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This investigation analysed the applicability of principal component analysis (PCA), a latent variable
method, for the early detection of mastitis and lameness. Data used were recorded on the
Karkendamm dairy research farm between August 2008 and December 2010. For mastitis and
lameness detection, data of 338 and 315 cows in their first 200 d in milk were analysed, respectively.
Mastitis as well as lameness were specified according to veterinary treatments. Diseases were defined
as disease blocks. The different definitions used (two for mastitis, three for lameness) varied solely in
the sequence length of the blocks. Only the days before the treatment were included in the blocks.
Milk electrical conductivity, milk yield and feeding patterns (feed intake, number of feeding visits and
time at the trough) were used for recognition of mastitis. Pedometer activity and feeding patterns were
utilised for lameness detection. To develop and verify the PCA model, the mastitis and the lameness
datasets were divided into training and test datasets. PCA extracted uncorrelated principle
components (PC) by linear transformations of the raw data so that the first few PCs captured most
of the variations in the original dataset. For process monitoring and disease detection, these resulting
PCs were applied to the Hotelling’s T2 chart and to the residual control chart. The results show that
block sensitivity of mastitis detection ranged from 77·4 to 83·3%, whilst specificity was around
76·7%. The error rates were around 98·9%. For lameness detection, the block sensitivity ranged from
73·8 to 87·8% while the obtained specificities were between 54·8 and 61·9%. The error rates varied
from 87·8 to 89·2%. In conclusion, PCA seems to be not yet transferable into practical usage. Results
could probably be improved if different traits and more informative sensor data are included in the
analysis.
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Mastitis and lameness still remain the most frequent and
costly diseases in the dairy industry in terms of economics
and animal welfare (Kramer et al. 2009). Early detection and
intervention of mastitis and lameness reduces losses in milk
yield, veterinary fees and losses in milk quality, and
increases the cure rate of the infected animals (Milner et al.
1997). With growing herd sizes and the introduction of
robotic milking, the classical detection method of visual
observations has become more difficult and time-consum-
ing. Thus, there is a need to support the farmer’s observations
by applying improved and automated detection of diseases
(de Mol et al. 1997). Automated detection is possible using
sensor measurements and information from a Management
Information System (MIS). Information from the MIS is useful

for judging potential causes of aberrations. Much research
has been done on the development of sensors and
appropriate models to detect diseases. Formastitis detection,
milk parameters (such as milk yield, milk electrical
conductivity) have been used (Cavero et al. 2008; Lukas
et al. 2009). For lameness detection, on the other hand, the
activity of cows has been used (Kramer et al. 2009).
Recently, feed intake and its corresponding behaviour
have been reported to be linked to a cow’s health status
(Gonzalez et al. 2008; Lukas et al. 2008). However, only
single variables are often looked at in detection models or
different variables are considered successively. A disease
may nevertheless influence milk yield, cow activity and feed
intake. Therefore, examining one of these variables at a time
as though it was independent, makes interpretation and
diagnosis difficult (Kourti &MacGregor, 1995). This suggests
that the results of a detection model may be improved by
combining all of the variables and transforming them into*For correspondence; e-mail: bmiekley@tierzucht.uni-kiel.de
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useful information for the herdsmen (de Mol et al. 1997;
Cavero et al. 2008; Kramer et al. 2009).

Several studies have attempted to develop a multivariate
scheme which would allow early disease detection based
on cow monitoring. For mastitis detection, for example,
Kamphuis et al. (2010) used decision trees. Cavero et al.
(2008) applied neural networks to monitor udder health
whereas Pastell & Kujala (2007) used this method for
lameness detection. Additionally, Kramer et al. (2009)
exerted fuzzy logic formastitis as well as lameness detection.
Although high levels of sensitivities and specificities were
reported, few of these models have been implemented in
practical monitoring owing to too high error rates.
Additionally, a large number of false positive alerts provided
by MIS hinder their application in practice (Hogeveen et al.
2010). Thus, there is a strong need for improvement of the
performance of analytical detection models so that they do
not remain the weakest link in automated disease detection.

