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WHY IS OPTIMAL GROWTH
THEORY MUTE? RESTORING ITS
RIGHTFUL VOICE
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Goethe University, Frankfurt am Main

Optimal growth theory as it stands today does not work. Using strictly concave utility
functions systematically inflicts on the economy distortions that are either historically
unobserved or unacceptable by society. Moreover, we show that the traditional approach is
incompatible with competitive equilibrium: Any economy initially in such equilibrium
will always veer away into unwanted trajectories if its investment is planned using a
concave utility function. We then propose a rule for the optimal savings-investment rate
based on competitive equilibrium that simultaneously generates three intertemporal
optima for society. The rule always leads to reasonable time paths for all central economic
variables, even under very different hypotheses about the future evolution of population
and technical progress.
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1. INTRODUCTION

This paper will argue that optimal growth theory, as it has been developed, has
never been able to come up with a reasonable answer to the problem of determining
how much a nation should save. We will show that the traditional approach, based
on the systematic use of strictly concave utility functions, never delivered, and
when the bold step of modifying the utility function to obtain a reasonable answer
was taken, it unfailingly led to nonsensical values for other variables of central
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importance such as the growth rate of real income per person, the marginal product
of capital, or the capital–output ratio.

Our profession should have taken note of those inadequacies long ago. They
had been met already by the very originator of the theory, Ramsey (1928), who
tried to put numbers on the theory, and whose disappointment when obtaining
an “optimal” savings rate of 60% is almost palpable. Thirty years later, Goodwin
(1961) obtained even worse results in all models he considered—but contrary to
Ramsey, he set out to defend them in a dumbfounding way. Finally, King and
Rebelo (1993) convincingly showed that it was an impossible task to replicate the
observed development of an economy by assuming some form of the traditional
model. They tried to modify in many ways not only the parameters of the models
they were using, but eventually the very nature of the latter—to no avail. Their
conclusion was unequivocal.

The central result of this paper is two-fold: First, we demonstrate that the
concavity of the utility functions precludes any possibility of a sustained com-
petitive equilibrium and, second, any economy initially in such equilibrium will
always veer off from that situation into unwanted trajectories if it is governed by
the standard model. We then propose the following solution to the problem of
optimal growth: Optimal trajectories of the economy, and, first and foremost, the
optimal savings rate, should be determined by the Euler equation resulting from
competitive equilibrium. By saving and investing along the lines defined by such
an equilibrium, society is able to reach simultaneously the following intertemporal
optima, in addition to the minimization of production costs:

• maximization over an infinite time span of the sum of discounted consump-
tion (welfare) flows,

• maximization of the total value of society’s activity defined as the sum of
consumption flows and the rate of increase of the value of capital,

• maximization of the total remuneration of labor.

This is demonstrated in Theorem 1. In addition, we show that for all parameters
in the range of observed or predictable values, as well as for quite different
hypotheses regarding the future evolution of population or technical progress,
we are always led to very reasonable time paths for all central variables of the
economy. We would even qualify those time paths as “welcome,” since we show
that if we approach a situation of competitive equilibrium, the capital–output ratio
will decrease and the share of labor in national income will increase, thus offering
an appreciable alternative to current, gloomy predictions.

We will proceed as follows. In Section 2, we review evidence of the nonapplica-
bility of the traditional approach, from the Ramsey model to the King and Rebelo
(1993) piece. Prompted by the latter study, in Section 3 of this paper, we extend
our analysis to the implied initial growth rate as well as to the limiting value of
the marginal productivity of capital, and show that as soon as adjustments are
made to the utility function to obtain a reasonable initial savings rate, historically
unobserved or unwanted values appear.
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We then demonstrate (Section 4) that competitive equilibrium is unsustainable
in the traditional model. We suppose that initially the economy is in a situation of
competitive equilibrium and that from that point onward it can follow any of the
following two possible kinds of paths:

(I) Investment is planned in such a way as to maximize intertemporally discounted utility
flows, the utility function being the widely used affine transform of a strictly concave
power function; this is the traditional approach.

(II) Investment is made in such a way as to conform to the Euler equation defining
competitive equilibrium. This will be our suggested solution to the basic problem of
optimal economic growth.

We will show that in the first scenario, although central variables have normal,
historically observed initial values, in all cases their time paths run astray, and we
explain analytically this behavior.

Section 5 provides our solution: We show that scenario II, while securing the
intertemporal optima for society we mentioned earlier, always yields reasonable
results for the following fundamental variables: the optimal savings rate, the
implied growth rate of income per person, and the capital–output ratio; in addition,
it secures the most welcome feature of an increasing share of the remuneration of
labor in total income.

In Section 6, we take the natural step of checking the robustness of these results
not only to changes in the values of the parameters of the model, but also to very
different evolutions of population and technical progress. Indeed, we hold that a
model for medium- and long-run horizons should take into account, in particular,
the quasi-certainty of a non-exponential, S-shaped, evolution of population. We
will show that despite significantly different hypotheses, the time paths of the
central variables just mentioned remain within very reasonable, predictable ranges,
thus conferring a welcome robustness to the model.

2. THREE ESSAYS THAT SHOULD HAVE BEEN ALARM BELLS: RAMSEY
(1928), GOODWIN (1961), AND KING AND REBELO (1993)

2.1. Ramsey: The First Difficulties

The reader of Ramsey’s beautifully written, highly original essay “A mathematical
theory of saving” can almost feel the disappointment of its author when he wrote,
“The rate of saving which the rule requires [60%] is greatly in excess of that
which anyone would suggest,” adding that the utility function he used was “put
forward merely as an illustration” (pp. 548–549). Ramsey had tested his model
just at one point of his utility function. In the full version of our paper, available in
the supplementary material available online (see Supplementary Material section
at end of article), we show that Ramsey would have obtained even worse results
if he had calculated the optimal savings rate over the whole interval of the utility
function he had considered; 60% was the minimum value over that interval; it
reached 80% when consumption was 50% higher. We also showed that for his
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model to yield an acceptable savings rate, one should consider utility functions
that nobody would ever imagine—and even less a whole society, as we will see.
Indeed, the optimal savings rate s∗ implied by the model can be determined as

s∗ =
[

1 + CU ′(C)

B − U(C)

]−1

, (1)

where B denotes the bliss level defined by Ramsey. Integrating this differential
equation results in the utility function

U(C) = κC1−1/s∗ + B, (2)

where κ, the constant of integration, can be identified with any point in (C,U)

space, for instance, any point chosen by Ramsey. We get

U(C) = (U1 − B)

(
C

C1

)1−1/s∗

+ B. (3)

Using Ramsey’s first point (C1,U1) = (150, 2) as well as his B = 8 value, and
setting s∗ = 0.1, the resulting function U(C) = (U1 − 8) (C/150)−9 + 8 is the
only utility function going through (150, 2) and yielding, under the Ramsey rule,
a constant optimal savings rate equal to 10%. The bad news is that this function
makes no sense at all. To paraphrase Ramsey, its extreme properties are also
“greatly in excess of that which anyone would suggest.” Indeed, the curve is
close to a vertical, almost immediately followed by a horizontal; the bliss level
is practically attained at C = 300 already [U(300) = 7.99] (see Figure 1). The
marginal utility is U ′(C) = 0.36(C/150)−10; this implies that multiplying C by
a factor λ divides the marginal utility by a factor λ10. An example illustrates the
oddity of such a construct. Consider any country whose real income per person,
over a very long time span, was multiplied by λ = 109/10 ≈ 7.943. Thanks to the
work of Johnston and Williamson (2013), we can estimate that such an increase
took about 115 years to be achieved in the United States (on a time frame ending
in 2012) and 150 years in the United Kingdom. Applying the above-mentioned
utility function would mean that at the beginning of the 20th century the marginal
utility of consumption in the United States was by λ10 = 10(9/10)10 = one billion
times higher than it is today, certainly an indefensible proposition.

