
Euro. Jnl of Applied Mathematics (1999), vol. 10, pp. 379–394. Printed in the United Kingdom

c© 1999 Cambridge University Press

379

The Griffith formula and the Rice–Cherepanov
integral for crack problems with unilateral

conditions in nonsmooth domains

A. M. KHLUDNEV 1 and J. SOKOLOWSKI 2

1 Lavrentyev Institute of Hydrodynamics of the Russian Academy of Sciences,

Novosibirsk 630090, Russia

(e-mail: khlud@hydro.nsc.ru)
2 Institut Elie Cartan, Laboratoire de Mathématiques, Université Henri Poincaré Nancy I,
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As a paradigm for non-interpenetrating crack models, the Poisson equation in a nonsmooth

domain in R2 is considered. The geometrical domain has a cut (a crack) of variable length.

At the crack faces, inequality type boundary conditions are prescribed. The behaviour of

the energy functional is analysed with respect to the crack length changes. In particular, the

derivative of the energy functional with respect to the crack length is obtained. The associated

Griffith formula is derived, and properties of the solution are investigated. It is shown that

the Rice–Cherepanov integral defined for the solutions of the unilateral problem defined in

the nonsmooth domain is path-independent. Finally, a non-negative measure characterising

interaction forces between the crack faces is constructed.

1 Introduction

In this paper the differentiability of the energy functional for an elliptic equation with

respect to the crack length is shown. The method of proof is different from the proof in

the linear case [1], since we cannot in general expect that the solution to the variational in-

equality for the displacement of an elastic membrane with unilateral conditions prescribed

on the crack faces is differentiable with respect to the crack length. The method of the

proof presented in the paper is general, and can also be applied to the energy functionals

of the linear elasticity system with the non-interpenetration conditions prescribed on the

crack faces (see Fig. 1 for an example in 2D elasticity).

In the case of a 2D elasticity system, the condition which is prescribed on the crack

faces takes the form
[v1n1 + v2n2] > 0 ,

where v = (v1, v2) is the displacement field, n = (n1, n2) is the normal vector, and [v · n]
denotes the jump of the normal component of v across the crack. In this paper, we

consider the scalar displacement u of an elastic membrane and, therefore, we prescribe
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Figure 1. Partially ‘open’ crack (0, l) in 2D elasticity.

the following unilateral condition on the crack faces:

[u] > 0,

which makes sense from the mathematical point of view. However, it is difficult physically

to justify the condition for the membrane model. On the other hand, the simplified model

for the membrane can be used for testing numerical methods, as well as for determination

of the singularities of the displacement near the crack tips. The same method of analysis,

as proposed in the paper for the membrane model, will be used for more realistic models

in linear elasticity in a forthcoming paper.

In the linear case, i.e. for the homogeneous Neumann boundary conditions prescribed

on the crack faces in the scalar case, or for the traction-free crack faces in elasticity, the

results are well known. We refer the reader elsewhere [2] for the models currently used

in the fracture mechanic, and for a review of the recent results [3] on the applications to

crack propagation.

In the linear case, both the first and second order derivatives of the energy functionals

with respect to the crack length are evaluated and used for numerical methods of analysis

of crack propagation in solids. However, it seems that we cannot in general expect the

second order differentiability of the energy functional with respect to the crack length in

the case of the nonlinear problem in which unilateral conditions are prescribed on the

crack faces, i.e. only the second order directional differentiability can be obtained. Indeed,

from the local point of view, we expect the gradient of the solution to have an inverse

square root singularity at the prescribed tips, but to be bounded at the edges of the

contact set. We refer elsewhere [4] for the shape differentiability properties of solutions

to variational inequalities in smooth domains.

1.1 Problem formulation

Let D ⊂ R2 be a bounded domain with smooth boundary Γ , and Ξl+δ be the set

{(x1, x2)| 0 < x1 < l + δ, x2 = 0}. We assume that this set belongs to the domain D
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Figure 2. Loaded membrane with partially ‘open’ crack Ξl .

for all sufficiently small δ, and l > 0. The domains with cracks Ξl+δ , Ξl are denoted by

Ωδ = D \Ξl+δ, Ω = D \Ξl , respectively. We consider an elastic membrane in the reference

domain Ω with crack Ξl of the length l and with the unilateral condition prescribed on

the crack for the displacement of the membrane (see Fig. 2).

