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Stability of flows past a pair of circular
cylinders in a side-by-side arrangement
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Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

(Received 17 March 2007 and in revised form 3 October 2007)

The stability and transition of flow past a pair of circular cylinders in a side-by-side
arrangement are investigated by numerical simulations and linear stability analyses.
Various flow patterns around the cylinders have been reported to appear due to an
instability of the steady symmetric flow that is realized at small Reynolds numbers,
among which deflected oscillatory flow is particularly noticeable. The physical origin
of the flow is explored by bifurcation analyses of the numerical data. We found that
the deflected oscillatory flow arises from the steady symmetric flow through sequential
instabilities due to stationary and oscillatory unstable modes. Steady asymmetric flow
with respect to the streamwise centreline between the two cylinders was also found
to be induced by the instability due to a stationary mode in a very narrow range
of the gap width between the two cylinders. We classify the instability modes of the
steady symmetric flow into four groups in the parameter space of the gap width, and
evaluate the critical Reynolds number for each mode of instability.

1. Introduction
Flow past two circular cylinders has been found to exhibit various flow patterns

in spite of its simple configuration and to have complex characteristics depending
on the arrangement of the cylinders and the Reynolds number (Zdravkovich 1977;
Zdravkovich & Pridden 1977; Ohya, Okajima & Hayashi 1988). Among various
arrangements, two typical configurations, i.e. tandem and side-by-side, have been
investigated extensively. It is known that the drag and lift coefficients on the cylinders
exhibit a discontinuous jump at some critical spacing between the two cylinders in
a tandem arrangement; the downstream cylinder experiences a complex force from
the wake of the upstream cylinder (Ishigai, Nishikawa & Cho 1972; Mizushima &
Suehiro 2005). The patterns and oscillation frequencies in the flow past two cylinders
in a side-by-side arrangement have been studied, and various flow patterns have
been reported depending on the gap width between the cylinders and the Reynolds
number; the asymmetric flow past two symmetrically arranged cylinders has received
the attention of researchers.

Early research on flow past two cylinders in a side-by-side arrangement has been
mostly at large Reynolds numbers (Re = 103 ∼ 105) in experiments (Spivack 1946;
Ishigai et al. 1972; Bearman & Wadcock 1973). Though some scatter is seen in
these experimental results, it was found that there exist three distinct regimes of flow
depending on the gap between the cylinders. For gaps larger than one diameter,
the vortex shedding frequency is the same as that for a single cylinder though
synchronization was observed in shedding of vortices from the two cylinders, whereas
for gaps less than 0.5 diameter the flow is similar to that past a single bluff body
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having the equivalent length scale of the sum of twice the diameter and the gap
width. For intermediate gap width between 0.5 and 1.0 diameter, the flow is deflected
towards one cylinder and becomes asymmetric, having narrow and wide wakes, and
two distinct predominant frequencies are detected in the flow. The higher frequency
is observed in the narrow wake and the lower in the wide wake. The deflected flow is
unsteady and switches randomly between two asymmetric states. This deflected flow
and the two different frequencies have been confirmed in many other papers (Kim &
Durbin 1988; Sumner et al. 1999; Zhou et al. 2001; Zhou, Zhang & Yiu 2002) and
it is believed that the higher shedding frequency is a multiple (twice or triple) of the
lower frequency for large Reynolds number flows, though the ratio is dependent on
the Reynolds number.

The mechanism and behaviour of the flip-flopping of the deflected flow were in-
vestigated by Kim & Durbin (1988). They confirmed that transitions between the two
asymmetric states can be described as a Poisson stochastic process, and concluded that
the flip-flopping may be interpreted as the behaviour of a simple dynamical system
with two quasi-stable states although the detailed mechanism that is responsible for the
asymmetry and flip-flopping cannot be surmized. The origins of the flip-flopping and
the deflection of the flow were sought in analogy with coupled oscillators by Le Gal et
al. (1990), and later a model of coupled Landau equations was proposed to describe
the oscillation in the two wakes by Peschard & Le Gal (1996) which reproduced most
of the experimental features such as in-phase and antiphase oscillatory states and an
asymmetric bistable locked state. In spite of many attempts to clarify the origin of
the deflection of the flow, no clear explanation has been given, except a conjecture by
Ishigai, Nishikawa & Cho (1972) that the deflection is induced by a Coanda effect.
However, the conjecture was disproved by Williamson (1985), who confirmed the de-
flection of the flow experimentally by using flat plates in place of two circular cylinders.

The Coanda effect expresses the tendency of a stream to stay attached to a convex
surface and does not explain deflection of flow through a gap between two circular
cylinders, but predicts a straight stream broadening in accordance with the expansion
of the path between the cylinders. A similar flow deflection was also observed in the
flow past an array of square cylinders (Le Gal et al. 1996), for which the mechanism
of the deflection was clarified as the instability of symmetric flow, and the transition
from symmetric to confluent flow with stream deflections was explained by a pitchfork
bifucation by Mizushima & Takemoto (1996) and Mizushima & Kawaguchi (2000).
Although an array of square or circular cylinders may be thought to be similar to
two side-by-side cylinders if only one pair in the array of cylinders is focused, the
flow past two side-by-side cylinders is not expected to have a pitchfork bifurcation
because flow past isolated obstacles such as the pair is expected to become oscillatory
due to instability.