Latent structure methods are used effectively for fault
detection in chemical and industrial process control (Kourti,
2002; Choi et al. 2005). One approach that has proved
particularly powerful is the use of principal component
analysis (PCA) combined with Hoteling’s T2 and residual
monitoring charts since it allows an extension of the
principles of univariate statistical process monitoring (e.g.
control charts) to monitor multivariate processes (Choi et al.
2005; Kourti, 2006). PCA is able to simultaneously divide
all the data information into significant patterns, such
as tendencies or directions, and into uncertainties, such as
noises or outliers. Thus, PCA reduces the problem of dis-
criminating between the process variables and of identifying
new sets of variables which characterise all of the prior
information (Burstyn, 2004).

Therefore, the aim of this study was to explore PCA
combined with control charts (T2 and residual charts) for the
early detection of mastitis and lameness in dairy cows.

Materials and methods

Data

Data used were recorded on the Karkendammdairy research
farm between August 2008 andDecember 2010. Formastitis
and lameness detection, about 66000 cow-days from 338
and 315 cows in their first 200 d in milk (DIM) were
analysed, respectively. Milk electrical conductivity, milk
yield and feeding patterns (feed intake, number of feeding
visits and time at the trough) were used for recognition of
mastitis. Pedometer activity and feeding patterns were
utilised for lameness detection. Milking took place in a
rotary milking parlour manufactured by GEA Farm
Technologies. Cows were milked twice daily. Milk yield
(MY) and milk electrical conductivity (MEC) were measured
using theMetatron P21milk meter (GEA Farm Technologies)
for each cow at every milking. Activity was measured using
pedometers (GEA Farm Technologies), which recorded

activity in 2-h periods. Average daily activity rates per hour
were calculated to account for the diurnal rhythm.
Furthermore, high pedometer activity due to documented
and progesterone-measured oestrus events was excluded
from the dataset. Progesterone was measured at every
milking and analysed at a laboratory. One to three days
(depending on each cow) of high activity around insemina-
tion or measurement were excluded. High activity without
insemination or progesterone confirmation was not ex-
cluded but stands for normal behaviour. The feeding trough
was developed and installed by the Institute of Animal
Breeding and Husbandry, University of Kiel. Each visit to the
feeding troughs was recorded and the amounts of consumed
feed (forage) were accumulated to daily intakes. Extreme
values (mainly for the trait feed intake) which deviated by
more than ±4×SD were excluded from the dataset.
Medical treatments of diseases were documented con-

stantly by veterinarians and farm staff. Different categories
for mastitis (e.g. Staphylococcus areus or Escherichia coli
mastitis) and for lameness (e.g. digital dermatitis or sole
ulcer) were identified. Owing to the low number of diseased
cows within these categories, the categories were combined
to form cases of mastitis and lameness, respectively. The
occurrence of both cases at the same time was possible.
These cases were defined as the target characteristic to be
distinguished from the healthy observation in the data.
Application of PCA necessitates the division of the mastitis

and lameness dataset, respectively, into training (randomly
selected healthy cows during their 200 DIM) and test
datasets (remaining healthy and ill cows). For a sufficiently
large training dataset, 100 cowswithout any cases of mastitis
or lameness during their first 200 DIM (Aapo Hyvärinen,
personal communication, October 15, 2011) were randomly
selected in each dataset (mastitis and lameness), respectively
(Table 1). Thus, the remaining 238 cows for the test dataset of
mastitis were used, incorporating 138 cows without any
mastitis treatment during their first 200 DIM as well as 100
cows which were treated for mastitis during this observation
period. In the case of the test dataset for lameness detection,
73 healthy and 142 infected cows were used. Descriptive
statistical information on the traits for the training and test
datasets with regard to their use in mastitis or lameness
detection are also shown in Table 1.

Disease definition

Diseases were defined as disease blocks, i.e. an uninter-
rupted sequence of ‘days of disease’ (Cavero et al. 2008;
Kramer et al. 2009). Recorded treatments served as a basis
for these disease blocks and the different definitions varied
solely in the sequence length of the blocks. As the focus of
this study was on early disease detection, only the days
before the first treatment were included in a disease block
(Kramer et al. 2009). If at least one alarm was generated by
the monitoring system within the block, it was considered as
detected.
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Mastitis definition. Cows were selected for veterinary treat-
ment by the farm staff based on observable signs of mastitis
infection. Twovariants of mastitis definitionwere used in this
study:

Mastitis+3: treatment performed including three days before
the treatment

Mastitis+4: treatment performed including four days before
the treatment

The days in the dataset were classified as ‘days of health’ or
‘days of disease’ according to Cavero et al. (2007). The day of
treatment as well as three or four days before was defined as
‘days of disease’, respectively. To give consideration to the
withdrawal period without any observation, at least seven
days after the last treatment of a mastitis case were not
utilised for the analysis. After this period, cows were
considered to be healthy. For early mastitis detection the
days before treatment were analysed. The data contained
115 disease blocks.
Lameness definition. For veterinary treatment, lame cows
were also selected by the farm staff based on observable
signs. Lameness was defined using disease blocks analogous
to the mastitis definitions. The different definitions varied in
the length of the disease blocks.