Therefore, in the domain Ω, we consider the following boundary value problem for a

function u, which satisfies

−∆u = f, (1)

u = 0 on Γ , [u] > 0 on Ξl. (2)

Here f ∈ C1(D̄) is a given function, [u] = u+ − u− is the jump of u across Ξl . The

vector n = (0, 1) is orthogonal to Ξl , and u± denote the traces of u on the crack faces,

corresponding to the positive and negative directions of n. The problem formulation

(1), (2) is not complete to ensure the uniqueness of the solution. In fact, to ensure

non-interpenetralibity, we consider the minimisation of the functional

I(φ) =
1

2

∫
Ω

|∇φ|2 −
∫
Ω

fφ

over the set of all admissible functions from the Sobolev space H1(Ω). That is, introduce

the sets

K0 = {w ∈ H1(Ω)| [w] > 0 on Ξl; w = 0 on Γ },
Kδ = {w ∈ H1(Ωδ)| [w] > 0 on Ξl+δ; w = 0 on Γ }.

The function u is the solution of the variational inequality

u ∈ K0 :

∫
Ω

〈∇u,∇v − ∇u〉 >
∫
Ω

f(v − u) ∀v ∈ K0. (3)

In particular, u satisfies (1), (2). There are additional relations holding on Ξl , and we shall

discuss them in the sequel.

For a small parameter δ, the family of perturbed problems defined in Ωδ is considered.
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We want to find a function uδ such that

−∆uδ = f, (4)

uδ = 0 on Γ , [uδ] > 0 on Ξl+δ. (5)

Similar to (3), the function uδ is the solution of the variational inequality

uδ ∈ Kδ :

∫
Ωδ

〈∇uδ,∇v − ∇uδ〉 >
∫
Ωδ

f(v − uδ) ∀v ∈ Kδ. (6)

The energy functional for problem (3) is defined by the formula

J(Ω) =
1

2

∫
Ω

|∇u|2 −
∫
Ω

fu, (7)

and the energy functional for problem (6) is equal to

J(Ωδ) =
1

2

∫
Ωδ

|∇uδ |2 −
∫
Ωδ

fuδ. (8)

The aim of this paper is to find the derivative

dJ(Ωδ)

dδ

∣∣
δ=0

= lim
δ→0

J(Ωδ)− J(Ω)

δ
(9)

which describes the behaviour of the energy functional J(Ω) with respect to the variation

of the crack length, and to analyse the Rice–Cherepanov integrals corresponding to

problem (3).

The dependence of the energy functional on the crack length is important in the fracture

mechanics. The derivative of the functional is often used to formulate fracture criteria.

The formulae for derivatives of the energy functional with respect to the crack length are

called the Griffith formulae. Invariant integrals over curves surrounding the crack tips are

usually called the Rice–Cherepanov integrals (for the history of the question see Parton &

Morozov [5] and Cherepanov [2]).

Concerning the background material used in the present paper, derivatives of the

energy functional for the Poisson equation and for the linear elasticity equations with

linear boundary conditions holding at Ξl have been studied extensively [6, 7] (see also

[8, 9, 1]). The regularity of solutions in nonsmooth domains have been analysed at

length [10, 11, 12, 13]. As for asymptotic properties of solutions in domains with cracks

(with linear boundary conditions on Ξl), we refer the reader elsewhere [6, 14, 15]. Other

aspects of elliptic problems in domains with nonsmooth boundaries can be found [16, 17,

18, 19, 20].

2 Preliminary statements and formulae

To find the derivative (9), the transformation of the domain Ωδ onto the domain Ω is

introduced. The transformation is constructed in the following way.

Let θ ∈ C∞0 (D) be any function such that θ = 1 in a neighbourhood of the point

xl = (l, 0). To simplify the arguments, the function θ is assumed to be equal to zero

in a neighbourhood of the point (0, 0). Consider the transformation of the independent
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variables

y1 = x1 − δθ(x1, x2),

y2 = x2,
(10)

where (x1, x2) ∈ Ωδ, (y1, y2) ∈ Ω. The Jacobian qδ of this transformation is equal to∣∣∣ ∂(y1, y2)

∂(x1, x2)

∣∣∣ = 1− δθx1
.

For small δ, the Jacobian qδ is positive, hence the transformation (10) is one-to-one.

Therefore, in view of (10), we have y = y(x, δ), x = x(y, δ).