The flow characteristics depend on the gap width between the two cylinders.
Research has been directed mostly to the gap-width dependence of the flow pattern
and the physical characteristics of the flow, and the effect of the Reynolds number on
the flow patterns and measured physical quantities have not been considered in detail.
Therefore, no definite conditions for the occurrence of synchronized vortex shedding in
phase or in antiphase has been obtained from experiments at large Reynolds numbers.
Williamson confirmed in his experiment at relatively small Reynolds numbers, ranging
from 40 to 160, that vortex shedding from a pair of cylinders is synchronized in phase
or in antiphase to form different vortex streets. It was shown that two antiphase
vortex streets were formed as the result of antiphase vortex shedding, although in-
phase vortex shedding did not yield two stable in-phase vortex streets but led to the
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development of a single large-scale wake. Akinaga & Mizushima (2005) applied the
linear stability theory to evaluate the critical Reynolds numbers for both the modes
of instability, and determined the critical gap width as 2.34 times the diameter of the
cylinders. For larger gap width than this critical value, the flow exhibits antiphase
oscillation, and in-phase oscillation is observed for smaller gap width although the
origin of the deflected oscillatory flow was not addressed in their paper.

Xu, Zhou & So (2003) investigated the influence of the Reynolds number as well as
the gap width on the flow structure in detail for the wide range of Reynolds number
of 150–14300, using laser-induced fluorescence flow visualization, PIV (particle image
velocimetry) method and hot-wire velocimetry. They found that, as the Reynolds
number increases, the flow structure in the wake behind the cylinders changes from
one vortex street to two streets, one narrow and the other wide, having different
oscillation frequencies for gap distances larger than a certain value about 0.25 times
the diameter. Only one vortex street like von Kármán’s vortex street is realized for
distances smaller than the critical value. The one-street flow structure is dominated by
one non-dimensional frequency (Strouhal number) f0 ∼ 0.09, whereas two frequencies,
f0 ∼ 0.3 and 0.09, characterize the two-vortex flow structure. Thus it has been shown
that the flow structure is dependent on the Reynolds number. Ravoux, Nadim &
Haj-Hariri (2003) found various vortex shedding patterns including quasi-periodic,
asymmetric and chaotic regimes in their numerical results and classified the patterns
in a parameter space consisting of the gap width and the Reynolds number by
depicting phase portraits of the cylinder lift and drag coefficients, together with a
spectral analysis of the data.

Similar flip-flopping flows as well as in-phase and antiphase synchronized vortex
shedding were also observed in flow around two square cylinders placed side-by-side
in a numerical simulation using the lattice-Boltzmann method by Agrawal, Djenidi
& Antonia (2006), though the critical gap width for the transition from synchrozied
flow to flip-flopping flow is much larger than the case of two circular cylinders. They
applied a numerical technique called linear stochastic estimate (LSE) to educe the
underlying modes in flip-flopping flow and found evidence for both in-phase and
antiphase locked vortices, from which they concluded that the flip-flopping regime is
in a quasi-stable state between these two modes.

Kang (2003) numerically simulated the flow at small Reynolds numbers, Re = 40 ∼
160, and found that the flow characteristics significantly depend on the Reynolds
number as well as the gap width. He classified the flow into six flow patterns
depending on the Reynolds number and the spacing between the two cylinders, in
which deflected oscillatory flow is included.

In spite of many results on the flow past two cylinders in a side-by-side arrangement,
the origin of the deflected flow has not been fully examined in detail. We investigate
the stability and transition of the flow by numerical simulations and stability analyses
in the present paper. Our major objective is to explore the origin of various flow
patterns, specifically of the deflected oscillatory flow.

2. Mathematical formulation and boundary conditions
Consider the flow past two circular cylinders placed side by side in a uniform flow

with velocity U as illustrated in figure 1. The two circular cylinders have the same
diameter d , and the gap width between them is �. We take the x-axis in the direction
of the uniform upstream flow and the y-axis perpendicularly to it. Taking d and
U as the representative length and velocity scales, we define the gap ratio Γ and
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Figure 1. Configuration and coordinates.

the Reynolds number Re as Γ ≡ �/d and Re ≡ Ud/ν, respectively. Here, ν is the
kinematic viscosity.

Assuming an incompressible two-dimensional flow field and employing the stream
function ψ(x, y, t) and the vorticity ω(x, y, t) formulation, we write the governing
equations of the flow, i.e. the vorticity transport and Poisson equations, in non-
dimensional form as

∂ω

∂t
= N(ψ, ω) +

1

Re
Mω, (2.1)

ω = −Mψ, (2.2)

N(ψ, ω) ≡ ∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
, M ≡ ∂2

∂x2
+

∂2

∂y2
.

Here, M is the two-dimensional Laplacian and N represents the nonlinear term.
The assumed infinitely extended flow field is approximated by the finite domain

indicated by ABCD in figure 1. Uniform flow is assumed to come to the upstream
boundary (AB), and the outlet condition at the downstream boundary (CD) is
approximated by the Sommerfeld radiation condition, which is expressed as

∂ψ

∂t
+ c

∂ψ

∂x
= 0,

∂ω

∂t
+ c

∂ω

∂x
= 0, (2.3)

where the value of the nominal phase velocity c is evaluated numerically. The condition
on the side boundaries AD and BC is also uniform flow. The no-slip condition is
applied on the surface of each circular cylinder, written as

ψ = ψs, ω = −∂2ψ

∂n2
, (2.4)

where n is the coordinate taken normal to the surface of the cylinders. These conditions
are not sufficient for the unique determination of the solution of equations (2.1) and
(2.2), unless the value of ψs is specified. In order to evaluate the value of ψs , we
impose the condition that the pressure should be single-valued throughout the whole
flow field, which is written as ∮

C

∇p · t ds = 0, (2.5)

where s and t are the coordinate and the tangential unit vector, respectively, along
a path C that may be taken arbitrarily to surround each cylinder. However, we take
the path C along the surface of each cylinder because the pressure gradient ∇p on
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the surface is simply expressed as

∇p = − 1

Re
∇ × ω (2.6)

owing to the no-slip condition applied on it.

