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In this paper, we investigate the shape stability of a nearly spherical bubble
encapsulated by a viscoelastic membrane in an ultrasound field. To describe the
dynamic balance on the bubble surface, the in-plane stress and the bending moment
are incorporated into the governing equations for the perturbed radial flow of viscous
incompressible fluid (Prosperetti, Q. Appl. Math., vol. 34, 1977, p. 339). The radial
motion of the bubble is obtained by solving the Rayleigh–Plesset equation with
elastic stress. The deflection therefrom is linearized and expanded with respect to
the Legendre polynomial of order k > 2. Two amplitudes for each shape mode are
introduced because the membrane moves not only in the radial direction but also in
the tangential direction. The system with a boundary layer approximation is reduced to
Mathieu’s equation. A simple expression for the natural frequency of the shape mode
is derived, which is validated by direct numerical simulation. Stability diagrams for the
higher-order shape mode are mapped out in the phase space of driving amplitude and
frequency over a range of values of the elastic modulus of the membrane. The most
unstable driving frequency is found to satisfy an integer multiple relationship of the
form 2ωk/ωd = n, due to the structure of Mathieu’s equation in the system. In addition
to the resonance interaction, liquid viscosity plays an important role in the stability of
the encapsulated bubble.
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1. Introduction
Encapsulated bubbles are widely used in medical ultrasound applications, e.g.

ultrasound contrast agents (Lindner 2004) and drug delivery systems (Unger et al.
2001). The dynamic behaviour of the encapsulating membrane exposed in an
ultrasound field is of importance in the applications of contrast-enhanced agents and
drug-carrier capsules.

The dynamics of an encapsulated bubble is an extension of traditional bubble
dynamics. Early studies incorporated linear membrane models into the standard
Rayleigh–Plesset equation (de Jong, Cornet & Lancée 1994; Church 1995; Hoff,
Sontum & Hovem 2000; Sarkar et al. 2005). Sarkar et al. (2005) found that
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elastic stress was overestimated when they compared their experimental measurements
with the solutions of the linear models. Accordingly, a nonlinear constitutive law is
needed to describe the realistic behaviour of the membrane. Marmottant et al. (2005)
introduced an effective surface tension, which characterizes the buckled state, elastic
expansion, and break-up. This model is validated by experimental measurements (see
also Stride 2008; Overvelde et al. 2010). Tsiglifis & Pelekasis (2008) employed
hyperelastic constitutive laws, which are defined by an energy function to relate finite
strain to the stress, to describe the nonlinear dilatational elasticity. Nevertheless, the
analysis was limited to radial dynamics.

For an encapsulated bubble in an ultrasound field, the shape instability is particularly
important. The deformation induced by the ultrasonic pressure wave may lead to the
break-up of a bubble, and thereby shorten the residence time of contrast agents or
facilitate the drug release from carrier capsules. It is of primary importance to first
perform a parameter study to determine whether the system is intrinsically stable or
not. Therefore, we perform a linear analysis of the shape instability of an encapsulated
bubble. This instability has been demonstrated experimentally: for example, Chomas
et al. (2000), through optical imaging, suggested that the onset of fragmentation of
contrast agent is directly linked to the loss of spherical symmetry. Their recorded wall
velocity and acceleration provided strong evidence that the mechanism responsible
for the fragmentation is the Rayleigh–Taylor instability. Postema et al. (2004) found
that the number of fragments is determined by the dominant spherical harmonics
oscillation mode. A systematic study of the non-spherical oscillations was carried
out by Dollet et al. (2008). They concluded that the non-spherical deformation is a
parametric instability driven by radial oscillation, requiring a finite time to grow and
developing preferentially at the resonance radius of the radial oscillation.

Although the above experimental studies revealed complicated behaviour of an
encapsulated bubble, they imply that the mechanism of the surface instability is similar
to that of a gas bubble, which has been well studied: see Feng & Leal (1997), Plesset
& Prosperetti (1977) and Brenner, Hilgenfeldt & Lohse (2002). In landmark work,
Plesset (1954) introduced a small perturbation to the spherical interface and derived a
differential equation for the amplitude ak at the kth-order perturbation, which is widely
referred to below:

äk + 3
Ṙ

R
ȧk + (k − 1)

[
− R̈

R
+ (k + 1)(k + 2)

γ

ρR3

]
ak = 0, (1.1)

where R is the instant radius, ρ the density of external liquid and γ the surface tension.
From this equation, the natural frequency of the kth-order mode is easily obtained as

ω
gas
k =

√
(k − 1)(k + 1)(k + 2)

γ

ρR2
0

, (1.2)

where R0 is the initial radius. This formula of the natural frequency of the shape mode
is the same as that presented by Lamb (1932). The differential equation (1.1) can be
reduced to Mathieu’s equation (Benjamin 1964). Based on the theory of Mathieu’s
equation, instability occurs when the higher-order and zeroth-order natural frequencies
have an integer multiple relationship, i.e. 2ωk/ω0 = n. The most unstable modes,
namely one–two and one–one resonances when n is chosen as 1 and 2 respectively,
were investigated by Feng & Leal (1993) and Yang, Feng & Leal (1993) from the
perspective of energy transfer. The derived condition of instability was validated by
Versluis et al. (2010) through a direct observation of the shape modes. These studies
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Surface instability of an encapsulated bubble 317

stressed that the resonance interaction between radial and shape modes is the key to
induce surface instability.

The extension of the results for a gas bubble to an encapsulated bubble is not
trivial. First, in order to describe the non-spherical deformation, a force balance
in the normal direction is insufficient and a comprehensive membrane mechanics
model is needed. The theory of elastic membranes (Green & Adkins 1960) was
developed for the in-plane stress, transverse shear tension and bending moment
inside a membrane. Its coupling with an external flow field was utilized by Barthès-
Biesel’s group (Barthès-Biesel 1980; Barthès-Biesel & Rallison 1981; Barthès-Biesel
& Sgaier 1985; Li, Barthès-Biesel & Helmy 1988; Leyrat-Maurin & Barthes-Biesel
1994; Quéguiner & Barthès-Biesel 1997; Diaz, Pelekasis & Barthès-Biesel 2000; Lac
et al. 2004) and Pozrikidis’s group (Pozrikidis 2001, 2003a,b, 2005) to simulate the
flow-induced deformation of a capsule. In the present work, we will also incorporate
the theory of elastic membranes into our theoretical analysis, based on an asymptotic
expansion. Another difficulty in carrying out theoretical analysis on surface stability
of an encapsulated bubble stems from the no-slip condition at the membrane. For a
gas bubble, the kinematic condition in the normal direction determines the position
of material points at the interface. For an encapsulated bubble, on the other hand,
the material points move along the interface since the membrane bears in-plane
stresses. For this reason, we must consider the motion in the tangential direction.
Furthermore, the viscous effect is significant for a small bubble of micrometre size
(Chapman & Plesset 1971). And due to the no-slip condition, the vorticity induced by
deformation will influence the dynamics of the bubble and thus cannot be neglected.
Tsiglifis & Pelekasis (2011) presented an analysis of the parametric stability of an
encapsulated bubble based on potential flow theory, in which a free-slip condition on
the bubble surface was employed. This irrotational model would be valid when the
hydrodynamics is dominated by the kinematic condition associated with the interfacial
displacement normal to the bubble surface rather than by the dynamic condition.
However, for an encapsulated bubble, potential flow theory is insufficient when one
studies the influence of the membrane dynamics on the hydrodynamics, since the
dynamic condition must play a significant role. The membrane effect is reflected by
the generation of the in-plane stress due to the interfacial displacement tangential to
the bubble surface, which accounts for the frictional traction jump between the liquid
and gas phases. Therefore, instead of potential flow theory, which is inadequate for
describing the frictional traction jump, we employ the theory by Prosperetti (1977) that
includes a viscous correction to Plesset’s potential model. It should be noted that the
theoretical approach by Prosperetti (1977) consisting of the boundary layer effect has
been successfully applied to many complicated problems involving a change in bubble
volume, for example, two-bubble interactions (Takahira, Akamatsu & Fujikawa 1991),
sonoluminescing bubbles (Hilgenfeldt, Lohse & Brenner 1996), and shape instability in
an acoustic field (Hao & Prosperetti 1999).