Let uδ(x) be the solution of (6), and uδ(x) = uδ(y), x = x(y, δ). We have the following

formulae:

uδx1
= uδy1

(1− δθx1
),

uδx2
= uδy1

(−δθx2
) + uδy2

.
(11)

Consequently, ∫
Ωδ

|∇uδ |2dx =

∫
Ω

〈Aδ∇uδ,∇uδ〉dy,
where Aδ = Aδ(y) is the matrix such that

Aδ(y) =
1

1− δθx1

(
(1− δθx1

)2 + δ2θ2
x2
−δθx2

−δθx2
1

)
, θ = θ(x(y, δ)).

Note that A0(y) = E is the identity matrix.

It is easy to find the derivative of Aδ(y) with respect to δ, namely,

A′(y) =
dAδ(y)

dδ
|δ=0 = lim

δ→0

Aδ(y)− A0(y)

δ
.

We have

A′(y) =

( −θy1
(y) −θy2

(y)

−θy2
(y) θy1

(y)

)
. (12)

By the change of variables, it follows that∫
Ωδ

fuδdx =

∫
Ω

f(x(y, δ))uδ(y)

1− δθx1

dy.

Denote

fδ(y) =
f(x(y, δ))

1− δθx1

and find the derivative

f′(y) =
dfδ(y)

dδ
|δ=0 = lim

δ→0

fδ(y)− f0(y)

δ
.

Assuming that y, δ are independent variables in (10), we have x = x(y, δ). Differentiation

of (10) with respect to δ yields

0 =
dx1

dδ
− θ − δθx1

dx1

dδ
,

whence
dx1

dδ
=

θ

1− δθx1

,
dx2

dδ
= 0. (13)
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Consequently, by (13),

∂f(x(y, δ))

∂δ
|δ=0 = fx1

dx1

dδ
|δ=0 + fx2

dx2

dδ
|δ=0 = fy1

θ. (14)

Now we are in a position to find the derivative f′(y). Indeed, by (14),

f′(y) = lim
δ→0

(
f(x(y, δ))

1− δθx1

)
− f(y))

1

δ
= lim

δ→0

f(x(y, δ))− f(y)

δ
+

+θx1
f(y)|δ=0 = fy1

θ + θy1
f =

∂

∂y1
(θf),

i.e.

f′(y) = (θf)y1
(y). (15)

Since f ∈ C1(Ω̄), we can see that as δ → 0

fδ(y)− f0(y)

δ
→ f′(y) in L∞(Ω). (16)

Also, notice that, in addition to (12), as δ → 0

Aδ(y)− A0(y)

δ
→ A′(y) in L∞(Ω). (17)

In view of (10), let x = x(y, δ). Then wδ(x) = wδ(y). The inclusion wδ ∈ Kδ implies

wδ ∈ K0, and, conversely, wδ ∈ K0 implies wδ ∈ Kδ . This means that the transformation

(10) maps Kδ on K0, and it is one-to-one. Now we shall prove an auxiliary statement

which is used in the sequel.

Lemma 2.1 Let uδ be the solution of (6), uδ(x) = uδ(y), and u be the solution of (3). Then

‖uδ − u‖H1(Ω) → 0, δ → 0. (18)

Proof The function uδ ∈ Kδ is the solution of the variational inequality (6). We change

the variables in (6) in accordance with (10). To this end, we write (11) as

∇xuδ = ∇yuδ − δgD1uδ,

where D1uδ = uδy1
, g = ∇xθ, which transforms (6) into the inequality∫

Ω

〈∇uδ,∇ṽ − ∇uδ〉 1

qδ
>

∫
Ω

〈hδ,∇ṽ − ∇uδ〉+

∫
Ω

fδ(ṽ − uδ)+ (19)

+δ

∫
Ω

〈∇uδ, gD1ṽ − gD1uδ〉 1

qδ
+ δ2

∫
Ω

〈gD1uδ, gD1ṽ − gD1uδ〉 1

qδ
∀ ṽ ∈ K0.

Here

hδ =
δgD1uδ

qδ
→ 0 in [L2(Ω)]2

as δ → 0. It is of importance that the inequality (19) holds for all ṽ ∈ K0. ¿From (6) it

follows that

‖uδ‖H1(Ωδ ) 6 c
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uniformly in δ, consequently,

‖uδ‖H1(Ω) 6 c (20)

uniformly in δ.

