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SUMMARY
The article proposes a nonlinear optimal control method for the model of the wheeled inverted pendu-
lum (WIP). This is a difficult control and robotics problem due to the system’s strong nonlinearities
and due to its underactuation. First, the dynamic model of the WIP undergoes approximate lineariza-
tion around a temporary operating point which is recomputed at each time step of the control method.
The linearization procedure makes use of Taylor series expansion and of the computation of the asso-
ciated Jacobian matrices. For the linearized model of the wheeled pendulum, an optimal (H-infinity)
feedback controller is developed. The controller’s gain is computed through the repetitive solution of
an algebraic Riccati equation at each iteration of the control algorithm. The global asymptotic sta-
bility properties of the control method are proven through Lyapunov analysis. Finally, by using the
H-infinity Kalman Filter as a robust state estimator, the implementation of a state estimation-based
control scheme becomes also possible.

KEYWORDS: Wheeled inverted pendulum; Nonlinear optimal control; H-infinity control;
Approximate linearization; Taylor series expansion; Jacobian matrices; Riccati equation; Lyapunov
analysis; Global stability.

1. Introduction
The problem of feedback control and stabilization of the wheeled inverted pendulum (WIP) is a
nontrivial one due to the model’s nonlinearities and underactuation.1, 2 Actually, one can use only two
control inputs (wheels’ torques) so as to control a system of more degrees of freedom. This control
problem is of interest for the area of robotics because such a type of two-wheeled vehicles can be used
for the transportation of humans and loads without the space and maneuvering limitations exhibited
by four-wheel vehicles.3–6 Previous attempts to solve this problem have been based primarily on
global linearization control method and state-space transformation approaches.7–10 However, one
can find also several results based on approximate linearization techniques.11–15 Additionally, one
can note results relying on Lyapunov stability theory methods, as in the case of model-free adaptive
control approaches.16–22 In this article, to solve the control problem for the WIP, the system’s dynamic
model is first written in an affine-in-the-input form. For this latter description, a nonlinear optimal
controller is developed.23–25

The dynamic model of the wheeled pendulum undergoes approximate linearization around a
temporary operating point which is updated at each time step of the control method. The linearization
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30 Nonlinear optimal control for the WIP system

point consists of the system’s state vector and of the last control input that was exerted on it. The lin-
earization procedure makes use of first-order Taylor series expansion of the system’s dynamic model
and requires the computation of the associated Jacobian matrices. The modelling error which is due
to truncation of higher-order terms in the approximate linearization is considered to be a perturbation
which is compensated by the robustness of the control algorithm. For the approximately linearized
state-space description, an optimal (H-infinity) feedback controller is designed.26–29

The developed H-infinity controller stands for the solution of the optimal control problem for the
WIP, under model disturbances and external perturbations. Actually, it represents the solution of a
min–max differential game, in which the controller tries to minimize a quadratic cost function related
with the state vector’s tracking error, whereas the model uncertainty and external disturbances terms
try to maximize this cost function.30, 31 For the computation of the controller’s feedback gain, an
algebraic Riccati equation has to be solved at each iteration of the control algorithm. The stability
of the control method is proven through Lyapunov analysis. First, it is shown that the control loop
satisfies the H-infinity tracking performance criterion, which signifies elevated robustness against
modelling errors and external perturbations. Moreover, under moderate conditions the control loop
is globally asymptotically stable. Additionally, to implement observer-based control for the model of
the WIP, the H-infinity Kalman Filter is used as a robust state estimator.32, 33

The structure of the article is as follows: in Section 2, the dynamic model of the WIP is ana-
lyzed and a description about it in an affine-in-the-input form is obtained. In Section 3, approximate
linearization is performed on the dynamic model of the WIP using Taylor series expansion and the
computation of the associated Jacobian matrices. In Section 4, the nonlinear optimal (H-infinity) con-
trol problem is formulated for the model of the WIP and a solution about it is introduced. In Section
5, the stability properties of the H-infinity control scheme are analyzed with the use of the Lyapunov
method. In Section 6, state estimation-based control is proposed for the WIP after introducing the
H-infinity Kalman Filter as a robust state estimator. In Section 7, the tracking performance of the con-
trol method is evaluated through simulation experiments. Finally, in Section 8, concluding remarks
are stated.

2. Dynamic Model of the WIP
The WIP is a complex electromechanical system exhibiting both non-holonomic behavior and
underactuation. It consists of a vertical body and of two co-axial driven wheels. The system is under-
actuated because it has less degrees of freedom than its control inputs. Moreover, the system is subject
to non-holonomic constrains which are due to the pure rolling of the vehicle.34–37 The WIP can find
applications in the transportation of humans and products, while significant use of it is related with
warehouse management. Thanks to its capacity for dexterous maneuvering and the simplicity in its
production, the use of WIP in industrial-type applications is rapidly deploying.38–40 A WIP exhibits
several advantages comparing to automatic ground vehicles (AGVs). It has better maneuverability in
flat surfaces and a self-balancing system which allows for carrying loads despite its small base size.
Actually, it can carry a higher payload for the same base size of an AGV. Besides, WIP-type robots
can move faster, with higher efficiency and with a simpler mechanism design than biped robots.

