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WOODIN FOR STRONG COMPACTNESS CARDINALS

STAMATIS DIMOPOULOS

Abstract. Woodin and Vopěnka cardinals are established notions in the large cardinal hierarchy and
it is known that Vopěnka cardinals are the Woodin analogue for supercompactness. Here we give the
definition ofWoodin for strong compactness cardinals, the Woodinised version of strong compactness, and
we prove an analogue of Magidor’s identity crisis theorem for the first strongly compact cardinal.

§1. Introduction. In [13] Magidor established the “identity crisis” of the first
strongly compact cardinal, which can consistently be the first measurable or the
first supercompact cardinal. This is by now a classic result in set theory and actually
created a new field studying the “identity crises” that accompany concepts related
to strong compactness.1 We further contribute to this area by establishing another
identity crisis, to a concept created by combining Woodin and strongly compact
cardinals.
Woodin and Vopěnka cardinals, although originally defined in different context
and for different reasons, are quite similar. A cardinal � is Woodin if one of the
following two equivalent definitions hold:

1. For every function f : � → � there is κ < � which is a closure point of f
and there is an elementary embedding j : V → M with critical point κ and
Vj(f)(κ) ⊆M ,

2. For every A ⊆ V� there is a cardinal κ < � which is <�-strong for A.
It was already known (see 24.19 in [12]) that replacing strongness by supercom-
pactness in (2) we obtain a notion equivalent to Vopěnka cardinals. Moreover, in
[14], Perlmutter showed that the same happens with (1) when we replace the clause
Vj(f)(κ) ⊆ M by j(f)(κ)M ⊆ M . This makes Vopěnka cardinals a Woodinised
version for supercompact cardinals.
It is natural to consider what happens in (2) if we instead replace the strongness
clausewith a strong compactness clause, since strong compactness is an intermediate
notion between strongness and supercompactness. In this article we look at this new
type of cardinals, which we callWoodin for strong compactness, and we explore their
properties. For instance, we show thatWoodin for strong compactness cardinals also
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have an equivalent definition which resembles (1), thus making them a reasonable
Woodin analogue for strong compactness.Themain resultwe establish is the identity
crisis of the first Woodin for strong compactness cardinal. We show that it can
consistently be the firstWoodin or the firstWoodin limit of supercompact cardinals.
The structure of the article is as follows. In Section 2, we review some known facts
about large cardinals and forcing. In Section 3, we give the definition ofWoodin for
strong compactness cardinals and show that they have properties similar to those of
Woodin and Vopěnka cardinals. Section 4 is split into two subsections, each dealing
with one end of the identity crisis of the first Woodin for strong compactness
cardinal. Finally, Section 5 includes some further results and open questions.

§2. Preliminaries. We will occasionally use interval notation (α, �) for two
ordinals α < � , to denote the set {� | α < � < �}.
The large cardinal notions we deal with are witnessed by the existence of elemen-
tary embeddings of the form j : V → M , where V is the universe we work in and
M ⊆ V is a transitive class. The critical point of an elementary embedding j is
denoted by crit(j). For two cardinals κ, � we say κ is �-strong if there is j : V →M
with crit(j) = κ, j(κ) > � and V� ⊆ M . We will also say κ is <�-strong if it is
�-strong for all � < �. We will always assume that � ≥ κ even when not mentioned
explicitly.
Similarly, we have the concepts of a �-supercompact and <�-supercompact car-
dinal κ. In this case we isolate the concept of a �-supercompactness embedding
which is an elementary embedding j : V →M with crit(j) = κ, such that j is the
ultrapower embedding by a normal ultrafilter on Pκ�.
A cardinal κ is called �-strong for A, where A is any set, if there is a �-strongness
embedding j : V →M with crit(j) = κ, satisfying the propertyA∩V� = j(A)∩V�.
Analogously, κ is �-supercompact forA if there is a �-supercompactness embedding
j : V → M with crit(j) = κ and A ∩ V� = j(A) ∩ V�. Once again, we use
expressions like κ is <�-strong for A to mean that κ is �-strong for A for all � < �,
and it is always assumed that � ≥ κ.
We will make use of the following known result.

Proposition 2.1. Suppose κ ≤ � < �, κ is <�-strong ( for A) and � is �-strong
( for A). Then κ is �-strong ( for A).

Proof. Let j1 : V → M be a �-strongness embedding with crit(j1) = � and
j1(�) > �. By elementarity, κ is <j1(�)-strong in M and in particular, �-strong.
Hence, there is a �-strongness embedding j2 : M → N with crit(j2) = κ and
j2(κ) > �. The composition j := j2 ◦ j1 has crit(j) = κ, j(κ) > � and is �-strong.
If we assume that j1 is �-strong for A and that j2 is �-strong for j1(A), then j will
also be �-strong for A. �
Since strongness is captured by extenders, the following fact will be useful.

Proposition 2.2. SupposeE is a (κ, �)-extender such the corresponding embedding
jE : V →ME satisfies V� ⊆ME . If cf(�) > κ, then κME ⊆ME .
Proof. Suppose 〈xα : α < κ〉 is a sequence of elements ofME . Noting that

ME = {j(f)(a)|a ∈ [�]<	,f : [κ]|a| → V,f ∈ V },
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we can assume that for each α, xα = j(fα)(aα), for some fα, aα . Each aα is in V�
and as � has cofinality greater than κ, the whole sequence 〈aα : α < κ〉 is in V�
and consequently inME . Also, 〈j(fα) : α < κ〉 ∈ M because 〈j(fα) : α < κ〉 =
j(〈fα : α < κ〉) � κ. Hence, 〈xα : α < κ〉 = 〈j(fα)(aα) : α < κ〉 ∈M . �
An elementary embedding j : V → M with crit(j) = κ and j(κ) > � is said
to satisfy the weak �-covering property if there is s ∈ M such that j“� ⊆ s and
M |= |s | < j(κ). We also say that j satisfies the �-covering property if for any set
X ⊆ M with |X | ≤ � there is s ∈ M such that X ⊆ s and M |= |s | < j(κ). A
cardinal κ is �-strongly compact if there is j : V →M with crit(j) = κ that satisfies
the weak �-covering property. If j also satisfies the �-covering property, then it will
be called a �-strong compactness embedding. For a set of ordinals A, κ is �-strongly
compact for A if there is a �-strong compactness embedding j : V → M with
crit(j) = κ, satisfying the property A ∩ � = j(A) ∩ �. As before, expressions like κ
is <�-strongly compact or <�-strongly compact for A mean that the property holds
for all κ ≤ � < �.
We will see that Woodin for strong compactness cardinals, naturally imply the
existence of cardinals which are both strongly compact and strong. We will use the
following fact, which was suggested by the anonymous referee and simplifies a lot
of the original arguments of the author’s exposition.