Lame+3: day of treatment including three days before the
treatment

Lame+5: day of treatment including five days before the
treatment

Lame+7: day of treatment including seven days before the
treatment

All medicated cows were again observed by a veterinarian
one week after treatment. Thus, all days between treatment
and another examination were set to ‘days of disease’. If the
follow-up examination proved negative, cows were con-
sidered healthy. Otherwise, the lameness block had to be
lengthened until the infected animals were considered to be
healthy as judged by the veterinarian. For the analysis, solely

the days before the first treatment were used. The data
contained 210 disease blocks.

Methods

Methodology of principal component analysis. Principal
component analysis is a multivariate technique, also referred
to as a latent variable method or projection method (Abdi
& Williams, 2010). Its goal is to extract the important
information from a number of possibly correlated variables
and to represent it as a set of new uncorrelated and fewer
variables, called principal components (PC). The first PC
accounts for asmuch of the variability in the data as possible,
and each succeeding component accounts for as much of
the remaining variability as possible.
In theory, PCA considers a mean-centred and scaled

dataset, X, with n observations on k variables (mastitis
dataset: k=5; lameness dataset: k=4). The first PC (t1)
showing maximum variance is defined as the linear
combination t1=Xp1. The second PC (t2=Xp2) has the next
greatest variance and subject to the condition that it is
uncorrelated with t1 (Kourti, 2002; Montgomery, 2009). Up
to k PCs are similarly defined. The pi’s are constants to be
determined (principle component loadings) using eigenvec-
tors (special set of vectors associated with a linear system of
equations, i.e. a matrix equation) of the covariance matrix
of X. Figure 1 gives a simplified schematic interpretation of
the method using the mastitis detection variables as an
example and by means of one cow. There are five variables
in a continuous process (x1=MY, x2=MEC, x3= feed intake,
x4= time at the through, x5=number of visits). Variables x3, x4
and x5 are more correlated with each other, while variable x1
is more correlated with x2. New variables are calculated
using PCA. The first principal component t1 is a weighted
average of x3, x4 and x5, while the second component, t2, is a
weighted average of x1 and x2.
There are no firm guidelines on how many PCs have to

be retained (Montgomery, 2009). Sufficient components to
explain a reasonable proportion of the total process
variability (70% and higher) should be taken into account

Table 1. Means of the analysed indicator variables for the training and test datasets of lameness and mastitis detection (SD in parenthesis)

Trait

Mastitis Lameness

Training Test Training Test

Number of cows
All 100 238 100 215
Healthy 100 138 100 73
Ill — 100 — 142

Milk yield, kg/milking 18·2 (3·6) 18·4 (3·8) 18·0 (3·7) 18·0 (3·7)
MEC†, reference units/milking 490·3 (32·0) 497·5 (34·9) 493·5 (35·6) 494·7 (36·0)
Daily activity, contacts/h 32·1 (14·2) 32·8 (14·7) 32·7 (8·9) 30·9 (10·2)
Feed intake, kg/d 39·9 (11·2) 39·5 (11·1) 40·6 (11·1) 39·0 (11·1)
Number of feeding visits per day 45·8 (13·7) 45·8 (14·1) 47·6 (14·0) 45·1 (13·8)
Feeding time, min/d 177·3 (50·3) 176·3 (52·3) 181·0 (49·0) 176·5 (52·3)

†Milk electrical conductivity
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(Choi et al. 2005; Kourti et al. 2009). The first two PCs
incorporated 79% of the variance for mastitis detection,
whereas t1 (weighted average of the feeding patterns) and t2
(pedometer activity) explained 87% of the process variance
for lameness monitoring. Thus, both processes were reduced
to the first two PCs.