We can substitute ṽ = u, v = uδ in (19), (3), respectively, and sum the relations. This

implies∫
Ω

〈
∇u− ∇uδ,∇u− ∇uδ

qδ

〉
6

∫
Ω

(fδ − f)(uδ − u) +

∫
Ω

〈hδ,∇uδ − ∇u〉+ P (δ, u, uδ, g). (21)

By (19), (20), we have P (δ, u, uδ, g)→ 0 as δ → 0. The inequality (21) can be written as

‖∇u− ∇uδ‖2
0 +

∫
Ω

〈
∇u− ∇uδ,∇uδ − ∇uδ

qδ

〉
6

∫
Ω

〈hδ,∇uδ − ∇u〉

+

∫
Ω

(fδ − f)(uδ − u) + P (δ, u, uδ, g),

where ‖ · ‖0 is the norm in L2(Ω). Hence,

1

2
‖∇u− ∇uδ‖2

0 6 ‖∇uδ − ∇uδqδ ‖
2
0 + ‖hδ‖0‖∇uδ − ∇u‖0

+‖fδ − f‖0‖uδ − u‖0 + P (δ, u, uδ, g). (22)

It is easy to see that

‖∇uδ − ∇uδ
qδ
‖0 6 δ

maxΩ |θx|
minΩ |qδ | ‖∇uδ‖0 → 0, δ → 0.

In this case, the inequality (22) implies,

‖∇uδ − ∇u‖0 → 0

as δ → 0 which completes the proof of Lemma 2.1. q

Remark 2.1 Since fδ is the smooth function, we have

‖fδ − f‖0 6 cδ

with a constant c being uniform with respect to δ. Taking into account the formulae for

hδ, P (δ, u, uδ, g), it follows from (22) that the result of Lemma 1 can be improved, namely,

there exists a constant c > 0 such that

‖uδ − u‖H1(Ω) 6 cδ.

3 The main results

To underline the dependence of the domain Ω on the crack length l we shall write Ωl
instead of Ω in some places of this section.

Let J(Ωl) be defined by formula (7), and the function θ be chosen the same as that
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at the beginning of § 2. Our purpose is to establish the Griffith formula, which gives the

derivative of the energy functional with respect to the crack length for problem (3).

Theorem 3.1 The derivative of J(Ωl) with respect to l is given by

dJ(Ωl)

dl
= −1

2

∫
Ω

(θy1
(u2
y1
− u2

y2
) + 2θy2

uy1
uy2

)−
∫
Ω

(θf)y1
u. (23)

Proof Introduce the notation

Π(Ω;ϕ) =
1

2

∫
Ω

|∇ϕ|2 −
∫
Ω

fϕ,

Πδ(Ω;ϕ) =
1

2

∫
Ω

〈Aδ∇ϕ,∇ϕ〉 −
∫
Ω

fδϕ,

Π(Ωδ;ϕ) =
1

2

∫
Ωδ

|∇ϕ|2 −
∫
Ωδ

fϕ.

The solution u of problem (3) satisfies the relation

Π(Ω; u) = min
ϕ∈K0

Π(Ω;ϕ)

and the solution uδ of problem (6) satisfies

Π(Ωδ; u
δ) = min

ϕ∈Kδ

Π(Ωδ;ϕ).

We have noted that transformation (10) establishes a one-to-one mapping between Kδ

and K0, hence

min
ϕ∈K0

Πδ(Ω;ϕ) = min
ϕ∈Kδ

Π(Ωδ;ϕ). (24)

According to our notation,

J(Ω) = Π(Ω; u); J(Ωδ) = Π(Ωδ; u
δ),

where u and uδ are the solutions of (3) and (6), respectively. Now we can find the limit

(9). Indeed, by (24),

J(Ωδ)− J(Ω)

δ
=
Π(Ωδ; u

δ)−Π(Ω; u)

δ

=
Πδ(Ω; uδ)−Π(Ω; u)

δ
6
Πδ(Ω; u)−Π(Ω; u)

δ
and consequently,

lim sup
δ→0

J(Ωδ)− J(Ω)

δ
6 lim sup

δ→0

Πδ(Ω; u)−Π(Ω; u)

δ

=
1

2

∫
Ω

〈A′∇u,∇u〉 −
∫
Ω

f′u. (25)

On the other hand, by Lemma 1 and (16), (17), as δ → 0

Πδ(Ω; uδ)−Π(Ω; uδ)

δ
=

1

2

∫
Ω

〈
Aδ − A0

δ
∇uδ,∇uδ

〉
(26)
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±1

2

∫
Ω

〈A′∇uδ,∇uδ〉 − 1

δ

∫
Ω

(fδ − f)uδ =
1

2

∫
Ω

〈(
Aδ − A0

δ
− A′

)
∇uδ,∇uδ

〉

+
1

2

∫
Ω

〈A′∇uδ,∇uδ〉 − 1

δ

∫
Ω

(fδ − f)uδ → 1

2

∫
Ω

〈A′∇u,∇u〉 −
∫
Ω

f′u.