Proposition 2.3. If κ is both �-strong and �-strongly compact for some � ≥ κ,
then there is an elementary embedding j : V → M with crit(j) = κ, j(κ) > �,
V� ⊆ M , satisfying the weak �-covering property. Furthermore, if κ is also �-strong
for A for some set A, then the embedding j can also satisfy A ∩ V� = j(A) ∩V�.
Proof. Since κ is �-strong, let j1 : V → M be a �-strongness embedding with
crit(j1) = κ. By elementarity, j1(κ) is j1(�)-strongly compact in M , so there is
an elementary embedding j2 : M → N with crit(j2) = j1(κ), which satisfies the
weak j1(�)-covering property. Now, if we let j := j2 ◦ j1, it is easy to see that
crit(j) = κ and j(κ) > � and since the critical point of j2 is above �, V� ⊆ N .
Also, j“� ⊆ j2“j1(�) and since the latter is covered by a set s ∈ N of size less than
j2(j1(κ)), it follows that j has the weak �-covering property.
Finally, if we had assumed that j1 also has the property j1(A)∩V� = A∩V�, for
some set A, then using the fact that crit(j2) > � we can easily see that j(A) ∩V� =
A ∩ V�. �
Remark 2.4. If we make a better choice of embeddings in the previous proof,
we can actually guarantee the j will satisfy the full �-covering property. Namely,
suppose j1 is given by a (κ, �)-extender for some cardinal � and that j2 is an
ultrapower embedding by a fine M -ultrafilter on (Pj(κ)j(�))M . This implies that
j2 satisfies the full j1(�)-covering property in M and that N ⊆ M . If we consider
now a set X ⊆ N such that |X | ≤ �, it follows that X ⊆ M . Also, using the
extender formulation ofM , we can write X as {j1(fα)(aα) | α < �} for some sets
aα ∈ [�]<	 and some functionsfα : [κ]|aα | → V . Clearly, there is a setY ∈M such
that |Y | ≤ j(�) and {j(fα) | α < �} ⊆ Y (just by taking Y = j({fα | α < �})).
Using the covering property of j2, we can cover Y in N with a set s such that
|s |N < j(κ). Then, it is easy to induce a cover of X from s that is still of size less
than j(κ) in N .
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Corollary 2.5. Suppose κ is a cardinal, � ≥ κ and A is a set of ordinals. If κ is
both �-strong for A and �-strongly compact, then κ is �-strongly compact for A.
It will be useful to review the usual characterisations of Woodin and Vopěnka
cardinals. For the proofs, see 24.19 and 26.14 in [12].

Proposition 2.6. The following are equivalent for a cardinal �.
1. � is Woodin, i.e., for every function f : � → � there is κ < � which is a closure
point of f and there is an elementary embedding j : V → M with crit(j) = κ
and Vj(f)(κ) ⊆M .

2. For every A ⊆ V� , there is κ < � which is <�-strong for A.
Proposition 2.7. The following are equivalent for a cardinal �.
1. � is Vopěnka, i.e., for every function f : � → � there is κ < � which is a closure
point of f and there is an elementary embedding j : V → M with crit(j) = κ
and j(f)(κ)M ⊆M .

2. For every A ⊆ V� , there is κ < � which is <�-supercompact for A.
Concerning the preservation of Woodin and Vopěnka cardinals in forcing exten-
sions, we will use the following results, which we state without proofs. The first can
be found in [5] and the second follows from folklore results (details can be found
in [8]).

Theorem 2.8 ([5]). Suppose � is a Vopěnka cardinal and P = 〈Pα, Q̇� | α ≤ �, � <
�〉 is an Easton support �-iteration with the following properties:
1. For all α < �, |Q̇α| < �.
2. For all α < �, there is � < � such that for all 
 ≥ � ,�P
 Q̇
 is α-directed closed.
Then � remains Vopěnka after forcing with P.
Theorem 2.9. Suppose � is a Woodin cardinal, GCH holds and P is an Easton
support �-iteration which satisfies:
1. P ⊆ V� ,
2. For each A ⊆ V� there is a <�-strong for A cardinal κ < � such that Pκ ⊆ Vκ
and all stages of P greater or equal to κ are forced to be at least κ+-strategically
closed.

Then � remains Woodin after forcing with P.
We will use the notion of width of an embedding, found in [7].

Definition 2.10. An elementary embedding j : V → M is said to have width
≤ � for some ordinal �, if every x ∈ M can be written in the form j(f)(a), for
some set a ∈M and some function f ∈ V with | dom(f)| ≤ �.
For instance, if j is a (short) extender embedding with crit(j) = κ, then it has
width ≤ κ. Also, if j is the ultrapower embedding by an ultrafilter on Pκ� for
� ≥ κ = crit(j), then it has width ≤ �<κ.
Concerning our notation on forcing, we follow closely [7]. In particular, by q ≤ p
wemean that q is stronger thanp andbyκ-distributive,wemean that the intersection
of <κ-many dense open sets is open dense. For a forcing notion P we can define
a game Gα(P) of α many moves, where a player ODD playing at odd stages and
a player EVEN playing at even stages, choose stronger and stronger conditions,
with EVEN always starting with the trivial condition at 0-stage. A forcing notion P

https://doi.org/10.1017/jsl.2018.67 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.67


WOODIN FOR STRONG COMPACTNESS CARDINALS 305

is called κ-strategically closed if player EVEN has a winning strategy in the game
Gκ(P) and <κ-strategically closed if it is α-strategically closed for all α < κ.
We describe now two of the forcing notions that wewill use. The first is the forcing
which shoots a club of nonstrong cardinals below an inaccessible cardinal κ. The
poset we use is P = {p | p is a closed bounded subset of κ, consisting of cardinals
which are not<κ-strong}, ordered by end-extension. It is easy to see that a generic
filter forP induces a club subset of κ consisting of cardinals which are not<κ-strong
and that P is <κ-strategically closed and thus, κ-distributive. Moreover, it is κ+-c.c
and so, no cardinals are collapsed after forcing with P. Note that if κ is Woodin,
then forcing with P destroys its Woodinness.
The second forcing we use is adding a nonreflecting stationary set at some given
inaccessible cardinal κ, using cardinals of cofinality equal to some fixed regular
� < κ. We use the poset P whose conditions are functions p : α → 2, where
α < � and p is the characteristic function of a (bounded) subset of κ, consisting of
ordinals of cofinality �, which is not stationary at its supremum and neither has any
initial segment stationary at its supremum. The order is end-extension. Standard
arguments show that P is κ-strategically closed and �-directed closed. It is also
κ+-c.c., so it does not collapse any cardinals.
In our results we use Silver’s criterion along with standard arguments to lift
elementary embeddings through forcing. We mention here the two main techniques
used in constructing the required generic filters, which can be found in [7] or [10].

Proposition 2.11 (Diagonalisation). SupposeM ⊆ V is an inner model, P ∈M
is a forcing notion and p ∈ P. If

1. κM ⊆M,
2. P is <κ+-strategically closed inM,
3. there are at most κ+-many maximal antichains of P inM , counted in V ,

then there is in V , anM -generic filter H ⊆ P such that p ∈ H .
Proposition 2.12 (Transferring). Suppose j : V → M is an elementary embed-
ding with width ≤ � and let P be a �+-distributive forcing notion. If G ⊆ P is a
V -generic filter, then the filter H generated by j“G isM -generic for j(P).

When forcing in the presence of large cardinals, it is many times useful to know
that no new large cardinals are created. In [9], Hamkins showed how such argu-
ments work when a forcing iteration has low enough closure points. We write the
definition of closure points and a summary of the results of [9] that we need in this
article.

Definition 2.13. A forcing notion has a closure point at α if it can be factorised
as P ∗ Q̇, where |P| ≤ α and �P Q̇ is (α + 1)-strategically closed.

Theorem 2.14 ([9]). If V ⊆ V [G ] is a set forcing extension with closure point at
α and j : V [G ] → N̄ is a definable embedding in V [G ] with V [G ] |= αN̄ ⊆ N̄ and
α < crit(j), then the restriction j � V : V → N , whereN = N̄ ∩V , is an elementary
embedding, definable in V . Furthermore,

1. If V� ⊆ N̄ for some �, then V� ⊆ N ;
2. If V [G ] |= �N̄ ⊆ N̄ for some �, then V |= �N ⊆ N ;
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3. If j is �-strongly compact for some � and V ⊆ V [G ] satisfy the κ-covering
property, i.e., for every set s ∈ V [G ] with |s |V [G ] < κ and s ⊆ V there is s ′ ∈ V
with s ⊆ s ′ and |s |V < κ, then j � V is also �-strongly compact.