The diagram of the WIP is depicted in Fig. 1. The following reference frames are defined: X0Y0 Z0

which is the inertial reference frame, X1Y1 Z1 which is the body-fixed reference frame with axis O1Y1

to coincide with the wheels’ axis of the vehicle, and X2Y2 Z2 which is the pendulum-fixed reference
frame with axis O2 Z2 to coincide with the pendulum’s (pole’s) axis.

The state variables of the WIP are: ψ which denotes the turn angle of the wheels’ axis, θ which
denotes the turn angle of the pendulum, and α which denotes the heading angle of the two-wheels
vehicle. The dynamic model of the wheeled mobile robot can be obtained with the use of Euler–
Lagrange analysis.41, 42 By defining the state vector of the WIP as q = [ψ, θ, α]T , its dynamic model
is written initially in the following state-space form:1, 2

M(q)q̈ + N (q, q̇)+ O(q̇)= τ (1)

where M(q) is the inertia matrix given by

M(q)=
⎛
⎝ m11 m12cos(θ) 0

m12cos(θ) m22 0
0 0 Iblsin2(θ)+ m33

⎞
⎠ (2)
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Fig. 1. Diagram of the WIP.

while the Coriolis and centrifugal terms matrix is given by

C(q, q̇)= N (q, q̇)+ O(q) (3)

where

N (q, q̇)=
⎛
⎝ −m12sin(θ)(θ̇ + α̇2)

−Iblsin(θ)cos(θ)α̇2 − Gbsin(θ)
2Iblsin(θ)cos(θ)θ̇ α̇ + m12sin(θ)ψ̇α̇

⎞
⎠ (4)

O(q)=
⎛
⎝2Dwψ̇ − 2Db(

˙θ − ψ̇)

2Db(θ̇ − ψ̇)
2b2

r2 (Db + Dw)α̇

⎞
⎠ (5)

The main parameters of the model are: ur and ul are the torques of the right and left wheel,
respectively, mb and mw are the masses of the body of the vehicle and of each one of its wheels,
respectively, Ibl which is the moment of inertia of the pendulum around the y axis, Ibz which is the
moment of inertia of the pendulum around the z axis, Ibx which is the moment of inertia of the wheel
around its axis, Iwa and Iwd are the moments of inertia of the wheel around its axis and diameter,
respectively, l which is the distance between the center of the wheels’ axis and the center of gravity
of the pendulum, r which is the radius of the wheel, 2b which is the length of the wheels’ axis, Db

which is the viscous resistance of the driving system, and Dw which is the viscous resistance of the
ground.1, 2

In particular, the main parameters of the dynamic model of the WIP are defined as follows:

ψ = 1

2
(ψl +ψr )

m11 = (mb + 2mw)r
2 + 2Iwa

m12 = mbl·r
m22 = mbl2 + Iby (6)

Ibl = Ibz + mbl2

Gb = mbg·l
m31 = 2Iwd + 2b2

r2
(Iwa + mwr2)

The torques vector of the vehicle is defined as

τ = [(ur + ul),−(ur + ul),
b
r (ur − ul)]T (7)

Thus, by defining u1 = ur + ul and u2 = ur − ul , the torques vector of the robotic vehicle is written as

τ = [u1,−u1, u2]T (8)
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After intermediate computations, the dynamic model of the pendulum is written also in the affine-
in-the-input form:1, 2 ⎛

⎝ψ̈θ̈
α̈

⎞
⎠=

⎛
⎝ f1

f2

f3

⎞
⎠+

⎛
⎝g1 0

g2 0
0 g3

⎞
⎠(u1

u2

)
(9)

or by defining the state vector [x1, x2, x3, x4, x5, x6]T = [ψ, ψ̇, θ, θ̇ , α, α̇]T it can be written in the
form: ⎛

⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

x2

f1

x4

f2

x6

f3

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
g1 0
0 0
g2 0
0 0
0 g3

⎞
⎟⎟⎟⎟⎟⎟⎠
(

u1

u2

)
(10)

where

f1 = �−1
1 {m12m22sin(θ)(θ̇2 + ȧ2)

−m12 Iblsin(θ)cos2(θ)ȧ2 − m12Gbsin(θ)cos(θ)

+2(m22 + m12cos(θ))Db(θ̇ − ψ̇)− 2m22 Dwψ̇} (11)

⇒ f1 = f̃1

�1

g1 =�−1
1 {m22 + m12cos(θ)}

⇒g1 = g̃1

�1

(12)

�1 = m11m22 − m2
12cos2(θ) (13)

Additionally, it holds that

f2 = �−1
1 {m11 Iblsin(θ)cos(θ)α̇2 + m11Gbsin(θ)

−m2
12sin(θ)cos(θ)(θ̇2 + α̇2)