One may think that choosing a larger optimal savings rate might improve the
situation. That is not the case: A 20% savings rate entails a utility curve hardly
distinguishable from the preceding one. In the same figure, we have also depicted
the curve corresponding to the constant rate s∗ = 60%. It can be seen that Ramsey
chose a utility function that seemed reasonable to him (and probably to most of
his readers) which was very close to a function implying an optimal savings level
equal to 60% at all its points.

We might also attribute the observed antinomy between what appears as a
reasonable utility function and a reasonable optimal savings rate to the very model
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FIGURE 1. The dots depict Ramsey’s utility function; they are close to a utility curve
entailing a constant savings rate equal to 60% at all its points. For the savings rate to be
equal to 10%, the utility function should correspond to the upper curve. The s∗ = 20%
curve is hardly distinguishable from the s∗ = 10% line.

that Ramsey put forward (in which, for instance, the future utility flows are not
discounted). This is not the case either. We will show that, time and again, for
whatever model we might consider, not only such bland opposition is maintained,
but it extends to unrealistic values of other variables of fundamental importance
such as the marginal productivity of capital, the growth rate of income per person,
or the capital–output ratio.

2.2. The Second Warning Bell: Goodwin (1961)

Context and results. The problem of the optimal savings rate came again to
the forefront with the paper by Richard Goodwin entitled “The optimal growth
path for an underdeveloped economy” (1961). Before describing Goodwin’s
models and results, it may be useful to consider the times at which the author was
writing. Although his paper was published in 1961, its substance was originally
presented to the Oxford–London–Cambridge Seminar on November 10, 1956.
Those years were marked by the widely shared belief, even in countries like the
United Kingdom or France, that planning was the answer to all possible economic
woes, from shortages to inflation and unemployment. We therefore should hardly
be surprised when Goodwin boldly wrote, “The planners may determine the
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marginal utility curve in any way or may accept any sort of directive about it”
(p. 763)—a statement that would seem quite extraordinary today, to say the least,
but that explains the reaction he would have when confronted by his results.

The author used three types of utility functions: The first was derived numer-
ically through the UK marginal income-tax schedule, 1953–1954, for a married
couple with two children, the second was ln(C − C̄), where C̄ is a subsistence
level, and the third was

[
(C − C̄)1−ε − 1

]
/(1 − ε). Production was supposed to

be a linear function of capital.
His results should have been startling for anybody, including the author himself.

In model I (corresponding to the first utility function), the optimal savings rate
grew to 62% after 28 years, with an implied marginal savings rate of 79% at year
20. In model II, the optimal savings rate was 59% at year 24, with a marginal
savings rate equal to 68% at year 12. Model III (where Goodwin chose ε = 0.2)

was even more disastrous, leading to an optimal savings rate equal to 83% at year
36, and marginal rates of at least 95% between years 28 and 32.

Goodwin’s reaction. Contrary to Ramsey’s natural reaction to such excessive
savings rates, Goodwin found those numbers perfectly justifiable. Already after
getting model I results, he explained them by the gains of productivity that might
be bestowed onto future generations; those gains would be so big that they would
justify huge sacrifices made by present generations; in his own words, “So great
are the gains that we are fully justified in robbing the poor to give to the rich!” (p.
765). With such a conviction, it is not surprising that when all results of his three
models were in, Goodwin wrote, “Some violent process of capital accumulation
of the type illustrated is the ideal. The simplifications of the model give an unduly
sharp outline of the ideal policy, but its general character is surely a sound guide
to policy” (pp. 772–773).

It is difficult to gauge what the general feeling of the profession has been after
the publication of those strong statements, but no doubt some members must have
had serious reservations. It seems appropriate to mention that in a conference given
in 2006, Robert Solow said that he vividly remembered having read Goodwin’s
paper just before or just after its publication, and to have been “very worried”
about its excessive optimal savings rates.

2.3. The Paper That Should Have Been the Final Alarm Bell: King and
Rebelo (1993)

Twenty years ago, King and Rebelo published an important, illuminating study on
the transition paths for a neoclassical economy with intertemporally optimizing
households. Basically, they worked with three utility functions: (i) log C, (ii) a
transform of the log function of the Stone–Geary type, and (iii) (−1/9)(C−9 − 1).
The production function was of the Cobb–Douglas type, with a one-third capital
share and labor-augmenting progress. In a second part of their paper, they also
considered a constant elasticity of substitution (CES) production function with
an elasticity of substitution between 0.9 and 1.25, and finally introduced a large
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array of variants to the basic model. The authors’ conclusion is unambiguous:
“In exploring some plausible alterations of the basic model, we found that it
was impossible to explain important components of economic growth in terms
of transition dynamics without introducing some related implication that strongly
contradicted historical experience” (p. 929).

3. THE ILL-FATED ROLE OF UTILITY FUNCTIONS

[Please see this section online, where it is shown that any power function of
the type U = (Cα − 1)/α, with −8.8 < α < 0.8, leads to at least one central
variable displaying an unacceptable evolution; as to the negative exponential utility
function U = (−1/β)e−βC, β > 0, sometimes declared fit for service, it does not
allow an equilibrium point any more.]

4. HOW THE STRICT CONCAVITY OF UTILITY FUNCTIONS MAKES
COMPETITIVE EQUILIBRIUM UNSUSTAINABLE

We will now show that the traditional approach, in its attempt to optimize the
evolution of an economy by positing a strictly concave utility function, is simply
incompatible with competitive equilibrium. To do so, we will assume that an
economy is initially in a state of competitive equilibrium. We will then suppose
that two different courses can be pursued:

(I) Investment is planned in such a way as to maximize intertemporally dis-
counted utility flows, the utility function being the widely used affine trans-
form of a strictly concave power function; this is the traditional approach.

(II) Investment is made in such a way as to conform to the Euler equation
defining competitive equilibrium. This will be our suggested solution to the
basic problem of optimal economic growth.