Finally, the following fact can be found in [7].

Proposition 2.15. Suppose j+ : V [G ] → M [H ] is the lift of an embedding
j : V →M , such that j has width ≤ �. Then j+ also has width ≤ �.

§3. Woodin for strong compactness cardinals. We define now the main concept
of this article.

Definition 3.1. A cardinal � is called Woodin for strong compactness or Woo-
dinised strongly compact if for every A ⊆ � there is κ < � which is <�-strongly
compact for A.

The definition is obtained by replacing the strongness or supercompactness clause
in (2) of 2.6 or 2.7, by a strong compactness clause. In this section, we will see that
Woodinised strong compactness is a reasonable Woodin analogue. First, we show
that the definition implies inaccessibility.

Proposition 3.2. If � is Woodin for strong compactness, then it is an inaccessible
limit of <�-strongly compact cardinals.

Proof. To show that � must be regular, assume otherwise and let cf(�) = κ0 < �.
Fix an unbounded set A ⊆ � such that |A| = κ0 and min(A) > κ0, and let κ be
<�-strongly compact for A. Pick � ∈ (κ, �) such that A ∩ (κ, �) is nonempty and
let j : V →M be a �-strong compactness for A embedding with crit(j) = κ. Since
A ∩ � = j(A) ∩ �, it follows that j(A) ∩ j(κ) is nonempty and by elementarity,
A ∩ κ is nonempty. However, since κ is regular, A ∩ κ must be bounded by some
α < κ. By elementarity, j(A) ∩ j(κ) is also bounded by j(α) = α < κ. But then
j(A) ∩ (κ, �) = A ∩ (κ, �) should be empty, which is absurd.
If � were a successor cardinal, say � = κ+, then there would be no cardinal
below � which is <�-strongly compact for A, where A = κ. Thus, � must be a limit
cardinal.
If therewas anordinalα < � such that there are no<�-strongly compact cardinals
in [α, �), then let κ be<�-strongly compact forB, where B = α. Pick � > α and let
j : V →M be a �-strongly compact for B embedding. Then, B ∩� = j(B)∩�, but
this is absurd since B ∩ � = α and j(B)∩ � = �, because j(B) = j(α) ≥ j(κ) > �.
Hence, � must be a limit of <�-strongly compact cardinals which also implies that
� is a strong limit. �
The followingProposition is based onproperties ofWoodin cardinals (seeLemma
11 in [6] for instance). We will use the following notation: κ is <�-strongly compact
for A1 ⊕ A2, where A1, A2 ⊆ �, if for all � ∈ (κ, �) there is a �-strong compactness
embedding j : V → M with crit(j) = κ, such that A1 ∩ � = j(A1) ∩ � and
A2 ∩ � = j(A2) ∩ �.
Proposition 3.3. The following are equivalent for a cardinal �.

1. For every A ⊆ �, there is κ < � which is <�-strongly compact for A.
2. For every A1, A2 ⊆ �, there is κ < � which is <�-strongly compact for A1 ⊕ A2.
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3. For every A ⊆ V� , there is a κ < � which is <�-strongly compact and<�-strong
for A.

Proof. (1) and (2) are clearly equivalent, since we can code two sets of ordinals
using an absolute pairing function, such as the Gödel pairing function.
For (2) → (3), fix a set A ⊆ V� and using the fact that by 3.2 � is inaccessible,
let R be a relation on � such that the Mostowski collapse � : 〈�,R, 〉 → 〈V�,∈〉 has
the property that for every �-fixed point � < �, � � � : 〈�,R � �〉 � 〈V�,∈〉. Let
A1 = {〈α, �〉G | 〈α, �〉 ∈ R} andA2 = �−1“A. By our assumption, there is κ which
is<�-strongly compact and strong forA1⊕A2, so for any �-fixed point � < � there
is j : V → M with crit(j) = κ, the weak �-covering property, A1 ∩ � = j(A1) ∩ �
and A2 ∩ � = j(A2) ∩ �. The set A1 ∩ � codes R � �, from which we can obtain V�.
Thus, V� ⊆ j(A2). By elementarity, we also have that � � � = j(�) � � and it is now
easy to see that A2 ∩ V� = j(A2) ∩ V� implies j(A) ∩V� = A ∩ V�.
Finally, (3)→ (1) follows easily from 2.5, so the proof is complete. �
It now follows that everyWoodin for strong compactness cardinal is Woodin and
every Vopěnka cardinal is Woodin for strong compactness. However, the following
result shows that anyWoodin limit of supercompact cardinals is Woodin for strong
compactness and there are plenty of such cardinals below any Vopěnka cardinal.

Proposition 3.4. Suppose � is Woodin and there are unboundedly many <�-
supercompact cardinals below �. Then � is Woodin for strong compactness.

Proof. Let S ⊆ � denote the collection of <�-supercompact cardinals below �.
Fix any A ⊆ � and let κ < � be a <�-strong for both A and S (not necessarily
witnessed by a single embedding). Then, S ∩ κ is unbounded and the usual proof
of Menas’ result, shows that κ must be <�-strongly compact. By 2.5, it follows that
κ is <�-strongly compact for A and as A was chosen arbitrarily, � is Woodin for
strong compactness. �
In the following result, we provide further characterisations ofWoodinised strong
compactness, analogous to (1) of 2.6 and 2.7.

Theorem 3.5. The following are equivalent for a cardinal �.

1. � is Woodin for strong compactness.
2. For every function f : � → � there is κ < � which is a closure point of f and
there is an elementary embedding j : V → M with crit(j) = κ, Vj(f)(κ) ⊆ M
and j satisfies the j(f)(κ)-covering property.

3. For every function f : � → � there is κ < � which is a closure point of f and
there is an elementary embedding j : V →M with crit(j) = κ, Vj(f)(κ) ⊆M ,
j satisfies the j(f)(κ)-covering property, and j is generated by an extender
E ∈ V� and a fine ultrafilter on Pκ� for some � < �.