−2(m11 + m12cos(θ))Db(θ̇ − ψ̇)+ 2m12cos(θ)Dwψ̇)} (14)

⇒ f2 = f̃2

�1

g2 =�−1
2 {−m11 + m12cos(θ)}

⇒g2 = g̃2

�2

(15)

�2 = m33 − Iblsin2(θ) (16)

Moreover, it holds that

f3 =�−1
2 {−2Iblsin(θ)cos(θ)θ̇ α̇ − m12sin(θ)ψ̇α̇

− 2b2

r2 (Db + Dw)α̇} (17)

g3 =�−1
2

{
b
r

}
⇒g3 = g̃3

�2

(18)
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3. Approximate Linearization of the WIP Model
The system of the WIP is linearized around a temporary operating point (equilibrium) which is
defined as (x∗, u∗), where x∗ is the present value of the system’s state vector and u∗ is the last value
of the control input vector that was applied to it. The linearized description of the system is

ẋ = Ax + Bu + d̃ (19)

where matrices A and B are defined as

A = ∇x f (x)+ ∇x gA(x)u1 + ∇x gB(x)u2 (20)

Using the previous states-space description, one gets that

B = [gA(x) gB(x)] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
g1 0
0 0
g2 0
0 0
0 g3

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)

The Jacobian matrix ∇x f (x) has the following form:

∇x f (x)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
∂ f1

∂x1

∂ f1

∂x2

∂ f1

∂x3

∂ f1

∂x4

∂ f1

∂x5

∂ f1

∂x6

0 0 0 1 0 0
∂ f2

∂x1

∂ f2

∂x2

∂ f2

∂x3

∂ f2

∂x4

∂ f2

∂x5

∂ f2

∂x6

0 0 0 0 0 1
∂ f3

∂x1

∂ f3

∂x2

∂ f3

∂x3

∂ f3

∂x4

∂ f3

∂x5

∂ f3

∂x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

To compute the elements of the above Jacobian matrix, one proceeds as follows:

∂ f̃1

∂x1
= 0 (23)

∂ f̃1

∂x2
= −2m12 Dw − 2(m22 + m12cos(x3))Db (24)

∂ f̃1

∂x3
= m12m22cos(x3)(x2

4 + x2
6)− m12 Ibl[cos3(x3)− 2sin2(x3)cos(x3)]x2

6

−m12Gb[cos2(x3)− sin2(x3)] − 2m12sin(x3)Db(x4 − x2)
(25)

∂ f̃1

∂x4
= 2m12m22sin(x3)x4 + 2(m22 + m12cos(x3))Db (26)

∂ f̃1

∂x5
= 0 (27)

∂ f̃1

∂x6
= 2m12m22sin(x3)x6 − 2m12 Iblsin(x3)cos2(x3)x6 (28)

In a similar manner, one finds

∂ f̃2

∂x1
= 0 (29)

∂ f̃2

∂x2
= 2(m11 + m12cos(x3))Db + 2m12cos(x3)Dw (30)

∂ f̃2

∂x3
= m11 Ibl[cos2(x3)− sin(x3)]x2

6 − m11Gbcos(x3)

−m2
12[cos(x3)− sin2(x3)](x2

4 + x2
6)+2m12sin(x3)Db(x4 − x2)− 2m12sin(x3)Dwx2

(31)
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34 Nonlinear optimal control for the WIP system

∂ f̃2

∂x4
= −m2

12sin(x3)cos(x3)2x4

−2[m11 + m12cos(x3)]Db
(32)

∂ f̃2

∂x5
= 0 (33)

∂ f̃2

∂x5
= m11 Iblsin(x3)cos(x3)2x6

−m2
12sin(x3)cos(x3)2x6

(34)

Equivalently, one finds that

∂ f̃3

∂x1
= 0 (35)

∂ f̃3

∂x2
= −m12sin(x3)x6 (36)

∂ f̃3

∂x3
= −2Ibl[cos2(x3)− sin2(x3)]x4x6 − m12cos(x3)x2x6 (37)

∂ f̃3

∂x4
= −2Iblsin(x3)cos(x3)x6 (38)

∂ f̃3

∂x5
= 0 (39)

∂ f̃3

∂x6
= −2Iblsin(x3)cos(x3)x4 − m12sin(x3)x2 − 2b2

r2 (Db + Dw) (40)

Following a similar procedure, one finds that ∂ g̃1

∂x1
= 0, ∂ g̃1

∂x2
= 0, ∂ g̃1

∂x3
= −m12sin(x3),

∂ g̃1

∂x4
= 0, ∂ g̃1

∂x5
= 0,

∂ g̃1

∂x6
= 0.

Additionally, one gets that ∂ g̃2

∂x1
= 0, ∂ g̃2

∂x2
= 0, ∂ g̃2

∂x3
= 2Iblsin(x3)cos(x3),

∂ g̃2

∂x4
= 0, ∂ g̃2

∂x5
= 0, ∂ g̃2

∂x6
= 0.