Process monitoring and on-line disease detection. The
procedure described above is used to establish a PCA
model based on historical data collected when only
common cause variation was present (training dataset,
healthy cows only) (MacGregor et al. 2005) (Fig. 2, off-line
training). Any periods containing variations arising from
special events (e.g. disease) which one would like to detect
in the future are theoretically omitted at this stage (Kourti,
2002). New multivariate observations (Xnew) can then be
referenced against this ‘in-control’ model using the PCA
loading vectors to obtain their new PCs (ti,new=piXnew)
(Fig. 2, on-line monitoring).

Two complementary multivariate control charts are
required for process monitoring using projection methods
such as PCA (MacGregor et al. 2005; Kourti, 2006) (Fig. 2).
The first is the Hoteling’s T2 chart on the remaining PCs.

T2
i;new¼

Xl

i¼1

t2i;new
s2ti

ti,new incorporates the new PCs from the PCAmodel whereas
s2ti is the variance of the corresponding estimated latent
variables (ti) in the training dataset. This chart will check
whether new observations of the measured variables are
within the limits (Fig. 2) determined by the training data.
These upper control limits (UCL, threshold value) are
obtained using the F-distribution of the training data
(MacGregor & Kourti, 1995).

T2
lim ¼ ðn� 1Þðnþ 1Þl

nðn� lÞ Fαðl; n� l; αÞ

Fig. 1. PCA and dimensionality reduction, based exemplarily on the indicator variables for mastitis detection and on one cow. The principal
components t1 and t2 use the correlation of five variables (x1=milk yield, x2=milk electrical conductivity, x3= feed intake, x4= time at the
through, x5=number of visits) and break the detection process into two uncorrelated variables.
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where Fα(l, n� l) is the upper 100α% critical point of the
F-distribution with l and n� l degrees of freedom (l: number
of PCs; n: sample number) with level of significance α
(MacGregor & Kourti, 1995). It was mentioned above that
the PCs explain the main variability of the data. The
variability which cannot be explained forms the residuals
(squared prediction error, SPE). This residual variability is
also monitored and a control limit for typical operation is
established. By monitoring the residuals, it is tested whether
the unexplained disturbances of the system remain similar to
the ones observed when the model was derived. If a totally
new type of special event (e.g. mastitis or lameness event)
occurs which was not present in the training data, then new
PCswill appear and the newobservations xi,newwill not be in
the defined range of the PCA model (Fig. 2). The SPE can be
computed by

SPEi;new¼
Xk

i¼1

ðxi;new � x̂i;newÞ2

where x̂i;new¼ piti;new. The upper control limit for the SPE
chart (SPElim) is given by

SPElim¼ðs=2mÞχ2αð2m2=sÞ

wherem and s are the sample mean and variance of the SPE
values from the training data (Zhang et al. 2010). In the
current study, the level of α in both (T2 and SPE) UCLs was
varied from 99·9 to 50% in order to observe the performance
of the monitoring system. The last step of this monitoring
system is to check whether Ti,new

2 and SPEi,new are within the
limits of the T2 or SPE chart (healthy) or not (ill) (Fig. 2).
Figure 3 shows an example of a T2 and an SPE control chart
on one cow for mastitis monitoring during its 200 DIM. All
these calculations were computed using Matlab software
(Matlab, 2010).

Test procedure

The system described (PCA combined with T2 and residual
charts) provided an alert whenever values above the UCL of
the charts occurred (Fig. 3). System performance was
assessed by comparing these alerts with the actual occur-
rence of disease.
The corresponding day of observation was classified as

true positive (TP) if the threshold was exceeded on a day of
disease, while an undetected day of disease was classified
as false negative (FN). Each day in a healthy period was
considered as a true negative case (TN) if no alerts were

Fig. 2. Procedure of the principal component analysis (PCA) model construction and calculation of (new) principal components (PC(new)).
On-line monitoring was based on Hotelling’s T2 [T2(new)= (new) values of this chart] and residual [SPE(new)= (new) values of the residual chart]
control charts with the corresponding control limits used (T2lim, SPElim).
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generated, and as false positive case (FP) if an alert was
given. The accuracy of these procedures was evaluated by
the parameters sensitivity, block sensitivity, specificity and
error rate. Sensitivity represents the percentage of correctly
detected days of disease of all days of disease:

sensitivity ð%Þ ¼ true positive
true positiveþ false negative

�100

For disease detection, it was not important for all days of a
disease block to be recognised, but it was crucial for mastitis
or lameness to be detected at all and early on. Therefore, the
block sensitivity was deemed considerably more important
than sensitivity. For the block sensitivity, each disease block
was considered a TP case if one or more alerts were given
within the defined disease block before the first treatment
and an FN case otherwise (Cavero et al. 2007; Kramer et al.
2009).