3. Steady-state solution
At small Reynolds numbers, the flow is steady and symmetric with respect to the

x-axis, i.e. the streamwise centreline through the middle of the gap between the two
cylinders. The solution corresponding to the steady symmetric flow satisfies basic
equations (2.1) and (2.2) under the boundary conditions, irrespective of the value
of the Reynolds number, although it becomes unstable above a critical value. This
steady symmetric flow, say (ψ̄, ω̄), is the main flow for the linear stability analysis.
The main flow is obtained numerically by solving the steady–state vorticity transport
equation:

N(ψ̄, ω̄) +
1

Re
Mω̄ = 0, (3.1)

which is obtained by dropping the term including the time-derivative in equa-
tion (2.1), together with the Poisson equation:

ω̄ = −M ψ̄ (3.2)

under the same boundary conditions for (ψ, ω) in equations (2.4)–(2.6), except for the
Sommerfeld boundary conditions at the outlet, which are reduced to ∂ψ/∂x = 0 and
∂ω/∂x = 0.

4. Linear stability analysis
In order to analyse the linear stability of the steady symmetric flow (main flow),

we consider a disturbance (ψ ′, ω′) added to the main flow (ψ̄, ω̄) and express the
vorticity and the stream function as

ψ = ψ̄ + ψ ′, ω = ω̄ + ω′, (4.1)

respectively. Substituting these expressions into equation (2.1) and subtracting
equation (3.1), we obtain a nonlinear disturbance equation for the vorticity disturbance
ω′ as

∂ω′

∂t
=

1

Re
Mω′ + N(ψ ′, ω̄) + N(ψ̄, ω′) + N(ψ ′, ω′). (4.2)

Neglecting the nonlinear term of the disturbance (ψ ′, ω′) in equation (4.2) and
assuming the time dependence of the disturbance as ψ ′ = ψ̂(x, y)eλt and ω′ =
ω̂(x, y)eλt , we arrive at a linearlized disturbance equation:

λω̂ =
1

Re
Mω̂ + N(ψ̂, ω̄) + N(ψ̄, ω̂), (4.3)

which is solved together with the Poisson equation for the disturbance:

ω̂ = −Mψ̂. (4.4)

Here, the coefficient λ is a complex linear growth rate of the disturbance, whose
real and imaginary parts, λr and λi , are the growth rate and the frequency (angular
velocity) of the disturbance, respectively. The steady symmetric flow is unstable if λr
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Figure 2. An example of the computational grid. Γ = 1.5.

is positive, or stable if λr is negative. Hence, the Reynolds number at which λr = 0
gives the critical value Rec.

The boundary condition for (ψ̂, ω̂) on the upstream and side boundaries is (ψ̂, ω̂) =
(0, 0). The outlet condition on the downstream boundary is the Sommerfeld radiation
condition. The no-slip boundary condition is applied on the surface of each circular
cylinder, written as

ψ̂ = 0, ω̂ = −∂2ψ̂

∂n2
. (4.5)

Equations (4.3) and (4.4) constitute an eigenvalue problem under the boundary
condition, for which infinite number of eigenvalues exist. We call each eigenvalue
and/or eigenfunction a mode of instability.

5. Numerical method
We use two different numerical methods, one of which is numerical simulation of

the basic equations (2.1) and (2.2) under the boundary conditions and an appropriate
initial condition, and the other the linear stability analysis of the steady symmetric
flow. In both methods, the spatial derivatives are approximated by finite differences in
a curvilinear numerical grid generated to fit the circular cylinders. In order to generate
the numerical grid, solutions of the following Poisson equations are adopted:

∂2ξ

∂x2
+

∂2ξ

∂y2
= P (ξ, η),

∂2η

∂x2
+

∂2η

∂y2
= Q(ξ, η). (5.1)

Here, (ξ, η) are coordinates in the calculation space, and the source terms P (ξ, η)
and Q(ξ, η) are utilized to cluster grid points near the surface of the cylinders. We
determine the forms of P (ξ, η) and Q(ξ, η) with the technique proposed by Steger &
Sorenson (1979). One of coordinates, η, is taken to be normal to the surface of the
cylinders on which η = 0, while the other ξ is along the surfaces. The numerical
domain is defined as L1 = 5d , L2 = 40d and L3 = �/2 + 9d , which must be large
enough not to affect the numerical results (see figure 1). An example of the grid
thus generated is shown in figure 2 for Γ = 1.5, with total number of mesh points
199 × 410; the minimum mesh size is 0.01d near the surfaces of the cylinders and the
maximum size is 0.1d near the outlet and side boundaries, as shown in figure 2. The
purpose of this is to take the fact that velocity field must change rapidly near the
cylinder into consideration.

In numerical simulations of equations (2.1) and (2.2), we use the fourth-order
Runge–Kutta method to approximate the time derivative, together with the second-
order accuracy of central finite difference in space. Poisson equation (2.2) is solved by
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the successive over-relaxation (SOR) method, in which the relaxation factor is usually
taken as ε = 1.5, although other values are also taken depending on the values of
the Reynolds number and the gap ratio. The convergence of the solution for the
Poisson equation is determined when the total relative difference in (ψ, ω) between
two subsequent iterations at all the mesh points in the whole numerical domain is less
than 10−7. The flow is judged to have attained its steady state when the summations
of the relative differences of ψ and ω between two subsequent time steps become
smaller than 10−10.