Equivalently, one obtains ∂ g̃3

∂x1
= 0, ∂ g̃3

∂x2
= 0, ∂ g̃3

∂x3
= 0, ∂ g̃3

∂x4
= 0, ∂ g̃3

∂x5
= 0, ∂ g̃3

∂x6
= 0.

Following a similar procedure, one finds ∂�1
∂x1

= 0, ∂�1
∂x2

= 0, ∂�1
∂x3

= m2
12sin(x3),

∂�1
∂x4

= 0, ∂�1
∂x5

= 0,
∂�1
∂x6

= 0.

Equivalently, one finds ∂�2
∂x1

= 0, ∂�2
∂x2

= 0, ∂�2
∂x3

= 2Iblsin(x3)cos(x3),
∂�2
∂x4

= 0, ∂�2
∂x5

= 0, ∂�2
∂x6

= 0.

About the elements of the second row of the Jacobian matrix ∇x f (x) and for j = 1, 2, . . . , 6, it
holds that

∂ f1

∂x j
=

∂ f̃1
∂x j
�1− f̃1

∂�1
∂x j

�2
1

(41)

About the elements of the fourth row of the Jacobian matrix ∇x f (x) and for j = 1, 2, . . . , 6, it
holds that

∂ f2

∂x j
=

∂ f̃2
∂x j
�1− f̃2

∂�1
∂x j

�2
1

(42)

About the elements of the sixth row of the Jacobian matrix ∇x f (x) and for j = 1, 2, . . . , 6, it
holds that

∂ f3

∂x j
=

∂ f̃3
∂x j
�2− f̃3

∂�2
∂x j

�2
2

(43)
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About the Jacobian matrix ∇x gA, one has that

∇x gA(x)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
∂g1

∂x1

∂g1

∂x2

∂g1

∂x3

∂g1

∂x4

∂g1

∂x5

∂g1

∂x6

0 0 0 0 0 0
∂g2

∂x1

∂g2

∂x2

∂g2

∂x3

∂g2

∂x4

∂g2

∂x5

∂g2

∂x6

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(44)

About the elements of the second row of the Jacobian matrix ∇x gA and for j = 1, 2, . . . , 6, it
holds that

∂g1

∂x j
=

∂ g̃1
∂x j
�1−g̃1

∂�1
∂x j

�2
1

(45)

About the elements of the fourth row of the Jacobian matrix ∇x gA and for j = 1, 2, . . . , 6, it
holds that

∂g2

∂x j
=

∂ g̃2
∂x j
�2−g̃2

∂�2
∂x j

�2
2

(46)

About the Jacobian matrix ∇x gB , one has that

∇x gB(x)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
∂g3

∂x1

∂g3

∂x2

∂g3

∂x3

∂g3

∂x4

∂g3

∂x5

∂g3

∂x6

⎞
⎟⎟⎟⎟⎟⎟⎠

(47)

About the elements of the sixth row of the Jacobian matrix ∇x gB(x) and for j = 1, 2, . . . , 6, it
holds that

∂g3

∂x j
=

∂ g̃3
∂x j
�2−g̃3

∂�2
∂x j

�2
1

(48)

It is possible to include the actuators’ dynamics (DC motors) in the state-space model of the WIP.
This would only increase the dimensionality of the state-space description but would not modify
at all the application of the control method. The stages of implementation of the nonlinear optimal
control approach remain unaltered and arrive at the solution of an algebraic Riccati equation with
matrices of elevated dimensionality too. The control inputs of the model, previously standing for the
torques generated by the DC motors, are now substituted by the voltages applied to the field windings
of the motors. Alternatively, one can consider the control of the wheeled robotic system in successive
loops. In the inner loop, one finds the control inputs of the mobile robot, which are the torques of
the DC motors. Next, these control inputs become reference setpoints for the outer loop, which are
controlled by the voltages applied to the field windings of the DC motors. Using Lyapunov stability
analysis, one can prove again the global asymptotic stability for the control loop for the extended
state-space model.

4. Design of an H -infinity Nonlinear Feedback Controller

4.1. Equivalent linearized dynamics of the WIP
After linearization around its current operating point, the dynamic model for the WIP is written as

ẋ = Ax + Bu + d1 (49)

Parameter d1 stands for the linearization error in wheeled pendulum’s model appearing in Eq. (49).
The reference setpoints for the state vector of the aforementioned dynamic model are denoted by
xd = [xd

1 , . . . , xd
6 ]T . Tracking of this trajectory is succeeded after applying the control input u∗. At

every time instant, the control input u∗ is assumed to differ from the control input u appearing in Eq.
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36 Nonlinear optimal control for the WIP system

(49) by an amount equal to �u, that is, u∗ = u +�u

ẋd = Axd + Bu∗ + d2 (50)

The dynamics of the controlled system described in Eq. (49) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (51)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term, one obtains

ẋ = Ax + Bu + Bu∗ + d3 (52)

By subtracting Eq. (50) from Eq. (52), one has

ẋ − ẋd = A(x − xd)+ Bu + d3 − d2 (53)

denoting the tracking error as e = x − xd and the aggregate disturbance term as d̃ = d3 − d2, the
tracking error dynamics becomes

ė = Ae + Bu + d̃ (54)

The above linearized form of the robot’s model can be efficiently controlled after applying an
H -infinity feedback control scheme.