Proof. The proof is based on the corresponding arguments forWoodin cardinals,
such as Lemma 34.2 [11] or Theorem 24.16 in [12].
To show (1) → (2), fix a function f : � → � and apply (3) of 3.3 for A = f to
fix a κ which is <�-strongly compact and <�-strong for f. Pick � > f(κ) and let
j : V → M be an elementary embedding with crit(j) = κ, j(κ) > �, V� ⊆ M ,
satisfying the �-covering property and f ∩ V� = j(f) ∩ V�. Note that the last
condition implies that j(f)(κ) = f(κ) < � and so Vj(f)(κ) ⊆ M . Also, for each
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α < κ, j(f)(α) = f(α) < � < j(κ) and so, f(α) < κ. Thus, f“κ ⊆ κ and the
proof is complete.
For (2) → (3), fix f : � → � and let g : � → � be a function such that g(α) is
an inaccessible cardinal above f(α). By our assumption there is κ < � which is a
closure point of g and an embedding j : V → M with crit(j) = κ, Vj(g)(κ) ⊆ M
and j satisfies the j(g)(κ)-covering property. From j we can derive a (κ, j(g)(κ))-
extender E and a fine ultrafilter U on Pκj(g)(κ). For simplicity let � = j(g)(κ).
By elementarity, � is inaccessible inM and since V� ⊆M it is inaccessible in V too.
Thus, the extender embedding jE : V → ME is �-strong and has critical point κ.
Also, jE(U ) is a fine ultrafilter on (PjE (κ)jE(�))ME , so the ultrapower embedding
k : ME → MjE (U ) has crit(k) = jE(κ) and satisfies the jE(�)-covering property.
Now, as in 2.5, j∗ := jU ◦ k is both �-strong and �-strongly compact and it is easy
to see that j∗(g)(κ) ≤ �. (3) now follows since κ is a closure point of f and by
elementarity, j∗(f)(κ) < j∗(g)(κ).
(3) Trivally implies (2) so it remains to show that (2) implies (1). Fix A ⊆ �
and let f : � → � be the function defined as follows. If α is <�-strongly compact
for A, then let f(α) = 0. Otherwise, let f(α) be an inaccessible cardinal 
 greater
than � , where � < � is least such that α is not �-strongly compact for A. By our
assumption, there is κ < � such that f“κ ⊆ κ and there is j : V → M with
crit(j) = κ, satisfying the �-covering property and Vj(f)(κ) ⊆M . Now it suffices to
show that κ is < j(�)-strongly compact for j(A) inM , as elementarity will give the
desired conclusion.
If this is not the case, then by the definition of f there is some �-fixed point
� < j(f)(κ) such that κ is not �-strongly compact for j(A) inM . Note that j(κ) is
a closure point of j(f) and so, � < j(f)(κ) < j(κ). Since j satisfies the j(f)(κ)-
covering property, it also satisfies the �-covering property. From j, we can derive a
(κ, �)-extender E and a fine ultrafilter U on Pκ�. Since j(f)(κ) is inaccessible in
M , it follows that E,U ∈M .
The arguments for the case of Woodin cardinals, show that using E in M , we
get an extender embedding jE : M → N which is �-strong for j(A). In our case,
we also have a fine ultrafilter on Pκ� so κ is both �-strong for j(A) and �-strongly
compact inM . It follows by 2.5 that κ is �-strongly compact for j(A) inM , which
is a contradiction. �
These characterisations show thatWoodinised strong compactness is a reasonable
Woodin-like concept. (3) is not used in later arguments but it is worth noting that
it is a Π11-definition, which shows that the first Woodin for strong compactness
cardinal is not even weakly compact.
As with the other Woodin-like cardinals, Woodin for strong compactness car-
dinals come equipped with a normal filter. Call a set X ⊆ � Woodin for strong
compactness in � if for any f : � → � there is κ ∈ X which is a closure point of f
and there is j : V →M with crit(j) = κ which satisfies the weak j(f)(κ)-covering
property and Vj(f)(κ) ⊆M . Let

F = {X ⊆ � | � − X is not Woodin for strong compactness in �}.
We can prove the following like in the case of Woodin or Vopěnka cardinals.

Proposition 3.6. F is a (proper) filter on � iff � is Woodin for strong compactness.
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Note that a set X ⊆ � is in F iff there is a function f : � → � such that for each
closure point κ of f for which there is an elementary embedding j : V → M with
crit(j) = κ, satisfying the j(f)(κ)-covering property and Vj(f)(κ) ⊆ M , κ ∈ X .
This can be seen as the definition of a set X ⊆ � being “measure one” with respect
to F , while the notion of being “Woodin for strong compactness in �” can be seen
as being “positive” with respect to F .
The proof of the following result follows the same arguments as in the Woodin
case; see 26.15 in [12].

Proposition 3.7. Suppose � is Woodin for strong compactness and F is the
associated filter. Then:

1. F is normal.
2. For any A ⊆ �, {α < � | α is <�-strongly compact for A} ∈ F .
3. For any A ⊆ V� , {α < � | α is <�-strongly compact and strong for A} ∈ F .
4. For any X ∈ F , {α < � | α is measurable and there is a normal ultrafilterU on
α such that X ∩ α ∈ U} ∈ F .

§4. The first Woodin for strong compactness cardinal. We now state the main
result of the article, which is split in two theorems.

Theorem 4.1. Suppose � is a Vopěnka cardinal. Then there is a forcing extension
in which � is Woodin for strong compactness and there are no Woodin cardinals
below �.

Theorem 4.2. Suppose � is a Vopěnka cardinal. Then there is a forcing extension
inside which � remains a Woodin limit of<� supercompact cardinals (and so, Woodin
for strong compactness) and there are no Woodin for strong compactness cardinals
below �.

These two results together establish the identity crisis of the first Woodin for
strong compactness cardinal.

Corollary 4.3. The first Woodin for strong compactness cardinal � can consis-
tently (modulo the existence of a Vopěnka cardinal ) be the first Woodin or the first
Woodin limit of<�-supercompact cardinals.

This can be seen as a Woodinised analogue of Magidor’s original identity crisis
theorem, which states that the first strongly compact can consistently be the first
measurable or the first supercompact cardinal.

4.1. Proof of Theorem 4.1. Suppose � is a Vopěnka cardinal.We define an Easton
support �-iteration P = 〈Pα, Q̇� | α ≤ �, � < �〉. as follows. Let Q̇0 be a name for
Add(	, 1) and if Pα has been defined and α was Woodin in V , then let Q̇α name
the forcing which shoots a club of non <α-strong cardinals below α (see Section
2). Otherwise, let Q̇α name the trivial forcing. Let G ⊆ P be a V -generic filter.
First, notice that since we forced with Add(	, 1) in the first stage, we introduced
a very low closure point. By 2.14 the forcing creates no new instances of strongness,
thus there is no Woodin cardinal below � in V [G ]. Now, it remains to show why �
remains Woodin for strong compactness. This follow from a series of claims.

Claim 4.4. In V , for every A ⊆ V� there is a cardinal κ < � which is <�-strongly
compact and <�-strong for A, but is not Woodin.
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Proof. InV , fix a setA ⊆ V� and letS denote the collection of<�-supercompact
cardinals below �. Let κ be the first <�-strong for both A and S cardinal below
� in V . By this, we mean that for each � < � there are embeddings that witness
the �-strongness for A and �-strongness for S of κ, without necessarily having one
witnessing both properties. Since S is unbounded in �, it is also unbounded in κ
and thus, κ is a measurable limit of<�-strongly compact cardinals. The usual proof
of Menas’ result shows that κ must be <�-strongly compact in V .
We claim that κ is not Woodin in V . Otherwise, by applying (2) of 2.6 forA∩Vκ
and S ∩ Vκ, we could find a cardinal κ0 < κ which is <κ-strong for both A ∩ Vκ
and S ∩Vκ. By 2.1, κ0 is <�-strong for both A and S, which contradicts the choice
of κ. �
Claim 4.5. In V [G ], for every A ⊆ (V�)V , there is a cardinal κ < � which
<�-strong for A.

Proof. Fix A ⊆ V� in V and using Claim 4.4, let κ < � be a cardinal which is
<�-strong for A and not Woodin.
Pick � > κ such that � is inaccessible, P� ⊆ V� and � is not Woodin. Let
j : V → M be a �-strongness for A embedding with crit(j) = κ, j(κ) > � and
A ∩ V� = j(A) ∩ V�. By our choice of �, it is the case that P ∩ V� = j(P) ∩ V�.
Moreover, we can assume that j is an extender embedding so that by 2.2, κM ⊆M .
Since P� ⊆ V� and � is inaccessible in bothV andM , it follows that the first �-stages
of j(P) are the same as those of P.
To lift j through P, we factorise it as Pκ ∗ Ṗ>κ, where Ṗ>κ is a name for the stages
greater than κ, noting that there is no forcing at κ. We start by lifting j through
Pκ. Using the previous fact, j(Pκ) can be factorised as P� ∗ Ṗtail . We can use G�
as anM -generic filter for P� and we need to construct anM [G�]-generic filter for
Ptail := (Ṗtail )G� . By the definition of P, it follows that Ptail is (much more than)
κ+-strategically closed inM [G�]. Since κ isMahlo andwe are using Easton support,
Pκ has the κ-c.c. and so, V [Gκ] |= κM [Gκ] ⊆ M [Gκ]. Since there is no forcing at
stage κ, the stages of P� above κ are κ+-distributive in both V [Gκ] andM [Gκ]. By
standard arguments we have V [G�] |= κM [G�] ⊆M [G�].
In order to construct anM [G�]-generic filter for Ptail = (Ṗtail )G� , we consider the
structure