The SOR iterative method is also utilized in order to obtain the steady-state solution
(the main flow) and also to solve the eigenvalue problem in the linear stability
analysis. The steady-state solution is obtained numerically by solving equations
(3.1) and (3.2) under the boundary conditions, where the spatial derivatives are
approximated by the second-order finite differences. The antisymmetry of (ψ̄, ω̄)
with respect to the x-axis, i.e. ψ̄(x, −y) = −ψ̄(x, y) and ω̄(x, −y) = −ω̄(x, y), is
taken into consideration in calculating the steady-state solution in order to save
computation time. In the SOR iterative method to solve the eigenvalue problem in
the linear stability analysis, the spatial derivatives are approximated by second-order
finite differences. Here, the eigenfunctions (ψ̂, ω̂) of the most growing mode have
the symmetry ψ̂(x, −y) = ψ̂(x, y) and ω̂(x, −y) = ω̂(x, y), which can be utilized in
numerical calculation.

6. Numerical results
We performed numerical simulations of the flow as well as linear stability analyses

of the main flow mainly in the range of Re � 80 and 0.3 � Γ � 1.0, and found that
the flow characteristics drastically change around Γ ∼ 0.5 − 0.62. Hence, we show
the flow patterns and its transitions for Γ = 0.5, 0.6 and 0.62 as typical cases.

Steady symmetric flow is realized irrespective of its initial condition at small
Reynolds numbers for any value of the gap ratio Γ , which is a unique steady-state
solution of the governing equations. An example of steady symmetric flow is shown
for Re = 20 and the gap ratio Γ = 0.5 in figure 3(a), in which the flow field is depicted
only in the range of x = [−5, 20] and y = [−9.5, 9.5] although the numerical domain
is larger in the downstream direction. In this figure, we observe a recirculation region
at a small distance from the pair of cylinders. The recirculation region resembles
the vortex pair behind a circular cylinder in a uniform flow though the vortex pair
is attached to the cylinder whereas it is not attached here. However, if we regard
the pair of cylinders as a single object having the same extent, we may consider the
recirculation region to be similar to the twin-vortex though it is not attached.

In the case of Γ = 0.5, the first instability of the steady symmetric flow is caused
by an oscillatory mode as seen in figure 3(b) for Re = 50, whose frequency f , i.e. the
Strouhal number St in the present normalization, is about 0.069. The oscillation is
observed beyond the downstream end of the recirculation region, whereas oscillation
appears just behind the vortex pair in the flow past a single cylinder. However, we can
find similarity between the two flows if we recall that the recirculation region behaves
as a vortex pair. Thus we confirm that the oscillatory flow behind the pair of cylinders
resembles the flow past a single virtual large object, so that we can call the flow a
single bluff-body flow and the instability mode a far-downstream mode, respectively.
Note that the oscillatory region for the far-downstream mode may extend upstream
to just behind the two cylinders for larger Reynolds numbers than Re = 50.
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(a) (b)

(c) (d )

Figure 3. Flow pattern (streamlines) and experimental visualization of the flow. Γ = 0.5.
(a) Steady symmetric flow. Re = 20. (b) Oscillatory flow. Re = 50. (c) Deflected oscillatory
flow. Re = 60. (d) Deflected oscillatory flow (visualization from an experiment). Re = 60.

The second instability appears as a deflection of the stream through the gap between
the cylinders. Figure 3(c) shows a flow pattern at Re = 60, in which we observe a
deflection in the near wake of the cylinders together with oscillation far downstream.
The mean flow over an oscillation period is asymmetric with respect to the streamwise
centreline through the gap. A similar deflected flow pattern was reported for Re = 70
and Γ = 0.5 by Kang (2003). However, such a deflected flow was not expected
to appear because it was believed that flow past symmetrically arranged obstacles
would have the same symmetry in the mean even if it becomes oscillatory. Hence, we
confirmed the deflected flow pattern in an experiment (figure 3d). The flow pattern
was visualized by adding orgasol powder with density of 1.03 g cm−3 and 48 − 52 µm
in diameter in water. The picture was taken at Re ∼ 60 by a digital camera (Nikon
D100), in which bright dots and lines are reflections of slit light from the orgasol
powder.

We obtained a deflected oscillatory flow with St ∼ 0.074 at Re = 60. The oscillation
in the flow was observed significantly far from the two cylinders. In order to explore
the origin of the deflection and oscillation in the flow, we take the velocities v1

and v2, the component in the y-direction at two points labelled by P1 and P2 in
figure 1 which are located 2d and 14d from the pair of cylinders, as the representative
physical quantities to demonstrate the change in the flow field. The histories of v1

and v2 are depicted in figure 4(a) for Re = 50. In figure 4(a), the oscillation amplitude
of v2 (broken line) is large, whereas v1 is almost constant, which indicates that the
oscillation is confined in a limited region from the cylinders. Although the oscillation
amplitude of v1 is small even at Re = 60, the mean value of v1 is negative definite,
which shows that the flow is deflected behind the cylinders. Thus it was found that
the flow displays different characteristics at the two points.

