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This article presents a unified logic that combines classical logic, intuitionistic logic and

affine linear logic (restricting contraction but not weakening). We show that this unification

can be achieved semantically, syntactically and in the computational interpretation of

proofs. It extends our previous work in combining classical and intuitionistic logics.

Compared to linear logic, classical fragments of proofs are better isolated from non-classical

fragments. We define a phase semantics for this logic that naturally extends the Kripke

semantics of intuitionistic logic. We present a sequent calculus with novel structural rules,

which entail a more elaborate procedure for cut elimination. Computationally, this system

allows affine-linear interpretations of proofs to be combined with classical interpretations,

such as the λμ calculus. We show how cut elimination must respect the boundaries between

classical and non-classical modes of proof that correspond to delimited control effects.

1. Introduction

The study of structural rules forms a significant part of proof theory, in particular, the rule

of contraction. The different levels of admissibility of contraction lead to various forms

of logic, classical and non-classical. At a deeper level, structural rules, and restrictions

thereof, have profound effects on cut elimination and consequently, on computational

applications. We formulate a unified logic that combines classical, intuitionistic and affine-

linear logics (linear logic with weakening). Such a combination must be achieved without

a collapse into classical logic: non-classical connectives must retain their strengths when

mixed with classical formulas. Compared to other unified systems, including LU (Girard

1993) and our own LKU (Liang and Miller 2011), this system diverges from linear logic

and polarization in that contractions are controlled in a very different way. Instead of the

exponential operators ? and !, the logic admits a restricted form of Peirce’s formula, which

enables contractions when certain conditions are reached. The system Affine Control Logic

(ACL) is an extension of the PCL system presented in Liang and Miller (2013b). This

article is also an extended version of Liang (2016).

Linear logic embeds classical and intuitionistic logics but is limited in its ability to mix

them. For example, the interpretation of intuitionistic implication as !A−◦ B is a crucial

component of linear logic. However, this interpretation is not compatible with the fragment

that interprets classical logic. Consider ?((!A −◦ B) ⊕ C) (equivalently ?(!A −◦ B)�?C):

here, we are attempting to write an intuitionistic implication as a subformula of a classical

disjunction. The strength of intuitionistic implication is compromised: it may be possible
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to use the assumption A to prove C: the intuitionistic meaning and proof structure

of !A −◦ B would not survive such a mixture. We seek to better isolate non-classical

from classical fragments of proofs. One part of our solution relies on focusing (Andreoli

1992). This idea is also found in the ‘stoup’ of LC (Girard 1991) and related systems.

When a ‘positive’ formula occupies the stoup the proof takes on the characteristics

of an intuitionistic proof. However, the focusing approach alone is not satisfactory: a

(multiplicative) implication A→ B is ‘negative’ and cannot occupy the stoup. The second

part of our solution is to replace the positive/negative polarities of focusing with a

semantically motivated categorization of formulas into red and green. This approach

admits a version of Peirce’s formula that enables contractions on all formulas when the

stoup is a green formula. Contractions are enabled dynamically during proofs compared

to statically by the presence of the ? operator in formulas.

Creating an alternative to linear logic is no easy task. Linear logic generalizes the

principles of Gentzen in allowing cut elimination in a setting, where some but not all

formulas are subject to contraction. This is a central role of the ?/! duality and we propose

to replace it. Thus, much of this article is devoted to showing that ACL can stand on its

own as a logic, with its own notion of model, sequent calculus, cut elimination, soundness

and completeness. In particular, a large section is devoted to the cut-elimination procedure

as it pertains to the system’s structural rules. We also demonstrate the computational

significance of this logic by defining a natural deduction system, term calculus and a

logical way to delimit the capturing of continuations found in classical computations.

2. Syntax

We focus on propositional logic in this presentation. The addition of first-order quantifiers

would be a rather standard exercise. Formulas of propositional ACL are freely composed

from connectives &, ⊕, →, �, ⊗ and ∨, constants �, 0 and ⊥, and atomic formulas.

The symbol � represents affine implication while → represents intuitionistic implication.

Intuitionistic disjunction also requires a separate connective:∨ (see Section 5 for detailed

explanation). The linear constant 1 is equivalent to � in affine logic. When a formula is

either atomic, 0 or ⊥, we refer to it as a literal.

We use a device similar to polarization, but to avoid confusion, we use the term ‘colours.’

Definition 2.1. Formulas are coloured red or green as follows:†

— Atomic formulas are arbitrarily coloured red or green.

— ⊥ and � are green; 0 is red.

— A& B is green if both A and B are green, otherwise, it is red.

— A⊕ B is green if A is green or B is green, otherwise, it is red.

† In our previous system PCL (Liang and Miller 2013b), the colours were called polarities. However, these

‘polarities,’ are not the same as polarities of the same names in Liang and Miller (2013a). The original

semantic motivation for the meaning of ⊥ in PCL was described in Liang and Miller (2013a) as the second

largest element of a Heyting algebra. The models of PCL are a sub-class of the models of PIL as formulated

in Liang and Miller (2013a). However, neither logic is a fragment of the other.
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— A→ B is green if B is green, otherwise, it is red.

— A� B is green if B is green, otherwise, it is red.

— A⊗ B and A∨ B are always red.

Since there are two implications and two constants for false, a green ⊥ and a red 0,

there are four versions of negation in ACL. They are abbreviated as follows:

−A = A� ⊥ ¬A = A→ ⊥ ∼A = A→ 0 �A = A� 0

¬A and −A are logically equivalent (both are green) but may lead to different proofs.

This article primarily uses −A (¬A was used in Liang and Miller (2013b)).

ACL is claimed to be a unified logic not so much because of the different versions of

connectives, but because of the colours. Although we use the symbols& and⊕ from linear

logic, here they can be classical or non-classical. Conceptually, green means classical and

red means arbitrary: classical or non-classical. The constant ⊥ in ACL is entirely different

from its counterpart in linear logic as will become clear in the next section.

We use the letter E for an arbitrary green formula and e for a green literal (green

atom or ⊥). Unlike the positive/negative polarization, red and green are not ‘duals’ of

each other. For example, if E is green, then −E is still green: ‘−’ is not an involutive

negation. It is possible for red and green formulas to be logically equivalent. In contrast,

?X−◦!Y is not provable for any X,Y in linear logic. The colouring of & and⊕ is similar

to the positive/negative polarization of LC (Girard 1991), but the similarity stops here. It

is possible to explain positive/negative polarization purely syntactically, in terms of the

invertibility of inference rules and the role that they play in controlling cut elimination.

In contrast, the red and green colours are best explained semantically.

3. Semantics

Red and green represent two levels of provability. The syntactic inference rules that

green formulas induce will appear fanciful without a proper explanation from a semantic

perspective.

Definition 3.1. A Phased Frame is a structure 〈W,�, r, ·〉, where � is a partial ordering

relation on the set of possible worlds (or phases) W . This structure also forms a

commutative monoid with operation · and unit r ∈ W . We write ab for a · b and

further require that a � b if and only if ac = b for some c.

It is important that � is a proper partial order and not just a preorder. Not every

commutative monoid gives rise to such a structure: inverses are not allowed. This restriction

would also be valid for any phase semantics that use a monoid of multisets with multiset-

union in their completeness proofs.

Given two sets of worlds A and B, we write AB = {xy : x ∈ A, y ∈ B}. It always holds

that ab = ba and (ab)c = a(bc). By inference, it also holds that a � ab. Crucially, the

anti-symmetry of � means that the unit r is unique and is the least element of W, since

r � ru = u for all u ∈ W . We refer to r as the root. The following properties are also

easily inferred:
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— if a � b, then ac � bc.
— if a � b and bb = b, then ab = b.

Our phased models are closer to those of Okada (2002) than to Girard’s original version.

The principal difference between our models and those of linear logic is two-fold. First,

the facts of the space (subsets of W that can interpret formulas) are upwardly closed sets.

A set S is upwardly closed if x ∈ S and x � y implies y ∈ S . This corresponds to the

monotonicity property of intuitionistic Kripke models. However, unlike intuitionistic logic,

not all upwardly closed sets are necessarily facts. The second, and the most important

difference is that, in phase semantics for linear logic ⊥ is represented by any arbitrary set,

whereas here it is fixed to be W\{r}, the upwardly closed set that consists of all worlds

above the root. The two sets W (�) and W\{r} (⊥) form an embedded, two-element

Boolean algebra with nothing in between them.

Definition 3.2. An Ordered Phase Space is a structure of the form (W, ·, r,�, D), where

W , �, r and · satisfy the requirements of a phased frame. D is a set of upwardly closed

subsets of W called facts that is, furthermore, required to satisfy the following properties:

1. D contains W\{r}, which are upwardly closed (� is a proper partial order).

2. For any subsets A and B of W such that B ∈ D, the set {x ∈W : for all y ∈ A, xy ∈
B} is also in D. This set is upwardly closed because if x � x′, then x′ = xz and

xzy ∈ B, since B is upwardly closed.

3. D must be closed under the following closure operator on subsets of W : cl(S) =
⋂

{V ∈ D : S ⊆ V }. Upward closure is preserved by arbitrary intersections.

Note that by the first two requirements, D must also contain all of W , which is equal to

{x ∈W : for all y ∈W\{r}, xy ∈W\{r}} (which interprets �� �).