4.2. The nonlinear H-infinity control
The initial nonlinear model of WIP is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (55)

Linearization of the model of the WIP is performed at each iteration of the control algorithm round
its present operating point (x∗, u∗)= (x(t), u(t − Ts)). The linearized equivalent of the system is
described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (56)

where matrices A and B are obtained from the computation of the previously defined Jacobians and
vector d̃ denotes disturbance terms due to linearization errors. The problem of disturbance rejection
for the linearized model that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(57)

where x∈Rn , u∈Rm , d̃∈Rq , and y∈R p, cannot be handled efficiently if the classical LQR control
scheme is applied. This is because of the existence of the perturbation term d̃ . The disturbance term
d̃ apart from modeling (parametric) uncertainty and external perturbation terms can also represent
noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the
system’s state vector and simultaneous disturbance rejection, considering that the disturbance affects
the system in the worst possible manner. The disturbances’ effects are incorporated in the following
quadratic cost function:

J (t)= 1
2

∫ T
0 [yT (t)y(t)+ ruT (t)u(t)− ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (58)

The significance of the negative sign in the cost function’s term that is associated with the perturba-
tion variable d̃(t) is that the disturbance tries to maximize the cost function J (t) while the control
signal u(t) tries to minimize it. The physical meaning of the relation given above is that the control
signal and the disturbances compete to each other within a min–max differential game. This problem
of min–max optimization can be written as

minumaxd̃ J (u, d̃) (59)

The objective of the optimization procedure is to compute a control signal u(t)which can compensate
for the worst possible disturbance, that is, externally imposed to WIP. However, the solution to the
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Fig. 2. Diagram of the control scheme for the underactuated WIP.

min–max optimization problem is directly related to the value of the parameter ρ. This means that
there is an upper bound in the disturbances magnitude that can be annihilated by the control signal.

4.3. Computation of the feedback control gains
For the linearized system given by Eq. (57), the cost function of Eq. (58) is defined, where the
coefficient r determines the penalization of the control input and the weight coefficient ρ determines
the reward of the disturbances’ effects. It is assumed that (i) the energy that is transferred from the
disturbances signal d̃(t) is bounded, that is,

∫∞
0 d̃T (t)d̃(t)dt <∞, (ii) matrices [A, B] and [A, L] are

stabilizable, and (iii) matrix [A,C] is detectable. Then, the optimal feedback control law is given by

u(t)= −Kx(t) (60)

with K = 1
r BT P , where P is a positive definite symmetric matrix which is obtained from the solution

of the Riccati equation

AT P + P A + Q − P
(

1
r B BT − 1

2ρ2 L LT
)
P = 0 (61)

where Q is also a positive semi-definite symmetric matrix. The worst case disturbance is given by

d̃(t)= 1
ρ2 LT Px(t) (62)

The diagram of the considered control loop for the WIP is depicted in Fig. 2.

4.4. Riccati equation coefficients in H-infinity control robustness
Parameter ρ in Eq. (58) is an indication of the closed-loop system robustness. If the values of ρ > 0
are excessively decreased with respect to r , then the solution of the Riccati equation is no longer a
positive definite matrix. Consequently, there is a lower bound ρmin of ρ for which the H∞ control
problem has a solution. The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and
used in the design of the H∞ controller, then the closed-loop system will have increased robustness.
Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing H∞ controller will be derived
but it will be a suboptimal one. The Hamiltonian matrix

H =
(

A −( 1
r B BT − 1

ρ2 L LT
)

−Q −AT

)
(63)
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provides a criterion for the existence of a solution of the Riccati equation (Eq. (61)). A necessary
condition for the solution of the algebraic Riccati equation to be a positive definite symmetric matrix
is that H has no imaginary eigenvalues.23

5. Lyapunov Stability Analysis
Through Lyapunov stability analysis, it will be shown that the proposed nonlinear control scheme
assures H∞ tracking performance for the underactuated WIP, and that in the case of bounded dis-
turbance terms, asymptotic convergence to the reference setpoints is succeeded. The tracking error
dynamics for the WIP is written in the form:

ė = Ae + Bu + Ld̃ (64)

where in the wheeled pendulum’s case, L = I∈R6 with I being the identity matrix. Variable d̃
denotes model uncertainties and external disturbances of the wheeled pendulum’s model. The
following Lyapunov equation is considered:

V = 1
2 eT Pe (65)

where e = x − xd is the tracking error. By differentiating with respect to time, one obtains

V̇ = 1
2 ėT Pe + 1

2 ePė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2 eT P[Ae + Bu + Ld̃]⇒ (66)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe

+ 1
2 eT P[Ae + Bu + Ld̃]⇒ (67)