Hence

lim inf
δ→0

J(Ωδ)− J(Ω)

δ
> lim inf

δ→0

Πδ(Ω; uδ)−Π(Ω; uδ)

δ

=
1

2

∫
Ω

〈A′∇u,∇u〉 −
∫
Ω

f′u. (27)

Comparing (25) and (27), we find

lim
δ→0

J(Ωδ)− J(Ω)

δ
=

1

2

∫
Ω

〈A′∇u,∇u〉 −
∫
Ω

f′u,

i.e.

dJ(Ωl)

dl
=

1

2

∫
Ω

〈A′∇u,∇u〉 −
∫
Ω

f′u. (28)

By (12) and (15), a substitution of A′ and f′ in (28) implies the Griffith formula (23). The

proof of Theorem 3.1 is complete. q

The solution u of problem (3) satisfies the following boundary conditions:

[u] > 0, [uy2
] = 0, uy2

6 0, uy2
[u] = 0 on Ξl. (29)

We do not provide detailed proof of (29). In fact, (29) can be obatained by substituting

the proper test functions in variational inequality (3), and integrating by parts. The

derivation of similar nonlinear boundary conditions of the inequality type is performed

elsewhere [12] in the case of plate equations.

First, we have to prove that the right-hand side of (23) does not depend upon θ. It

follows from Yakunina [21] that the solution of problem (3) has an additional regularity

up to the crack faces. For any x ∈ Ξl there exists a neighbourhood V of the point x such

that

u ∈ H2(V \ Ξl). (30)

Consequently, u ∈ H3/2
loc (Ξ±l ).

To prove that the right-hand side of (23) is independent of θ, we consider two functions

θ1, θ2 with the required properties. Denote by Λ the difference between right-hand sides

of (23) corresponding to θ1, θ2. Then

Λ = −1

2

∫
Ω

(θy1
(u2
y1
− u2

y2
) + 2θy2

uy1
uy2

)−
∫
Ω

(θf)y1
u, (31)

where θ = θ1 − θ2. Since θ1, θ2 are equal to 1 in some neighbourhoods of the point xl , in

(31) we integrate outside of a ball Bxl centred at xl . Integrating by parts in (31), we find

Λ =

∫
Ω\Bxl

θuy1
(∆u+ f) +

∫
Ξl\Bxl

θ[uy2
uy1

],
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and by (1) and (29),

Λ =

∫
Ξl\Bxl

θ[uy2
uy1

].

To prove Λ = 0, it suffices to establish that

uy2
[uy1

] = 0 a.e. on Ξl ∩ {suppθ}. (32)

Here, by {suppθ} we denote the support of θ. Introduce the set

M = {x ∈ Ξl ∩ {suppθ}| [u(x)] > 0}.
The set M is open, and by (30), u is continuous up to Ξl . By (29), we have

uy2
= 0 a.e. on M. (33)

The complement of M is characterised by the condition

[u] = 0 on (Ξl ∩ {suppθ}) \M.

Hence (see Kinderlehrer & Stampacchia [22], Ch.2, Theorem A.1)

[uy1
] = 0 a.e. on (Ξl ∩ {suppθ}) \M. (34)

Consequently, by (33) and (34), we arrive at (32), which proves the independence of the

right-hand side of (23) on θ.

Note that the independence of the right-hand side of (23) on θ follows by the existence

of derivative (23). Indeed, since

lim inf
δ→0

J(Ωδ)− J(Ω)

δ
= lim sup

δ→0

J(Ωδ)− J(Ω)

δ

and both sides are independent of θ, we conclude that the derivative

dJ(Ωδ)

dδ

∣∣
δ=0

exists and does not depend upon θ.