It holds that S ⊆ cl(S) and if S is already a fact in D, then S = cl(S). It also holds that

cl(cl(S)) = cl(S), cl(S)V ⊆ cl(SV ) and if S ⊆ V , then cl(S) ⊆ cl(V ).

Given S ⊆W , let I(S) = {u ∈ S : uu = u}. These are the worlds that admit contraction.

I(W ) is never empty, since rr = r.

Definition 3.3. A phase model on an ordered phase space is an interpretation (valuation)

of formulas A as facts Ap as follows:

— Red atoms are interpreted by arbitrary facts (elements of D).

— Green atoms are interpreted by either W\{r} or to W , i.e., to either ⊥ or �.

— �p = W = cl({r}).
— ⊥p = W\{r}.
— 0p = cl(�) =

⋂

D, the smallest possible fact (� is the empty set).

— (A⊗ B)p = cl(ApBp) = cl({xy : x ∈ Ap, y ∈ Bp}).
— (A� B)p = {x ∈W : for all y ∈ Ap, xy ∈ Bp}.
— (A→ B)p = {x ∈W : for all y ∈ I(Ap), xy ∈ Bp}.
— (A⊕ B)p = cl(Ap ∪ Bp).
— (A∨ B)p = cl(I(Ap) ∪ I(Bp)).
— (A& B)p = Ap ∩ Bp.
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A formula A is valid in a model if r ∈ Ap, i.e., Ap = W . A formula is valid if it is valid in

all models.

It easily holds by induction on formulas that all green formulas valuate to ⊥p or �p:

Lemma 3.4. For every green formula E, Ep �= �p if and only if Ep = ⊥p.

It should now be clear why A⊗ B (and A∨ B) is always red: we cannot guarantee that it

will always valuate to � or ⊥ even if A ‘and’ B are green. The constant � can in fact be

designated red or green: it makes little difference.

In the following, we will not distinguish between formulas A and their interpretations

Ap except when there is possibility for confusion.

Note that showing r ∈ A� B (r ∈ (A� B)p) is equivalent to showing that A ⊆ B.

Clearly,⊥� E is valid for all green E. Since x � xy, the upward closure of facts entails

the admissibility of weakening (A⊗ B� A).

A consequence of interpreting ⊥ as W\{r} is that A⊕−A is valid: if r �∈ A (Ap), then

A ⊆ ⊥ and therefore r ∈ −A.

A more important consequence is that Peirce’s formula ((P� E)→ P)� P is valid as

long as E is green. P can be arbitrary (the occurrence of → is stronger than � in that

position). If r ∈ P (r ∈ Pp), the result is obvious since then (P � E) → P ⊆ P = W

because P is upwardly closed. If r �∈ P , then r ∈ (P � E) since P ⊆ ⊥ and ⊥ ⊆ E. Then,

since rr = r, we also have (P� E)→ P ⊆ P .

The closure operator is not needed in all the cases of Ap. In the cases of⊗,⊕ and 0, the

sets defined are already upwardly closed even without applying the closure operator cl.

For example, AB is upwardly closed if either A or B is a fact: if xy ∈ AB with x ∈ A and

y ∈ B, and xy � z, then xyc = z for some c with x ∈ A and yc ∈ B because y � yc and

B is upwardly closed; thus z = xyc ∈ AB. Similarly, the union of two upwardly closed

sets remains upwardly closed. It would be simpler to allow all upwardly closed sets to

be facts, but completeness would be lost. The cases that require the cl operator above

correspond to the connectives with non-invertible right introduction rules in our sequent

calculus. If all upwardly closed sets are facts, or if ACL is restricted to those connectives

that do not require the closure operator cl, then these phase models are perhaps better

seen as Kripke models: u ∈ Ap can be read as ‘u |= A.’‡

The constant 0 is not necessarily interpreted by the empty set, which is to be expected

in phase semantics. The completeness proofs of such semantics typically define a set of

multisets of formulas and multiset union as the monoid operation. Unlike sets of formulas,

we cannot construct a Hintikka style saturation for multisets and are forced to accept

arbitrary multiset unions. This means that some of these multisets will be inconsistent

(derives 0). In the phase semantics of linear logic, 0 is interpreted by W⊥. However, our

‘⊥’ has an entirely different meaning than ⊥ in linear logic. In a model, the smallest

‡ Under this interpretation, u |= A→ B holds iff for all v, vv = v and v |= A implies uv |= B. Under the global

assumption that vv = v, i.e., I(W ) = W , we can show that this condition is equivalent to the traditional

Kripke model definition of intuitionistic implication: for all v � u, if v |= A, then v |= B. The argument uses

the properties noted above: if u |= A → B, and if v |= A for v � u, then with the assumption that vv = v, it

follows that uv � vv = v � uv, and so v |= B.
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possible 0p is the empty set and the largest possible 0p is ⊥p. Consistency with respect to

both 0 and ⊥ can only be guaranteed at the root, which has the property rr = r, (i.e., it

is a set as opposed to a multiset). In models with a non-empty 0p, the empty set, which

is upwardly closed, is not a fact.

It easily holds that 0p ⊆ Ap for all formulas A. The largest possible 0p is ⊥p and the

smallest possible ⊥p is the empty set. In terms of Kripke style semantics, the fact that 0p

may not be empty means that there will be possible worlds that ‘force’ 0. Such kinds of

Kripke models are not unknown (Ilik et al. 2010; Veldman 1976). Furthermore, because

the root world cannot be in 0p, there is still no model for 0 (or for ⊥).

The semantics also determine the validity of the following examples:

— (P � P � E) � P � E (with a green E) is valid. This formula, which is related to

Peirce’s formula, enables contractions on the left despite the affine-linear �. It will

play an important role in our proof theory as explained in Section 4.

— (A� B)� (A→ B) is valid. This is equivalent to dereliction ((A−◦B)−◦!A−◦B holds

in linear logic). The converse is not valid unless B is green.

— A→ E ≡ A� E ≡ −A⊕ E. Green implications collapse into classical disjunction.

— Several other important properties, also found in PCL (Liang and Miller 2013b),

should also be noted. These include the fact that none of the negations ¬, ∼, − and

� are involutive. In particular, −−A� A is not valid: our ⊥ is not the same as the

⊥ of linear logic. We do have that ¬¬E → E and −−E� E are valid if E is green.

It also holds as an admissible rule that if −− A is valid, then A is valid. Additionally,

the non-intuitionistic De Morgan law −(A& B)� −A⊕−B is valid.

The following model, with three distinct worlds r, q and qq, verifies several of the

examples above:

r

q ∈ ap, cp

qq ∈ ap, bp, cp

Here, it is assumed that qq = qqq = qqqq. All upwardly closed sets in this model are

facts. This means that cl(S) = S for all upwardly closed S: this is an intuitionistic Kripke

frame, but with q �= qq. If u ∈ Qp, we will say that ‘u forces Q.’ The interpretation of the

atoms a, b, c are that ap = cp = {q, qq} and bp = {qq}. In other words, q forces a, c, and

qq forces a, b, c. For example, r forces a → b, since the only world above r that has the

property uu = u is qq. But r �∈ a� b because q ∈ a but rq = q �∈ b. The same model also

shows that ¬ and − are not involutive negations in ACL: let d be a red atom that is not

forced at any of the worlds. Then, all worlds above r forces ¬¬d and −−d because they

force ⊥ (⊥p = {q, qq}), but they do not force d, and thus r �∈ −−d� d and r �∈ ¬¬d→ d.

The same model also plays the part of an intuitionistic Kripke model and shows that

b⊕ ∼b is not valid, and that ∼∼b → b is not valid (regardless of the colour of b), since

r ∈∼∼b but r �∈ b.
Our semantics preserve the advantage of Kripke semantics in the existence of small but

effective countermodels. However, it should be noted that the monoid’s closure property
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also diverges from what is typically expected in Kripke semantics. The counter-model for

∼a⊕ ∼∼a requires a top world that ‘forces’ 0:

r

u v ∈ a

uv ∈ 0, a

In this model, 0p = {uv} and ap = {v, uv}. It can be assumed that I(W ) = W . The empty

set is not a fact since 0p must be the smallest fact.

4. Sequent calculus

The core syntactic proof system of ACL is a sequent calculus that serves as a platform

for proving cut elimination and completeness, and upon which the correctness of

other proof systems of ACL can be based. The core of the sequent calculus are new

structural rules centred around Peirce’s formula in the form (−P → P ) � P . We first

motivate these rules informally before presenting the system. Peirce’s formula implies

the admissibility of contraction on the right-hand side of sequents. What restricts

arbitrary contractions is when the contracted ‘copies’ can be used. We can embed

Peirce’s formula and its use as a contraction rule with the following kinds of inference

rules:

−P ,Γ � P
Γ � P lock

Γ � P ⊥ � E
−P ,Γ � E unlock

When describing proofs, we usually take the perspective of bottom-up proof construc-

tion. The first rule above is valid by Peirce’s formula: the copy of P is ‘locked’ as −P on

the left. However, this copy can only be ‘unlocked’ when the right-hand side contains a

green formula E (since ⊥� E is valid). To distinguish unlock from an ordinary �-left

introduction rule, we require it to be focused: i.e., the right premise of unlock is required

to be proved by an initial rule (⊥L rule). This small but essential element of focusing is

similarly found implicitly in LC and in Jagadeesan et al. (2005).