The specificity indicates the percentage of correctly found
days of health from all the days of health:

specificity ð%Þ ¼ true negative
true negativeþ false positive

�100

The error rate represents the percentage of days outside
the disease periods from all the days where an alarm was
produced:

error rate ð%Þ ¼ false positive
false positiveþ true positive

�100

In addition, the number of true positive (TP) as well as false
positive (FP) cows per day is given. TP and FP cows per day

signify the average number of rightly and wrongly diseased-
registered cows per day, respectively.
One statistical tool for assessing the accuracy of diagnostic

predictions, i.e. the ability to differentiate between healthy
and ill correctly, is ROC (receiver operating characteristic)
curves combined with the area under the curve (AUC) as an
important index (Cavero et al. 2007; Mollenhorst et al.
2010). The calculated sensitivities and specificities can be
plotted with respect to cut-off levels (upper control limit
values). In such plots or ROC curves, the false positive
fraction (1� specificity) is at the X-axis while the sensitivities
form the Y-axis. It is often useful to enhance ROC curve plots
with the inclusion of an angle bisector (Fig. 4). The steeper
the curve (more distant from the angle bisector), the greater is
the accuracy. Besides the visual information on accuracy
which a ROC curve creates, it is desirable to produce
quantitative summary measures such as the area under the
ROC curve (AUC). The closer AUC moves to 0·5, the poorer
the test performs. The closer AUC lies to 1, the better the test
is able to differentiate between healthy and ill.

Results

PCA combined with the control charts for mastitis detection
showed similar ROC curves for the mastitis definitions
considered whereas the definitions used for lameness
detection produced different accuracies (Fig. 4). Overall,
ROC curves of mastitis detection provided higher accuracies
than for lameness detection. The AUC values also given in
Fig. 4 (parenthesis) show that for mastitis detection the values
are close to 1 (0·9) whereas for lameness detection the AUC
values ranged between 0·6 and 0·8.
The optimal threshold value can be chosen depending on

the use of the method determining whether a high sensitivity
or a high specificity is desired. In this study, the block
sensitivity was set to be at least 70%. Table 2 shows the
results of mastitis (2a) and lameness detection (2b) depend-
ing on the disease definitions and requiring a block
sensitivity of least 70%. In addition to (block) sensitivity,
specificity and error rate, the average true positive and false
negative cows per day were also determined. These two
variables indicated the number of cows per day classified
rightly or wrongly as diseased, respectively, and thus
illustrates the monitoring systems’ effort with regard to
mastitis or lameness monitoring.
Mastitis+3 reached a block sensitivity of 77·4% whereas

the block sensitivity of Mastitis+4 was 83·3% (Table 2a).
The specificity of both mastitis definitions were at 76·7%.
However, high error rates of nearly 99% were observed. The
number of FP cows per day for both mastitis definitions were
15·2 (Mastitis+3) and 15 (Mastitis+4) cows at an average
herd size of 56 cows per day.
For lameness detection (Table 2b), Lame+7 showed

highest block sensitivity (87·8%) compared to Lame+3
(73·8%) and Lame+5 (83·2%). While the specificities
between the second and third lameness definitions varied

Fig. 3. Example of a Hoteling’s T2 (T2) and standard prediction error
(SPE) control chart on one cow for mastitis detection. The
measurements collected from the indicator variables at each time
point are translated into one point on the T2 chart and one point on
the SPE chart. The cow will be classified as ill if either the control
limit of the T2 or SPE chart is passed.
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slightly around 61%, Lame+3 reached a specificity value of
54·8%. Poorer results for Lame+3were also obtained for the
error rate (89·2%) compared with Lame+5 (88·5%) and
Lame+7 (87·8).

Showing 12·3 FP cows per day, the first lameness
definition compared unfavourably with Lame+5 (9·9 FP
cows per day) and Lame+7 (9·3 FP cows per day) in relation
to an average herd size of 47 cows per day.