The different behaviour of flow in the two regions may be confirmed by depicting
the flow field of the disturbance, which is obtained by subtracting the steady symmetric

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

94
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007009433


Stability of flows past a pair of circular cylinders arranged side by side 499

(a) (b)0.08

0.04

0v

–0.04

–0.08
650 700

t t

750 800

0.2

0.1

0

–0.1

–0.2
200 250 300

Figure 4. History of the velocities v1 (P1) and v2 (P2). Solid line: v1, broken line: v2.
Γ = 0.5. (a) Re = 50, (b) Re = 60.

(a) (b)

Figure 5. Flow pattern of disturbance (streamlines). Solid lines: positive values of ψ − ψ̄ ,
dashed lines: negative values of ψ − ψ̄ . Γ = 0.5. (a) Re = 50, (b) Re = 60.
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ReF = 25.1 ReS = 54.6

v2

v2

v2 v1

Re Re

Figure 6. Bifurcation diagram. Γ = 0.5. (a) Hopf bifurcation, (b) pitchfork bifurcation.

flow (the main flow) from the instantaneous flow field of the oscillatory or oscillatory
deflected flows. The flow patterns of the disturbance thus obtained are shown in
figures 5(a) and 5(b) for Re = 50 and 60, in which solid and dashed lines show
streamlines with positive and negative values of ψ , respectively. It is seen that the
oscillatory disturbance has significant magnitude only in a confined region which is
located about 13d ∼ 19d downstream from the cylinders at Re = 50 (figure 5a).
A stationary disturbance appears just behind the cylinders extending from the gap
between the cylinders to the head of the oscillatory disturbance (about 12d behind
the cylinders) at Re = 60 (figure 5b), which has elliptical contours elongated in the
streamwise direction. Comparing these two figures, the distinction between the two
regions in which the two disturbances have significant magnitude is apparent.

We also use the velocities v1 and v2 to analyse the bifurcation structure of the flow.
Figure 6(a) shows the amplitude (maximum and minimum values, v2 and v2, in one

period) of v2 in periodic oscillation. From the relation of |v2 − v2| ∝ (Re − ReF )1/2,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

94
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007009433


500 J. Mizushima and Y. Ino

2
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Figure 7. Linear growth rate λr . Γ = 0.5. (a) Far-downstream mode (Hopf bifurcation),
(b) stationary mode (pitchfork bifurcation).

the bifurcation is judged to be a Hopf bifurcation with the critical Reynolds number
ReF = 25.1. The magnitude of v1 is depicted in figure 6(b), because the flow is almost
steady and deflected near the cylinders. It is seen in this figure that two solution
branches bifurcate from the steady symmetric state, one of which has a positive value
of v1 and the other a negative value. It is the deflected flow with the negative value
of v1 that was depicted in figure 3(c), which is apparent also in figure 4(b). The other
deflected flow with a positive value of v1 may be obtained if another appropriate
initial condition is adopted in numerical simulation. We confirmed from this figure
that the bifurcation is a pitchfork bifurcation stemming from the steady symmetric
state and evaluated the critical Reynolds number as ReS = 54.6 by extrapolation
using the relation |v1| ∝ (Re − ReS)

1/2.
It may seem strange that the pitchfork bifurcation occurs at a larger Reynolds

number than the critical value for the Hopf bifurcation although we concluded that
the two different bifurcations occur in separate regions. To justify our conclusion, we
analysed the linear stability of the main flow (steady symmetric flow). We obtained
the main flow (ψ̄, ω̄) numerically by solving equations (3.1) and (3.2) for each value
of Re under the appropriate boundary condition, and solved the eigenvalue problem
which consists of equations (4.4) and (4.5) together with the boundary conditions.

The eigenvalue λ for the most unstable mode of instability is found by the linear
stability analysis to be complex. This mode, the far-downstream mode, is an oscillatory
mode leading to the Hopf bifurcation, and it is easily proved that the complex
conjugate λ∗ is also an eigenvalue (the second mode) of the eigenvalue problem. The
real part λr of the eigenvalue is depicted in figure 7(a). From this figure, the critical
Reynolds number ReF at which λr =0 was determined as ReF = 25.1. The critical
value agrees with that evaluated by the bifurcation analysis within the accuracy of
three digits. The imaginary part λi shows the angular velocity of the disturbance,
from which the Strouhal number St , or the frequency of oscillation in the flow, is
calculated from St = λi/(2π). The value was evaluated as St ∼ 0.058 for Γ = 0.5
in the range of Reynolds number (∼ReF ) depicted in figure 7(a). The third mode
is a stationary mode to induce the pitchfork bifurcation, having a real eigenvalue
(λi = 0). The eigenvalue for the stationary mode of instability is depicted in figure
7(b), from which the critical Reynolds number is determined as ReS = 54.4. This
value also agrees well with ReS = 54.6 evaluated from the bifurcation analysis. Thus
it was confirmed that the two different bifurcations occur in separate regions in the
whole flow field, which are represented by the points P1 and P2. We conclude that the
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(c) (d)

(a) (b)

Figure 8. Flow pattern (streamlines). Γ = 0.6. (a) Steady asymmetric flow. Re =57. (b)
Deflected oscillatory flow. Re = 60. (c) Disturbance induced by instability due to stationary
mode. Re = 57. (d) Disturbance induced by sequential instabilities due to stationary and
oscillatory modes. Re = 60.

deflected flow reported by Kang (2003) is caused by the stationary mode of instability
leading to a pitchfork bifurcation.