The proved assertion means that the right-hand side of (23) actually depends upon the

point xl , and the right-hand side f of (1). This allows us to write (23) as the following

Griffith formula:
dJ(Ωl)

dl
= k(xl, f), (35)

where Ωl = D \ Ξl , k is a functional depending on xl, f. In particular, we have

J(Ωl+δ) = J(Ωl) + k(xl, f)δ + α(δ)δ,

where Ωl+δ = D \ Ξl+δ and α(δ)→ 0 as δ → 0.

Note that k(xl, f) = 0, provided that the solution u is sufficiently smooth, which implies

dJ(Ωl)

dl
= 0. (36)

In particular, the equality (36) holds for u ∈ H2(Ωl). Indeed, in this case, we can extend Ξl
beyond the points (l, 0), (0, 0), so that the extension denoted by Ξ∗ crosses the boundary

Γ . As a result, the domain Ω is divided into two subdomains, Ω1, Ω2. By (23), (32) and

https://doi.org/10.1017/S0956792599003885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599003885


The Griffith formula and the Rice–Cherepanov integral 389

(1), we have

dJ(Ωl)

dl
=

2∑
i=1

{
−1

2

∫
Ωi

(θy1
(u2
y1
− u2

y2
) + 2θy2

uy1
uy2

)−
∫
Ωi

(θf)y1
u

}

=

2∑
i=1

∫
Ωi

θuy1
(∆u+ f) +

∫
Ξ∗
θuy2

[uy1
] = 0. (37)

In fact, to prove (37) we need a local regularity of the solution near the point xl . The

inclusion u ∈ H2(Ω) provides the sufficient regularity to integrate by parts in (37).

An additional regularity near the point xl can be shown in some particular cases. For

example, assume that the solution u satisfies the condition

[u] = 0 on Bxl ∩ Ξl,
where Bxl is a ball centred at xl . In this case we can prove that the equation

−∆u = f (38)

holds in Bxl in the sense of distributions, consequently, u ∈ H3
loc(Bxl ), and all the integrals

in (37) are well defined. Hence, equality (36) follows from (1) and (32).

Let us prove that (38) holds in Bxl , provided that [u] = 0 on Bxl ∩ Ξl . Consider a

closed smooth curve such that it confines a bounded simply connected domain Q ⊂ Ωl
and contains Ξl ∩ Bxl as a part of its boundary γ. It is well known that the conditions

u ∈ H1(Q),∆u ∈ L2(Q) imply ∂u
∂n
∈ H−1/2(γ), where n is an external normal vector to the

boundary γ. Moreover, the following Green formula holds:

(∆u, v)Q −
〈
∂u

∂n
, v

〉
1/2,γ

= −〈∇u,∇v〉Q ∀v ∈ H1(Q), (39)

where 〈·, ·〉1/2,γ means the duality pairing between H1/2(γ) and H−1/2(γ), and the lower

indices Q in (·, ·)Q , 〈·, ·〉Q, mean the integration over Q. It is clear that the domain Q can

be chosen in different ways. In any case, one of the inclusions Ξ+
l ∩Bxl ⊂ γ, Ξ−l ∩Bxl ⊂ γ

holds. Let φ ∈ C∞0 (Bxl ). We substitute v = u + φ into the variational inequality (3) as a

test function. This implies ∫
Bxl \Ξl

〈∇u,∇φ〉 =

∫
Bxl \Ξl

fφ,

whence, integrating by parts and taking into account (1) and (39), we obtain〈
∂u

∂n
, φ

〉−
1/2,γ

−
〈
∂u

∂n
, φ

〉+

1/2,γ

= 0 ∀φ ∈ C∞0 (Bxl ). (40)

The signs ± correspond to B±xl , respectively. Here B+
xl

= Bxl∩{x2 > 0}, B−xl = Bxl∩{x2 < 0}.
Identity (40) actually provides the precise meaning of the condition [ ∂u

∂n
] = 0 on Ξl in (29).

Since u ∈ H1(Bxl \ Ξl) and [u] = 0 on Bxl ∩ Ξl, it follows that u ∈ H1(Bxl ). For example,

below we denote by (∆u+ f, φ) the value of the distribution ∆u+ f ∈ D′(Bxl ) evaluated

on the test function φ ∈ C∞0 (Bxl ). Consider the following equalities:

(∆u+ f, φ) = −〈∇u,∇φ〉Bxl + (f, φ)Bxl

= −〈∇u,∇φ〉B+
xl
− 〈∇u,∇φ〉B−xl + (f, φ)Bxl . (41)
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We can integrate by parts in the right-hand side of (41) which implies

(∆u+ f, φ) = 〈∂u
∂n
, φ〉+1/2,γ − 〈

∂u

∂n
, φ〉−1/2,γ + (∆u+ f, φ)B+

xl
+ (∆u+ f, φ)B−xl

. (42)

By (40) and (1), the right-hand side of (42) is equal to zero, which proves that (38) holds

in Bxl in the sense of distributions.