In this paper, we follow Prosperetti’s method, and incorporate the theory of elastic
membranes into the normal and tangential hydrodynamic balance. We use the derived
system to map out the stability diagram as a function of driving pressure frequency
versus amplitude. The present system involves the coupling of the nonlinear radial
motion and the linear shape motion in the normal and tangential directions. Since
the toroidal component of vorticity is included as in Prosperetti’s model (1977), the
system of governing equations has an integro-differential structure. To make clear the
resonance interaction between the radial mode and the shape mode, we reduce the
system to the form of Mathieu’s equation by using a boundary layer approximation.
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The expression for the natural frequency of the shape mode is thereby derived, as an
extension with membrane effect from the formula (1.2).

The paper is organized as follows. In § 2, we formulate the problem and pay special
attention to the boundary conditions at the bubble surface in §§ 2.2 and 2.3. The
membrane mechanics is incorporated into the dynamic force balance, and the no-slip
condition requires an additional velocity condition in the tangential direction. The
derived system is reduced to Mathieu’s equation by a boundary layer approximation in
§ 3. At the same time, the expression for the natural frequency of the shape mode is
derived. In § 4, the stability diagram of driving amplitude versus driving frequency and
the effects of viscosity are presented, respectively. The summary and conclusions are
given in § 5.

2. Problem formulation
2.1. General formulation

We consider a single bubble suspended in an unbounded acoustic field. The driving
pressure applied from the far field is characterized by a dimensionless amplitude ε and
a driving frequency ωd:

p∞ = p0(1+ ε sinωdt), (2.1)

where p0 is the ambient pressure. Owing to the negligible density and viscosity of gas
inside the bubble relative to those of the external liquid, we do not solve the internal
flow field directly. The liquid outside the bubble is water with density ρ and viscosity
µl, which are assumed to be constant. The governing equations for the external flow
field are the continuity equation and the incompressible Navier–Stokes equation, in the
absence of body forces:

∇ ·u= 0, (2.2)

ρ
∂u
∂t
+ ρ(u ·∇)u=−∇p+ µl∇ · (∇u+∇uT), (2.3)

where u denotes the velocity vector, and p the liquid pressure. Unlike the gas bubble,
the bubble encapsulated by a membrane bears a no-slip condition at the surface. In
other words, the velocities at the membrane and at the attaching liquid side are
equal not only in the normal direction but also in the tangential direction. The
dynamic equilibrium at the bubble surface is described by a traction jump across
the membrane. In addition, we provide a regularity condition at infinity. The above-
mentioned boundary conditions are

um = ul at S= 0, (2.4)
n · (−pI + 2µlE)= n · (−pgI)+ (γ∇ ·n)n+ F at S= 0, (2.5)

p→ p∞, u→ 0 as r→∞, (2.6)

where the subscripts m and l represent the material points at the membrane and the
liquid side, respectively, S the surface function defined later in (2.36), n the unit
normal vector pointing towards the liquid, I the unit tensor, E(= (∇u + ∇uT)/2) the
strain rate tensor, pg the gas pressure, γ the surface tension, and F the traction jump
between the liquid and gas phases due to the presence of the membrane. The gas
within the bubble is assumed to be uniformly distributed. In the present study, the gas
pressure pg is assumed to vary according to the polytropic process:

pg = pg0 (V0/V)
Γ , (2.7)
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where V denotes the bubble volume, and the subscript 0 indicates the initial value.
Γ is the effective polytropic index which includes thermal dissipation, defined by
(Prosperetti 1991)

Γ = 1
3ReF̃. (2.8)

The function F̃ is

F̃ = 3ζη2

η[η + 3(ζ − 1)A−] − 3i(ζ − 1)(ηA+ − 2)
, (2.9a)

η = R0

√
2ω0

ψ
, A± = sinh η ± sin η

cosh η − cos η
, (2.9b)

where ζ is the ratio of specific heats, R0 the initial radius, ω0 the zeroth-order natural
frequency, and ψ the thermal diffusivity. The calculated effective polytropic index is
between 1.0 and 1.2 in the present work, which is reasonably close to the value of 1.1
chosen in Khismatullin (2004) and 1.07 in Tsiglifis & Pelekasis (2011). The viscosity
of the gas is neglected. The surface tension γ is greatly reduced when the bubble is
encapsulated by a membrane. We will retain the surface tension term here in order to
keep the analysis complete. The membrane stress F is given by the surface divergence
of the elastic tension tensor:

F=−(P ·∇) · (τ + qn), (2.10)

where P(= I − nn) is the tangential projection operator, τ the in-plain stress and q the
transverse shear tension.

We consider a viscoelastic membrane, which exhibits both viscous and elastic
characteristics. The constitutive law of the elastic part is described by a Helmholtz
free energy function (or strain energy function) W, and connects the in-plane stress
with the surface strain thereon (Holzapfel 2000), while the viscous part is a linear
resistance to the strain rate. In the directions of the principal stretches λi (i= 1, 2), the
respective principal components of the in-plane stress τ are written as

τi = λi

λ1λ2

∂W(λ1, λ2)

∂λi
+ 2µsλi

∂λi

∂t
, i= 1, 2, (2.11)

where µs is the surface membrane viscosity. We adopt the neo-Hookean law, a simple
form of the strain-softening Mooney–Rivlin law (Mooney 1940), of which the strain
energy function is given by

W = Gs

2

(
λ2

1 + λ2
2 +

1
λ2

1λ
2
2

− 3
)
, (2.12)

where Gs denotes the surface modulus of elasticity. Although the neo-Hookean law
cannot reveal the experimentally observed behaviour of a contrast agent, it allows us to
perform modal analysis with respect to each deformation mode owing to its linearity,
and the results therefrom should afford insight into the stability.