We will also widen our hypothesis regarding the structure of the production
process by allowing, in both scenarios, technical progress to be not only labor-
augmenting, but also capital-augmenting. In the traditional literature on the neo-
classical model, only labor-augmenting technical progress is allowed, apparently
for the following reason: That restricting hypothesis is considered necessary for
the growth rate of income per person to converge asymptotically toward the rate
of labor-augmenting progress, the only exception applying in the Cobb–Douglas
case. We have recently shown this assumption to be wrong by demonstrating a
new property of general means of order p when p is negative—precisely the case
where 0 < σ < 1 [La Grandville (2011)] and we will check that, indeed, in both
scenarios I and II the growth rate of income per person does converge toward the
rate of labor-augmenting progress, although progress is capital-enhancing as well.

In each of scenarios I and II, we will depict the evolution of the economy
represented by the following variables: the optimal savings rate, the growth rate of
income per person, the marginal product of capital, and the capital–output ratio.
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4.1. Initial Conditions as Determined from Optimal Time Paths

We suppose that at the initial time competitive equilibrium prevails in the economy.
This implies that the capital stock is in such an amount that its marginal productivity
is equal to the rate of interest. Total output (net of depreciation), denoted by Yt ,
is given by a production function of CES form featuring both labor- and capital-
augmenting technical progress; to this aim, we define factor-enhancing functions
of time, Gt and Ht , such that their growth rates Ġt/G ≡ g(t) and Ḣt/Ht ≡ h(t),

respectively, are positive; G0 and H0 are normalized to 1. Labor is an exogenous
increasing function of time Lt, with L0 = 1. In a first step, we will consider that
the functions Gt , Ht , and Lt are the exponentials Gt = egt , Ht = eht , and Lt = ent ,
respectively; in Section 6, to test the robustness of the model we suggest, we will
suppose that those exponentials are replaced by S-shaped functions tending, with
t → ∞, toward horizontal asymptotes. The production function is the general
mean of order p of the enhanced inputs GtKt/K0 and HtLt/L0:

Yt = F(GtKt ,HtLt ) = Y0{δ[GtKt/K0]p+(1−δ)[HtLt/L0]p}1/p , p �= 0, (4)

where the order p is an increasing function of the elasticity of substitution σ :
p = 1 − 1/σ . Note that p will always be negative because σ is supposed to
be in the range where it has most often been observed, i.e., between 0 and 1.
However, for comparison purposes, we will also give results corresponding to the
p = 0, σ = 1 Cobb–Douglas case

Yt = Y0(GtKt/K0)
δ(HtLt/L0)

1−δ. (5)

In the case 0 < σ < 1, the fundamental competitive equilibrium equality
FKt

= i leads to the following equation in Kt :

FKt
(GtKt ,HtLt ) = Y0{δ[GtKt/K0]p + (1 − δ)[HtLt/L0]p}(1/p) −1

. δKt
p−1(Gt/K0)

p = i, p < 0, 0 < σ < 1, (6)

which can be solved to yield the optimal time path K∗
t :

K∗
t = K0

L0

(
1 − δ

δ

)σ/(σ−1)
LtHtG

−1
t[

iσ−1δ−σ (Y0/K0)
1−σ G1−σ

t − 1
]σ/(σ−1)

, 0 < σ < 1.

(7)
K0 and Y0 are identified by setting t = 0 in (7); we obtain K0/Y0 = δ/i. We now
can normalize Y0 to 1; thus, K0 = δ/i; finally, the optimal time path of capital is

K∗
t = δ

i

(
1 − δ

G1−σ
t − δ

)σ/(σ−1)

LtHtG
−1
t , 0 < σ < 1. (8)
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The optimal trajectory of output and income Y ∗
t follows from substituting (8)

into (4), using the same identifications. We obtain

Y ∗
t = LtHt

[
δ

(
1 − δ

G1−σ
t − δ

)
+ 1 − δ

]1/p

= LtHt

(
1 − δGσ−1

t

1 − δ

)σ/(1−σ)

, 0 < σ < 1. (9)

We can verify that K0 = δ/i and Y0 = 1.

An important observation is now in order. Note that when σ �= 1 the time path
K∗

t is defined for all t if and only if σ < 1.1 Indeed, such is the condition for the
denominator G1−σ

t − δ in (8) and (9) to be positive for all t . Since Gt is larger
than 1, as well as increasing and unbounded, if σ > 1 there always exists a time
t̄ from which G1−σ

t − δ becomes zero and then negative. The economic reason
for this is the following: We know that σ is a powerful engine of growth; this is
due to its considerable enhancement of the marginal productivity of capital; but,
it cannot become too powerful, because to maintain the equality FK = i, capital
should then increase extremely fast, entailing explosive growth: It can be verified
that limt→t̄K

∗
t = ∞. It is also a good place to remember that, time and again, the

empirical estimates of σ have been strictly lower than 1, and, on the other hand,
that σ > 1 would make very little sense, since it would imply that any amount of
output could be produced either without capital or without labor (indeed, in that
case the isoquants cut the axes).

K∗
t and Y ∗

t , given by (8) and (9), respectively, lead to the following optimal
evolution of the capital–output ratio:

K∗
t /Y ∗

t = δ

i
G

−(1−σ)
t , 0 ≤ σ ≤ 1. (10)

Innocuous as this last formula may seem, it carries a wealth of good news. The
first is that, contrary to what we saw just before where all concave power utility
functions made the capital-output ratio increase to absurd values, here the ratio
always diminishes—no one would want an economy where the stock of capital
increases more rapidly than its output when it is expected, on the contrary, that
technological progress will enable to use relatively less capital for a given output.
The second good news is that since the remuneration of capital is fixed at FK∗

t
= i,

the share of capital in total income FK∗
t
K∗

t /Y ∗
t = iK∗

t /Y ∗
t = δG

−(1−σ)
t will always

diminish to the benefit of the share of labor, equal to 1 − δGte
−(1−σ).