In a context where both right- and left-side contractions can be restricted, we observe

that Peirce’s formula implies a counterpart to itself: (P� P� E)� P� E. The term

counterpart is appropriate because it justifies left-side contractions:

Γ, P , P � E
Γ, P � E Pr.

Contractions on the left-hand side are not normally permitted in affine logic. However,

when the right-side formula is green, this restriction is cancelled. A green formula on the

right thus unlocks contractions left and right. This rule, which we call ‘Pr,’ is much stronger

than the promotion rule of linear logic. The counterpart formula is semantically valid

and it can be derived syntactically using standard sequent calculus introduction rules for
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Fig. 1. The sequent calculus of ACL. e is a green atom or ⊥. a is an atom. [Θ :A] may only appear

to the left of ; in sequents.

implication combined with the lock/unlock rules:

P � P P� E � P� E
P� (P� E), P � P� E ⊥ � E
−(P� E), P � (P� E), P � E unlock

−(P� E), P� (P� E) � P� E

P� (P� E) � P� E
lock

� (P� (P� E))� P� E

Of course, this formula is also provable if contractions on the left are available: ((P →
P → E) → P → E) is intuitionistically provable with λxλy.xyy. However, the proof

fragment above does not use left-side contraction, but only right-side contraction as

implied by Peirce’s formula. This formula justifies contractions left and right. One might

call it a self-dual principle. It replaces the dual exponential operators ? and !. The

important lesson from the proof theory of linear logic is not these particular operators,

but that without this kind of duality, cut elimination will fail.

The sequent calculus is found in Figure 1. Unlike the informal rules above, we use

dyadic sequents of the form Γ; Δ � A. Here, Δ is a multiset but Γ is a set and A,Γ does

not preclude the possibility that A ∈ Γ. In contrast A,Δ denotes the multiset union (sum)

of {A} and Δ (A is added to Δ). The semantic interpretation of a sequent Γ; Δ � A is the

same as for the formula Γ& → (Δ⊗� A), where Γ& is the &-conjunction over formulas in

Γ and Δ⊗ is the⊗-conjunction over formulas in Δ. An empty Γ or Δ means �. Elements

[Θ : A] may only appear in the set context (Γ). It has the meaning of the formula

−(Θ⊗ � A), but is not itself considered a formula. It cannot appear as a subformula.

The special notation distinguishes it for focusing: it can only be principal in Unlock. See

Corollary 7.1 of Section 7 for the correctness of this focused treatment. We often refer to
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the single formula on the right as the stoup. A formula A is provable if ;� A is provable.

Weakening holds as an admissible rule (see Lemma 4.1 below).

The Lock rule allows contraction not only on the stoup formula, but also on part of the

multiset on the left. This is required for cut elimination as will become clear in Section

6. Since we interpret ; Θ � A as Θ⊗� A, this rule can still be seen as a single right-side

contraction, and is semantically sound. Computationally speaking, Lock saves not only a

copy of the current continuation but also a part of its operating environment.

Except for ⊥L and ∨R, the introduction rules are rather standard for the dyadic

representation (e.g., see Hodas and Miller (1994)). The restriction to a green literal (green

atom or ⊥) in the Unlock, Pr and ⊥L rules can in fact be relaxed to any green formula

(see Lemma 4.3). The restriction simplifies cut elimination (Section 6). It also imposes

a normal form for proofs: contractions, enabled by Unlock and Pr, are only allowed

after right-introduction rules have been exhausted in bottom-up proof construction. This

normal form is similar to focusing, but it is derived from colours instead of polarities.

Although Lock can be applied at any point, the effect of contraction only appears

above Unlock. Formulas without green subformulas can only have non-classical proofs.

As sample proofs, we show a version of the excluded middle, A⊕ −A (A⊕ (A� ⊥)),

and a version of the double-negation axiom, ∼−A� A (((A� ⊥)→ 0)� A).

;A � A
;A � A⊕−A ⊕R

[: A⊕−A];A � ⊥ Unlock

[: A⊕−A];� −A � R

[: A⊕−A];� A⊕−A ⊕R

;� A⊕−A Lock

;A � A
[: A];A � ⊥ Unlock

[: A];� −A � R
[: A]; 0 � A 0L

[: A];∼−A � A → L

;∼−A � A Lock

;� ∼−A� A
� R

The sequent ;A � A follows from the Id rule if A is atomic, but this can be generalized to

any formula (see Lemma 4.2). The proofs will fail if ⊥ was replaced with a red formula,

such as 0 (A⊕ ∼A remains unprovable). On the other hand, if 0 was replaced with ⊥ in

the proof of ∼−A� A, then that proof will also fail, unless A is green (⊥� A holds

only for green A). None of the negations of ACL are ‘involutive’ without conditions, but

the negations can be mixed to give the desired computational effect (i.e., the C control

operator). A slight adjustment to the proof of ∼−A� A also proves a version of Peirce’s

formula, (−A→ A)� A: replace 0L with an Id rule.

It is possible to derive a left-side contraction using the Lock and Unlock rules:

Γ; Δ, A, A � e
[A : e],Γ; Δ, A � e Unlock

Γ; Δ, A � e Lock

That is, contraction inside the multiset context also becomes valid when a green e is

found in the stoup. However, such derivations cannot replace the Pr rule because of the

dyadic representation of sequents (using both sets and multisets). The Pr rule is needed

to prove formulas, such as (A→ −A)� −A. To demonstrate the use of Pr (and Dr), we
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prove the equivalence between ¬A (A→ ⊥) and −A (A� ⊥):

;A � A
A;� A Dr

;⊥ � ⊥
A;¬A � ⊥ → L

;¬A,A � ⊥ Pr

;¬A � −A � R

;A � A
A;� A Dr

;⊥ � ⊥
A;−A � ⊥ � L

;−A � ¬A → R

The Pr rule is needed because of the restriction of empty multiset in the → L rule. In

contrast, !A−◦ ⊥ and A−◦ ⊥ are not equivalent in linear logic because the linear ⊥ has

no properties to justify an equivalent Pr, which in terms of linear logic would look like

an inverse dereliction:
!A,Δ � ⊥
A,Δ � ⊥

The key difference between green formulas and that of the ? operator (! on the left) in

linear logic can be described as dynamic versus static approaches to allowing contraction.

Once we place a ? before a formula, it can be contracted anywhere. However, ?A only

enables contraction on itself. In contrast, the presence of a green literal in the stoup

effectively switches the proof into a ‘classical mode:’ contractions become unlocked on all

formulas, left and right. This means that we do not have to keep ? on all the formulas

that may at some point require contraction. The term dynamic is appropriate because

in proving a formula, such as a red A ⊕ B that may contain green subformulas, we do

not know before the proof is constructed whether contractions can be made on certain

formulas; it depends on whether a green literal is encountered in the stoup. It is the proof ,

as opposed to just the formula, that determines if contractions are allowed. Classical

reasoning is localized inside segments of proofs. Compared to the example of Section

1, although (A → B)⊕ E is green (if E is green), A cannot escape its scope unless B is

also green: intuitionistic implication survives the mixture with classical logic. In proving

a formula, such as Peirce’s: ((P � E) → P ) � P , only E needs to be green whereas in

linear logic more than one ? would be needed. In ACL, there is no restriction on the

formula P : no ? is required for it to be contracted. Only the inner P � E becomes a

classical implication: the others keep their strengths in the sense that the proof segment

below Unlock stays non-classical, and must stay as such.

The presence of a green e in the stoup does not cancel the strength of all non-classical

(red) formulas. For example, while ¬¬E → E is provable, ∼∼E → E (((E → 0)→ 0)→ E)

is not. The constant 0, being red, cannot unlock a contraction on E. It is incorrect to

suppose that the entire subproof above a sequent with e in the stoup becomes classical.

Once the green e vacates the stoup classical structural rules are no longer available.

4.1. Basic properties

We now establish some essential properties of the sequent calculus, all of which are

simpler than cut elimination (Section 6). Weakening in the sequent calculus occur in

the initial rules and in the ∨R rule. Weakening also holds as an admissible rule for all

proofs:
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Lemma 4.1. If there is a proof of Γ; Δ � A, then there is also a proof of Γ′Γ; Δ′Δ � A.

This lemma is provable by induction on the height of proofs.

A property that is almost as important as cut elimination is initial elimination:

Theorem 4.2. Γ; Δ, A � A is provable for any formula A.

Proof. By induction on the formula A. For positive connectives ⊕, ∨, ⊗, apply (from

the bottom-up) the left introduction rule followed by the right introduction rule. For the

other connectives, apply the right introduction rule first. The only other interesting point

about this proof is confirming that the set and multiset contexts are used appropriately

by the introduction rules. Thus, the intuitionistic connectives are worth showing:

Γ;A � A
A,Γ;� A Dr

A,Γ; Δ, B � B
A,Γ; Δ, A→ B � B → L

Γ; Δ, A→ B � A→ B
→ R

Γ;A � A
A,Γ;� A Dr

A,Γ; Δ � A∨ B ∨R

Γ;B � B
B,Γ;� B Dr

B,Γ; Δ � A∨ B ∨R

Γ; Δ, A∨ B � A∨ B ∨L

Dr is the only structural rule used in the proof, and only in these cases.