The transverse shear tension q is treated in terms of the bending moment m:

q= [(P ·∇) ·m] ·P. (2.13)
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The bending moment is expressed by a bending strain energy function Wb in a similar
form to that of the in-plain stress:

mi = λi

λ1λ2

∂Wb(K1,K2)

∂Ki
, i= 1, 2, (2.14)

where Ki (i = 1, 2) is the principal bending strain. We here write Wb in the form
(Love 1888)

Wb = Gb

2
(K2

1 + 2υK1K2 + K2
2), (2.15)

where Gb denotes the bending modulus and υ the Poisson ratio.
We consider nonlinearity induced by the spherical motion of a bubble subjected to

a driving pressure, which yields the Rayleigh–Plesset equation, and then obtain the
base flow. The deviated motion therefrom is regarded as a linear perturbation, and its
temporal evolution is numerically computed to investigate the stability of the system.

To investigate the viscous effects, we follow Prosperetti’s work (Prosperetti 1977) by
dividing the velocity and pressure fields into three parts, respectively:

u= u0 + δup + δuv, (2.16)
p= p0 + δpp + δpv, (2.17)

where the subscripts 0, p and v stand for the radial motion, the non-spherical
correction, and the viscous correction to the potential flow, respectively. We shall
restrict our attention to an axisymmetric system, so that we do not consider the
azimuthal mode in the fluid flow or the interfacial deflection. It should be noted that
due to the mobility of the membrane in both the radial and tangential directions, we
introduce the deformation disturbance δΘ in the tangential direction as well as δf in
the radial direction to describe the surface position (rs, θs) as

rs(θ, t)= R(t)+ δf (θ, t), (2.18)
θs(θ, t)= θ + δΘ(θ, t)/R(t). (2.19)

The disturbance functions f and Θ are expanded using the amplitudes of ak(t) and
bk(t), respectively, in a series of (associated) Legendre polynomials Pk(cos θ) and
P1

k(cos θ)(= dPk(cos θ)/dθ):

f (θ, t)= ak(t)Pk(cos θ), k > 2. (2.20)

Θ(θ, t)= bk(t)P
1
k(cos θ), k > 2. (2.21)

The general solutions of the velocity and pressure components in (2.16) and (2.17) can
be found in Plesset (1954) and Prosperetti (1977) (see also Appendix A). The velocity
vectors and the pressures on the bubble surface are

u0 = ṘR2

r2
er, (2.22)

up =

(
ȧk + 2Ṙak

R

)
Rk+2

(k + 1)rk+2

[
(k + 1)Pk(cos θ)er − P1

k(cos θ)eθ
]
, (2.23)

uv =
(

T(r, t)Pk(cos θ)− ∂Φ
∂r

)
er − 1

r

∂Φ

∂θ
eθ , (2.24)
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p0 = p∞ + ρ
(

RR̈+ 3
2

Ṙ2

)
− δρakR̈Pk(cos θ), (2.25)

pp = ρPk(cos θ)
(k + 1)

(Räk + 3Ṙȧk + 2R̈ak), (2.26)

pv = k

{
µlT(R, t)/R+ ρ(Ṙ/R)

∫ ∞
R
[(R/s)3−1] (R/s)k T(s, t) ds

}
Pk(cos θ), (2.27)

where

Φ = Pk(cos θ)
[(
α(t)+ k + 1

2k + 1

∫ r

R
s−kT(s, t) ds

)
rk

+
(

k

k + 1
R2k+1α(t)+ k

2k + 1

∫ r

R
sk+1T(s, t) ds

)
r−(k+1)

]
, (2.28)

α(t)=− k + 1
2k + 1

∫ ∞
R

s−kT(s, t) ds, (2.29)

and T(r, t) is the toroidal field (Prosperetti 1977), which yields

ρ
∂T

∂t
+ ρ ∂

∂r
[Ṙ (R/r)2 T] − µl

∂2T

∂r2
+ µlk(k + 1)r−2T = 0, (2.30)

with the boundary condition T→ 0 as r→∞. T on the bubble surface is determined
by satisfying the tangential force balance, as shown in § 2.2. For the governing
equations, boundary conditions, and brief explanations of their derivations, see
Appendix A.

2.2. Dynamic balances at the encapsulating membrane
2.2.1. Liquid stresses on the deformed surface

The dynamic balance equation (2.5), written in the normal and tangential directions,
are

−p+ 2µln ·E ·n=−pg + γ∇ ·n+ Fn, (2.31)
2µln ·E · t = Ft. (2.32)

Equation (2.31) is Laplace’s law with an additional normal stress term Fn. Equation
(2.32) is a dynamic balance for the frictional traction. The treatment of the membrane
stresses in the normal direction Fn and the tangential direction Ft will be discussed in
detail below. Several components of the strain rate tensor, which will be used in the
later sections, are presented here in advance:

err = ∂ur

∂r

= −2Ṙ

R
− δPk(cos θ)

[
(k + 2)

ȧk

R
+ (2k − 2)

akṘ

R2
+ k(2k + 1)Rk−2α(t)

]
, (2.33)

erθ = r

2
∂

∂r

(uθ
r

)
+ 1

2r

∂ur

∂θ

= δ

2k + 2
P1

k(cos θ)
[
(2k + 4)

ȧk

R
+ (4k + 8)

akṘ

R2

+ (4k + 2)Rk−2α(t)− (k + 1)
T

R

]
, (2.34)
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eθθ = 1
r

∂uθ
∂θ
+ ur

r

= Ṙ

R
+ δ

k + 1

[(
Pk(cos θ)+ kPk(cos θ)− d2Pk(cos θ)

dθ 2

)
ȧk

R

−
[
(k + 1)Pk(cos θ)+ 2

d2Pk(cos θ)
dθ 2

]
akṘ

R2

− (2k + 1)
d2Pk(cos θ)

dθ 2
Rk−2α(t)

]
. (2.35)

Next we introduce a surface function,

S≡ rs − R(t)− δf (θ, t)= 0, (2.36)

and denote the interface by S = 0. The unit normal vector n and the tangential one t
are thereby written as

n= ∇S

|∇S| ' er − δ 1
r

∂f

∂θ
eθ , (2.37)

t ' eθ + δ 1
r

∂f

∂θ
er. (2.38)

Note that only f (or ak) determines the bubble shape. Therefore, Θ should be linked
not to the kinematic condition but to the continuity of the velocity as detailed in § 2.3.
The curvature κ involved in (2.31), accounting for the Laplace pressure, is

∇ ·n= 2
R
− δ

[
2f + cos θ

sin θ
∂f

∂θ
+ ∂2f

∂θ 2

]
1
R2

= 2
R
+ δ(k + 2)(k − 1)

f

R2
. (2.39)

In consideration of (2.33)–(2.39), the force balance equations (2.31) and (2.32) are
explicitly written as

−(p0 + δpp + δpv)+ pg + 2µl

(
err − δerθ

2ak

r
P1

k(cos θ)
)

− γ
[

2
R
+ δ(k + 2)(k − 1)

akPk(cos θ)
R2

]
= Fn, (2.40)

and

2µl

[
erθ − δeθθ ak

r
P1

k(cos θ)+ δerr
ak

r
P1

k(cos θ)
]
= Ft. (2.41)

The membrane stresses Fn and Ft are expanded up to O(δ) into, respectively,

Fn = F0
n + δF1

n, (2.42)

Ft = δF1
t . (2.43)

In the subsequent development, the components F0
n , F1

n and F1
t are determined in

consideration of the membrane constitutive law introduced in § 2.1.