There are now several ways to determine the optimal savings and investment
rates. One of the simplest is to first evaluate the optimal growth rate of Y ∗

t . Denoting
the growth rates of Gt, Ht , and Lt by gt , ht , and nt , respectively, we get

Ẏ ∗
t /Y ∗

t = nt + ht + σδ
(
G1−σ

t − δ
)−1

gt , 0 ≤ σ ≤ 1. (11)
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Applying (10), the growth rate of capital is K̇∗
t /K∗

t = Ẏ ∗
t /Y ∗

t − (1 − σ)gt and
therefore, after simplifications,

K̇∗
t /K∗

t = nt + ht + gt

[
σ

1 − δGσ−1
t

− 1

]
, 0 ≤ σ ≤ 1. (12)

The optimal savings rate s∗
t is equal to K̇∗

t /Y ∗
t = (K̇∗

t /K∗
t )

(
K∗

t /Y ∗
t

) ; so we
have

s∗
t = δ

i

{
nt + ht + gt

[
σ

1 − δGσ−1
t

− 1

]}
G

−(1−σ)
t , 0 ≤ σ ≤ 1. (13)

We are now in a position to identify the optimal initial level of consumption
C∗

0 = (
1 − s∗

0

)
Y ∗

0 ; since Y ∗
0 = 1, we have

C∗
0 = 1 − δ

i

{
n0 + h0 + g0

[
σ

1 − δ
− 1

]}
, 0 ≤ σ ≤ 1.2 (14)

Hence, the optimal initial conditions K∗
0 and C∗

0 corresponding to FKt
= i are

given by K∗
0 = δ/i and equation (14). They define the common starting point

shared by scenarios I and II.
Before describing the evolution of the economy in each of those settings, let us

consider the values taken by the common initial savings rate s∗
0 and the common

initial growth rate of real income per person ẏ∗
0/y∗

0 . Indeed, we need to ascertain,
in particular, that intricate as formula (13) for s∗

t may look, it always yields very
reasonable numbers already at time t = 0. We will take δ = 0.25 and n = 0.01;
the factor-enhancing growth rates g and h will be those measured by Sato (2006,
p. 60) for the United States over the period 1909–1989: g = 0.004 and h = 0.02.
Table 1 indicates s∗

0 for σ in the range of 0.5–0.8 (most observed) and i between
0.04 and 0.06.

It can be seen that the initial savings and growth rates implied by competitive
equilibrium are in a very reasonable range, historically observed. They stay in
stark contrast to the results presented earlier, corresponding to all possible concave
power utility functions. Consider, for instance, the case of the logarithmic utility

TABLE 1. The initial savings rate s∗
0 implied by competitive equi-

librium, as a function of the elasticity of substitution σ and the
rate of interest i, in percent (δ = 0.25; n = 0.01;h = 0.02; g =
0.004)

�����i

σ
0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.04 17.9 18.1 18.3 18.4 18.6 18.8 18.9
0.05 14.3 14.5 14.6 14.7 14.9 15.0 15.1
0.06 11.9 12.1 12.2 12.3 12.4 12.5 12.6
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TABLE 2. The initial values of the growth rate of income
per person ẏ∗

0/y∗
0 implied by competitive equilibrium, as a

function of the elasticity of substitution σ , in percent (δ =
0.25; n = 0.01;h = 0.02; g = 0.004)

σ 0.5 0.55 0.6 0.65 0.7 0.75 0.8

ẏ∗
0 /y∗

0 2.07 2.07 2.08 2.09 2.09 2.10 2.11

function, corresponding to α = 0 [second line in Table 2 in the full version (refer
to the online version), with i = 0.04], and take σ = 0.5. It can be seen that the
initial “optimal” savings rate necessary to put the economy on the stable branch
in the phase diagram is 41%, implying also a never-observed real growth rate
equal to 15%. If σ had been equal to 0.8, the results would have been even more
disastrous: The initial savings rate would have climbed to 50% and the growth
rate to 17%.

Thus, equipped with initial conditions corresponding to competitive equilib-
rium, we can describe what will happen to the economy if either scenario I or II is
pursued; in scenario I, investment is planned on the basis of not just one, but all
possible concave power utility functions. Its fateful consequences are laid out in
Section 4.2; the inability of scenario I to maintain trajectories that would replicate
competitive equilibrium is explained in Section 4.3.

Scenario II is our solution to the problem of optimal economic growth: investing
in such a way that competitive equilibrium is maintained through time. We will
show that it entails no less than five maximization objectives for society, apart from
the minimization of production costs. We lay out the resulting, very reasonable
time paths in Section 5. The robustness of these results is finally tested in Section
6 by considering quite different evolutions of population and technical progress.

4.2. Scenario I: Planning with Strictly Concave Utility Functions from an
Initial Situation of Competitive Equilibrium: A Disaster in the Making

Given the above-defined initial conditions reflecting competitive equilibrium,
we now maximize

∫ ∞
0 U(Ct)e

−it dt under the constraint Ct = F(Kt , t) − K̇t ,

where F(.) is defined by (4), and where U(C) = (Cα − 1)/α. Our functional is∫ ∞
0 U [F(K, t) − K̇]e−it dt = ∫ ∞

0 V (K, K̇, t]dt; the Euler equation

∂V

∂K
− d

dt

∂V

∂K̇
= 0

together with the constraint leads to the system of first-order nonlinear equations

Ċ = C

1 − α

{
[δ(egt iK/δ)p + (1 − δ)ep(n+h)t ](1/p)−1 δ1−pipepgtKp−1 − i

}
,

(15)
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FIGURE 2. The inordinate behavior of the savings rate for 25 values of α in the utility
function (Cα − 1)/α ranging from α = 0.8 (upper curve) to α = −8.8, in steps of −0.4
(lower curve).

K̇ = [δ(egt iK/δ)p + (1 − δ)ep(n+h)t ]1/p − C. (16)

The concavity of the integrand with respect to K and K̇ and the transversality
conditions (shown to be met at the end of this section—see online version) en-
sure that this system leads to a unique maximum, given the above-defined initial
conditions K∗

0 and C∗
0 .

We started the tests of the utility function by using the parameter values men-
tioned above: n = 0.01, δ = 0.25, i = 0.04, σ = 0.8, h = 0.02, and g = 0.004.

Solving numerically the system (15)–(16) and plugging the solution K∗
t into (4)

enables us to determine the evolution of the central variables of the economy, such
as the optimal savings rate, consumption, the growth rates of income per person
and of the capital stock, the marginal productivity of capital, and the capital-
output ratio. We did this for 25 values of the parameter α of the utility function,
ranging from 0.8 (upper curve in the left part of the diagram) to −8.8 in steps of
−0.4 (see the corresponding diagrams in the supplementary material). None of
these evolutions make sense. As an example, we give here the evolution of the
optimal savings rate (see Figure 2). For all values of α, the savings rate becomes
equal to or larger than 50% before 14 years. Another example: From an initial,
reasonable value equal to K∗

0 /Y ∗
0 = δ/i = 6.25—corresponding to competitive

equilibrium—the capital–output ratio increases and tends asymptotically toward
an absurd value equal to 32 for any utility function. One would expect, of course,
that technical progress enhancing capital would reduce, not increase, the need
of fixed capital for one unit of net output. On the other hand, in the competitive
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equilibrium model we suggest hereafter, we will see that the capital–output ratio
decreases, if ever slowly.

4.3. The Incompatibility of the Traditional Approach and Competitive
Equilibrium: An Analytic Explanation

We illustrated numerically the fact that competitive equilibrium could not be
sustained in the traditional model, this approach leading to definitely unwarranted
time paths for variables of central importance: fast-declining consumption and
overaccumulation of the capital stock.