Another result, similar to initial elimination, relaxes the restriction to a green literal in

the Unlock, Pr and ⊥L rules:

Lemma 4.3. The restriction to e being a green atom or ⊥ in the Unlock, Pr and ⊥L rules

can be relaxed to allow any green formula.

Proof. The proof is by simultaneous induction for all rules, on the form of the green

formula on the right-hand side, showing that each such unrestricted rule applied to the

green formula can be permuted to be on green subformulas. The special case, where the

green formula is � is trivial. Let us refer to the unrestricted versions of these rules as

Unlock′, Pr′ and ⊥L′. The following representative cases should suffice to convince:

Γ; ΔΘ � A
[Θ : A],Γ; Δ � B� E

Unlock′ −→

Γ; ΔΘ � A
Γ; ΔΘ, B � A (weakening)

[Θ : A],Γ; Δ, B � E Unlock′

[Θ : A],Γ; Δ � B� E
� r

A,Γ; Δ � B⊕ E
Γ; Δ, A � B⊕ E Pr′ −→

A,Γ; Δ � B⊕ E
[: B⊕ E], A,Γ; Δ � E Unlock′

[: B⊕ E],Γ; Δ, A � E Pr′

[: B⊕ E],Γ; Δ, A � B⊕ E ⊕R

Γ; Δ, A � B⊕ E Lock

Γ; Δ,⊥ � E1& E2
⊥L′ −→ Γ; Δ � E1

⊥L′
Γ; Δ � E2

⊥L′

Γ; Δ,⊥ � E1& E2
&R

In the cases for Pr, the non-literal green formula is first locked (regarding proofs

bottom-up), then Pr is applied on green subformulas, and finally the original green

formula is recovered via Unlock. The cases for Unlock and ⊥L always reduce to applying

the same rule to green subformulas.
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Note that E1⊗ E2 is still red, and indeed such a permutation would fail even with both

subformulas green.

We chose not to write the sequent calculus with the relaxed rules because, consistent

with the atomic Id rule, inference rules in sequent calculi should only depend on the

top-level structure of formulas. More significantly perhaps, the relaxed rules would have

required the above permutations to be a part of the cut-elimination proof.

We now establish the substitution property. First observe:

Proposition 4.4. If a formula is provable with an atom b coloured red, then the same formula

is provable with b coloured green.

This holds because a green atom can only lead to more proofs, i.e., any inference rule that

can be applied with b red can also be applied with b green.

Lemma 4.5. The substitution property for ACL holds as follows:

1. If a formula A is provable with an atom b coloured red, then A[C/b] is also provable

for any formula C .

2. If a formula A is provable with an atom e coloured green, then A[E/e] is also provable

for any green formula E.

Proof. Substitution of a formula for an atom easily generalizes to sequents. The proof

generalizes the statement to be for sequents, then both parts are proved by induction on

the structure of proofs. Part 1 uses initial elimination (Lemma 4.2). In fact, it is fairly

obvious that the only part of any proof that needs to be changed is the Id rule, which

is the only rule that requires its principal formula to be an arbitrary atom. Part 2 uses

initial elimination and Lemma 4.3 to modify the ⊥L, Unlock and Pr rules.

This lemma means that red atoms represent arbitrary formulas. ACL can be extended to

a second order propositional logic, where universally quantified propositional variables are

coloured red, while existentially quantified variables are green. One proves ∀A.A → A and

∃E.¬¬E → E. A detailed exposition of this extension is left to future work.

5. Fragments of ACL

The subformula property of the (cut-free) sequent calculus means that a fragment of ACL

can be defined by simply restricting the use of connectives, constants and the colours of

atoms. Some of the more significant fragments are as follows:

— Intuitionistic Logic: Colour all atoms red and restrict to &,∨, →, 0. All formulas are

red. � can be replaced by 0→ 0 (or simply be considered red).

The completeness of this fragment with respect to intuitionistic logic is verified

by proving each of the propositional intuitionistic axioms (which can be found in

Moschovakis (2015)). The rule of Modus Ponens follows from cut elimination (proved

in Section 6). The soundness of this fragment with respect to intuitionistic logic follows

from two observations. First, all Lock rules are useless because there is no Unlock

without green formulas. In particular, the disjunction property holds for A∨ B when

A and B do not contain green subformulas. Second, although the Dr rule is used, it

1188

https://doi.org/10.1017/S0960129518000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000403


On unifying classical, intuitionistic and affine logics

does not affect soundness with respect to intuitionistic logic, in which contractions

are always valid on the left. In terms of intuitionistic sequent calculus, Dr is a null

operation. Pr cannot appear. All other inference rules that can appear in cut-free

proofs of this fragment are admissible in intuitionistic sequent calculus.

— Classical Logic: Colour all atoms green and restrict to &,⊕,→, ⊥ and �. All formulas

are green and the restrictions on Unlock, Pr and ⊥L become meaningless (given

Lemma 4.3). Classical axioms including ¬¬E → E are provable. There is no need for

∨, although the introduction rules of all connectives are sound with respect to classical

logic.

— Intuitionistic Linear Affine Logic: Colour all atoms red and restrict to &,⊕,⊗, �, ∨,

→, 0. Formulas !A can be emulated by A∨ 0.

The subformula property also means that cut elimination is preserved inside each

fragment. The fact that each of the above logics can be identified as a self-contained

fragment justifies ACL as a unified logic. However, ACL is more than the sum of these

parts. Any set of restrictions on formulas defines a new logical system, including:

— Purely Negative Fragment: Restrict to&,→,�, ⊥ and �. The semantic interpretations

of these connectives do not require the closure operator cl. They can be given a Kripke

style semantics.

— Affine-Linear Logic plus Classical Logic: Do not use → and∨.

— Non-Linear Fragment: Do not use � and⊗.

5.1. Notes concerning intuitionistic disjunction and conjunction

The connective ∨ is included in ACL for the sake of intuitionistic completeness without

a classical collapse. With⊕, all propositional intuitionistic axioms are provable except for

(A → C) → (B → C) → (A⊕ B) → C , where C is red. A green C would collapse → into

classical implication (thus the classical fragment can use ⊕). However, including ∨ as a

connective has other consequences. Note that the∨R rule folds in a weakening: elsewhere

weakening can be pushed to the initial rules. A∨ B is similar to !A⊕!B in linear logic,

which requires an empty linear context. In the affine case, the context must be weakened

away. It is also possible to simulate !A as A∨0, and in fact A→ B ≡ (A∨0)� B. A∨¬A
is also provable: technically this formula is red because ⊥� (A∨ ¬A) is not provable.

However, ⊥ → (A∨ ¬A) is provable, which gives this formula some of the properties of

green formulas. Technically, our previous effort in combining intuitionistic and classical

logics, PCL, is not a fragment of ACL. PCL contains ∨ but not ⊕, � or ⊗. However,

PCL models are equivalent to purely intuitionistic models, where I(W ) = W , thus the

difference between⊕ and∨ disappears.

The connective& is used in both the classical and intuitionistic fragments. However, this

usage imposes certain constraints on proofs. For example, in a proof of a → c, a& b;� c
(with c red) the introduction of a&b must be above that of a→ c because of the restriction

in the → L rule. It is possible to define a purely intuitionistic conjunction ∧ with semantic
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Fig. 2. The cut rules of ACL.

interpretation (A∧ B)p = cl(I(Ap)I(Bp)) and the following introduction rules

Γ;� A Γ;� B
Γ; Δ � A∧ B ∧R

A,B,Γ; Δ � C
Γ; Δ, A∧ B � C ∧L

Like∨ and⊗, the colour of∧ is always red. In the purely non-linear fragment (without

⊗ and �), ∧ has the same provability properties as & and is therefore not required

for intuitionistic completeness. Specifically, A& B;� A∧ B and A∧ B;� A& B are both

provable. In this setting, the affine-linear context can be required to contain at most one

formula, and therefore serves the purpose of a left-side stoup in proofs. The inclusion of

both & and∧ may also be appropriate in a focused sequent calculus, since & is negative

(asynchronous on the right) and∧ is positive (asynchronous on the left).

6. Cut elimination

The importance of the cut-elimination proof is more than just showing the admissibility
of cuts, for it establishes ACL as a new logical system that requires its own, rather unique
proof theory. The principal cut rules of ACL are found in Figure 2. The rules cut1 and
cut2 are distinguished by the set or multiset context in which the cut formula appears on
the left-hand side. These rules are enough to prove completeness and the usual properties
expected from cut elimination. However, the proof itself is for the generalized rules found
in Figure 3. These rules are called mix (Gentzen 1935) as they can remove multiple copies
of the cut formula. The rules marked dmix represent delayed cuts: the cut formula is
locked inside some [Θ :B] and cannot be removed until unlocked. Two of these rules are also

multicuts as they have three subproofs (with the middle subproof delineated notationally by braces):

they allow us to describe how cuts are permuted above multiple as opposed to individual inference

rules. The abbreviated notation [Θi :A]ni=1,Γ; Δ � A indicates zero or more instances of [Θi :A] in

Γ. The notation also does not preclude the possibility of other such elements in Γ, with or without

copies of the cut formula. Thus, the mix1 rule subsumes cut1. Since A? represents the optional

presence of A, mix2 subsumes cut2. We still refer to these rules as ‘cut rules’ and the formula being

removed is still the cut formula. We always display the subproof above a cut with the cut formula

on the right-hand side of � as the left-most subproof. The subproof with the cut formula on the

left is always displayed as the right-most subproof.