For a larger gap ratio, Γ =0.6, an asymmetric steady flow is attained in the
numerical simulation irrespective of the initial condition at Re = 57, as shown in
figure 8(a), in which the stream through the gap between the two cylinders is observed
to deflect toward one of the cylinders. The flow becomes oscillatory at Re = 60,
yielding a deflected oscillatory flow with St ∼ 0.113 (figure 8b). The critical Reynolds
numbers for the pitchfork and Hopf bifurcations were determined as ReS =55.2 and
ReF = 57.5 from the bifurcation analyses of the numerical data. The critical values for
the two bifurcations should be compared with ReS = 54.8 and ReF = 57.3 obtained
by the linear stability analysis. Thus the two instabilities due to the stationary and
oscillatory modes have swapped places between Γ =0.5 and 0.6. The linear stability
analysis shows that the flow also becomes unstable to another oscillatory mode which
induces an in-phase oscillation behind the two cylinders. We call the instability mode
an in-phase oscillation mode. Though the critical Reynolds number ReI = 55.8 for
the in-phase oscillation mode of instability evaluated by the linear stability analysis
is smaller than ReF , the amplitude of the in-phase mode is much smaller than that
of far-downstream mode in the simulation results at Re = 60, which we confirmed
by depicting the flow field of the disturbance. We show the flow patterns of the
disturbance in figures 8(c) and 8(d) for Re = 57 and 60, respectively. The disturbance
depicted in figure 8(c) is stationary, and extends from the gap between the cylinders to
about 20d downstream, whereas the disturbance in figure 8(d) has an oscillatory part
far downstream as well as the stationary part. The separation between the two regions
in which the stationary and oscillatory disturbances have significant magnitude is clear
in these figures.

The steady asymmetric flow is not attained at any value of Re for Γ =0.62 in
numerical simulation. The flow becomes oscillatory first with a gradual increase of
the Reynolds number. We show a snapshot of the oscillatory flow pattern at Re = 55 in
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(a) (b)

(c) (d)

Figure 9. Flow pattern (streamlines). Γ =0.62. (a) In-phase synchronously oscillating flow.
Re = 55. (b) Deflected oscillatory flow. Re = 60. (c) Disturbance induced by instability due to
the oscillatory in-phase mode. Re = 55. (d) Disturbance induced by sequential instabilities due
to the oscillatory in-phase and stationary modes. Re = 60.

figure 9(a), in which the wakes behind the cylinders oscillate synchronously in the same
phase and the oscillation is observed immediately behind the cylinders, in contrast
to figure 3(b) where oscillation occurs far downstream from the cylinders. Taking the
velocity v2 as in figure 6(a), we depict a bifurcation diagram and identified a Hopf
bifurcation with the critical Reynolds number ReI = 54.5. The oscillatory disturbance
yielding the Hopf bifurcation is the in-phase mode of instability. We carried out
numerical calculations with the SOR method to trace the steady asymmetric flow
found for Γ = 0.6, and confirmed the existence of pitchfork bifurcation with the
critical Reynolds number ReS = 55.4 also for Γ =0.62. Note that such a steady
asymmetric flow is not realized in experiment or numerical simulation. However,
the influence of the pitchfork bifurcation appears in the flow pattern at Re = 60
(figure 9b), although the deflection is too small to clearly distinguish the asymmetry.
In order to identify the instability mode and the asymmetry, we depict the flow fields
of the disturbance ψ̂ in figures 9(c) and 9(d) for Re = 55 and 60, respectively. It
is seen in figure 9(c) that the flow field of the nonlinear disturbance at Re = 55 is
almost symmetric with respect to the x-axis and that an array of paired vortices is
aligned behind the two cylinders, whose sense of rotation is the same in each pair, but
opposite in adjacent pairs in the array. This flow pattern of the disturbance shows
that the mode is an in-phase oscillatory eigen mode. On the other hand, it is slightly
asymmetric at Re = 60 due to the influence of the pitchfork bifurcation (figure 9d).
The oscillation frequncy St is about 0.124 at Re = 60, which agrees well with the
frequency St ∼ 0.124 evaluated by the linear stability analysis at the critical Reynolds
number (ReI = 54.7, linear stability analysis).

Comparing the flow fields of the disturbance for Γ = 0.6 (figure 8d) and Γ = 0.62
(figure 9d) at the same Reynolds number Re = 60, we can easily see the difference
between them. The disturbance field for Γ = 0.6 constitutes the stationary near-wake
disturbance and an oscillatory far-downstream disturbance, whereas the oscillatory
disturbance extends from the near-wake region into the entire downstream flow field
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(a) (b)

Figure 10. Antiphase synchronized oscillating flow (streamlines). Γ = 2.5, Re = 50.
(a) Flow pattern, (b) disturbance.

80(a) (b)

60

40

20

0
0.2 0.4 0.6 0.8

60

55

50
0.55 0.6 0.651.0

ReS

ReA

ReI

ReI

ReF

ReS

ReF

Re

Γ Γ

Γc = 0.594

Γc = 0.607 

Figure 11. Transition diagram: ◦, stationary mode; �, far-downstream mode; 	, in-phase
mode; �, antiphase mode. (a) Whole diagram, (b) Enlargement of a part near (Γ,Re) =
(0.6, 55).

for Γ = 0.62. Hence, we conclude that the origins of the two disturbance fields are
different and that the most unstable modes exchange in the very narrow range of
0.606 < Γ < 0.62. The instability mode found for Γ = 0.62 was identified with one
of the two kinds of synchronous oscillation mode, which was called an in-phase
oscillation mode by Williamson (1985) and others. The other synchronous oscillation
mode, i.e. an antiphase oscillation mode (antiphase mode) was also confirmed for
larger gap ratios than Γ ∼ 0.8 in our numerical simulation. One typical flow pattern
of such oscillatory flows is shown in figure 10(a) for Γ = 2.5 and Re =50. The
disturbance field of the flow is depicted in figure 10(b), in which an array of paired
vortices is observed behind the two cylinders similarly to figure 9(c), but the flow field
significantly differs from 9(c) in that the sense of rotation in each pair is opposite.
Thus the flow field of the disturbance is also symmetric with respect to the gap
centreline, which is characteristic of the antiphase oscillatory mode. Note that the
critical gap ratio for the exchange of in-phase and antiphase modes was evaluated as
Γc = 2.34 by Akinaga & Mizushima (2005).