The reason is simple: Only affine utility functions make the Euler equa-
tion compatible with competitive equilibrium; strictly concave functions always
entail an Euler equation different from FK(K,L, t) = i(t). Indeed, maximizing∫ ∞

0 U(Ct) exp(− ∫ t

0 i(z)dz)dt under the constraint Ct = F(Kt , t) − K̇t leads to
the Euler second-order differential equation

i(t) = FK(K, t) + U̇ ′(C)/U ′(C) = FK(K, t) + [
U ′′(C)/U ′(C)

]
Ċ (17)

where Ct = F(Kt , t) − K̇t . We can also explain why consumption will always
decrease. For all parameters within observed or predictable ranges, the positive
effect of technical progress on FK is not sufficient to compensate the decreasing
return on capital. Therefore, to maintain the right-hand side of (17) equal to i

(constant here), Ċ must be negative since U ′′(C) < 0. In the solution we propose,
capital will increase in such a way that those two effects will exactly compensate
each other.

5. A SUGGESTED SOLUTION

In the intertemporal optimization problem considered above, the only way to
enforce i(t) = FK(K,L, t) is to have U ′′(C) = 0, i.e., U(C) = aC + b, where
a and b are constants, a particular case being ours,3 U(C) = C. It is a good place
to remember that utility functions at the macroeconomic level were simple, direct
transpositions of functions considered at the micro-level. We take the liberty of
suggesting that before bending down into a concave curve the relationship between
consumption and society’s representation of welfare, we first take away from net
national income the huge amount of expenditures that have simply no relationship
with any present or future well-being.

We thus should be tending toward a measure of the quality of life that offers
much less reason to be transformed into a concave function than what was the
case previously. There are sound reasons not to introduce such transformations.
Consider, for instance, medical discoveries that enhance both the length and the
quality of life of a large part of the population, either in rich or poor countries.
Would not we then conclude that those health services generate linear or even
convex, rather than concave, utility flows? Also, contrary to what is assumed at
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the individual micro-level, the very knowledge that not only some given person,
but also the rest of society as well as all future generations are able to benefit
from those discoveries can hardly induce to penalize them with a transformation
into some concave function. Exactly the same reasoning would apply to the all-
important expenditures on education.

Consequently, in what follows we take the step of considering that C stands
for welfare flows, F representing the output net of (a) physical and natural capital
depreciation, and (b) all goods and services reducing welfare. In the same way, K̇

is standing only for investment in goods and services improving society’s present
and future well-being.

We are thus led to maximize W0 = ∫ ∞
0 Ct exp(− ∫ t

0 i(z)dz)dt under the con-
straint Ct = F(Kt,Lt , t)−K̇t . The Euler equation, of course, leads to the competi-
tive equilibrium condition i(t) = FK(K,L, t) and, if i(t) is constant, to equations
(7)–(14) introduced in Section 4 to determine the optimal time paths and their
initial values corresponding to such equilibrium.

We now want to show that all equations (7)–(14) will always yield reasonable
initial values and future time paths for the following fundamental variables: the
optimal savings rate, the implied growth rate of income per person, the capital–
output ratio, and the share of labor in net income.

Before proceeding we should point out how appropriate the adjective “optimal”
in this context is, since all time paths described hereafter correspond to no less
than five simultaneous optima, in addition to the minimization of production costs.

5.1. The Intertemporal Optimality of Competitive Equilibrium: Its
Multiple Facets

We will show how investing in such a way that the marginal productivity of capital
stays equal to the rate of interest generates for society five benefits of considerable
importance; those benefits may be very surprising in the sense that they can be—
and most probably are—far removed from the initial objective of investors—which
might simply have been the minimization of their production costs. We will prove
the following results.

THEOREM 1. Let the production function F(Kt , Lt , t) be concave and ho-
mogeneous of degree one in K,L; technical progress may be labor- and capital-
augmenting. If investment is carried out through time in such a way that the
marginal productivity of capital is maintained equal to the rate of interest i(t),
and if capital is remunerated by i(t)K(t), society simultaneously maximizes five
magnitudes:

(1) the sum of the discounted consumption flows society can acquire from now
to infinity

∫ ∞
0 Ct exp(− ∫ t

0 i(z)dz)dt;
(2) the value of society’s activity at any point of time t , defined by the con-

sumption flow received at time t plus the rate of increase in the value
of the capital stock at that time. In present value, this sum is equal to
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Ct exp(− ∫ t

0 i(z)dz) + d
dt

[λ(t)K(t)], where λ(t) is the discounted price of
capital;

(3) the total value of society’s activity over an infinite time span∫ ∞

0

{
Ct exp

(
−

∫ t

0
i(z)dz

)
dt + d

dt
[λ(t)K(t)]

}
dt;

(4) the remuneration of labor at any point of time F(Kt , Lt , t) − i(t)K(t);
(5) the total remuneration of labor over an infinite time span∫ ∞

0
exp

(
−

∫ t

0
i(z)dz

)
[F(Kt , Lt , t) − i(t)K(t)]dt.

Proof of (1). Maximizing
∫ ∞

0 Ct exp(− ∫ t

0 i(z)dz)dt under the constraint Ct =
F(Kt , Lt , t) − K̇(t) amounts to maximizing

W0 =
∫ ∞

0

[
F(Kt , Lt , t) − K̇(t)

]
exp

(
−

∫ t

0
i(z)dz

)
dt, (18)

denoted
∫ ∞

0 ϕ(K, K̇, t)dt. Applying the Euler equation ϕK − d
dt

ϕK̇ = 0 results in
the condition

FK(Kt , Lt , t) = i(t). (19)

Due to the concavity of ϕ(K, K̇, t) in the variables K and K̇, we may ap-
ply Takayama’s theorem to ascertain that (19) is a necessary and sufficient
condition for a global maximum of W , provided that the transversality con-
ditions at infinity are met. Those conditions are limt→∞ ∂ϕ/∂K̇ = 0 and
limt→∞ ϕ(K, K̇, t) = 0. The first condition can be immediately checked: It
implies limt→∞ ∂ϕ/∂K̇ = limt→∞ exp(− ∫ t

0 i(z)dz) = 0, always verified. The
second condition is met as long as

∫ ∞
0 ϕ(K, K̇, t)dt converges, a property ob-

tained due to the fast convergence of the exponential exp(− ∫ t

0 i(z)dz).

Proof of (2). As defined above, the value of society’s activity is measured by
the Dorfmanian D(K, K̇, t)4; using the constraint introduced before, it can be
expressed as

D(Kt, K̇t , t) = Ct exp

(
−

∫ t

0
i(z)dz

)
+ d

dt
[λ(t)K(t)] (20)

= [F(Kt , Lt , t) − K̇t ] exp

(
−

∫ t

0
i(z)dz

)
+ λ(t)K̇t + λ̇(t)Kt , (21)

where λ(t) is the price of one unit of capital in use at time t, in present value.
Setting the gradient of D with respect to Kt and K̇t to 0 gives

∂D

∂Kt

= FKt
(Kt , Lt , t) exp

(
−

∫ t

0
i(z)dz

)
+ λ̇(t) = 0 (22)
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and

∂D

∂K̇t

= − exp

(
−

∫ t

0
i(z)dz

)
+ λ(t) = 0; (23)

eliminating λ(t) yields FK(Kt , Lt , t) = i(t), which, together with the concavity
of the Dorfmanian with respect to K and K̇ , gives a sufficient condition for a
global maximum of D. (An alternate proof is available in the full version available
as supplementary material.)