Discussion

The ROC curves and the AUC values show that for both
diseases the monitoring system (PCA and charts) used were
able to distinguish between ill and healthy animals,
especially for mastitis detection (AUC value 0·9).

According to Hogeveen et al. (2010), the sensitivity of
detection systems of AMS should be at least 80%, whereas
for milking parlours, such as the one in Karkendamm, the
sensitivity should be lower. Thus, the block sensitivity was
set to be at least 70%, which is in line with Kramer et al.
(2009) and the International Standard ISO/FDIS 20966 (ISO,
2007). With regard to (block) sensitivity above 70%, the
detection performance of the monitoring system of both
diseases was acceptable. Specificities, however, were only
around 70% and below, especially for lameness detection.
Additionally, the error rates were too high at about 90%. The
error rate is mainly affected by the number of FP alerts, which
was high in the present study. Around 20% of the cows of the
average herd size (mastitis n=56; lameness n=47) were
wrongly classified as ill per day for both diseases. This means
more workload for the farmer accompanied by a loss of
confidence in the monitoring system. Such unfavourable
results can be caused by several reasons.

First, the disease definition is very important and
subsequently influences classification results. In this study,
an animal was considered to be ill if a treatment occurred.

Other studies include the somatic cell count to avoid the
possibility of an oversight of mastitis cases showing no
visible signs (Hojsgaard & Friggens, 2010; Kamphuis et al.
2010). Although SCC from quarters or cow samples can be
used to predict whether an intramammary infection exists
(Dohoo, 2001; Pyörälä, 2003) it can be affected by non-
pathological factors such as stage of lactation and milking
intervals (Petersen et al. 2005). Additionally, the studies
using the SCC as part of the mastitis definition propose
different thresholds of 100000–400000 SCC/ml (Pyörälä,
2003;Windig et al. 2005; Cavero et al. 2007). Dohoo (2001)
indicate that it is impossible to select a single threshold of
SCC which separates infected and uninfected cows clearly
and without overlap and therefore suggested bacteriological
investigations of the udder. The treatments utilised in this
study were carried out by a qualified veterinarian and can
therefore be considered reliable.
The second reason for the results can be subjected to the

time blocks analysed before the first treatment of mastitis and
lameness. According to Hogeveen et al. (2010) an alert
should be given before clinical signs are visible so that a
treatment has a greater efficiency and reflects the implemen-
tations of practice. Therefore, disease blocks were analysed
before treatment occurred. Bareille et al. (2003) stated that
mastitis affects milk production at 3 d whereas feed intake is
disturbed by mastitis at around 4 d before visual onset of this
disease. Thus, 3-d and 4-d periods before clinical signs were
chosen for mastitis detection. Up to 5 d have been reported
to identify lameness (e.g. Bareille et al. 2003). Furthermore,
Gonzalez et al. (2008) showed that lame cows change their
feeding behaviour in a 30-d period before disease occurs.
Three-, five- and seven-day periods before clinical outbreak,
i.e. an occurrence of the first treatment, were used for
lameness detection. The choice of the length of the disease
blocks has varied widely (1–17 d) in past research on disease
detection (de Mol et al. 1997; Hogeveen et al. 2010;

Fig. 4. Receiver operating characteristic (ROC) curves for mastitis and lameness detection depending on the definitions used. The respective
area under the curve (AUC) is stated in parenthesis below the curves.
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Kamphuis et al. 2010). For instance, de Mol & Woldt (2001)
indicated 7 d before mastitis treatment occurred. Cavero
et al. (2008) utilised disease blocks of 5 d (day of treatment
plus two days prior and after treatment) for mastitis detection.
In general, block-sensitivity increases if longer periods are
considered. Consequently, a comparison of model perform-
ance with other studies is difficult.