2.2.2. Surface deformation
In spherical coordinates, one of the principal directions is the meridional direction

(θ -direction); the other is the azimuthal direction (φ-direction) (see figure 1).
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e

d

d

FIGURE 1. Sketch of bubble geometry.

Following the derivation by Tsiglifis & Pelekasis (2011), the two principal stretches
are calculated by the extension ratio in the arclength direction and the change ratio of
the distance from the axis of symmetry, i.e.

λ1 = λθ = ds

dsR
= R

R0
+ δ f

R0
+ δ 1

R0

∂Θ

∂θ
, (2.44)

λ2 = λφ = r sin θ

(r sin θ)R
= R

R0
+ δ f

R0
+ δ Θ

R0
cot θ, (2.45)

where the superscript R represents the reference configuration. In the following, we
assume that the initial state is unstressed, so that it corresponds to the reference state.

2.2.3. In-plane stress
The in-plane stress τ up to O(δ1) is expressed in the form of principal components

in spherical coordinates:

τ = τθeθeθ + τφeφeφ. (2.46)

Here, τθ and τφ are derived from the surface energy function according to (2.11) and
(2.12):

τθ = Gs

λθλφ

(
λ2
θ −

1
λ2
θλ

2
φ

)
+ 2µs

1
λθ

∂λθ

∂t

= Gs

(
1− R6

0

R6

)
+ 2µs

Ṙ

R

+ δGs

(
6f R6

0

R7
− Θ cot θ

R
+ 3ΘR6

0 cot θ
R7

+ 1
R

∂Θ

∂θ
+ 3R6

0

R7

∂Θ

∂θ

)
+ 2δµs

(
− f Ṙ

R2
+ 1

R

∂f

∂t
− Ṙ

R2

∂Θ

∂θ
+ 1

R

∂2Θ

∂θ∂t

)
, (2.47)

and

τφ = Gs

λθλφ

(
λ2
φ −

1
λ2
θλ

2
φ

)
+ 2µs

1
λφ

∂λφ

∂t

= Gs

(
1− R6

0

R6

)
+ 2µs

Ṙ

R

+ δGs

(
6f R6

0

R7
+ Θ cot θ

R
+ 3ΘR6

0 cot θ
R7

− 1
R

∂Θ

∂θ
+ 3R6

0

R7

∂Θ

∂θ

)
+ 2δµs

(
− f Ṙ

R2
+ 1

R

∂f

∂t
− ṘΘ cot θ

R2
+ cot θ

R

∂Θ

∂t

)
. (2.48)
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2.2.4. Bending moment
Before deriving the transverse shear tension q, we first consider the curvatures along

the principal directions. The principal curvature comes from the curvature tensor B,
defined as

B = P ·∇n, (2.49)

where P is the tangential projection operator, written as

P = I − nn= eθeθ + eφeφ + δ 1
r

∂f

∂θ
eθer + δ 1

r

∂f

∂θ
ereθ . (2.50)

Substituting the expression of the unit normal vector n (2.37) into (2.49), we obtain
the curvature tensor,

B =
[

1
R
− δ

(
f

R2
+ 1

R2

∂2f

∂θ 2

)]
eθeθ +

[
1
R
− δ

(
f

R2
+ cot θ

R2

∂f

∂θ

)]
eφeφ, (2.51)

from which we obtain two principal curvatures in the θ - and φ-directions:

κθ = 1
R
− δ

(
f

R2
+ 1

R2

∂2f

∂θ 2

)
, (2.52)

and

κφ = 1
R
− δ

(
f

R2
+ cot θ

R2

∂f

∂θ

)
. (2.53)

The summation of these two principal curvatures is consistent with (2.39), another way
to calculate the average curvature. We define two bending strains Kθ and Kφ under the
assumption of small deformation:

Kθ = λθκθ − κR
θ , Kφ = λφκφ − κR

φ . (2.54)

Note that (2.54) is formulated to guarantee no bending strain in a purely radial
oscillation. The bending moment m is decomposed into two principal components:

m= mθeθeθ + mφeφeφ. (2.55)

The components are calculated by the bending energy function ((2.14) and (2.15)). We
obtain

mθ = Gb

λφ
(Kθ + υKφ)

= δGb

R2

[
∂Θ

∂θ
− ∂2f

∂θ 2
+ υ cot θ

(
Θ − ∂f

∂θ

)]
, (2.56)

and

mφ = Gb

λθ
(Kφ + υKθ)

= δGb

R2

[
cot θ

(
Θ − ∂f

∂θ

)
+ υ

(
∂Θ

∂θ
− ∂2f

∂θ 2

)]
. (2.57)

Since the bending moments are of the order O(δ1), (2.13) immediately implies
q∼ O(δ1). Equation (2.13) is rewritten as

q=
[

1
r

∂mθ

∂θ
+ cos θ

r sin θ
(mθ − mφ)

]
eθ ≡ qeθ . (2.58)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

47
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.477


Surface instability of an encapsulated bubble 325

2.2.5. Force balance up to O(δ1)

Substituting the component form of in-plane stress (2.46) and transverse shear
tension (2.58) into (2.10), we obtain the expression for membrane stress:

F=
[

1
r
(τθ + τφ)− q cos θ

r sin θ
− 1

r

∂q

∂θ

]
er

+
[

cos θ
r sin θ

(τφ − τθ)− q

r
− 1

r

∂τθ

∂θ
+ δ

(
τθ

r2

∂f

∂θ

)]
eθ

≡ Fner + Fteθ . (2.59)

Considering the specific forms of a neo-Hookean material (2.47) and (2.48), the
components in (2.42) and (2.43) are obtained as follows:

F0
n =

2Gs(R6 − R6
0)

R7
+ 4µs

Ṙ

R2
, (2.60)

F1
n = −

Gs

R8
[2(R6 − 7R6

0)ak + 6k(k + 1)R6
0bk]Pk(cos θ)

+ Gb

R4
[k(k + 1)(k2 + k − 1+ υ)(ak − bk)]Pk(cos θ)