We still have to prove that λ(t), given by equation (23) as equal to
exp(− ∫ t

0 i(z)dz), is indeed the present value of one additional unit of capital used
at time t . This will be true if only if at any time t the rate of increase of the optimal
value of the functional W ∗

t with respect to capital is equal to 1. We have, from

Wt =
∫ ∞

t

[
F(Kτ , Lτ , τ ) − K̇(τ )

]
exp

(
−

∫ τ

t

i(z)dz

)
dτ,

∂Wt

∂Kt

= ∂

∂Kt

∫ ∞

t

[F(Kτ , Lτ , τ ) − K̇τ ] exp

(
−

∫ τ

t

i(z)dz

)
dτ

=
∫ ∞

t

FKτ
(Kτ , Lτ , τ ) exp

(
−

∫ τ

t

i(z)dz

)
dτ . (24)

Replacing FK(Kτ , Lτ , τ ) in the last term of (24) with i(τ ) gives

∂W ∗
t

∂Kt

=
∫ ∞

t

i(τ ) exp

(
−

∫ τ

t

i(z)dz

)
dτ =

[
− exp

(
−

∫ τ

t

i(z)dz

)]∞

t

= 1;
(25)

hence, λ(t) = exp(− ∫ t

0 i(z)dz) is indeed the present value of ∂W ∗
t /∂Kt and

therefore the discounted price of one additional unit of capital set in use at time t ,
as was to be shown for the Dorfmanian to measure the value of society’s activity.

Proof of (3). Maximizing at any point of time a function f (t) will generate a
maximum of the integral

∫ ∞
0 f (t)dt as long as the integral converges, which is

the case here. We can verify that FK(Kt , Lt , t) = i(t) optimizes the total value
of society’s activity over t ∈ [0,∞) by maximizing the indefinite integral of the
Dorfmanian∫ ∞

0
D(K, K̇, t)dt =

∫ ∞

0
{Ct exp

(
−

∫ t

0
i(z)dz

)
dt + d

dt
[λ(t)K(t)]}dt

=
∫ ∞

0
{[F(Kt , Lt , t) − K̇t ] exp

(
−

∫ t

0
i(z)dz

)
+ λ(t)K̇t + λ̇(t)Kt }dt. (26)

The Euler equation can be shown to be equal to

∂D

∂Kt

− d

dt

∂D

∂K̇t

= exp

(
−

∫ t

0
i(z)dz

)
[FK(Kt , Lt , t) − i(t)] = 0, (27)
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leading to FK(Kt , Lt , t) = i(t). (For an alternate proof, see the full version
online.)

Proof of (4). When maximizing the value of society’s activity at any point of
time, we have determined the value of λ(t) as exp(− ∫ t

0 i(z)dz); substituting this
value into the Dorfmanian expressed either as D(K, K̇, t) gives the Dorfmanian
evaluated at its maximum value, denoted by D∗:

D∗ = C∗
t exp

(
−

∫ t

0
i(z)dz

)
+ λ(t)K̇∗

t + λ̇(t)K∗
t

= C∗
t exp

(
−

∫ t

0
i(z)dz

)
+ exp

(
−

∫ t

0
i(z)dz

)
K̇∗

t

− i(t) exp

(
−

∫ t

0
i(z)dz

)
K∗

t

= exp

(
−

∫ t

0
i(z)dz

) [
C∗

t + K̇∗
t − i(t)K∗

t

]

= exp

(
−

∫ t

0
i(z)dz

) [
F(K∗

t , Lt , t) − i(t)K∗
t

]
.

Since i(t)Kt is the remuneration of capital, the bracketed term is the remuner-
ation of labor, which has been maximized with D.

Proof of (5). The maximization of the total remuneration of labor over [0,∞),
the integral

∫ ∞
0 exp(− ∫ t

0 i(z)dz)[F(Kt, Lt , t) − i(t)K(t)]dt, follows immedi-
ately either from a differential or a variational argument as those used in the proof
of (3).

Taken individually, any of those five outcomes of competitive equilibrium ad-
mittedly constitutes surprises. One of the most startling outcomes is that the
equality FK(Kt , Lt , t) = i(t) not only maximizes intertemporally consumption
as well as the value of society’s activity, but also maximizes the remuneration of
labor, and, additionally, that the last two quantities are equal.

We will now show that, surprising as this last equality may be, it perfectly
squares with a basic principle of national accounting, namely that at any time t the
total remuneration of factors must be equal to consumption plus investment. The
Dorfmanian, denoted by D∗ at its maximal value, has just been shown to be equal
to the present value of the remuneration of labor; thus, the current value at time
t of that remuneration is D∗ exp(

∫ t

0 i(z)dz); on the other hand, the remuneration
of capital is i(t)K∗

t . We must now verify that the sum of those factor payments
is equal to consumption plus investment at their optimum values. We have indeed
i(t)K∗

t + [exp(
∫ t

0 i(z)dz)]D∗ = i(t)K∗
t + exp(

∫ t

0 i(z)dz)[C∗
t exp(− ∫ t

0 i(z)dz) +
d
dt

(λ∗
t K

∗
t )] = i(t)K∗

t +e
∫ t

0 i(z)dz[C∗
t e

− ∫ t

0 i(z)dz+e− ∫ t

0 i(z)dzK̇∗
t − i(t)e− ∫ t

0 i(z)dzK∗
t ] =

C∗
t + K̇∗

t , as was to be ascertained.
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5.2. The Optimal Evolution of the Economy under Competitive
Equilibrium

We now want to assess the values taken by central variables of the economy,
namely the savings-investment rate, the growth rate of real income per person,
and the capital–output ratio if we manage to save and invest in such a way as to
maintain competitive equilibrium.

In a first approach, we assume constant growth rates for Lt , Gt , and Ht , denoted
by n, g, and h, respectively. (In the next section, we will assume very different
time paths for those variables.) We choose n = 0.01; for g, h, and σ, we took
the estimates made by Sato for the US economy over an 80-year time span. Thus,
σ = 0.8, h = 0.02, and g = 0.004 as a first series of values for those parameters.

