows that π1([r, ∞) ∩ A) = 0. Since r > 0 was arbitrary in the above, we have proved
that π1(A) = 0. Using (4.1) and (4.2), we have

xu
[r,∞)
t (π0[r, ∞)) + γ

∫ t

0
u[r,∞)

s (π0[r, ∞)) ds

≤ xu
[r,∞)\A
t (π0([r, ∞) \ A)) + γ

∫ t

0
u

[r,∞)\A
s (π0([r, ∞) \ A)) ds,

and so using (4.2) again, we obtain

u
[r,∞)
t (π0[r, ∞)) = u

[r,∞)\A
t (π0([r, ∞) \ A)) =: a(r, t).

It follows that
∂u

[r,∞)
t (π0[r, ∞))

∂t
= ∂u

[r,∞)\A
t (π0([r, ∞) \ A))

∂t
.

Then we can use (3.6) to see that

π0([r, ∞)) − �[r,∞)(a(r, t)) = π0([r, ∞) \ A) − �[r,∞)\A(a(r, t)),

and, hence,

�[r,∞)(a(r, t)) = �[r,∞)\A(a(r, t)) + π0([r, ∞) ∩ A).

However, by (3.3), we should have

�[r,∞)(a(r, t)) = �[r,∞)\A(a(r, t)) +
∫

[r,∞)∩A

π0(dθ)(1 − exp{−a(r, t)θ}).

It follows that π0([r, ∞) ∩ A) = 0, implying that π0(A) = 0. This completes the proof. �

The conclusion of Theorem 4.2 does not necessarily hold in the x = γ = 0 case. As a
counterexample, consider the case where X0 = 0, π0 = δ1, and π1 = δ2. In this case, we have
τ{2} ≤ t when τ{1} ≤ t , otherwise Xs = 0 for all s ∈ [0, t]. It follows that

P0

(
max

s∈(0,t] �Xs = 1
)

= 0.

Then π0 is not absolutely continuous with respect to P0(maxs∈(0,t] �Xs ∈ ·).
For critical and subcritical branching CB-processes without immigration, we may also

discuss the absolute continuity of the distribution of its global maximal jump. Such a result is
presented in the following theorem.

Theorem 4.3. Suppose that α ≥ 0 and � ≡ 0. Then, for any x > 0, the Lévy measure π0 and
the distribution Px(sups∈(0,∞) �Xs ∈ ·)|(0,∞) are equivalent.
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Proof. Since � = 0 and α ≥ 0, we have Xt → 0 almost surely as t → ∞. If A ⊂ (0, ∞)

is a Borel set so that π0(A) = 0, by Corollary 3.1(ii), we have

Px

(
sup

s∈(0,∞)

�Xs ∈ A
)

≤ Px(τA < ∞) = 1 − Px(τA = ∞) = 0.

Then Px(sups∈(0,∞) �Xs ∈ ·)|(0,∞) is absolutely continuous with respect to π0. Now suppose
that A ⊂ (0, ∞) is a Borel set with π0(A) > 0. For any r > 0, one can see, as in the proof of
Theorem 4.2, that

Px

(
sup

s∈(0,∞)

�Xs ∈ A
)

≥ Px(τ[r,∞) < ∞) − Px(τ[r,∞)\A < ∞).

If Px(sups∈(0,∞) �Xs ∈ A) = 0, we have Px(τ[r,∞) < ∞) = Px(τ[r,∞)\A < ∞), so
Corollary 3.2 implies that

�−1
[r,∞)(π0[r, ∞)) = �−1

[r,∞)\A(π0([r, ∞) \ A)) =: a(r).

It follows that

�[r,∞)(a(r)) = π0[r, ∞)

= π0([r, ∞) \ A) + π0(A ∩ [r, ∞))

= �[r,∞)\A ◦ �−1
[r,∞)\A(π0([r, ∞) \ A)) + π0(A ∩ [r, ∞))

= �[r,∞)\A(a(r)) + π0(A ∩ [r, ∞)).

Then, as in the proof of Theorem 4.2, we must have π0(A ∩ [r, ∞)) = 0. This contradicts
π0(A) > 0 since r > 0 was arbitrary. It then follows that Px(sups∈(0,∞) �Xs ∈ A) > 0. �

In the above theorem, we consider only the critical and subcritical cases. The supercritical
case is more subtle since in that case we may have sups∈(0,∞) �Xs = sup(π0) with strictly
positive probability by Corollary 4.3. We leave the consideration of the details to the interested
reader.
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