Conceptually speaking, structural reduction, as described by Parigot, is difficult to define in

sequent calculus in a manner precise enough to prove termination. Cut elimination for sequent

calculi tend to describe reductions locally, as the permutation of cuts above single inference rules.

This misses the correlation between Lock and Unlock, which spans across multiple rules. For

example, consider an attempted generalization of cut2:

[Θ :A],Γ;� A A,Γ′; Δ′ � B
[ΘΔ′ :B],ΓΓ′; Δ′ � B

cut′2

Such a cut is not generally admissible, with any reasonable conclusion, if Θ is an arbitrary, non-

empty multiset. In writing such a rule, we are disregarding that, in subproofs of actual proofs (of
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Fig. 3. Additional cut rules of ACL.

formulas), Θ is not arbitrary but must correspond to a Lock. This is the dynamic captured by the

multicuts smix1 and dmix1: the middle subproof of these cuts can have [Θ : A] with non-empty

Θ because they correspond to Lock rules in the leftmost subproof. The restrictions to the cuts of

Figure 3 are necessary to define a delicate permutation strategy. To be clear, the restrictions do not

mean that there cannot be locked formulas in sequents (that conclude subproofs) subject to cut,

nor that the cut formula cannot be subject to Lock and Unlock rules in the subproofs above the

cut. The cuts we show to be admissible are more than enough to prove the properties of Section 7,

in particular Corollary 7.1, which shows that locked formulas and their focused treatment can be

replaced by ordinary formulas and introduction rules.

The cut-elimination proof uses the following properties and definitions.

Definition 6.1. Given an inference rule (excluding cuts), the formula affected by the rule is the

principal formula of an introduction rule, the formula moved between the set and multiset by Dr

or Pr, a formula inside [Θ :A] (either in Θ or A) subject to a Lock or Unlock, both instances of the

atomic formula in Id, any formula in the multiset context in the conclusion of ∨R, and the green

literal in the stoup in Unlock, Pr and ⊥L.

When a formula is not affected by an inference rule, it is parametric to the rule.

Since the cut (mix) rules select which instances of the cut formula to remove, it is important to

define what we mean by the occurrences of a formula in a proof.
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Definition 6.2. Given a proof ending in a sequent Γ; Δ � B and either a formula A in Γ or an

instance of a formula A in Δ, B, the occurrences of this formula in the proof is traced from the

sequent as follows. Attach an index to the formula: xA. If the inference rule above the sequent does

not affect xA, then the index stays attached in the sequents above the rule. If the inference rule

affecting xA is Pr, Dr, Lock or Unlock, then all copies of xA created by the rule will be annotated

with the same index. The index is discarded along with the formula when it is subject to weakening

or becomes the principal formula of an introduction rule. Furthermore, in the sequents immediately

above a cut, all instances of the formula to be cut are given the same index.

The index does not define a new kind of formula but is a proof annotation, a proof term. It will not

be shown in subsequent proofs to avoid notational clutter. However, this assumed device will allow

us to refer unambiguously to, for example, the number of Unlock rules that affect the cut formula in

a proof.

In typical cut-elimination proofs for sequent calculi, permuting cuts above introduction rules

that are parametric to the cut formula are rather straightforward (as they are for cut1 and cut2).

However, the mix rules also change the contents of locked formulas in [Θ :A]. The permutation

of the mix rules above the introduction rules of Figure 1 becomes difficult. We solve this problem

by deriving several admissible transformations on cut-free proofs. For convenience, we use the

following notation.

Γ; Δ � A
Γ; Δ, B � A (W •).

The notation does not represent a new inference rule. The intended meaning is that the transforma-

tion (in this case weakening) is applied to the cut-free proof above the line, resulting in the cut-free

proof with the conclusion below the line. Such transformations are never applied above cuts, but

they may be required beneath cuts that have been permuted above introduction rules. The validity

of the following transformations are easily observed:

Proposition 6.3. The following transformations on Unlock are valid

1.

Γ; ΔΘ � B
[Θ:B],Γ; Δ � e Unlock −→

Γ; ΔΘ � B
Γ; ΔΘ � B⊕ C ⊕R

[Θ:B⊕ C],Γ; Δ � e Unlock

2.

Γ; ΔΘ, A � B
[Θ, A :B],Γ; Δ � e Unlock −→

Γ; ΔΘ, A � B
Γ; ΔΘ � A� B

� R

[Θ:A� B],Γ; Δ � e Unlock

3.

A,Γ; ΔΘ � B
[Θ:B], A,Γ; Δ � e Unlock −→

A,Γ; ΔΘ � B
Γ; ΔΘ � A→B→R

[Θ:A→B],Γ; Δ � e Unlock

4. If Γ; Δ′ � C is provable

Γ; ΔΘ � B
[Θ:B],Γ; Δ � e Unlock −→

Γ; ΔΘ � B
Γ; ΔΔ′Θ � B

(W •)
Γ; Δ′ � C

Γ; ΔΔ′Θ � C
(W •)

Γ; ΔΔ′Θ � B& C
&R

[ΘΔ′ :B& C],Γ; Δ � e Unlock
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5. If Γ; Δ2 � C is provable

Γ; ΔΘ � B
[Θ:B],Γ; Δ � e Unlock −→

Γ; ΔΘ � B Γ; Δ2 � C
Γ; ΔΔ2Θ � B⊗ C ⊗R

[ΘΔ2 :B⊗ C],Γ; Δ � e Unlock

6. If Γ; Δ2, C � D and Γ; Δ1 � B are provable

Γ; ΔΘ � B
[Θ:B],Γ; Δ � e Unlock −→

Γ; ΔΘ � B Γ; Δ2, C � D
Γ; ΘΔΔ2, B� C � D � L

[ΘΔ2, B� C :D],Γ; Δ � e Unlock

Γ; ΔΘ, C � D
[Θ, C :D],Γ; Δ � e Unlock −→

Γ; Δ1 � B Γ; ΘΔ, C � D
Γ; ΘΔΔ1, B� C � D � L

[ΘΔ1, B� C :D],Γ; Δ � e Unlock

7. If Γ;� B and Γ; Δ′, C � D are provable

Γ; ΔΘ � B
[Θ:B],Γ; Δ � e Unlock −→ Γ;� B

Γ; Δ′, C � D
Γ; ΔΘΔ′, C � D

(W •)

Γ; ΔΘΔ′, B→C � D →L

[ΘΔ′, B→C :D],Γ; Δ � e Unlock

Γ; ΔΘ, C � D
[Θ, C :D],Γ; Δ � e Unlock −→ Γ;� B

Γ; Δ′, C � D
Γ; ΘΔΔ′, C � D

(W •)

Γ; ΘΔΔ′, B→C � D →L

[ΘΔ′, B→C :D],Γ; Δ � e Unlock

8.

Γ; ΔΘ, C � D
[Θ, C :D],Γ; Δ � e Unlock −→

Γ; ΔΘ, C � D
Γ; ΔΘ, B& C � D &L

[Θ, B& C :D],Γ; Δ � e Unlock

9.

Γ; ΔΘ, B, C � D
[Θ, B, C :D],Γ; Δ � e Unlock −→

Γ; ΔΘ, B, C � D
Γ; ΔΘ, B⊗ C � D ⊗L

[Θ, B⊗ C :D],Γ; Δ � e Unlock

10. If Γ; Δ′, B � D is provable

Γ; ΔΘ, C � D
[Θ, C :D],Γ; Δ � e Unlock −→

Γ; Δ′, B � D
Γ; ΔΘΔ′, B � D

(W •)
Γ; ΔΘ, C � D

Γ; ΔΘΔ′, C � D
(W •)

Γ; ΔΘΔ′, B⊕ C � D ⊕L

[ΘΔ′, B⊕ C :D],Γ; Δ � e Unlock

11. Weakening is also valid on locked formulas

Γ; ΔΘ � B
[Θ:B],Γ; Δ � e Unlock −→

Γ; ΔΘ � B
Γ; ΔΘΘ′ � B

(W •)

[ΘΘ′ :B],Γ; Δ � e Unlock

12. Redundant locked formulas can be removed.

A,Γ; ΔΘ, A � D
[Θ, A :D], A,Γ; Δ � e Unlock −→

A,Γ; ΔΘ, A � D
A,Γ; ΔΘ � D Dr∗

[Θ:D], A,Γ; Δ � e Unlock

Locked formulas inside [Θ :A] have no effect on proofs beneath Unlock, and thus transforming

each Unlock instance results in modified proofs. Each transformation can be applied repeatedly
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Fig. 4. Transformations on cut-free proofs. Each proof of a sequent above a labelled rule can be

transformed to a proof of the sequent beneath that rule.

to locked formulas for which it is applicable. Figure 4 in turn defines a set of admissible

transformations on cut-free proofs that correspond to the introduction rules of Figure 1, plus

some other transformations that will be useful.

Lemma 6.4. The transformations on cut-free proofs of Figure 4 are admissible.