We made bifurcation analyses of the flow in the range of 0.3 � Γ � 1.0 and evaluated
the critical Reynolds numbers for the three oscillatory modes and the stationary
mode of instability. The transition diagram thus obtained is shown in figure 11(a),
where the critical Reynolds number for the far-downstream mode is indicated by
the line with filled circles (ReF ) and the stationary mode by the line with open
circles (ReS). The lines with open triangles (ReI ) and with filled triangles (ReA)
indicate the criticality for the in-phase and antiphase oscillation modes, respectively.
Figure 11(b) is an enlargement of the part of figure 11(a) where the three lines become
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close together. Summarizing the first instability, for Γ < 0.594 the flow is unstable
to the far-downstream mode. In the very narrow region of 0.594 <Γ < 0.607, the
stationary mode is the most unstable and for 0.607 <Γ < 2.34 the in-phase oscillation
mode becomes predominant over the other modes of instability. And the antiphase
oscillation mode is the most unstable for Γ > 2.34, which leads to the symmetrically
arranged vortex streets, as seen in figure 10(b).

Here, we should discuss on the possibility of observing two predominant oscillation
frequencies in the flow. The oscillation we observed was always almost monotonic,
having a single frequency. That is because we investigated the occurrence of the
oscillation due to instability of the steady symmetric flow and the oscillation is
monotonic just above the critical Reynolds number. We could identify the origin
of the two distinct frequencies if two of the three oscillatory instability modes had
oscillation frequencies that were multiples of the other. The oscillation in the flow at
Re = 60 for Γ =0.6 was induced solely by the far-downstream mode of instability,
where the in-phase oscillation mode did not grow. The oscillation frequency for the
far-downstream mode was obtained as St ∼ 0.113 at Re = 60 for Γ =0.6, and those for
the in-phase and antiphase modes as St ∼ 0.125 (Re = 50) and St ∼ 0.167 (Re = 76),
respectively, by numerical simulations. Thus, no pairs from the three have a simple
integral ratio. Roughly estimating, the in-phase mode has a frequency St ∼ 0.12 and
the far-downstream mode St ∼ 0.07 − 0.08. The far-downstream mode is thought to
grow behind a unified bluff obstacle that is twice the cylinder diameter in size so that
if we normalize the Strouhal number by 2d , it becomes about 0.14 − 0.16, which is a
similar value to that of the in-phase mode. Hence, all three oscillation modes have a
frequency of about 0.11 ∼ 0.16. We conjecture that the two predominant frequencies
may occur at large Reynolds numbers, at least of several hundreds. In the paper by
Akinaga & Mizushima (2005) in which cases of intermediate and large gap width
of Γ > 1 were treated, the model of coupled oscillators proposed by Peschard & Le
Gal (1996) was found not to predict the oscillation frequency in the antiphase and
in-phase oscillatory flow. However, the model may have the potential to explain the
appearance of simple integral ratios of frequencies for small gap width of Γ < 1.

For the case of a side-by-side arrangement of two cylinders, the lift and drag forces
exerted on each cylinder are not significantly affected by the presence of the other
cylinder in comparison with the case of a tandem arrangement. As the drag and lift
forces were evaluated and fully discussed in terms of drag and lift coefficients CD

and CL in the paper by Kang (2003) for small Reynolds numbers in the range of
40 � Re � 160, we will not show our numerical results for CD and CL, which have
a similar tendency. The flux through the gap between the two cylinders may be a
more interesting physical quantity than the drag and lift forces. Hence, we evaluated
the flux Q for each value of Γ at a constant Reynolds number, Re = 60. Figure 12
shows that the flux Q becomes virtually zero below Γc ∼ 0.11 though Q is a linear
function of Γ above the critical value. This suggests that the two cylinders with a gap
narrower than this critical value behave like a solid body with width about twice the
cylinder diameter. It is noted that the line for Q has slight kinks at Γ = 0.607 and
0.62, which is a sign of the change of the flow pattern beyond these gap ratios.

7. Discussion
Various flow patterns have been reported to appear in the flow past a pair of

circular cylinders arranged side by side. However, the mechanism that produces each
flow pattern has not been clarified. Our stability and transition analyses of the flow
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Γ

Figure 12. Flow rate through the gap between the cylinders.

revealed that the origins of these various flow patterns can be attributed to the linear
instability of the steady symmetric flow, i.e. the basic flow, that is a unique solution
at small Reynolds numbers. For instance, the deflected oscillatory flow was found to
be a consequence of the sequential instabilities due to the far-downstream oscillation
and the stationary modes. We have proved that the steady deflected flow originates
from the instability of the basic flow due to the stationary mode, and found that it is
realized in a very small parameter region of the gap ratio and the Reynolds number,
though the effect of the pitchfork bifurcation is broad enough to deflect the flow even
outside the patameter region. It is noted here again that the Coanda effect does not
explain deflection of flow through a symmetrical path such as the gap between two
circular cylinders symmetrically arranged.