The optimal time path of the savings rate. We are now in a position to undertake
the comparative dynamics of the optimal savings rate, and answer, in particular,
the nagging question asked by Frank Ramsey and certainly by anybody who would
take up the subject of optimal growth: Will technical progress increase or decrease
the optimal savings rate? We will now use our central equation (6) not only, as we
did before, to determine the initial conditions prevailing in a competitive economy,
but also to study its whole time path:

s∗
t = δ

i

{
n + h + g

[
σ

1 − δe−g(1−σ)t
− 1

]}
e−g(1−σ)t , 0 ≤ σ ≤ 1. (28)

Examination of (28) immediately reveals that s∗
t is an increasing function of the

elasticity of substitution σ and a decreasing function of the rate of interest. It
will also decrease through time for any given value of the parameters. Those
dependencies are very natural. For instance, the property ∂s∗

t /∂σ > 0 is easily
understood if we think of σ as a powerful engine of growth; the reason is that
income per person, as a general mean of order p (p = 1 − 1/σ), is an increasing
function of its order and therefore of σ , with an inflection point close to p = 0,

i.e., when σ is in the observed range, considered here (0.5 < σ < 0.8).5

Also, it would be disastrous if the sacrifice made by society through time in
the form of its savings rate were increasing or constant despite technical progress.
Tables 3 and 4 present first results for the values of the parameters indicated above.

The good news is that the optimal savings rate is always in very reasonable
ranges. From (28) it can be seen that its welcome decrease through time is solely
due to the presence of capital-augmenting technical progress. (If g were equal to
zero, the optimal savings rate would remain at the constant level δ

i
(n + h).) Also,

whatever values of g and h, a value σ = 1 would make s∗ remain constant, at
level (δ/i)

[
n + h + g( δ

1−δ
)
]
. However, we should underline that, time and again,

the elasticity of substitution has been observed to be lower than, not equal to, 1,
and that, as we had observed in Section 3.1, σ = 1 constitutes the upper limit for
which a competitive equilibrium can be sustained.
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TABLE 3. The optimal savings rate s∗(t, i) as a func-
tion of the rate of preference for the present, and
as a slowly decreasing function of time; σ = 0.8;
n = .01; δ = 0.25; g = .004;h = 0.02

�����t

i
0.04 0.045 0.05 0.055 0.06

0 18.9 16.8 15.1 13.8 12.6
30 18.4 16.4 14.8 13.4 12.3
60 18.0 16.0 14.4 13.1 12.0

TABLE 4. The optimal savings rate s∗(t, i) as a function of the
elasticity of substitution σ, and as a slowly decreasing function of
time; i = 0.04; n = .01; δ = 0.25; g = .004; h = 0.02

�����t

σ
0.5 0.55 0.6 0.65 0.07 0.75 0.8

0 17.9 18.1 18.3 18.4 18.6 18.8 18.9
30 16.8 17.1 17.4 17.6 17.9 18.2 18.4
60 15.8 16.2 16.5 16.9 17.2 17.6 18.0

The positive dependency between s∗
t and the rate of labor-augmenting technical

progress h is immediately established from (28), but an assessment of the effect
of changing g on s∗

t cannot be easily made analytically due to the complexity of
∂s∗

t /∂g. However, a clear pattern can be established with numerical representa-
tions. At any time t , whether an increase in g will lead to an increase in s∗

t will
depend on the value of the elasticity of substitution. There will always exist a
value σ̄ for which ∂s∗

t /∂g = 0. For instance, at t = 0, it can be seen from (28)
that the coefficient multiplying g, equal to σ

1−δ
−1, reduces to zero for σ = 1− δ;

above this critical value, ∂s∗
t /∂g > 0; and below, ∂s∗

t /∂g < 0. In our example,
this value is σ̄ = 0.75; as time progresses, the value of σ̄ increases (for instance,
with t = 30, σ̄ = 0.82). In any case, the changes in s∗

t impacted by an increase in
g are minimal: for instance, doubling g from 0.004 to 0.008 makes s∗

30 decrease
from 18.4% to 18.1%.

5.3. The Optimal Growth Rate of Income Per Person

From (11), the optimal growth rate of income per person is now

ẏ∗
t /y∗

t = h + σg
δ

eg(1−σ)t − δ
, σ ≤ 1. (29)

It immediately appears that ẏ∗
t /y∗

t , an increasing function of the elasticity of
substitution, is higher than h and very slowly decreases asymptotically toward h,
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TABLE 5. The optimal growth rate of income per person r∗(t, i) =
ẏ∗

t /y∗
t as a function of the elasticity of substitution; n = .01; δ =

0.25; g = .004; h = 0.02

�����t

σ
0.5 0.55 0.6 0.65 0.7 0.75 0.8

0 2.07 2.07 2.08 2.09 2.09 2.10 2.11
30 2.06 2.07 2.08 2.08 2.08 2.09 2.10
60 2.06 2.06 2.07 2.08 2.08 2.09 2.10

as illustrated in Table 5. (Notice once more that the ultimate growth rate of income
per person may converge toward the rate of labor-augmenting technical progress
even in the presence of capital-augmenting progress—this is due to the property
of general means with negative order we mentioned earlier.)

5.4. The Optimal Time Path of the Capital–Output Ratio

In a reassuring way, the capital–output ratio K∗/Y ∗, determined from (8) and (9)
as

K∗/Y ∗ = δ

i
e−(1−σ)gt , σ ≤ 1, (30)

is a slowly decreasing function of time (see Table 6). It would be indeed bad
news if this ratio were to stay constant (the case of σ = 1, with K∗/Y ∗ = δ/i),
meaning that society would have to match any growth rate of its standard of living
with the same growth rate of fixed capital; it would be absurd news if, as seen
above in the traditional approach (Section 3.2), from a competitive equilibrium
value the capital–output ratio were to increase five-fold whatever the α < 1
value in the utility function, despite the presence of capital-augmenting technical
progress! Here the ratio’s rate of decline is (1 − σ) g, depending positively on g

and negatively on σ, which makes good economic sense.

TABLE 6. The capital–output ratio K∗/Y ∗ as a function
of time and the rate of preference for the present; n =
.01; δ = 1/4; σ = 0.8;h = .02; g = 0.004

σ = 0.5 σ = 0.8

�����t

i
0.04 0.05 0.06 0.04 0.05 0.06

0 6.25 5.00 4.17 6.25 5 4.17
30 5.89 4.71 3.92 6.10 4.88 4.07
60 5.54 4.43 3.70 5.96 4.76 3.97
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5.5. The Evolution of the Labor Share in Competitive Equilibrium

From Section 4, we know that the remuneration of labor, equal to the value of
society’s activity, is maximized at any point of time, and therefore intertemporally.
But what is the evolution of the share of labor through time? From (30), we can
determine the share of capital as iK∗/Y ∗ = δe−(1−σ)gt , σ ≤ 1. Therefore, the
share of labor, denoted by θ∗

t , is equal to

θ∗
t = 1 − δe−(1−σ)gt . (31)

It can be seen that initially this share is independent of σ and g, and that it
slowly increases asymptotically from 1 − δ to 1. For instance, with δ = 0.25,

σ = 0.5, and g = 0.04, θ∗
0 = 0.75 and θ∗

30 = 0.76. In this 30-year time
span, it can be calculated from (8) and (9) (and the same other parameters as in
Section 5.4) that the total remuneration of labor, Y − iK, has been multiplied by
2.56, implying an increase of the wage rate equal to 2.1 % per year.