V̇ = 1
2 eT AT Pe + 1

2 uT BT Pe + 1
2 d̃T LT Pe

+ 1
2 eT P Ae + 1

2 eT P Bu + 1
2 eT P Ld̃

(68)

The previous equation is rewritten as

V̇ = 1
2 eT (AT P + P A)e + (

1
2 uT BT Pe + 1

2 eT P Bu
)

+( 1
2 d̃T LT Pe + 1

2 eT P Ld̃
) (69)

Assumption: For given positive definite matrix Q and coefficients r and ρ, there exists a positive
definite matrix P , which is the solution of the following matrix equation:

AT P + P A = −Q + P
(

2
r B BT − 1

ρ2 L LT
)
P (70)

Moreover, the following feedback control law is applied to the system:

u = − 1
r BT Pe (71)

By substituting Eqs. (70) and (71), one obtains

V̇ = 1
2 eT

[− Q + P
(

2
r B BT − 1

ρ2 L LT
)
P
]
e

+eT P B
(− 1

r BT Pe
)+ eT P Ld̃⇒ (72)

V̇ = − 1
2 eT Qe + 1

r eT P B BT Pe − 1
2ρ2 eT P L LT Pe

− 1
r eT P B BT Pe + eT P Ld̃

(73)

which after intermediate operations gives

V̇ = − 1
2 eT Qe − 1

2ρ2 eT P L LT Pe + eT P Ld̃ (74)

or, equivalently

V̇ = − 1
2 eT Qe − 1

2ρ2 eT P L LT Pe

+ 1
2 eT P Ld̃ + 1

2 d̃T LT Pe
(75)
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Lemma: The following inequality holds:

1
2 eT Ld̃ + 1

2 d̃ LT Pe − 1
2ρ2 eT P L LT Pe≤ 1

2ρ
2d̃T d̃ (76)

Proof : The binomial (ρα − 1
ρ

b)2 is considered. Expanding the left part of the above inequality,
one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2 ab + 1

2 ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(77)

The following substitutions are carried out: a = d̃ and b = eT P L and the previous relation becomes

1
2 d̃T LT Pe + 1

2 eT P Ld̃ − 1
2ρ2 eT P L LT Pe≤ 1

2ρ
2d̃T d̃ (78)

Equation (78) is substituted in Eq. (75) and the inequality is enforced, thus giving

V̇ ≤ − 1
2 eT Qe + 1

2ρ
2d̃T d̃ (79)

Equation (79) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇
from 0 to T gives ∫ T

0 V̇ (t)dt≤ − 1
2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T

0 ||d̃||2dt⇒
2V (T )+ ∫ T

0 ||e||2Qdt≤2V (0)+ ρ2
∫ T

0 ||d̃||2dt
(80)

Moreover, if there exists a positive constant Md > 0 such that∫∞
0 ||d̃||2dt ≤ Md (81)

then, one gets ∫∞
0 ||e||2Qdt ≤ 2V (0)+ ρ2 Md (82)

Thus, the integral
∫∞

0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the definition
of the Lyapunov function V in Eq. (65), it becomes clear that e(t) will be also bounded since
e(t) ∈ 	e = {e|eT Pe≤2V (0)+ ρ2 Md}. According to the above and with the use of Barbalat’s
Lemma, one obtains limt→∞ e(t)= 0.

The outline of the global stability proof is that at each iteration of the control algorithm, the state
vector of the WIP converges towards the temporary equilibrium and the temporary equilibrium, in
turn, converges towards the reference trajectory. Thus, the control scheme exhibits global asymptotic
stability properties and not local stability. Assume the i th iteration of the control algorithm and the
i th time interval about which a positive definite symmetric matrix P is obtained from the solution of
the Riccati equation appearing in Eq. (70). By following the stages of the stability proof, one arrives
at Eq. (79) which shows that the H -infinity tracking performance criterion holds. By selecting the
attenuation coefficient ρ to be sufficiently small and, in particular, to satisfy ρ2 < ||e||2Q/||d̃||2 one
has that the first derivative of the Lyapunov function is upper bounded by 0. Therefore, for the i th
time interval, it is proven that the Lyapunov function defined in Eq. (65) is a decreasing one. This
signifies that between the beginning and the end of the i th time interval, there will be a drop of the
value of the Lyapunov function and since matrix P is a positive definite one, the only way for this to
happen is the Euclidean norm of the state vector error e to be decreasing. This means that comparing
to the beginning of each time interval, the distance of the state vector error from 0 at the end of the
time interval has diminished. Consequently, as the iterations of the control algorithm advance the
tracking error will approach zero, and this is a global asymptotic stability condition.