We should explain how each mode of instability was distinguished in stability
analysis, especially in the parameter region depiced in figure 11 in which several
neutral curves intersect and the transition diagram is very complicated. We used
a continuation method to trace each eigen mode, i.e. the set of eigenvalue and
eigenfunction, by changing the values of the parameters in small increments.
For example, the far-downstream mode is easily identified for Γ = 0.3. Hence we
numerically calculated the eigen mode for a slightly larger value of Γ with the SOR
iterative method in solving equations (4.3) and (4.4). Repetition of this numerical
procedure gives the solution for each eigen mode successively. Needless to say, the
in-phase oscillation mode must be calulated from a large value of Γ , i.e. Γ =1.

We did not investigate nor confirm the flip-flopping flow because we conjecture
that the origin of the flow will not be explained by the bifurcation analysis. Although
the mechanism of occurrence of the flow has not been clarified in the present paper,
it is thought to originate from a pair of asymmetric oscillatory flows. A steady
asymmetric flow was observed at Re = 57 for Γ = 0.6 (figure 8a), which inevitably
has a counterpart whose direction of deflection is opposite. Both of the flows are
considered stable steady states as depicted schematically in figure 13, in which the
states are indicated by x1 and x2. In numerical simulation, the flow will attain one
of the two states depending upon its initial condition through a transient state.
The steady flows become oscillatory due to the far-downstream oscillatory mode of
instability as shown in figure 8(b) for Re = 60, which is the deflected oscillatory flow.
The oscillatory states are depicted schematically in figure 13(b), where the oscillation
of the flow is indicated by x ′

1 − x ′′
1 or x ′

2 − x ′′
2 . Both the oscillatory states are also

stable so that there exists a barrier between the two states. However, the barrier
is easily overcome due to fluctuations which always exist in the flow field because
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U U

x1 x2
x′1 x′′1 x′2 x′′2

x x

(a) (b)

Figure 13. Schematic diagram explaining the mechanism of occurrence of the flip-flopping
flow. (a) Asymmetric steady flow, (b) asymmetric oscillatory flow.

the oscillation amplitude becomes larger for larger Reynolds number. Then the flow
oscillation overshoots to the other stable state, which results in the occurrence of the
flip-flopping flow. The source of the fluctuations can be undulation of the oncoming
flow in experiment or numerical errors in numerical simulation, which are thought
to be random-like noise. Hence, the occurrence of the flip-flopping turns out to be a
probabilistic Poisson process as described by Kim & Durbin (1988).

From our classification of instability modes, the six kinds of flow pattern found
by Kang (2003) can be interpreted. The first two, i.e. the antiphase and in-phase
oscillatory flows at Re =100 for Γ =3.0 and 1.5, come from the instability due to the
corresponding near-wake oscillation modes, in-phase and antiphase oscillation modes,
respectively. The flip-flopping pattern observed by Kang at Re = 100 for Γ = 0.7 is
conjectured to originate from the deflected oscillatory flow as explained above. The
single bluff-body pattern observed for Γ = 0.2 is induced due to the far-downstream
mode of instability. The deflected steady flow appears after the instability due to
the stationary disturbance. To be exact, the flow at Γ = 0.5 and Re = 70 depicted in
figure 3(e) in Kang’s paper is not a steady deflected, but a deflected oscillatory flow
as clearly observed in the figure. The sixth pattern is the steady symmetric flow at
low Reynolds numbers attained for any value of Γ .

We have assumed two-dimensional flow fields in the present paper. The critical
Reynolds number for the two-dimensional flow to attain three-dimensional structure
has not yet been obtained by experiments or numerical simulations for the side-
by-side arrangement of cylinders, and may vary depending on the value of Γ . We
speculate the critical value to be about Rec ∼ 180 for large gap width because the
flow past a single cylinder is known to make a transition to three-dimensional flow at
the value of Rec ∼ 180. Hence our numerical results, including the transition diagram
depicted in the range of Re � 80, are valid without being affected by the appearance
of three-dimensional flow structures.

We would like to thank Messrs Y. Yosuke, N. Suehiro, Y. Seki, K. Kawanishi,
T. Moritani and Dr T. Akinaga for their help in numerical simulation and experiment.
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Sumner, D., Wong, S. S. T., Price, S. J. & PaÏdoussis, M. P. 1999 Fluid behaviour of side-by-side
circular cylinders in steady cross-flow. J. Fluids Struct. 13, 309–338.

Williamson, C. H. K. 1985 Evolution of a single wake behind a pair of bluff bodies. J. Fluid Mech.
159, 1–18.

Xu, S. J., Zhou, Y. & So, R. M. C. 2003 Reynolds number effects on the flow structure behind two
side-by-side cylinders. Phys. Fluids 15, 1214–1219.

Zdravkovich, M. M. 1977 Review of flow intererence between two circular cylinders in various
arrangement. Trans. ASMEI: J. Fluids Engng 99, 618–633.

Zdravkovich, M. M. & Pridded, D. L. 1977 Interference between two circular cylinders; series of
unexpected discountinuities. J. Ind. Aero. 2, 255–270.

Zhou, Y., Wang, Z. J., So, R. M. C., Xu, S. J. & Jin, W. 2001 Free vibrations of two side-by-side
cylinders in a cross-flow. J. Fluid Mech. 443, 197–229.

Zhou, Y., Zhang, H. J. & Yiu, M. W. 2002 The turublent wake of two side-by-side circular cylinders.
J. Fluid Mech. 458, 303–332.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

94
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007009433