6. THE ROBUSTNESS OF THE OPTIMAL SAVINGS RATE

Modelling the economy in the very long run definitely requires that we do not
suppose—as we did—that the population evolution will be exponential; we should
rather use some S-shaped time-path, possibly converging toward a horizontal
asymptote. Our aim now is to know how the optimal savings rate and the other
central variables of the economy would react if not only the population L(t)

but also the factor enhancing functions G(t) and H(t) were to follow such S-
shaped evolutions. To that effect, we supposed that the growth rates of these
functions would be asymptotically decreasing toward 0. Due to space constraints,
our methodology and the detailed results are available on the online document
only. The results exactly square with what we expected: the optimal savings rate
is lower than in the exponential case while, not surprisingly, the capital-output
ratio remains in the same range and decreases through time. Such robustness of
the model is due to two factors: first, while the S-shaped time-paths are highly
different in the distant future from the exponential ones, they remain relatively
close in the short and medium term; the second reason is the quick convergence
of the indefinite integral we are maximizing.

7. CONCLUSION

Extending the concept of a concave utility function from micro-representations to
macroeconomics was an intuitive, apparently defensible idea, but it led optimal
growth theory into a blind alley, precluding any possibility of solving its cen-
tral problem: simultaneously determining meaningful time paths for the optimal
savings rate and for other central variables of an economy. Ever since Ramsey’s
first experiment, it has been repeatedly demonstrated that such a function, what-
ever extreme properties it was imparted with, led to at least one evolution of a
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fundamental variable that was either strongly contradictory to historical experience
or simply unacceptable by society.

For our part, we have, on the one hand, confirmed the serious warning signs
sent to our profession in the writings of Ramsey and Goodwin, and most forcibly
by King and Rebelo; in fact, we confirmed what would be concluded by anyone
who would care to solve numerically the differential equations implied by the
theory. On the other hand, we offered an explanation to those dire results: the tra-
ditional approach prevents competitive equilibrium to be sustained. In particular,
we showed that if the economy was initially in a state close to competitive equi-
librium, any attempt to define an optimal investment time path along traditional
lines inevitably led to a catastrophic evolution of the economy, marked by a per-
manent decrease in consumption accompanied by an inordinate accumulation of
capital.

Our solution to the problem of optimal growth is then the following: first,
rather than bending all consumption into a concave function as it has been done
until now, we retain in consumption what can be considered as welfare flows
for society. This approach leads in a natural way to the following objective,
probably conforming to the desires of most individuals: maximizing the sum of
discounted welfare flows (contrast this with the traditional approach: imposing a
utility function on every individual, with the certainty that it will lead to unwanted
time paths for the economy). Then, define with i the rate of preference of society
for the present, which naturally incorporates a risk premium. We believe that
it will definitely be easier to obtain a consensus on such a rate than on some
utility function, even if society is completely unaware of the impracticability
of such functions. That rate could be linked to historically observed real rates
of return on capital. Then, as a rule, savings and investment decisions should
conform to the equation of competitive equilibrium i = FK(K,L, t). This is the
Euler equation for the maximization just defined; with the general, historically
observed hypotheses of the neoclassical model, the equation will always have
a solution K∗

t = F−1
K (i, L, t), leading to a meaningful savings-investment rate

s∗
t = K̇∗

t /F (K∗
t , Lt , t).

This proposal offers three advantages:

(1) The time path K∗
t is optimal in more than one way: In addition to minimizing

production costs, it maximizes intertemporally the following magnitudes: the
sum of discounted consumption flows; the total value of society’s activity,
equal to the sum of consumption and the increase in the value of capital; and,
finally, the total remuneration of labor, shown to be equal to this sum.

(2) K∗
t always leads to reasonable time paths of the economy. In addition,

the optimal savings rate and the capital–output ratio—reflecting a sacrifice
made by society—both exhibit the most welcome feature of being slowly
decreasing over time.

(3) All implied time paths are extremely robust to variations in the parameters
of the model, as well as to highly different predictions regarding the future

https://doi.org/10.1017/S1365100516000742 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000742


WHY IS OPTIMAL GROWTH THEORY MUTE? 99

evolutions of population and technical progress. Even drastic predictions—
for instance, assuming that the variables reflecting those evolutions will soon
reach a plateau—are unable to make central variables of the economy deviate
from reasonable, predictable ranges.

In his introduction to the 1975 edition of Adam Smith’s magnum opus, William
Letwin wrote, “Far from being a hymn in praise of anarchic greed, the ‘Wealth
of Nations’ is a reasoned argument for justice, order, liberty and prudent plenty”
(p. 7; our italics). It is definitely arguable that with optimal growth theory we are
looking for rules enabling society to achieve this last objective. It is our hope that
the numbers suggested here, based on competitive equilibrium with its associate
optima, contribute to that rightful purpose.

SUPPLEMENTARY MATERIAL

The supplementary material for this article is available online at www.journals.
cambridge.org/jid/10.1017/S1365100516000742.

NOTES

1. In the σ = 1 Cobb–Douglas case, formulas (7)–(9) have to be reworked from FK = i, using
this time (5) for F(.). The results are K∗

t = δ
i
LtHtG

δ/(1−δ)
t , Y ∗

t = LtHtG
δ/(1−δ)
t , and K∗

t /Y ∗
t = δ/i.

As mentioned before, we give these results for complete reference only, because time and again σ has
been observed as smaller than 1.

2. Note that formulas (10)–(13) apply directly in the σ = 1 case. One gets K∗
t /Y ∗

t = δ/i,
Ẏ ∗

t /Y ∗
t = K̇∗

t /K∗
t = nt +ht + δ

1−δ
gt , s∗

t = δ
i
(nt +ht + δ

1−δ
gt ), and C∗

0 = 1 − δ
i
(n0 +h0 + δ

1−δ
g0).

3. As a referee has pointed out, it is not the first time a linear objective has been used: Intriligator
(1971) and Kamikigashi and Roy (2006) are examples, albeit in different contexts.

4. In his remarkable essay “An economic interpretation of optimal control”, Robert Dorfman
(1969) introduced a “modified Hamiltonian”, as he called it (p. 822). To pay hommage to the memory
of Robert Dorfman, we call this new Hamiltonian a “Dorfmanian”.

5. In La Grandville (1989), we conjectured that the spectacular growth in East-Asian countries was
due less to technical progress than a higher elasticity of substitution; see also Klump and La Grandville
(2000). The conjecture was successfully tested by Yuhn (1991) in the case of South Korea. For the
existence of a unique inflection point in the general mean, see the conjecture offered in La Grandville
and Solow (2006); the proof is due to Thanh and Minh (2008).
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