We can rewrite (23) in the form which does not contain θ. To this end, consider a ball

Bxl (r) of radius r with a boundary Γ (r), such that θ = 1 on Bxl (r). Integration by parts in

(23) implies

dJ(Ωl)

dl
=

∫
Ω\Bxl (r)

θuy1
(∆u+ f) +

∫
Ξl\Bxl (r)

θuy2
[uy1

]

+

∫
Bxl (r)\Ξl

θfuy1
+

1

2

∫
Γ (r)

θ(ν1(u2
y1
− u2

y2
) + 2ν2uy1

uy2
),

where (ν1, ν2) is the unit external normal vector to Γ (r). Hence, by (1) and (32),

dJ(Ωl)

dl
=

∫
Bxl (r)\Ξl

fuy1
+

1

2

∫
Γ (r)

(ν1(u2
y1
− u2

y2
) + 2ν2uy1

uy2
). (43)

Now assume that f = 0 in some neighbourhood V of the point xl . For small r, we have

Bxl (r) ⊂ V , and the formula (43) implies

dJ(Ωl)

dl
=

1

2

∫
Γ (r)

(ν1(u2
y1
− u2

y2
) + 2ν2uy1

uy2
). (44)

The right-hand side of (44) does not depend upon r, consequently we arrive at the

following conclusion. Let u be the solution of the problem (3), and f be equal to zero in

some neighbourhood of the point xl . Then the integral

I =

∫
Γ (r)

(ν1(u2
y1
− u2

y2
) + 2ν2uy1

uy2
)

is independent of r for all sufficiently small r. Moreover, the above arguments show that

the integral

I =

∫
C

(ν1(u2
y1
− u2

y2
) + 2ν2uy1

uy2
) (45)

does not depend upon C for any closed curve C surrounding the point xl. In this case,

ν = (ν1, ν2) is the normal unit vector to the curve C. A part of this curve may belong to

Ξl. In this last case, we can integrate over Ξ+ or Ξ−, since, in view of (29) and (32), the

jump [uy1
uy2

] is equal to zero on Ξl. Here Ξ± = Ξ±l ∩ C (see Fig. 3).

The integral of the form (45) is called the Rice–Cherepanov integral. We have to

note that the statement obtained is proved for nonlinear boundary conditions (29). This

statement is similar to the well-known result in the linear elasticity theory with linear

boundary conditions presribed on Ξl [2]. Of course, the above independence takes place

provided that f is equal to zero in the domain with the boundary C.

Finally, we construct a measure µ defined on Borel sets of Ξl . The measure charac-

terises interaction forces between the crack faces. First, recall that the smallest σ-algebra

containing all compact sets in Ξl is called the Borel σ-algebra. Any σ-additive real-valued

function defined on the Borel σ-algebra, which is finite for all compact sets B ⊂ Ξl is

called a measure on Ξl.
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Figure 3. Piecewise smooth nonintersecting path C which begins and ends on the crack Ξl and

surrounds the tip (0, l).

Let C0(Ξl) be the space of continuous functions defined on Ξl and having compact

support in Ξl. Convergence in C0(Ξl) is defined in the following way. We say that φm → φ

in C0(Ξl) if the support of φm ,m = 1, 2, ..., belongs to a fixed compact subset B ⊂ Ξl and

the sequence φm converges to φ uniformly on Ξl. In what follows, we may assume that Ξl
is a C1-curve in D without self-intersections such that the points (0, 0), (l, 0) are the curve

ends. In such a case, a solution of problem (3) obviously exists. Denote by H1,0(Ωl)∩C0(Ξl)

the linear subset in H1,0(Ωl) which contains the functions with continuous and compactly

supported traces on both crack faces Ξ±l . Here

H1,0(Ωl) = {u ∈ H1(Ωl)| u = 0 on Γ }.
Let u be the solution of problem (3). Then u + ū ∈ K0 for every ū ∈ K0. Consequently,

from (3) it follows that ∫
Ωl

〈∇u,∇ū〉 >
∫
Ωl

fū. (46)

Now we are in a position to prove the following statement.