+ 2µs

R3
[−4akṘ+ 2Rȧk + k(k + 1)(Ṙbk − Rḃk)]Pk(cos θ), (2.61)

F1
t =

Gs

R8
{(R6 − 7R6

0)ak + [3k(k + 1)R6
0 + (k − 1)(k + 2)R6]bk}P1

k(cos θ)

− Gb

R4
(k2 + k − 1+ υ)(ak − bk)P

1
k(cos θ)

+ 2µs

R3
[2Ṙak − Rȧk + (k2 + k − 1)(Rḃk − Ṙbk)]P1

k(cos θ). (2.62)

Substituting the membrane stresses (2.60)–(2.62) into the normal and tangential
force balance (2.40) and (2.41) together with the expressions of velocity vectors and
pressures (2.22)–(2.29) and the components of the strain rate tensor (2.33)–(2.35), we
obtain the final expressions of force balance:

RR̈+ 3
2

Ṙ2 + 1
ρ

[
2γ
R
+ 4µl

Ṙ

R
− pg + p∞ + 2Gs(R6 − R6

0)

R7
+ 4µs

Ṙ

R2

]
= 0, (2.63)

ρR

k + 1
äk +

[
3ρ

k + 1
Ṙ− 2µl(k + 2)(k − 1)

R

]
ȧk

+
[
−k − 1

k + 1
ρR̈+ 2µl(k − 1)(k + 2)

Ṙ

R2
+ (k − 1)(k + 2)

γ

R2

]
ak

+µlk(k + 2)
T(R, t)

R
+ kρ

Ṙ

R

∫ ∞
R
[(R/s)3−1] (R/s)k T(s, t) ds

+ Gs(k − 1)(k + 2)
R8

[(R6 − 7R6
0)ak + k(k + 1)(3R6

0 + R6)bk]

+ 2µs(k − 1)(k + 2)
R3

[(2akṘ− Rȧk)+ k(k + 1)(Rḃk − Ṙbk)] = 0, k > 2, (2.64)

µl

[
(2k + 4)

ȧk

R
− (2k − 2)

akṘ

R2
− (k + 1)

T(R, t)

R
+ (4k + 2)Rk−2α(t)

]
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= Gs(k + 1)
R8

{(R6 − 7R6
0)ak + [3k(k + 1)R6

0 + (k − 1)(k + 2)R6]bk}

+ Gb

R4
(k + 1)(k2 + k − 1+ υ)(bk − ak)

+ 2µs(k + 1)
R3

[2Ṙak − Rȧk + (k2 + k − 1)(Rḃk − Ṙbk)]. (2.65)

Equation (2.63) describes the radial motion and determines the base flow. It has
a similar form to the Rayleigh–Plesset equation. The additional terms 2Gs(R6 −
R6

0)/(ρR7) + 4µsṘ/R2 account for the membrane stress and viscous damping, which
are applicable to large deformation membrane dynamics. Linearizing this equation
under the assumption of |R/R0 − 1| � 1, we obtain a harmonic oscillator equation,
from which we find the zeroth-order natural frequency:

ω0 =
√

3Γ
pg0

ρR2
0

− 2γ
ρR3

0

+ 12Gs

ρR3
0

. (2.66)

This expression in the limit of the infinitesimal radius change has the same form as
that derived from an exponential model developed by Kviklienė et al. (2004). Equation
(2.64) describes the dynamics of shape modes. The amplitudes in two directions ak

and bk are coupled. However, only ak determines the bubble’s shape. Equation (2.65)
is the tangential balance at the membrane. It will be used in obtaining the solution of
the toroidal field as a boundary condition.

2.3. Tangential velocity boundary condition
The kinematic condition in the normal direction is the same as the treatment in the
gas bubble case, and is used to derive the irrotational velocity field (see Appendix A).
For a gas bubble, once the free-slip boundary condition is imposed on the surface,
the tangential velocity is given. For the encapsulated bubble, on the other hand, not
only the dynamic condition (2.65) but also the continuity of the tangential velocity
component must be considered. Since the liquid motion on the surface is assumed to
be attached to the membrane, we employ a no-velocity-jump condition

uθ = rs
∂θs

∂t
, (2.67)

of which the left-hand side is given by (2.23) and (2.24), while the right-hand side is
given by (2.18) and (2.19). Hence, using bk, (2.67) is explicitly written as

ḃk − Ṙ

R
bk =−

ȧk + 2Ṙak

R
k + 1

+ Rk−1

∫ ∞
R

s−kT(s, t) ds. (2.68)

3. Structure of Mathieu’s equation
Equations (2.64) and (2.68) are integro-differential equations, in which the integrals

are related to the toroidal field. Moreover, the amplitudes ak and bk are coupled. At
first glance, it appears difficult to obtain an analytic expression for the higher-order
natural frequency such as (1.2) for the gas bubble. However, we notice that the
vorticity produced by the deformation of the membrane is usually restricted to a
thin boundary layer. The boundary layer approximation has been frequently used in
previous analyses of Prosperetti’s model (Brenner, Lohse & Dupont 1995; Hilgenfeldt
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et al. 1996; Hao & Prosperetti 1999; An, Lu & Yang 2005; Holzfuss 2008). The
thickness of the boundary layer is defined as (Hilgenfeldt et al. 1996)

χ =min
(√

µl

ρω0
,

R

2k

)
. (3.1)

In this way, the integrals in (2.64), (2.65) and (2.68) are approximated by the integrand
being evaluated at the bubble surface multiplied by the thickness of the boundary layer,
i.e. ∫ ∞

R
[(R/s)3−1] (R/s)k T(s, t) ds≈ 0, (3.2)

and ∫ ∞
R

s−kT(s, t) ds≈ R−kT(R, t)χ. (3.3)

Replacing the integrals in (2.64) and (2.65) and eliminating T(R, t) using the tangential
velocity boundary condition (2.68), we obtain the following set of equations,

äk + Ca1ȧk + Cb1ḃk + Caak + Cbbk = 0, (3.4)
Db1ḃk + Dbbk + Da1ȧk + Daak = 0, (3.5)

where the coefficients are

Ca1 = 3Ṙ

R
+
[
−2(k + 2)(k2 − 1)+ k(k + 2)R

χ

]
µl

ρR2

− (k − 1)(k + 1)(k + 2)
2µs

ρR3
, (3.6)

Cb1 = k(k + 1)(k + 2)
µl

ρχR
+ k(k − 1) (k + 1)2(k + 2)

2µs

ρR3
, (3.7)

Ca = −(k − 1)
R̈

R
+
[
(k − 1)(k + 1)(k + 2)+ k(k + 2)R

χ

]
2µlṘ

ρR3

+ (k − 1)(k + 1)(k + 2)
4µsṘ

ρR4
+ (k − 1)(k + 1)(k + 2)

γ

ρR3

+ (k − 1)(k + 1)(k + 2)(R6 − 7R6
0)

Gs

ρR9
, (3.8)