The third reason for the unfavourably high number of FP
cows per day found in this studymight be the fact that there is
a high variation of the recorded traits between cows but also
within cows. Cows always react individually to diseases
(Kramer et al. 2009; Lukas et al. 2009; Brandt et al. 2010).
Hence, it is very difficult to detect a unique pattern of cows
suffering and/or developing a disease. In addition, the
sensitivity of mastitis and lameness detection might depend
on the different categories of mastitis and lameness. Cavero
et al. (2007) and Miekley et al. (2012) implemented a
detection system based on univariate indicator variables.
They expect that multivariate monitoring methods might
compensate for high variation in each trait und thus improve
results of disease detection systems. PCA combined with T2

and SPE charts enable such multivariate considerations.
Nielen et al. (1995) as well as Sloth et al. (2003) used PCA
to verify whether variation in the data was caused by
mastitis and stated its potential for improving multivariate
description of bovine udder health. Nielen et al. (1995)
found sensitivities and specificities of approximately 75 and
95%, respectively. However, these results were obtained
usingMEC based on quarter level, leading to better detection
performance (Hogeveen et al. 2010; Mollenhorst et al.
2010). Moreover, no on-line detection system has yet
been established compared with the present study.
Currently, there is no known PCA utilisation for lameness
detection.

Contrary to model-based approaches, e.g. in the studies of
de Mol et al. (1999) and Chagunda et al. (2006) PCA does
not need an explicit system model which utilises additional
(but maybe unknown) information such as stage of lactation,
disease history and lactation number (Venkatasubramanian
et al. 2003). It is capable of handling high-dimensional and
correlated process variables which make them a powerful

and easy-to-implement tool for revealing the presence of
abnormalities. However, missing values of one of the
variables measured at the same time for one cow are critical,
leading to omission of all of these traits for this particular time
and cow. This circumstance caused a loss of information up
to 30% for some cows during their 200 DIM influencing
performance results and weakening the appropriateness for
PCA in practice.
Owing to the comparison between the test and the training

dataset, cow-individual analysis, which is e.g. claimed by
Lukas et al. (2009) and Miekley et al. (2012), is not possible.
In the present study, 100 cows, which were completely
healthy during their first 200 DIM, were used for the training
dataset. A higher number of such cows in the training dataset
might cause better detection results and may compensate
for this non-individual analysis. However, an enlargement
of the training dataset of the present study was not possible.
MacGregor et al. (2005) as well as Kourti (2006) stated that

for process monitoring PCA requires a T2 as well as a SPE
chart. Lately, there have been some discussions about
combining PCA with other monitoring methods to improve
results (Venkatasubramanian et al. 2003). However, there is
no solution to this as yet and further research has to be done.
For biological processes, as in this study, different monitor-
ing methods might improve detection results and thus make
PCA applicable for practically implemented disease detec-
tion systems.
The last reason for the unfavourable results can be

subjected to the indicator variables used (milk yield, MEC,
pedometer activity, etc.). These variables used in the present
study have demonstrated their potential for mastitis and
lameness detection in several studies (Cavero et al. 2008;
Gonzalez et al. 2008; Kramer et al. 2009; Lukas et al. 2009;
Miekley et al. 2012). However, the performance of the
sensors currently used in practice has recently gained
attention. Several studies, (e.g. Nielen et al. 1995; Brandt
et al. 2010; Hogeveen et al. 2010) call for improvement of
the practically implemented sensors (such as the traits used
in this study) as well as future developments in this field to
avoid missing or unreliable data in order to enhance the
results of monitoring systems.

Table 2. Results of mastitis (a) and lameness detection (b) depending on the disease definitions and requiring a block sensitivity of least 70%

Threshold
value

Block
sensitivity Specificity Error rate TP cows/d FP cows/d

(a) Mastitis†
Mastitis+3 90 77·4 76·7 98·9 0·2 15·2
Mastitis+4 90 83·3 76·7 98·8 0·2 15·0

(b) Lameness‡
Lame+3 75 73·8 54·8 89·2 1·3 12·3
Lame+5 80 83·2 61·4 88·5 1·3 9·9
Lame+7 80 87·8 61·9 87·8 1·3 9·3

†Average herd size: 56 cows per day
‡Average herd size: 47 cows per day

342 B Miekley and others

https://doi.org/10.1017/S0022029913000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029913000290


Conclusion

The automation of the detection of lameness or mastitis with
PCA combined with T2 and SPE charts, using traits with
regard to physiological data (milk yield, MEC and feed
intake) as well as behaviour (feeding behaviour, activity), did
not perform well enough for disease detection in dairy cows.
The variability of the input parameters between and within
cowsmight have caused high error rates. The performance of
themonitoring systemmight be improved if other monitoring
methods or other and more reliable sensor data were to be
applied.
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