Remark 1: The dynamics of the physical system under control, that is, of the WIP, is a continuous-
time one. To simulate the robotic system’s dynamics, the related state-space model undergoes
discretization following common discretization methods, such as finite difference methods (Euler
approximations). The computation of the optimal (H -infinity) control input essentially relies on
a continuous-time algebraic Riccati equation. This Riccati equation is repetitively solved at each
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sampling period of the control algorithm after using the approximately linearized state-space rep-
resentation of the system in continuous time. Consequently, the dynamics of the robotic system is
a continuous-time one, so is the computation of the optimal control input. However, the computer-
based implementation of the control method uses the sampled discrete-time representation of the
robotic system’s dynamics and the sampled discrete-time values of the control inputs. The time step
used for the numerical integration of robotic system’s dynamics and the sampling period of the con-
trol inputs are the same. Within one sampling period, the control input remains as computed from
the solution of the aforementioned Riccati equation; therefore, it can be said that the control input is
kept constant between two consecutive time steps of the control algorithm.

Remark 2: The presented control method is of global asymptotic stability. Although, the concept
for linearization of dynamical system around fixed equilibria with the use of Taylor series expansion
is an established one, the approach for linearizing the dynamics of a system around time-varying
equilibria, that is, operating points which are updated at each sampling period, is a novel one.
Actually, there are rolling operating points which are recomputed at each time step of the control
method, and which comprise the present value of the state vector of the robotic system and the last
value of the control inputs vector that was applied to it. Furthermore, the solution of the optimal
control problem for the linearized model of the system, taking place at each sampling period, relies
on a the solution of a novel algebraic Riccati equation. Thus, a Riccati equation has been selected
so as to assure that (i) the H -infinity tracking performance criterion will be reached in the Lyapunov
stability analysis of the control system and (ii) the control loop will be globally asymptotically sta-
ble. The provided stability analysis does not overlook the effects of modelling errors which are due
to the approximate linearization of the robotic system. On the contrary, such perturbation terms are
taken into account and are shown to be asymptotically compensated by the robustness of the control
algorithm.

6. Robust State Estimation with the Use of the H∞ Kalman Filter
The control loop has to be implemented with the use of information provided by a small number
of sensors and by processing only a small number of state variables. To reconstruct the missing
information about the state vector of the WIP, it is proposed to use a filtering scheme and based on
it to apply state estimation-based control.24 The recursion of the H∞ Kalman Filter, for the model of
the WIP, can be formulated in terms of a measurement update and a time update part

Measurement update:

D(k)= [I − θW (k)P−(k)+ CT (k)R(k)−1C(k)P−(k)]−1

K (k)= P−(k)D(k)CT (k)R(k)−1

x̂(k)= x̂−(k)+ K (k)[y(k)− Cx̂−(k)]
(83)

Time update:

x̂−(k + 1)= A(k)x(k)+ B(k)u(k)
P−(k + 1)= A(k)P−(k)D(k)AT (k)+ Q(k)

(84)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix
P−(k)−1 − θW (k)+ CT (k)R(k)−1C(k)will be positive definite. When θ = 0, the H∞ Kalman Filter
becomes equivalent to the standard Kalman Filter. One can measure only a part of the state vector of
the WIP (for instance, state variables x1, x3, and x5) and can estimate through filtering the rest of the
state vector elements. Moreover, the proposed Kalman filtering method can be used for sensor fusion
purposes.

7. Simulation Tests
The performance of the nonlinear optimal (H -infinity) control method for the problem of control and
stabilization of the WIP is demonstrated through simulation experiments. The reference path that the
two-wheel vehicle followed in the simulation experiments is shown in Figs. 3 and 4. The results about
the convergence of the state variables of the wheeled pendulum xi , i = 1, . . . , 6 to their reference
setpoints, as well as the results about the variation of the control inputs ui , i = 1, 2, are depicted in
Figs. 5–12. It can be observed that under the proposed control scheme, fast and accurate tracking is
achieved for the elements of the state vector of the WIP. Moreover, it is shown that the variations of
the control input remain moderate and smooth.
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Fig. 3. Trajectory on the xy plane, followed by the wheel pendulum (a) in the case of test 1 and (b) in the case
of test 2.
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Fig. 4. Trajectory on the xy plane, followed by the wheel pendulum (a) in the case of test 3 and (b) in the case
of test 4.

The necessary and sufficient condition for the implementation of the proposed control method
is the existence of a solution for the algebraic Riccati equation given in Eq. (70). The transient
performance of the control loop depends on the selection of the values of parameters r , ρ, and Q
in the aforementioned Riccati equation. To perform state estimation-based feedback control for the
WIP, through the measurement of a small number of its state vector elements, the H -infinity Kalman
Filter has been used as a robust state estimator. In the simulation diagrams, the real values of the
state vector elements are plotted in blue, the estimated values are printed in green, and the associated
reference setpoints are depicted in red.