Cb = k(k − 1) (k + 1)2(k + 2)(R6 + 3R6
0)

Gs

ρR9

− k(k + 1)(k + 2)
µlṘ

ρχR2
− 2k(k − 1) (k + 1)2(k + 2)

µsṘ

ρR4
, (3.9)

Db1 =−(k + 1)
(

2
R
+ 1
χ

)
µl − (k + 1)(k2 + k − 1)

2µs

R2
, (3.10)

Db = (k + 1)
(

2+ R

χ

)
µlṘ

R2
+ (k + 1)(k2 + k − 1)

2µsṘ

R3

− (k + 1)[(k − 1)(k + 2)R6 + 3k(k + 1)R6
0]

Gs

R8

− (k + 1)(k2 + k − 1+ υ)Gb

R4
, (3.11)

Da1 = µl

[
− 1
χ
+ 2(k + 1)

R

]
+ 2µs

k + 1
R2

, (3.12)
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Da = −
(

k + 1+ R

χ

)
2µlṘ

R2
− (k + 1)

4µsṘ

R3

− (k + 1)(R6 − 7R6
0)

Gs

R8
+ (k + 1)(k2 + k − 1+ υ)Gb

R4
. (3.13)

Equation (3.4) is essentially the dynamic force balance in the normal direction, while
(3.5) is that in the tangential direction.

Next, we analyse the order of magnitude for the terms in (3.6)–(3.13). Equations
(3.10) and (3.12) are of the order of ((µl/R) + (µs/R2)), much smaller than that of
((Gs/R2)+ (Gb/R4)) in (3.11) and (3.13). Accordingly, (3.5) can be simplified as

Dbbk + Daak = 0. (3.14)

For (3.6)–(3.9), similarly, we drop the terms of the order of ((µl/ρR2) + (µs/ρR3)),
which are much smaller than those of the order of (Gs/(ρR3)). Then we eliminate
bk in (3.4) by using (3.14) and rearranging the coefficient and obtain a differential
equation for ak:

äk + C′a1ȧk + C′aak = 0, (3.15)

where

C′a1 =
3Ṙ

R
, (3.16)

C′a = −(k − 1)
R̈

R
+ k(k + 2)

2µlṘ

ρχR2

+ (k − 1)(k + 1)(k + 2)
[
γ

ρR3
+ 2µlṘ

ρR3
+ 4µsṘ

ρR4
+ (R

6 − 7R6
0)Gs

ρR9

]
+
{

k(k − 1)(k + 1)(k + 2)
[
(R6 + 3R6

0)Gs

ρR7
− 2µsṘ

ρR2

]
− k(k + 2)

µlṘ

ρχ

}
×
{
(k + 1)

[
2µlṘ

R2
+ 4µsṘ

R3
+ (R

6 − 7R6
0)Gs

R8

− (k2 + k − 1+ υ)Gb

R4

]
+ 2µlṘ

χR

}/{(
2+ R

χ

)
µlṘ+ (k2 + k − 1)

2µsṘ

R

− [(k − 1)(k + 2)R6 + 3k(k + 1)R6
0]

Gs

R8
− (k2 + k − 1+ υ)Gb

R4

}
. (3.17)

Equation (3.15) is a standard linear oscillation equation, of which the coefficient
before ak represents the natural frequency. If the transient variation of R is neglected,
the k-th order natural frequency is obtained as

ω2
k = (k − 1)(k + 1)(k + 2)

γ

ρR3
0

+ (k − 1)(k + 1)(k + 2)
2Gs

ρR3
0

× (2k2 + 2k − 3)(k2 + k − 1+ υ)Gb + 6GsR2
0

(k2 + k − 1+ υ)Gb + 2(2k2 + 2k − 1)GsR2
0

. (3.18)

This expression adds the effect of the membrane to the well-known formula for the
higher-order natural frequency of a gas bubble (1.2). We compare the derived natural
frequencies with those of our previous numerical simulation by means of a boundary-
fitted finite volume method (Liu et al. 2011) and find good agreement (figure 2).
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Theoretical
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FIGURE 2. Natural frequencies compared with our previous numerical results by means of a
boundary-fitted finite volume method.

It is well known that the dynamic equation of the shape mode for a gas
bubble has the structure of Mathieu’s equation, which characterizes the parametric
resonance (Benjamin 1964). Following the procedure for a gas bubble, we introduce a
transformation,

ak = R−3/2αk, (3.19)

and assume that the bubble experiences a sinusoidal volume oscillation around the
equilibrium radius driven by the imposed pressure wave:

R= R0(1+ ε cosωdt). (3.20)

Substituting (3.19) and (3.20) into (3.15), we obtain

α̈k + G(t)αk = 0, (3.21)

where

G(t)= ω
2
k

ω2
d

+
[

M

ω2
d

+
(

k + 1
2

)]
ε cos τ, (3.22)

where

M =−(k − 1)(k + 1)(k + 2)
3γ
ρR3

0

− 2(k3 + 2k2 − k − 2)Gs

ρR3
0 [(k2 + k − 1+ υ)Gb + 2(2k2 + 2k − 1)GsR2

0]2

×
[
15(k2 + k − 2) (k2 + k − 1+ υ)2 G2

b
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+ 8(5k4 + 10k3 − 11k2 − 16k + 15)(k2 + k − 1+ υ)GbGsR
2
0

+ 6(22k2 + 22k − 20)G2
s R4

0

]
. (3.23)

Equation (3.21) has the structure of Mathieu’s equation (Bender & Orszag 1978). The
coefficient before αk (3.22) is similar to that for a gas bubble, except for the parameter
M (3.23) which includes the effects of the membrane. This difference, however, does
not influence the stability condition of the equation, which is identical to that of a gas
bubble:

ω2
k

ω2
d

= n2

4
, (3.24)

where n is an integer.

4. Results and discussion
In this section, we will solve the system formulated in § 2. At the initial state (t = 0),

the flow field is assumed to be static, and an initial disturbance is set to ak = 0.1R0.
Giving the initial disturbance to bk would not influence the results since ak and bk are
coupled. The bubble radius R, and the shape mode variations ak and bk therefrom are
computed numerically by solving the integro-differential equation set of (2.63), (2.64)
and (2.68). For time integration, the fourth-order Runge–Kutta method is employed.
The integrals are calculated by using composite numerical quadratures. The toroidal
field T(r, t) is temporally updated by solving the partial differential equation (2.30)
using a finite difference method with the boundary conditions at the bubble surface
(2.65) and T→ 0 at infinity. For details of the numerical treatment, see Appendix B.