Proof. By induction on the structure of proofs, applying the appropriate transformation of

Proposition 6.3 to each instance of Unlock. For example, transformation 6.3, along with the

corresponding &R rule of Figure 1, is used to derive (&R•).

The∨L and∨R rules do not require transformation as they affect the multiset differently.

To be clear, the cut-elimination theorem is proved for the original rules of Figure 1. The

transformations are only applied to cut-free proofs. To simplify the main proof, the following

properties correspond to cases where the cut formula is a constant

Lemma 6.5.

1. If Γ; Δ � ⊥ is provable, then Γ; Δ � e is also provable for any green literal e.

2. If Γ; Δ � 0 is provable, then Γ; Δ � A is also provable for any formula A.

3. If �,Γ; Δ � A or Γ; Δ,� � A is provable, then Γ; Δ � A is provable.

Each of these properties is proved by induction on the height of proofs.

The overall strategy of the cut-elimination proof is similar to other such proofs in that there is

a double induction: first we show that all cuts with cut-free subproofs (i.e., proofs where only the

final rule is a cut) can be eliminated. Then, we show that, starting from the topmost cuts, all cuts

can be eliminated from a proof. The following inductive measure is used in the first of these results.
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Definition 6.6. The measure of a proof that ends in a cut rule of Figure 3 is the lexicographical

ordering on the tuple (S,U,P,H1,H2,H3), consisting of, in order of precedence:

1. S: the size of the cut formula.

2. U: the number of Unlock rules that affect the cut formula in the leftmost and rightmost

subproofs above the cut (mix).

3. P: the number of Pr rules that affect the cut formula in the leftmost and rightmost subproofs

above the cut.

4. H1: the height of the leftmost subproof above the cut rule with the cut formula on the right-hand

side of the final sequent.

5. H2: the height of the rightmost subproof above the cut with the cut formula on the left-hand

side of the final sequent.

6. H3: for smix1 and dmix1, this value is the height of the middle subproof; for other cuts, this

value is H1 + 1.

Lemma 6.7. All cuts with cut-free subproofs are admissible.

Proof. By induction, simultaneously, for the mix rules of Figure 3 (which subsume cut1 and cut2)

using the inductive measure of Definition 6.6. Cuts are permuted above inference rules until the cut

formula is principal on both left and right, reaching a ‘key case:’ it is only here that the cut formula

is removed, replaced by cuts on its subformulas. If no key case is reached the cut is eliminated

by weakening. The cases of literal cut formulas follow from Lemma 6.5. Although this strategy is

similar to other cut-elimination proofs, the details of how to reach the key cases are rather unique

to ACL.

Permutations of mix1: The algorithm for permuting mix1 is as follows:

1. Permute the cut above inference rules in the left subproof until the left subproof ends in an

initial rule, Lock, Unlock, Pr, or right-introduction rule on the cut formula. The only exception

is a Lock on just the stoup (creating [:A]).

2. Permute the cut above inference rules in the right subproof until an initial rule, or when the cut

formula is the principal formula of a left-introduction rule.

3. If no initial rule is reached by the above permutations, permute mix1 to a smix1.

Now in more detail

Stage 1: First, permuting mix1 over an Unlock or Pr rule that ends the left subproof is not

possible, nor necessary:

[Θ :B],Γ; ΔΘ � B
[Θ :B],Γ; Δ � e Unlock

[Θ′j , e :Bj]
m
j=1,Γ

′; Δ′, e � C
[Θ:B], [ΔΘ′j :Bj]

m
j=1,ΓΓ′; Δ′Δ � C mix1

Even if B = e, the cut cannot be permuted over this Unlock because C can be red, which would

prevent Unlock from being replicated beneath the cut. The cut must be permuted into the right

subproof. Since e is a literal, the permutation will end at an initial rule in the right subproof (with

e on the left of �): here the cut is eliminated by weakening. The same applies to Pr and to ⊥L.

Permuting mix1 over a Lock that only creates [:A] is trivial , as the conclusion of mix1 is not affected

by the presence of [:A]. Permuting mix1 above Dr that ends the left subproof is as follows:

[:A]?, B,Γ; Δ, B � A
[:A]?, B,Γ; Δ � A

Dr
[Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, A � C
[ΔΘ′j :Dj]

m
j=1, B,ΓΓ′; ΔΔ′ � C mix1
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↓

[:A]?, B,Γ; Δ, B � A [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � C
[B,ΔΘ′j :Dj]

m
j=1, B,ΓΓ′; ΔΔ′, B � C mix1

[ΔΘ′j :Dj]
m
j=1, B,ΓΓ′; ΔΔ′, B � C

(Dr•)

[ΔΘ′j :Dj]
m
j=1, B,ΓΓ′; ΔΔ′ � C Dr

The inductive measure is reduced by H1. The Dr• transformation is applied to the cut-free proof

obtained from the inductive hypothesis and its effect on the structure of proofs is immaterial to the

argument. In displaying permutations of cut, we explicitly repeat formulas in the set context (B in

this case) in the premises of rules that affect them, so as to always take into account the possibility

of contraction, which the set enables.

Other permutations into the left subproof are over left-introduction rules that do not affect the

cut formula. The most difficult case is

[:A],Γ; Δ1 � B [:A],Γ; Δ2, C � A
[:A],Γ; Δ1Δ2, B� C � A � L

[Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � D
[Θ′jΔ1Δ2, B� C :Dj]

m
j=1,ΓΓ′; Δ1Δ2Δ′, B� C � D mix1

Form subproofs:

[:A],Γ; Δ1 � B [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � D
[Δ′ :D], [Θ′j :Dj]

m
j=1,ΓΓ′; Δ1 � B

dmixr

[:A],Γ; Δ2, C � A [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � D
[Θ′jΔ2, C :Dj]

m
j=1,ΓΓ′; Δ2Δ′, C � D mix1

The inductive measures of these cuts are reduced by H1. Now compose,

[Δ′ :D], [Θ′j :Dj]
m
j=1,ΓΓ′; Δ1 � B [Θ′jΔ2, C :Dj]

m
j=1,ΓΓ′; Δ2Δ′, C � D

[Δ′ :D], [Θ′j :Dj]
m
j=1[Θ′jΔ1Δ2, B� C :Dj]

m
j=1,ΓΓ′; Δ1Δ2Δ′, B� C � D

(� L•2)

[Δ′ :D], [Θ′jΔ1Δ2, B� C :Dj]
m
j=1,ΓΓ′; Δ1Δ2Δ′, B� C � D

(W •
[])

[Θ′jΔ1Δ2, B� C :Dj]
m
j=1,ΓΓ′; Δ1Δ2Δ′, B� C � D Lock

The weakening transformation was applied to [Θ′j :Dj]
m
j=1, merging it with [Θ′jΔ1Δ2, B� C :Dj]

m
j=1.

The other cases are simpler. The dmixr rule is required for� L and → L, along with Lock. In other

cases, the appropriate transformation of Figure 4 is applied, except for∨L, which is applied directly,

since it does not affect the multiset.

Stage 2: With the left subproof ending in Unlock, Pr, Lock or a right-introduction rule, mix1

is permuted into the right subproof until an initial rule or when the cut formula is principal to

a left-introduction. We must show that this permutation is possible for all structural rules as well

as introduction rules that do not affect the cut formula. A Lock that ends the right subproof is

permuted over directly, whether it affects the cut formula or not, as it changes little as to what

needs to be cut:

[:A]?,Γ; Δ � A
[Θ′, A :C], [Θ′j , A :Bj]

m
j=1,Γ

′; Δ′Θ′, A � C
[Θ′j , A :Bj]

m
j=1,Γ

′; Δ′Θ′, A � C Lock

[ΔΘ′j :Bj]
m
j=1,ΓΓ′; ΔΔ′Θ′ � C mix1

↓
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[:A]?,Γ; Δ � A [Θ′, A :C], [Θ′j , A :Bj]
m
j=1,Γ

′; Δ′Θ′, A � C
[ΔΘ′ :C], [ΔΘ′j :Bj]

m
j=1,ΓΓ′; ΔΔ′Θ′ � C mix1

[ΔΘ′j :Bj]
m
j=1,ΓΓ′; ΔΔ′Θ′ � C Lock

A Dr rule or an Unlock or Pr rule that does not affect the cut formula is likewise permuted

over in a straightforward manner. The most important case is when an additional copy of the cut

formula is unlocked: here mix1 must permute to a mix2:

[:A]?,Γ; Δ � A
[Θ′j , A :Bj]

m
j=1,Γ

′; Δ′Θ′k, A, A � Bk
[Θ′j , A :Bj]

m
j=1,Γ

′; Δ′, A � e
Unlock (k � m)

[ΔΘ′j :Bj]
m
j=1,ΓΓ′; Δ′Δ � e mix1

↓

[:A]?,Γ; Δ � A
[:A]?,ΓΔ;� A Dr∗

[Θ′j , A :Bj]
m
j=1,Γ

′; Δ′Θ′k, A, A � Bk
[Θ′j :Bj]

m
j=1,ΓΓ′Δ; Δ′Θ′k � Bk

mix2

[Θ′j :Bj]
m
j=1,ΓΓ′Δ; Δ′ � e Unlock

[Θ′j :Bj]
m
j=1,ΓΓ′; ΔΔ′ � e P r

∗

[ΔΘ′j :Bj]
m
j=1,ΓΓ′; ΔΔ′ � e

(W •
[])

Here, Dr∗ and Pr∗ represent repeated applications of these rules. In the Unlock step, [Θ′k :Bk] was

unlocked, which already exists in [Θ′j :Bj]
m
j=1. The inductive measure is reduced by U, the number of

Unlock rules that affect the cut formula above the cut, which has precedence over the height values.