X = {j(f)(κ, �) | f : [κ]2 → V,f ∈ V }.
With standard arguments it can be shown that X is an elementary substructure of
M that contains the range of j and that V |= κX ⊆ X . Also, κ, � ∈ X and so,
P�, Ṗtail ∈ X . If we form X [G�],2 then it can be shown that X [G�] is an elementary
substructure of M [G�] and that V [G�] |= κX [G�] ⊆ X [G�]. The point of using
X [G�] is that every name in X for an antichain in Ṗtail has the form j(f)(κ, �) for
some function f : [κ]2 → Vκ+1. Hence, by our assumption of GCH there are at
most κ+-many maximal antichains of Ptail in X [G�], as counted in V [G�]. Thus,
the conditions of 2.11 hold and we can construct in V [G�] an X [G�]-generic filter
H1 ⊆ Ptail .
Note that H1 is also M [G�]-generic for Ptail . To see this, let D ⊆ Ptail be an
open dense set in M [G�]. Then, there is a P�-name Ḋ ∈ M for D and using the
2By X [G�] we denote the interpretation of all P�-names in X under G�.
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extender representation of j, we can write Ḋ as j(fD)(a), for some a ∈ [�]<	 ,
fD : [κ]|a| → V . Consider the set
D′ =

⋂
{(j(fD)(b))G� | b ∈ [�]<	, j(fD)(b) is a P�-name for an open dense

subset of Ptail}.
D′ is well-defined since j(fD)(a) is in the set above. Also, D′ is definable from �,
G�, Ptail and j(fD) and hence definable in X . Since Ptail is j(κ)-distributive and
D′ is the intersection of at most �-many open dense sets, D′ is an open dense set
contained in D. Since H1 intersects D′ it also intersects D, therefore it is M [G�]-
generic. Since j“Gκ = Gκ ⊆ G� ∗ H1, we can lift j to j : V [Gκ] → M [j(Gκ)],
where j(Gκ) = G� ∗H1.
To further lift j though P>κ := (Ṗ>κ)Gκ , note that since there is no forcing at κ,

P>κ is κ+-strategically closed in V [Gκ]. Let G>κ be the part of G corresponding to
P>κ. As j is an extender embedding, it haswidth≤ κ andby 2.12, the filter generated
by j“G>κ isM [j(Gκ)]-generic for j(P>κ). Hence, we can lift j : V [G ]→M [j(G)],
where j(G) = G� ∗H1 ∗H2.
Note that (V�)V [G�] = V�[G�] ⊆ M [G�] ⊆ M [j(G)], thus j is a �-strongness
embedding. Moreover, A ∩ V� = j(A) ∩ V� because A ∈ V and j � V had the
same property. Since � can be chosen arbitrarily large below �, we showed that κ is
<�-strong for A in V [G ]. �
Claim 4.6. In V [G ], for every A ⊆ (V�)V , there is a cardinal κ < � which both
<�-strongly compact and <�-strong for A.
Proof. If we fix A ⊆ V�, we can use the proofs of Claims 4.4 and 4.5 to find
a cardinal κ0 < �, which is <�-strong for A and a limit of <�-supercompact
cardinals, such that κ0 remains <�-strong for A in V [G ]. So, all we need to show
is that κ0 remains <�-strongly compact in V [G ]. We do this by showing that every
<�-supercompact cardinal below κ0 remains <�-strongly compact.
Letκ < κ0 be a<�-supercompact andfix � ∈ (2κ, �) such that � is notWoodin and

P� ⊆ V�. Let j1 : V → M be a �-supercompactness embedding with crit(j1) = κ.
By standard arguments, κ is <j1(κ)-strong in M and, so there is an elementary
embedding j2 :M → N with crit(j2) = κ, j2(κ) > � and V� ⊆ N . We can choose
j2 so that is given by a (κ, �)-extender and such that κ is not �-strong in N .
Now. if we let j := j2 ◦ j1 : V → N then j is a �-strong compactness embedding.
To see this, let X ⊆ N be a set of size at most �. Since M is closed under �-
sequences, j1“X ∈ M and |j1“X |M < j1(κ). By elementarity, |j2(j1“X )|N <
j2(j1(κ)) = j(κ) and clearly j“X ⊆ j2(j1“X ), so it is the required cover.
We aim to lift j throughP and for this end, we factorise P as Pκ ∗ Q̇κ ∗ Ṗ(κ,�) ∗ Ṗ>�,
where Ṗ(κ,�) is a Pκ ∗ Q̇κ-name for the stages in the interval (κ, �) and Ṗ>� is a name
for the later stages. Note that the �-stage is trivial.
By the properties of j1, the first �-stages of j1(P) are the same as those of P. So,
we can factorise j1(P�) as P� ∗ Ṗtail ∼= Pκ ∗ Q̇κ ∗ Ṗ(κ,�) ∗ Ṗtail , where Ṗtail is a name
for the stages in (�, j1(�)). By elementarity,

j(P�) = j2(j1(P)) ∼= j2(Pκ) ∗ j2(Q̇κ) ∗ j2(Ṗ(κ,�)) ∗ j2(Ṗtail ).
Constructing a generic for j2(Pκ). By the properties of j2 it follows that the first
�-stages of j2(Pκ) are the same as those of P and so, we can factorise j2(Pκ) as
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P� ∗ Q̇tail , where Q̇tail is a name for the stages in (�, j2(κ)). As G� is V -generic, it
is also N -generic so we can form N [G�]. In N [G�], Qtail = (Q̇tail )G� is (much more
than) κ+-strategically closed. Since κ is Mahlo and we are using Easton support,
Pκ has the κ-c.c. Also Qκ has the κ+-c.c. in both V [Gκ] and M [Gκ] and P(κ,�) is
κ+-distributive in both V [Gκ+1] andM [Gκ+1]. Hence, by the standard arguments
we haveM [G�] |= κN [G�] ⊆ N [G�]. Now, let

X = {j(f)(κ, �) | f : [κ]2, f ∈ V }.

Using exactly the same arguments as in Claim 4.5, we can construct in M [G�] an
X [G�]-generic filter H1 for Q̇tail , which is also N [G�]-generic. Since j“Gκ = Gκ ⊆
G� ∗H1, we can lift j2 to j2 :M [Gκ]→ N [j2(Gκ)], where j2(Gκ) = G� ∗H1.

Constructing a generic for j2(Qκ).We need an N [j2(Gκ)]-generic H2 for j2(Qκ)
such that if g is the part of G that corresponds to Qκ, j2“g ⊆ H2. If Cκ =

⋃
g is

the generic club added to κ by Qκ, then Cκ consists of cardinals α < κ which are
not <κ-strong in V . By elementarity” j(α) = α is not <j2(κ)-strong in N . Also,
j2 was chosen so that κ is not �-strong in N , hence q = Cκ ∪ {κ} is a condition in
j2(Qκ).
Now, the structure X comes in use again. In the previous argument we formed
X [G�][H1]. Since M [G�] |= κX [G�] ⊆ X [G�] and H1 was defined in M [G�], it
follows thatM [G�] |= κX [G�][H1] ⊆ X [G�][H1]. Also, j2(Qκ), q ∈ X [G�][H1] and
since j2(Qκ) has size j2(κ), every dense open subset of j2(Qκ) has a name of the
form j(f)(κ, �) for some f : [κ]2 → Vκ+1. Using GCH, it follows that there are at
most κ+-many maximal antichains of j2(Qκ) in X [G�][H1], as counted in M [G�]
and so, we can apply 2.11 to construct an X [G�][H1]-generic filter H2 below q. To
show that H2 is also N [j2(Gκ)]-generic, let D ∈ N [j2(Gκ)] be an arbitrary open
dense subset of j2(Qκ). Using the extender representation of j2, we can write D as
(j2(fD)(a))G�∗H1), for some a ∈ [�]<	 , fD : [κ]|a| →M , fD ∈M . Let

D′ =
⋂

{(j2(fD)(b))G�∗H1 | b ∈ [�]<	, j2(fD)(b) is a j2(Pκ)-name for an open
dense subset of j2(Qκ)}.