Despite its conceptual and computational simplicity, the proposed control method performs
equally well to global linearization-based control methods and to Lyapunov theory-based control
schemes. The advantages of the nonlinear optimal (H -infinity) control approach for the model of
the WIP are outlined as follows; (a) the optimal control scheme avoids the elaborated state variables
transformations (diffeomorphisms) which are met in global linearization-based control approaches,
(b) in the optimal control method, the control inputs are exerted directly on the initial nonlinear
dynamic model of the wheeled pendulum and not on its linearized equivalent description. In such a
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Fig. 5. Test 1: (a) convergence of state variables x1 and x2 of the WIP to their reference setpoints and (b)
convergence of state variables x3 and x4 of the WIP to their reference setpoints.
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Fig. 6. Test 1: (a) convergence of state variables x5 and x6 of the WIP to their reference setpoints and (b) control
inputs u1 and u2 provided by the wheels’ actuators.

manner, inverse transformations and the related singularities problems are avoided, and (c) the pro-
posed control method retains the main features of linear optimal control, that is, accurate tracking of
the reference trajectories under smooth and moderate variations of the control inputs.

The control inputs of the wheeled-pendulum system which are depicted in Fig. 8(b)–10(b) can
be implemented in real DC-actuators. Actually, the magnitude of the control inputs, which are the
torques provided by the motors to the robotic system, remain moderate. Consequently, it can be
assured that for the autonomous navigation of the robotic system, even in the case of following
complicated reference paths, the control inputs change smoothly and saturation of the actuators is
avoided, Regarding the programming of the controller, this can take place with the pulse width mod-
ulation technique. The values of gains r , ρ and of matrix Q which appear in the algebraic Riccati
equation of the control loop have been changed so as to achieve the satisfactory transients of the
control system.

Remark 3: The objective of the proposed nonlinear optimal (H -infinity) control method is (i) to
achieve accurate and fast tracking of reference setpoints for all state variables of the considered model
of the WIP, (ii) to keep moderate the variations of the control inputs, thus also assuring minimum
energy consumption by the actuators of the robotic vehicle. The solution of the nonlinear optimal
control problem for mobile robots can raise significantly their level of autonomy. By reducing energy
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Fig. 7. Test 2: (a) convergence of state variables x1 and x2 of the WIP to their reference setpoints (b) convergence
of state variables x3 and x4 of the WIP to their reference setpoints.
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Fig. 8. Test 2: (a) convergence of state variables x5 and x6 of the WIP to their reference setpoints and (b) control
inputs u1 and u2 provided by the wheels’ actuators.

consumption by the robot’s actuators, the vehicle’s stay in recharging lots becomes less frequent and
its operational capacity is also increased. Considering that the WIP is primarily used in patrolling
and security tasks, as well as in the transportation of individuals, it can be inferred that through the
article’s control method such robots can remain functional for prolonged time periods. Besides, by
implementing control through reduced consumption of energy, the discharge of the robotic vehicle’s
batteries is slowed down and their lifetime is also prolonged.

Remark 4: Functioning of the robot’s actuators beyond their torque and power limits is unlikely
to take place if optimal control schemes are implemented. This is because optimal control assures
moderate variations for the robot’s control inputs. Besides, optimal control avoids abrupt variations in
the control signals and thus high-frequency components in the control inputs are unlikely to appear. In
particular, about the control input signals that appear in the aforementioned diagrams, what is noted
as high-frequency components can be avoided by suitable tuning of the parameters appearing in the
algebraic Riccati equation that is solved for computing the control inputs. The transient performance
of the controller depends on the gains r and ρ and on matrix Q. The smallest value of ρ for which
the Riccati equation can be solved is the one that provides maximum robustness to the control loop
of the WIP.
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Fig. 9. Test 3: (a) convergence of state variables x1 and x2 of the WIP to their reference setpoints and (b)
convergence of state variables x3 and x4 of the WIP to their reference setpoints.
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Fig. 10. Test 3: (a) convergence of state variables x5 and x6 of the WIP to their reference setpoints and (b)
control inputs u1 and u2 provided by the wheels’ actuators.

8. Conclusions
The article proposes a nonlinear optimal (H -infinity) control method for the dynamic model of the
WIP. The control of such a robotic system exhibits elevated difficulty due to underactuation and
strong nonlinearities in its dynamic model. The dynamic model of the wheeled pendulum undergoes
first approximate linearization around a temporary operating point which is recomputed at each time
step of the control method. The linearization procedure makes use of Taylor series expansion and
requires the computation of the associated Jacobian matrices. For the approximately linearized model
of the wheeled pendulum, the optimal (H -infinity) feedback control problem is solved.

Actually, the proposed H -infinity controller stands for the solution of the optimal control problem
for the model of the wheeled pendulum, under model uncertainties and external perturbations. The
computation of the controller’s feedback gains requires the repetitive solution of an algebraic Riccati
equation which takes place at each iteration of the control algorithm. The stability properties of the
control scheme are proven with the use of Lyapunov analysis. First, it is demonstrated that the control
loop satisfies the H -infinity tracking performance criterion. Moreover, under moderate conditions,
it is proven that the control loop is globally asymptotically stable. Finally, by using the H -infinity
Kalman Filter as a robust observer, it is shown that a state estimation-based feedback control scheme
can be implemented.
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Fig. 11. Test 4: (a) convergence of state variables x1 and x2 of the WIP to their reference setpoints and (b)
convergence of state variables x3 and x4 of the WIP to their reference setpoints.
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