Theorem 3.2 On the σ-algebra of Borel sets of Ξl we can construct a non-negative measure

µ such that the representation∫
Ωl

〈∇u,∇ū〉 −
∫
Ωl

fū =

∫
Ξl

[ū]dµ (47)

holds for all ū ∈ H1,0(Ωl) ∩ C0(Ξl).

Proof To simplify the formulae below, we present the proof for the case when Ξl is a

segment of a straight line. Consider a linear space M of functions defined on Ξl:

M = {ū∗| ū∗ = [ū], ū ∈ H1,0(Ωl) ∩ C0(Ξl)}.
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Define a linear functional on M by the formula

L(ū∗) =

∫
Ωl

〈∇u,∇ū〉 −
∫
Ωl

fū.

It is clear that the functional L is well defined. Its value at the point ū∗ does not depend

upon the choice of ū. Indeed, if ū∗1 = ū∗2 then by (46), taking into account that −ū, ū ∈ K0

for ū = ū1 − ū2, it follows that L(ū∗1) = L(ū∗2).

We show that the space C1
0 (Ξl) of continuously differentiable functions on Ξl with

compact supports is included in M. To prove this statement, we take an arbitrary function

ψ ∈ C1
0 (Ξl). Extend the curve Ξl beyond both tips (0, 0), (l, 0), as the straight line, and

define the smooth function ξ along the normal n to the extended curve Ξ̃l :

ξ(x̃) =

{
1, if x̃ = x̄+ εn, x̄ ∈ Ξ̃l , 0 6 ε 6 ε0

2

0, if ε > ε0.

Since the extension Ξ̃l is smooth, the function ξ(x̃) is well-defined. Now it is possible to

construct a function Φ in the domain {x2 > 0} assuming that the function ψ is extended

to Ξ̃l by zero. Indeed, in the domain {x2 > 0}, we define

Φ(x̃) = ψ(x̄)ξ(x̃), if x̃ = x̄+ εn, x̄ ∈ Ξ̃l , ε > 0.

In this case Φ(x̄) = ψ(x̄), x̄ ∈ Ξl. One can see that the points x̃ = x̄ + εn may not

belong to Ωl, in general. This should present no difficulty, since ψ vanishes outside of

Ξl. Assuming that the function Φ is identically equal to zero for {x2 < 0}, we obtain

Φ ∈ H1,0(Ωl) ∩ C0(Ξl) and, moreover,

[Φ] = ψ on Ξl.

Hence, the inclusion C1
0 (Ξl) ⊂M follows. As a consequence, the positive functional L can

be extended to a linear continuous form over the space C0(Ξl) [23]. On the other hand,

any positive functional on C0(Ξl) is defined by a measure µ, and

L(φ) =

∫
Ξl

φdµ ∀φ ∈ C0(Ξl).

By the definition of L, we obtain (47), which completes the proof of Theorem 3.2. q

If Ξl is a C2-curve (and, in particular, Ξl is a segment of a straight line), it is possible to

find the density of the measure µ. This means the existence of a locally integrable function

p such that

µ(B) =

∫
B

pdΞl.

In fact, as indicated above, in such a case the function u has the second derivatives square

integrable up to Ξl. Consequently, we can integrate in the left-hand side of (47), which

implies

−
∫
Ξl

∂u

∂n
[ū]dΞl =

∫
Ξl

[ū]dµ. (48)
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It follows from (48) that the density of the measure µ is equal to

p = −∂u
∂n
.

Using the regularity result (30) we have p ∈ H1/2
loc (Ξl).

4 Conclusion

The Griffith formula for the Poisson equation established in this paper is proved for the

nonlinear boundary conditions. Also, the path independence of the Rice–Cherepanov in-

tegral is stated. Proof of independence of the Rice–Cherepanov integral uses an additional

regularity of the solution up to the crack faces. The derivation of the Griffith formula is

based on the regularity of a variational solution. It is of interest to establish the highest

regularity of the solution in the vicinity of the crack tips. We hope this will allow us to

extract some useful corollaries from the formulae obtained in the paper.

Acknowledgements

A. M. Khludnev was supported by Institut Elie Cartan, Université Henri Poincaré Nancy
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