D′ is well-defined because j2(fD)(a) is in the set above. Also, D′ is definable
from �, j2(Pκ), G� ∗ H1 and j2(fD) and so, it is definable in X [G�][H1]. Also,
as j2(Qκ) is j2(κ)-distributive and D′ is the intersection of at most �-many open
dense sets, D′ is an open dense set contained in D. Since H2 intersects D′, it
also intersects D, therefore H2 is N [j2(Gκ)]-generic. Using H2, we can lift j2 to
j2 :M [Gκ+1]→ N [j2(Gκ+1)], where j2(Gκ+1) = G� ∗H1 ∗H2.

Constructing a generic for j2(P(κ,�)). The embedding j2 : M → N is generated
by a (κ, �)-extender, so it has width ≤ κ. By 2.15, j2 : M [Gκ+1] → N [j2(Gκ+1)],
also has width≤ κ. Since the forcing P(κ,�) is κ+-strategically closed, if we let G(κ,�)
be the part of G that corresponds to P(κ,�), 2.12 implies that the filter H3 generated
by j2“G(κ,�) is N [j2(Gκ)][H2]-generic for j2(P(κ,�)). It follows that we can lift j2 to
j2 :M [G�]→ N [j2(G�)], where j2(G�) = G� ∗H1 ∗H2 ∗H3.
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Constructing a generic for j2(Ptail ).3 We begin by showing that there is a master
condition in j2(Ptail ), below which we intend to construct the required generic.

Claim 4.7. There is q ∈ j2(Ptail ) such that q ≤ j(p) for all p ∈ G[κ,�).
Proof. Since P� has the �-c.c. and V |= �M ⊆M , the standard arguments show
that

V [G�] |= �M [G�] ⊆M [G�].
Hence, the collection S := {j(p) | p ∈ G�} is inM [G�] and so, j2(S) ∈ N [k(G�)].
Note that j“G� ⊆ j2(S) and j2(S) has size j2(�) in N .
Roughly, to define q we will consider the coordinate-wise union of conditions in
j2(S), adding their supremum at the top. More precisely, we define in N [j2(G�)]
a sequence q with domain (j2(�), j(�)) as follows. For each α ∈ dom(q), q(α)
will be a name for the trivial condition of the α-stage of j2(Ptail ), unless α ∈⋃
p∈j2(S) supp(p). In this case, using the fact that by elementarity j2(S) is directed
and has size j2(�) < α, we have

�j2(Ptail )�α
⋃

r∈j2(S)
r(α) is a bounded subset of α.

Since j2(S) has size j2(�) and α > j2(�) it follows that

�j2(Ptail )�α ∃x ∈ α[x = sup(
⋃

r∈j2(S)
r(α))].

By the maximality principle, we can fix a name �α for x and we set

q(α) =
⋃

r∈j2(S)
r(α) ∪ {�α}.

Weneed to show that q ∈ j2(Ptail ). The support of q is contained in
⋃
r∈j2(S) supp(r)

and for each r ∈ j2(S), supp(r) ∩ (j2(�), j(�)) is an Easton set. As j2(S) has size
j2(�), it follows that q has Easton support. We also need to show that for all
α ∈ supp(q), q(α) is a name for a condition in the α-stage of j2(Ptail ). For each
r ∈ j2(S), r(α) is a name for a closed bounded subset of α consisting of cardinals
which are not <α-strong. Since j2(S) is directed, it follows that

⋃
r∈j2(S) r(α) is

forced to be a closed set of singular cardinals, and unbounded in its supremum.
So, it remains to show that �α is also forced to be non-<α-strong. To see this, note
that by genericity for each � ∈ (�, j1(�)), the supremum of

⋃
r∈S r(�) is forced to

be greater than �. By elementarity, the supremum of
⋃
r∈j2(S) r(α) is forced to be

greater than j2(�). As j2(S) has size j2(�), it follows that �α is a name for a singular
cardinal, which in particular is not <α-strong.
Finally, as j“G� ⊆ j2(S), q extends all conditions of the form (r �
(j2(�), j(�)))j2(G�), for r ∈ j2(S). Thus, q is the required master condition. �
Now that we have themaster condition, we force overV [G ] to add anN [j2(G�)]-
generic filterH4 ⊆ j2(Ptail ) such that q ∈ H4. The choice of q was so that q ≤ j(p)
for all p ∈ G(κ,�). It follows that we can lift j to j : V [G�] → N [j(G�)], where

3The author thanks Yair Hayut for sharing and discussing with him the techniques used in this
construction.
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j(G�) = G� ∗H1 ∗H2 ∗H3 ∗H4. Obviously, j satisfies the weak �-covering property,
so for eachα < �we can derive from j a fine ultrafilterU on (Pκα)V [G ][H4].We claim
thatU ∈ V [G ]. To see this, note that the stages of j(P) above � are �+-strategically
closed in N [G�] and so, (V�)N [j(G�)] = (V�)N [G�]. Moreover, j2 was assumed to be
a �-strongness embedding, so we have (V�)N = (V�)M = V� and since the first
�-stages of P and j(P) are the same, (V�)V [G�] = (V�)N [G�]. Hence, forcing with
j2(Ptail ) over V [G ] cannot change (V�)V [G ] and so,

(V�)V [G ][H4] = (V�)V [G ] = V�[G�] ⊆ V [G ].
It follows that (Pκα)V [G ][H4] = (Pκα)V [G ] and that U ∈ V [G ]. Since α was chosen
arbitrarily below �, κ is <�-strongly compact in V [G ]. But also, � can be chosen
arbitrarily large below � so we have shown that κ is <�-strongly compact in V [G ]
and the proof is complete. �
To finish the proof, we will show that (2) of 3.5 holds in V [G ], so fix a function
f : � → � in V [G ]. Since we use Easton support and � is Mahlo, P� is �-c.c.
and in particular, ��-bounding. This means that there is a function F : � → �
in V such that for all α < �, f(α) < F (α). By Claim 4.6, we can find in V [G ]
a cardinal κ < � which is both <�-strong for F and <�-strongly compact. Pick
� > F (κ) and using 2.3, let j : V [G ] → M be an embedding with crit(j) = κ,
j(κ) > �, F ∩V� = j(F )∩V�, satisfying the �-covering property. Since F (κ) < �, it
follows that j(F )(κ) < � and thus, j is an embedding which is j(F )(κ)-strong and
j(F )(κ)-strongly compact. Moreover κ is a closure point of F and consequently,
of f too. Thus, we have shown that � remains Woodin for strong compactness
in V [G ].

4.2. Proof of Theorem 4.2. The first step is to use 2.8 to show the following result.

Theorem 4.8. Suppose � is a Vopěnka cardinal. There is a forcing extension
inside which � remains Vopěnka, GCH holds, every ground model <�-supercompact
cardinal is preserved and the only <�-strongly compact cardinals are either the
<�-supercompact cardinals of V or measurable limits of those.