The presence of the green literal e, which allows Pr to cancel Dr, made this permutation possible.

The case for Pr is similar

[:A]?,Γ; Δ � A
[Θ′j , A :Bj]

m
j=1, A,Γ

′; Δ′ � e
[Θ′j , A :Bj]

m
j=1,Γ

′; Δ′, A � e P r

[ΔΘ′j :Bj]
m
j=1,ΓΓ′; ΔΔ′ � e mix1

↓

[:A]?,Γ; Δ � A
[:A]?,ΓΔ;� A Dr∗

[Θ′j , A :Bj]
m
j=1, A,Γ

′; Δ′ � e
[Θ′j :Bj]

m
j=1,ΓΓ′Δ; Δ′ � e mix2

[ΔΘ′j :Bj]
m
j=1,ΓΓ′Δ; Δ′ � e

(W •
[])

[ΔΘ′j :Bj]
m
j=1,ΓΓ′; ΔΔ′ � e P r

∗

The inductive measure is reduced by P, which has precedence over H1.

Permutation over introduction rules that do not affect the cut formula are straightforward, and

do not require the transformations of Figure 4 (because Δ′ is not locked in the conclusion). For

� L and → L, dmix� replaces dmixr for the subproof that does not contain the cut formula.

Right-introduction rules may have to be permuted over as well:

[:A]?,Γ; Δ � A
[Θ′j , A :Dj]

m
j=1, B,Γ

′; Δ′, A � C
[Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, A � B→C→R

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′, A � B → C

mix1

↓
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[:A]?,Γ; Δ � A [Θ′j , A :Dj]
m
j=1, B,Γ

′; Δ′, A � C
[ΔΘ′j :Dj]

m
j=1, B,ΓΓ′; ΔΔ′, A � C mix1

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′, A � B → C

→R

There is one rule that stands out from the monotony:∨R may ‘affect’ the cut formula in a different

way:

[:A]?,Γ; Δ � A
[Θ′j , A :Dj]

m
j=1,Γ

′;� B
[Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, A � B∨ C ∨R

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′ � B∨ C mix1

↓

[:A]?,Γ; Δ � A [Θ′j , A :Dj]
m
j=1,Γ

′;� B
[ΔΘ′j :Dj]

m
j=1,ΓΓ′;� B dmix�

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′ � B∨ C ∨R

Stage 3: Stage 2 continues until either an initial rule or a left-introduction rule on the cut

formula is reached in the right subproof. Note that, if the left subproof ends in Unlock, Pr or

⊥L, then stage 2 will also end when the required green literal is affected by an initial rule in the

right subproof. Thus, we can assume for stage 3 that the cut formula A is not a literal. Now mix1

permutes to the multicut smix1:

[:A]?,Γ; Δ � A
(∗)

[Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � C
(∗LA)

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′ � C mix1

↓

[:A]?,Γ; Δ � A
(∗)

{[:A]?,Γ; Δ � A} [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � C
(∗LA)

[Δ′ :C]?, [ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′ � C

smix1

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; ΔΔ′ � C Lock?

The middle subproof is initially identical to the left subproof. Conceptually, we need to ‘remember’

how the left-subproof ended before the cut is permuted above additional Lock rules. The inductive

measure technically reduces by H3, which was H1 + 1 for mix1: this is just a convenient way to say

that smix will immediately reduce the inductive measure by one of the other values. The inference

shown subsumes the cases of whether [:A] is present. If not present, the inference ends without the

final Lock.

Permutations of smix1: This multicut will finally be able to permute over arbitrary Lock rules that

create copies of the right-side cut formula. The permutation is entirely over the middle subproof. It

will permute to an initial rule or a key case, at which point dmixr and dmix� are used to remove

additional copies of the cut formula before the cut is reduced to cuts on subformulas. Lock is

permuted over as follows:

[:A]?,Γ; Δ � A
(∗)

{
[Θ:A], [Θi :A]ni=1,Γ

′′; Δ′′Θ � A
[Θi :A]ni=1,Γ

′′; Δ′′Θ � A Lock} [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A �C
(∗LA)

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′′Γ′; Δ′′Δ′Θ � C smix1

↓
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[:A]?,Γ; Δ � A
(∗)

{[Θ:A], [Θi :A]ni=1,Γ
′′; Δ′′Θ � A} [Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, A �C
(∗LA)

[ΘΔ′ :C], [ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′′Γ′; Δ′′Δ′Θ � C smix1

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′′Γ′; Δ′′Δ′Θ � C Lock

The Dr rule is likewise permuted over in a straightforward manner. The inductive measure is always

reduced by H3. Since A cannot be a literal there is no possibility of Unlock or Pr. Left-introduction

rules are permuted over in similar manner to mix1: we show one representative case

[:A]?,Γ; Δ � A
(∗)

{
[Θi :A]ni=1,Γ

′′; Δ′′, P , Q � A
[Θi :A]ni=1,Γ

′′; Δ′′, P⊗ Q � A ⊗L} [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A �C
(∗LA)

[ΘiΔ
′ :C]ni=1[ΔΘ′j , P⊗ Q :Dj]

m
j=1,ΓΓ′′Γ′; Δ′′Δ′, P⊗ Q � C smix1

↓

[:A]?,Γ; Δ � A
(∗)

{[Θi :A]ni=1,Γ
′′; Δ′′, P , Q � A} [Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, A �C
(∗LA)

[ΘiΔ
′ :C]ni=1[ΔΘ′j , P , Q :Dj]

m
j=1,ΓΓ′′Γ′; Δ′′Δ′, P , Q � C smix1

[ΘiΔ
′ :C]ni=1[ΔΘ′j , P⊗ Q :Dj]

m
j=1,ΓΓ′′Γ′; Δ′′Δ′, P⊗ Q � C

(⊗L•)

Although other cases may require more steps, they follow the same pattern here and as demonstrated

for mix1: the cut permutes above the introduction rule, which is then replicated beneath the cut,

using the appropriate transformation of Figure 4 if necessary. In the cases of � L and → L, dmix1

replaces dmixr .

Key cases: When the middle subproof ends in a right-introduction rule, we have reached a key

case, since the right subproof is assumed to end in a left-introduction rule on the cut formula. We

demonstrate the case for A = P→Q, which is representative in that it covers all of the techniques

required to reduce key cases:

.. {
[Θi :A]ni=1, P ,Γ

′′; Δ′′ �Q
[Θi :A]ni=1,Γ

′′; Δ′′ �P→Q→R}
[Θ′j , A :Dj]

m
j=1,Γ

′;�P [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, Q �C
[Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, P→Q �C →L

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′Δ′ �C smix1

Here .. represents a subproof ending in [:P→Q],Γ; Δ � P→Q for lack of space (and A = P→Q).

First make cuts to eliminate locked copies of the cut formula:

[:P→Q],Γ; Δ � P→Q {[Θi :A]ni=1, P ,Γ
′′; Δ′′ �Q} [Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, P→Q �C
[ΘiΔ

′ :C]ni=1[ΔΘ′j :Dj]
m
j=1, P ,ΓΓ′Γ′′; Δ′′ �Q dmix1

[:P→Q],Γ; Δ �P→Q [Θ′j , A :Dj]
m
j=1,Γ

′;�P
[ΔΘ′j :Dj]

m
j=1,ΓΓ′;� P dmix�

[:P→Q],Γ; Δ �P→Q [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, Q �C
[ΔΘ′j :Dj]

m
j=1,ΓΓ′; Δ′, Q � C dmix�

For the first subproof with dmix1, the inductive measure is reduced by H3. For the sub-

proofs with dmix�, the inductive measure is reduced by H2, which has precedence over H3.
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Now construct

[ΔΘ′j :Dj]
m
j=1,ΓΓ′;� P [ΘiΔ

′ :C]ni=1[ΔΘ′j :Dj]
m
j=1, P ,ΓΓ′Γ′′; Δ′′ �Q

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′ � Q mix2

and finally,

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′ � Q [ΔΘ′j :Dj]

m
j=1,ΓΓ′; Δ′, Q � C

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′Δ′ �C mix1

The inductive measures of the final cuts are reduced by S, the size of the cut formula. The final

cuts are in fact just cut2 and cut1 as all locked copies of the cut formulas have been removed. The

last step, therefore, follows the pattern of key cases in other cut-elimination proofs: the argument

is standard. The other key cases are similar.