4.1. Stability diagram
We apply an ultrasonic pressure with a non-dimensional amplitude ε = 0.8 and an
ambient pressure p0 = 1 × 105 Pa. Since the parametric instability requires a finite
time to develop, we impose 100 driving cycles. First we sweep in the radial direction,
starting from 1 µm with increments of 0.2 µm, and set the driving frequency equal
to the zeroth-order natural frequency, ωd = ω0, where ω0 is calculated by (2.66).
This is the condition of radial resonance, under which the radial oscillation tends to
display a single frequency, which makes the investigation of the relationship between
zeroth-order and higher-order natural frequencies straightforward. Five elastic moduli
Gs = 0.1, 0.3, 0.5, 0.7 and 0.9 N m−1 are selected according to a practical range for a
contrast agent (Hoff 2001; van der Meer et al. 2007). The surface membrane viscosity
is taken to be the membrane viscosity multiplied by the membrane thickness, which
equals to 10−8 kg s−1, the same order as those in Hoff (2001) and van der Meer et al.
(2007). There are few experimental measurements for the bending modulus Gb. In
numerical simulations, the absence of bending resistance would lead to numerical
instability, which physically results from buckling under compression (Pozrikidis
1990). Here we set Gb = 2 × 10−13 N m according to our previous numerical work
(Liu et al. 2011), which is consistent with the value chosen by Pozrikidis (2001) and
Tsiglifis & Pelekasis (2011).

The minimal radii for the onset of second-order shape instability are listed in
table 1, along with the relevant zeroth- and second-order natural frequencies, which
are calculated by (2.66) and (3.18). Here the condition of instability is defined
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Gs (N m−1) 0.1 0.3 0.5 0.7 0.9
R0 (µm) 5.8 8.6 10 10.4 10.6
ω0 (2π× 106 Hz) 0.64 0.51 0.49 0.52 0.55
ω2 (2π× 106 Hz) 0.35 0.29 0.29 0.32 0.36
ω2/ω0 0.56 0.57 0.60 0.63 0.65

TABLE 1. The threshold radius of instability and the relevant zeroth- and second-order
resonance frequencies corresponding to the specific elastic modulus.

as |ak|/R0 > 1, that is, when the amplitude of the shape oscillation is greater than
the initial radius. Since the stability analysis is restricted in the context of linearity, the
initial disturbance to the shape mode will either decay to zero or grow exponentially,
representing the stable or unstable situation. The data in table 1 reveal that the critical
radius increases with the elastic modulus. In other words, the instability emerges in a
bigger bubble for a larger value of the elastic modulus. In comparison to gas bubbles,
for which the bigger ones are less stable, we can infer that the membrane stabilizes
the shape oscillation. In addition, we can see from table 1 that the ratios between ω2

and ω0 are around 0.6, which agrees with the finding in Tsiglifis & Pelekasis (2011).
Finally, our results are consistent with the stability condition of Mathieu’s equation
that the frequency of the radial oscillation approximates twice that of the second-order
natural frequency, i.e. ωd = ω0 ≈ 2ω2.

The evolutions of instability of the second-order shape mode as well as the
radial oscillation for each case in table 1 are illustrated in figure 3. The radial
mode (the dotted line) oscillates in a stable manner after the transient stage at the
beginning, while the higher-order shape mode (the solid line) grows after tens of
cycles of pressure driving. A closer inspection reveals that the second-order shape
mode experiences a subharmonic oscillation, whose period approximates twice that
of the zeroth-order mode. The integer ratio of the zeroth- and second-order natural
frequencies sheds light on the subharmonic oscillation. In contrast, the bubbles with
smaller radii which are below the critical value are stable; the initial disturbances to
the shape mode decay quickly due to the influence of viscosity (see figure 4).

Figure 5 illustrates the phase diagram of shape stabilities of the five encapsulated
bubbles in table 1, and that of the gas bubble. The phase diagram is plotted as a
function of the driving frequency normalized by the second-order natural frequency
ωd/ω2 and the thresholds of the driving pressure amplitude ε. The curves in figure 5
represent the borderlines of stability above which the shape oscillations become
unstable, while below them the surface instabilities do not occur. Generally speaking,
the oscillations behave in a more stable way above resonance than below resonance.
For extremely high driving frequency, a strong driving pressure is needed to induce
the shape modes. This is understandable because under high driving frequency, the
oscillatory period is so short that the surface instability has insufficient time in which
to develop. Most significantly, it is found that minima appear in the vicinity of
ωd/ω2 = 2 for all of the encapsulated and gas bubbles, and secondary minima emerge
in the neighbourhood of ωd/ω2 = 1. These unstable situations can be explained by
the structure of Mathieu’s equation in the system, which are the so-called one–two
resonance and one–one resonance, analysed by Yang et al. (1993) and Feng & Leal
(1993) with regard to gas bubbles.
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FIGURE 3. Developments of a0 (dotted line) and a2 (solid line) with respect to the cases
shown in table 1. The time is normalized by the driving period Td.

Further investigations of the third- and fourth-order shape modes for the case of
Gs = 0.5 N m, R0 = 10 µm are illustrated in figure 6, together with the second-order
shape mode discussed earlier. The natural frequencies for various shape modes are
listed in table 2. As shown in figure 6, there are local minima for all three modes
in the neighbourhood of ωd/ωk = 1, which can be regarded as direct induction by the
driving pressure when its frequency meets the specific higher-order natural frequency.
Unlike the second-order mode, for which the one–two resonance is the most unstable
situation, the minimum of the curve of k = 4 occurs around ωd/ωk = 1. Referring
to the ratios of ω0 and ωk as shown in table 2 (ω0/ω4 = 0.95), we know that the
driving frequency approximates the zeroth-order natural frequency for this minimum,
under which the resonance of radial oscillation happens. Looking back to the one–two
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FIGURE 4. Developments of a2 with respect to the cases with smaller radius than those
shown in table 1. The time is normalized by the driving period Td.

resonance in k = 2 and referring to ω0/ω2 = 1.66 in table 2, we also recognize that
the minimum in the curve of k = 2 satisfies the radial resonance condition. Moreover,
for k = 3, we can see an obvious decrease in driving amplitude near ωd/ωk = 1.2,
which can be considered as the effect of radial resonance as well, since ω0/ω3 = 1.24
(table 2). The above findings allow us to conclude that the shape instability yields
preferentially when the bubble is at its radial resonance, which has been found by
Dollet et al. (2008) in their experiment. Furthermore, we see that the local minima
occur when the driving frequency and the natural frequency are integer multiples
(ωd/ωk = 1, 2, 3, . . .). This phenomenon is most pronounced for the fourth-order mode,
probably because its zeroth-order and fourth-order natural frequencies happen to be
nearly equal.
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FIGURE 5. Stability diagram of second-order shape mode with respect to the cases shown in
table 1 and the case of a gas bubble.
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FIGURE 6. Stability diagram of second-, third- and fourth-order shape modes with respect to
the case of R0 = 10 µm, Gs = 0.5 N m−1.