Let us temporarily take 4.8 for granted and see how 4.2 is proved.
Let V be the model induced by 4.8 and let P = 〈Pα, Q̇� | α ≤ �, � < �〉 be the
following Easton support �-iteration. Let Q̇0 be a name for Add(	, 1). If Pα has
been defined and α was Woodin for strong compactness in V , then let Q̇α name the
forcing which shoots a club of singular cardinals below α. Otherwise, let Q̇α name
the trivial forcing. Let G ⊆ P be a V -generic filter.
First, we show that there are no Woodin for strong compactness cardinals below
� in V [G ]. If α < � was Woodin for strong compactness in V then the forcing adds
a club of singular cardinals to α, thus destroying its Mahloness and in particular, its
Woodinised strong compactness. Also, by forcing with Add(	, 1) at the first stage,
we introduced a closure point at 	. By 2.14 the forcing creates no new instances of
strong compactness, thus there is no new Woodin for strong compactness cardinal
in V [G ].
It remains to show that � remains Woodin for strong compactness. As in Claim
4.4 in the proof of 4.1, for each A ⊆ V� we can find κ < � which is <�-strong
for A and not Woodin, and consequently not Woodin for strong compactness.
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Thus, all stages of P that are greater than or equal to κ are forced to be κ+-
strategically closed. Using 2.9, it follows that � remains Woodin in V [G ].
Now we show that any <�-supercompact cardinal in V which is not Woodin
for strong compactness, remains <�-supercompact in V [G ]. For instance, any <�-
supercompact cardinal κ < � which is not a limit of <�-supercompacts, is not
Woodin for strong compactness (κ has a bounded collection of <�-supercompact
cardinals below it, so by the conclusion of 4.8 it has a bounded collection of <�-
strongly compact cardinals below it and hence, it cannot be Woodin for strong
compactness).
Fix such a κ and let � > κ be a Mahlo cardinal which is not Woodin for strong
compactness.Let j : V →M be a �-supercompactness embeddingwith crit(j) = κ.
We are going to lift j through P. Since there is trivial forcing at stages κ and �, we
can factorise P as Pκ ∗ Ṗ(κ,�) ∗ Ṗ>�, where Ṗ(κ,�) is a name for the stages in (κ, �) and
Ṗ>� is a name for the stages greater than �.
Since M is closed under �-sequences, it has the same Woodin for strong com-
pactness cardinals as V up to �. Also, � is not Woodin for strong compactness in
M . Thus, it is the case that the first �-stages of j(Pκ) are the same as those of
P and we can write j(Pκ) as P� ∗ Ṗtail . Using G� as an M -generic filter, Ptail is a
�+-strategically closed forcing in M [G�] and the usual counting arguments, using
GCH, show that it has at most �+-many maximal antichains. Also, � is Mahlo,
P� ⊆ V� and we are using Easton support, so P� is �-c.c. As V |= �M ⊆ M , it
follows that V [G�] |= �M [G�] ⊆M [G�]. Therefore, we can apply 2.11 to construct
in V [G�] anM [G�]-generic filter H1 ⊆ Ptail . Since j“Gκ = Gκ ⊆ G� ∗H1, we can
use Silver’s criterion to lift j to j : V [Gκ]→M [j(Gκ)], where j(Gκ) = G� ∗H1.
To lift j throughP(κ,�) = (Ṗ(κ,�))Gκ we notice that sinceH1 was constructed inside
V [G�],M [j(Gκ)] is closed under �-sequences inV [G�]. Thus, j“G(κ,�) ∈M [j(Gκ)],
where G(κ,�) is the part of G corresponding to P(κ,�). We define by induction a
sequence q with dom(q) = (j(κ), j(�)) as follows. q(α) will be a name for the
trivial condition in the α-stage of j(P(κ,�)), unless α ∈ ⋃{supp(j(p)) | p ∈ G(κ,�)}.
In that case, let Hα be an M [j2(Gκ)]-generic filter for j(P(κ,�)) � α and consider
the set, ⋃

{(j(p)(α))j2(Gκ)∗Hα | p ∈ G(κ,�)}.
As a union of �-many subsets of α > �, the above set is bounded and so, it forced by
j(P(κ,�)) � α that its supremum is some ordinal less than α. Using the maximality
principle, we can find a name �α for the supremum and we let

q(α) =
⋃

p∈G(κ,�)
j(p)(α) ∪ {�α}.

We need to show that for all α ∈ supp(q), q(α) is a name for a condition in
the α-stage of j(P(κ,�)). For each p ∈ G(κ,�), p(α) is a name for a closed bounded
subset of α consisting of singular cardinals. Since j“G(κ,�) is directed, it follows that⋃
p∈G(κ,�) j(p)(α) is forced to be a closed set of singular cardinals, and unbounded
in its supremum. So, it remains to show that �α is also forced to be singular. To see
this, note that �α is forced to be a supremum of a set of size �, whose maximum
by genericity is greater than j(κ) > �. It follows that �α is a name for a singular
cardinal.
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By the definition of q, we have q ≤ j(p) for all p ∈ G(κ,�), i.e., it is a master condi-
tion. j(P(κ,�)) is (more than) �+-strategically closed inM [j(Gκ)] and by a counting
argument, we can see that j(P(κ,�)) has at most �+-many maximal antichains in
M [j(Gκ)], counted in V [G�]. Therefore, the conditions of 2.11 hold and we can
construct anM [G�][H1]-generic filter H2 ⊆ j(P(κ,�)) below q. By Silver’s criterion
we can lift j to j : V [G�]→M [j(G�), where j(G�) = G� ∗H1 ∗H2.
Finally, P>� = (Ṗ>�)G� is �

+-distributive and since j had width≤ � we can apply
2.12 to transferG>� to anM [j(G�)]-generic filterH3 ⊆ j(P>�). Thenwe can lift j to
j : V [G ]→M [j(G)], where j(G) = G�∗H1∗H2∗H3. Clearly j“� ∈M [j(G)] and
so, j is a �-supercompactness embedding in V [G ]. As � can be chosen arbitrarily
large, we have shown that κ remains <�-supercompact in V [G ].
Therefore, � remains a Woodin limit of <�-supercompact cardinals and it is
the first such, since there are no Woodin for strong compactness cardinal below �
in V [G ].

Proof of Theorem 4.8. We begin by forcing the collections of<�-supercompact
and<�-strongly compact cardinals below � to coincide (whenever that is possible).
For this, it suffices to adapt the arguments in [1] to V� , for a Vopěnka cardinal �.
We need a universal Laver function for all the <�-supercompact cardinals below �.
We omit the proof, since it follows merely from the fact that the definition of the
Laver function is uniform, i.e., it does not depend on the particular supercompact
cardinal in consideration. For more details, see [1].

Lemma 4.9 ([1]). There is a function f : � → V� such that whenever κ < � is
<�-supercompact, f � κ : κ → Vκ is a Laver function. This means that for any
x ∈ V� and � < � such that x ∈ H�, there is a �-supercompactness embedding
j : V → M with j(f)(κ) = x. Moreover, f can be defined so that f(α) = 0 if α is
<�-supercompact or α is not measurable.

Using f, we define an Easton support �-iteration P = 〈Pα, Q̇� | α ≤ �, � < �〉
along with ordinals {α | α < �} as follows. Suppose Pα has been defined, � < α
for all � < α and f(α) = 〈Q̇, �〉, where Q̇ is a Pα-name for an α-directed closed
forcing and � > α is regular after forcing with P ∗ Q̇. In this case, let α = α,
let 
α = sup{κ < α | α is <�-supercompact} (and 
α = 	 if there are no <�-
supercompact cardinals below α) and define Q̇α = Q̇ ∗ Ṙ
α ,� , where Ṙ
α ,� is a name
for the forcing that adds a nonreflecting stationary subset to �, consisting of ordinals
of cofinality 
α . In any other case, Q̇α is a name for the trivial forcing notion.
Let G ⊆ P be a V -generic filter and denote V [G ] by W . It is not hard to see
that this iteration satisfies the clauses of Theorem 15 in [5], so � remains Vopěnka
in W . Also, the usual proof shows that if κ < � is <�-supercompact in V , then
it remains so in W . Note that since P has plenty of closure points, by 2.14 no
new <�-supercompact cardinals are created. We now show that if a cardinal κ is
<�-strongly compact in W , it was either <�-supercompact in V or a measurable
limit of those.
If neither holds, let κ0 be the least regular cardinal greater than sup{α < κ | α
is <�-supercompact} and κ1 the first <�-supercompact above κ. Let j : V → M
be a κ+1 -supercompactness embedding with crit(j) = κ1 and j(f)(κ) = 〈Q̇, κ+1 〉,
where Q̇ is a name for the trivial forcing. By the definition of P, j(P) will have
the form Pκ1 ∗ Q̇ ∗ Ṙκ0,κ+1 ∗ Ṗtail , where Ṗtail is a name for the stages above κ.
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Thus, �j(P) “κ+1 carried a nonreflecting stationary set of ordinal of cofinality κ0 =
j(κ0). By Łoś’ theorem, there are unbounded many α < κ1 such that P forces that
α+ has a nonreflecting stationary subset of ordinals of cofinality κ0. But this implies
that there are no<�-strongly compact cardinals in (κ0, κ1) inW , which contradicts
our assumption.
It remains to force with the GCH forcing overW to obtain a universeW [H ]. It
is standard that all measurable and supercompact cardinals are preserved and no
new such cardinals are created. Thus,W [H ] is the required model. �

§5. Generalisations and questions. After establishing an identity crisis for the first
witness of some large cardinal property, it is customary to try and control the first
n witnesses for some n ∈ 	 or even a proper class of them.
Unlike the difficulties presented in the case of making a class of measurable
cardinals coincide with a class of strongly compact cardinals, we show that we can
have a proper class of Woodin cardinals coinciding precisely with the Woodin for
strong compactness cardinals. The proof is in the spirit of Theorem 2 in [3].

Theorem 5.1. Suppose there is a proper class of Vopěnka cardinals and that GCH
holds. Then we can construct a model in which there is a proper class of Woodin for
strong compactness cardinals which coincides with the class of Woodin cardinals.
Proof. If there is an inaccessible limit of Vopěnka cardinals and let � be the least
such and otherwise, let � = Ord. Let 〈�α | α ∈ �〉 be an increasing enumeration
of the Vopěnka cardinals below �. For each α, let Pα denote the Easton support
�α-iteration defined as in the proof of Theorem 4.1, destroying Woodin cardinals in
the interval (
α, �α), where 
α = sup{� < �α | � is Vopěnka}.
Let P be the Easton product

∏
α<� Pα . In case � = Ord, the standard arguments

show that P preserves ZFC. We argue that after forcing with P, each �α is Woodin
for strong compactness and not Vopěnka, and these are the only Woodin cardinals
below �. Fix some α < � and factorise the forcing as

∏

�<α

P� × Pα ×
∏

�>α

P�.

Let G = G<α × Gα × G>α be a V -generic filter for P. The forcing
∏
�>α P� is �

+
α -

distributive, so �α remains Vopěnka in V [G>α ]. As in the proof of 4.1, adding the
generic filter Gα ⊆ Pα makes �α Woodin for strong compactness and not Vopěnka
in V [G>α ][Gα], while killing all Woodin cardinals in (
α, �α). Finally,

∏
�<α P� is

small compared to �α , so in V [G ], �α is still Woodin for strong compactness.
We claim that if  < � is aWoodin cardinal inV [G ], then  = �α for some α < �.
Otherwise, there is α such that �α <  < �α+1 and then the forcing Pα+1 shot a club
at  destroying its Woodinness. The rest of P cannot change this fact, so  is not
Woodin in V [G ] which is absurd.
Therefore, the universe W = (V�)V [G ] if � is inaccessible, or V [G ] if � = Ord,
has a proper class of Woodin for strong compactness cardinals which coincide with
the Woodin cardinals. �
Using similar arguments, we can show that the dual holds too.

Theorem 5.2. Suppose there is a proper class of Vopěnka cardinals and that GCH
holds. Then we can construct a model where there is a proper class of Woodin for
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strong compactness cardinals which coincide with the Woodin limit of supercompact
cardinals.
Proof. As previously, let � be the first inaccessible limit of Vopěnka cardinals if
there is such a cardinal, or let � = Ord otherwise. Let 〈�α | α < �〉 be an increasing
enumeration of the Vopěnka cardinals below �. For each α < �, we define a two-
step iteration Pα ∗ Q̇α as follows. Pα is the forcing defined in the proof of 4.2 with
the following changes:
1. The Laver function we use has domain (
α, �α), where 
α = sup{� < �α | � is
Vopěnka},

2. If � is a nontrivial stage and there are no <�α-supercompact cardinals below
�, then the nonreflecting stationary set added consists of ordinals of cofinality

α .

Then, let Q̇α be a name for the forcing which destroys all Woodin for strong com-
pactness cardinal in (
α, �α), as in 4.2. In fact, the proof of 4.2 shows that Pα ∗ Q̇α
preserves the fact that �α is a Woodin limit of <�α supercompact cardinals, while
killing all Woodin for strong compactness cardinals in (
α, �α).
Now, if we let P be the Easton product

∏
α<�(Pα ∗ Q̇α), then we can argue as in

5.1 to show that for all α < �, �α is a Woodin limit of <�α-supercompact cardinals
and so, Woodin for strong compactness and there are no other Woodin for strong
compactness cardinals. Thus, the universe W = (V�)V [G ] if � is inaccessible, or
V [G ] if � = Ord, has a proper class of Woodin limits of supercompact cardinals
which coincide with the Woodin for strong compactness cardinals. �
We finish by mentioning some open questions. For both 4.1 and 4.2 we assumed
the existence of a Vopěnka cardinal. It it still open whether the assumptions in both
theorems can be reduced.
Question 5.3. Can we reduce the large cardinal assumptions of Theorem 4.1?
That is to start with a Woodin for strong compactness cardinal instead of a Vopěnka
cardinal.
Question 5.4. Can we reduce the large cardinal assumptions of Theorem 4.1? That
is to start with a Woodin limit of supercompacts instead of a Vopěnka cardinal.
Moreover, the model induced in 5.1 and 5.2 has no inaccessible limit of Woodin
for strong compactness cardinals.
Question 5.5. Canwe prove 5.1 or 5.2 without any restrictions on the large cardinal
structure?
Since the assumptions of 4.1 include GCH, we also ask the following.
Question 5.6. Can we force GCH in the presence of aWoodin for strong compact-
ness cardinal? Even more, can we realise Easton functions in the presence of a Woodin
for strong compactness cardinal?
Note that the same question is still open for strongly compact cardinals, i.e., it
is still unknown whether we can control the continuum or even force GCH in the
presence of a strongly compact cardinal without assuming supercompactness.
Finally, as for strongly compact cardinals, the consistency strength ofWoodin for
strong compactness cardinals remains unclear. A lower bound is a proper class of
strongly compact cardinals and an upper bound is a Woodin limit of supercompact
cardinals, which lies below an extendible cardinal.
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Question 5.7. What is the exact consistency strength of a Woodin for strong
compactness cardinal?
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