4.2. Effects of viscosity

In § 3, in the derivation of the expression for the natural frequency of the higher-order
shape mode, we neglected temporal variation of the radial mode, i.e. we assumed that
R= R0, Ṙ= R̈= 0. Consequently, most of the terms with respect to the viscosity were
neglected. Although the viscosity has little influence on the natural frequency, which is
also recognized in Tsiglifis & Pelekasis (2011), it will affect the system stability. The
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k 0 2 3 4
ωk (2π× 106 Hz) 0.49 0.29 0.39 0.43
ω0/ωk 1 1.66 1.24 0.95
2ωk/ω0 2 1.21 1.61 2.10

TABLE 2. Natural frequencies of various order modes for Gs = 0.5 N m−1, R0 = 10 µm.
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FIGURE 7. Stability diagram of R0 = 10 µm, Gs = 0.5 N m−1 with various liquid and
membrane viscosities.

viscous effect accounts for the damping in the system. It is the competition between
the mechanisms to augment and to damp the amplitude that determines the stability
of the system. In addition, when the encapsulated bubble is exposed in an ultrasound
field, the oscillatory amplitude of the radial mode is non-zero, and so is the radial
velocity. Under large pressure driving, the radial oscillation is nonlinear, with slow
expansion and sharp contraction (see figure 3). The maximum radial velocity is around
10–20 m s−1. Under this situation, referring to (3.4) and (3.5) and their coefficients
(3.6)–(3.13), the magnitude of the terms including µlṘ/χ becomes comparable with
the membrane stress. Figure 7 compares the stability curves under different viscosities.
The cases with larger liquid viscosity (µl = 10−3 kg (ms)−1) are obviously more stable
than those with smaller liquid viscosity (µl = 10−4 kg (ms)−1). By contrast, the effect
of membrane viscosity is insignificant. The encapsulating membranes with and without
membrane viscosity only differ slightly in stability. The reason is that the membrane
viscosity here is a surface viscosity, evaluated by the volumetric viscosity multiplied
by the membrane thickness. When the thickness is infinitesimal, the role of membrane
viscosity becomes negligible.
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5. Summary and conclusions
In this paper, we have derived the equations for the shape oscillation of an

encapsulated bubble. The membrane stress, bending moment and viscosity are coupled
into the traction jump condition at the bubble surface. Due to the no-slip condition
at the membrane, the movement of the material points along the surface, as well
as their surface-normal motion, is considered. The non-spherical shape instability is
investigated in the context of a viscous incompressible fluid. The derived system
bears the structure of Mathieu’s equation, which predicts the stability condition of
2ωk/ωd = n, where n is an integer. The stability diagrams of the higher-order shape
modes validate the unstable condition, and also reveal the important role of liquid
viscosity on the system stability.
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Appendix A. Derivation of velocity and pressure fields
For the decomposed velocity and pressure components in (2.16)–(2.17), following

Prosperetti (1977), the governing equations and the boundary conditions are
summarized below.
For (u0, p0):

∇ ·u0 = 0, (A 1)

ρ
∂u0

∂t
+ ρ(u0 ·∇)u0 +∇p0 = 0, (A 2)

u0 · er = Ṙ at r = R, (A 3)
u0→ 0, p0→ p∞ as r→∞. (A 4)

For (up, pp):

∇ ·up = 0, (A 5)

ρ
∂up

∂t
+ ρ(u0 ·∇)up + ρ(up ·∇)u0 +∇pp = 0, (A 6)

O(δ) component of
∂S

∂t
+ (u0 + δup) · er

∂S

∂r
= 0 at S= 0, (A 7)

up→ 0, pp→ 0 as r→∞. (A 8)

For (uv, pv):

∇ ·uv = 0, (A 9)

ρ
∂uv
∂t
+ ρ(u0 ·∇)uv + ρ(uv ·∇)u0 +∇pv = µl∇2uv, (A 10)

uv · er = 0 at r = R, (A 11)
uv→ 0, pv→ 0 as r→∞. (A 12)

Note that in addition to the kinematic condition (A 11), the dynamic (2.65) and
no-velocity-jump (2.68) conditions on the surface r = R are needed to identity the
(uv, pv) field.
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Considering that the incompressible velocity vectors u0 and up are irrotational, and
therefore the velocity potentials for them are harmonic, we obtain the velocity vectors
(2.22) and (2.23) and the pressures (2.25) and (2.26). For the viscous correction
(uv, pv), taking the curl of both sides, (A 10) becomes

ρ

(
∂ω

∂t
+∇ × (ω × u0)

)
=−µl∇ × (∇ × ω), (A 13)

where ω(=∇×uv) denotes the vorticity vector. Since the system treated in the paper is
axisymmetric, the vorticity vector field due to the k-th order deformation corresponds
to a toroidal vector one, namely

ω =∇ × (T(r, t)Pk(cos θ)er), (A 14)

where T yields (2.30). The term uv is written in the form of (2.24) involving a
function Φ, which satisfies

∇2Φ =∇ · (TPk(cos θ)er). (A 15)

As derived by Prosperetti (1977), the solution to (A 15) is given by (2.28), and the
condition of regularity for the velocity at infinity determines (2.29). Integrating (A 10)
and eliminating ∂T/∂t by (2.30) yields the pressure (2.27).

Appendix B. Numerical solution of toroidal field T(r, t)

The toroidal field T(r, t) obeys (2.30), which is computed using the finite differential
method. We use a transformation so that (2.30) has a fixed computational domain.
Letting y= r/R(t) and τ = t, (2.30) becomes

∂T

∂τ
− µl

ρR2

∂2T

∂y2
− Ṙ

R
(y− y−2)

∂T

∂y
+
[
µlk(k + 1)
ρR2y2

− 2Ṙ

y3R

]
T = 0. (B 1)

The convection term is discretized by a first-order upwinding scheme, and the
diffusion term by a second-order central scheme. Since y > 1, the sign of the
coefficient before the convection term is determined by the sign of Ṙ. Equation (B 1) is
written in a discretized form:

Ti − T t−1
i

1t
−
[
µl

ρR2
+ |Ṙ|(y− y−2)1y

2R

]
Ti+1 − 2Ti + Ti−1

1y2

− Ṙ(y− y−2)

R

Ti+1 − Ti−1

21y
+
[
µlk(k + 1)
ρR2y2

− 2Ṙ

y3R

]
Ti = 0, (B 2)

where the term |Ṙ|(y − y−2)1y/2R comes from the numerical diffusion related to
the upwinding scheme for the convection term. The boundary condition of (B 2) at
the bubble surface is given by the tangential balance condition (2.65). At infinity, T
approaches zero.

The numerical settings are as follows (Ferziger & Perić 2002). The computational
domain is set to be 1 6 y 6 2 to ensure that the boundary of the far field is outside the
boundary layer. The grid resolution is 1/100, with grid points uniformly distributed
along the y-direction so that the cell Reynolds number is approximately 1. The
time step is set as 10−4 of the period to satisfy the Courant–Friedrichs–Lewy (CFL)
condition.
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KVIKLIENĖ, A., JURKONIS, R., RESSNER, M., HOFF, L., JANSSON, T., JANEROT-SJÖBERG, B.,
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