Permutations for dmix�, dmixr and dmix1: These cuts always permute in one direction until they

reach an Unlock on the cut formula. dmix� permutes into the right subproof until such an Unlock,

at which point it permutes to a mix1. dmixr permutes into the left subproof until an Unlock, then

it permutes to a mix2. dmix1 permutes into the middle subproof until Unlock, then permutes to an

smix1, which is why dmix1 is also a multicut. All permutations over rules that do not affect the

locked cut formulas are in the manner already demonstrated. In particular, dmixr may permute

directly over Lock rules in the left subproof for these rules do not affect the cut formula A. We

demonstrate what occurs at each significant Unlock:

[:A],Γ; Δ � A
[:A],Γ; Δ � e Unlock

[Θ′j , A
+ :Dj]

m
j=1, A

?,Γ′; Δ′, A∗ � C
[Δ′ :C], [Θ′j :Dj]

m
j=1,ΓΓ′; Δ � e dmixr

↓
[:A],Γ; Δ � A
[:A],ΓΔ;� A Dr∗

[Θ′j , A
+ :Dj]

m
j=1, A

?,Γ′; Δ′, A∗ � C
[Θ′j :Dj]

m
j=1,ΓΓ′Δ; Δ′ � C mix2

[Δ′ :C], [Θ′j :Dj]
m
j=1,ΓΓ′Δ;� e Unlock

[Δ′ :C], [Θ′j :Dj]
m
j=1,ΓΓ′; Δ � e P r

∗

The inductive measure is reduced by U. This permutation would fail if, instead of [: A] we had

[Θ :A] with a non-empty Θ: Pr is not enough and more powerful structural rules that would allow

such a permutation are unsound. Now for dmix�:

[:A]?,Γ; Δ � A
[Θ′j , A :Dj]

m
j=1,Γ

′; Δ′Θ′k, A � Dk
[Θ′j , A :Dj]

m
j=1,Γ

′; Δ′ � e Unlock

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; Δ′ � e dmix�

↓

[:A]?,Γ; Δ � A [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′Θ′k, A � Dk
[ΔΘ′j :Dj]

m
j=1,ΓΓ′; ΔΔ′Θ′k � Dk

mix1

[ΔΘ′j :Dj]
m
j=1,ΓΓ′; Δ′ � e Unlock

In the last step, the unlocked element [ΔΘ′k :Dk] already exists in the set. The inductive measure is

also reduced by U. The subtle point here is that, unlike dmixr , we cannot permute dmix� into a mix2:

Δ will be in the wrong location in the conclusion. Consequently, dmix� and other cuts that depend
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on it, including mix1, can unlock at most one copy of the cut formula at a time (A instead of A+

in [Θ′j , A :Dj]
m
j=1 ). Once these cuts are proved admissible, however, we can apply them repeatedly to

remove all copies of locked cut formulas. Now for dmix1

[:A]?,Γ; Δ � A
(∗)

{
[Θi :A]ni=1,Γ

′′; Δ′′Θk � A
[Θi :A]ni=1,Γ

′′; Δ′′ � e Unlock} [Θ′j , A :Dj]
m
j=1,Γ

′; Δ′, A � C
(∗LA)

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′ � e dmix1

↓

[:A]?,Γ; Δ � A
(∗)

{[Θi :A]ni=1,Γ
′′; Δ′′Θk � A} [Θ′j , A :Dj]

m
j=1,Γ

′; Δ′, A � C
(∗LA)

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′ΘkΔ

′ � C smix1

[ΘiΔ
′ :C]ni=1[ΔΘ′j :Dj]

m
j=1,ΓΓ′Γ′′; Δ′′ � e Unlock

The unlocked [ΘkΔ
′ :C] already exists in [ΘiΔ

′ :C]ni=1. The inductive measure in this case is simply

reduced by H3. The other values including U are unchanged.

Permutations of mix2: mix2 permutes into the right subproof until an initial rule or a left-

introduction on a copy of the cut formula is reached. These permutations are mostly in the same

manner as for mix1. For parametric introduction rules, the transformations of Figure 4 are not

required. A structural rule ending the right subproof changes nothing in terms of what needs to

be cut, and are permuted over straightforwardly. When these permutations are exhausted (without

reaching an initial rule), we consider the left-subproof, of which the last inference rule can only be

a right-introduction, a Lock, Unlock, Pr or Dr. A right-introduction rule would result in a key case

(see below). Lock can only produce a [:A], which changes nothing. The situation for Unlock and

Pr are the same as for mix1. The additional difficulty is the Dr rule:

F,Γ;F � A
F,Γ;� A Dr

A?,Γ′; Δ′, A∗, A � C
(∗LA)

F,ΓΓ′; Δ′ � C mix2

Clearly, mix2 cannot be permuted directly above this Dr. The cut is permuted above the left-

introduction rule on the cut formula itself. Consider the representative case when A = P& Q, and

with the presence of [:A]:

[:P& Q], F,Γ;F � P& Q

[:P& Q], F,Γ;� P& Q
Dr

[Θ′j , (P& Q)+ :Dj]
m
j=1, (P& Q)?,Γ′; Δ′, (P& Q)∗, P �C

[Θ′j , (P& Q)+ :Dj]
m
j=1, (P& Q)?,Γ′; Δ′, (P& Q)∗, P& Q �C &L

[Θ′j :Dj]
m
j=1, F,ΓΓ′; Δ′ �C mix2

Form the following, mix2, for which the inductive measure is reduced by H2:

[:P& Q], F,Γ;� P& Q [Θ′j , (P& Q)+ :Dj]
m
j=1, (P& Q)?,Γ′; Δ′, (P& Q)∗, P � C

[Θ′j :Dj]
m
j=1, F,ΓΓ′; Δ′, P � C mix2

[Θ′j :Dj]
m
j=1, F,ΓΓ′; Δ′, P& Q � C &L

Now, form a mix1 beneath the mix2

[:P& Q], F,Γ;F � P& Q [Θ′j :Dj]
m
j=1, F,ΓΓ′; Δ′, P& Q � C

[Θ′j , F :Dj]
m
j=1, F,ΓΓ′; Δ′, F � C mix1

[Θ′j , F :Dj]
m
j=1, F,ΓΓ′; Δ′ � C Dr

[Θ′j :Dj]
m
j=1, F,ΓΓ′; Δ′ � C

(Dr•)
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This mix1 (actually just cut1) is reducible because the inductive measure is reduced by H1. This is

the reason that H1 has precedence over H2 in the lexicographical ordering. Since mix2 removed

all copies of the cut formula, the values U and P cannot increase (they will decrease if non-zero).

Note that only the ‘regular” introduction rule &L was used beneath mix2. The cut rules were

designed so that none of the transformations of Figure 4 will be required, as they would generally

increase U.

Key cases: The key-cases for cut2 are similar to those of mix1 except that mix2 replaces dmix�.

We demonstrate one case

[:A∨ B],Γ;� A
[:A∨ B],Γ;� A∨ B ∨R

[Θ′j , (A∨ B)+ :Dj]
m
j=1, A, A∨ B,Γ′; Δ′ � C .., B, A∨ B,Γ′; Δ′ � C

[Θ′j , (A∨ B)+ :Dj]
m
j=1, A∨ B,Γ′; Δ′, A∨ B � C ∨L

[Θ′j :Dj]
m
j=1,ΓΓ′; Δ′ � C mix2

Eliminate copies of cut formulas with

[:A∨ B],Γ;� A∨ B [Θ′j , (A∨ B)+ :Dj]
m
j=1, A, A∨ B,Γ′; Δ′ � C

[Θ′j :Dj]
m
j=1, A,ΓΓ′; Δ′ � C mix2

[:A∨ B],Γ;� A [Θ′j , (A∨ B)+ :Dj]
m
j=1, A∨ B,Γ′; Δ′, A∨ B � C

[Δ′ :C], [Θ′j :Dj]
m
j=1,ΓΓ′;� A dmixr

The inductive measure for the new mix2 is reduced by H2 with H1 unchanged, while for dmixr it is

reduced by H1. Now, form the cut on subformulas

[Δ′ :C], [Θ′j :Dj]
m
j=1,ΓΓ′;� A [Θ′j :Dj]

m
j=1, A,ΓΓ′; Δ′ � C

[Δ′ :C], [Θ′j :Dj]
m
j=1,ΓΓ′; Δ′ � C mix2

[Θ′j :Dj]
m
j=1,ΓΓ′; Δ′ � C Lock

The dmixr rule can be applied even if the left subproof has a non-empty multiset, such as with

[:A� B],Γ;A � B. Thus, the same technique is valid for all cases including �.

Theorem 6.8. The cut rules of ACL are admissible.

Proof. By induction on the number of cuts in a proof: repeatedly apply Lemma 6.7 to topmost

cuts with only cut-free subproofs.

7. Consequences of cut elimination; soundness and completeness

A large number of properties are implied by cut elimination. Only the principal cuts, cut1 and cut2
are required to establish these properties: we do not require cuts between arbitrary proof fragments.

The most significant of these properties are soundness and completeness with respect to the use of

Lock/Unlock, and with respect to the semantics.

Combined with initial elimination (Theorem 4.2), cut elimination allows us to show the logical

validity of the Unlock rule:

Corollary 7.1. [Θ:A],Γ; Δ � B is provable if and only if −(Θ⊗� A),Γ; Δ � B is provable.

Proof. The forward direction (soundness of focusing) follows because Unlock can be emulated

with → L, ⊥L, � R and ⊗L. The reverse direction (completeness of focusing) holds by cut
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elimination and initial elimination as the following shows:

; Θ � Θ⊗ ;A � A
; Θ⊗� A,Θ � A � L

[Θ : A]; Θ⊗� A � ⊥ Unlock

[Θ : A];� −(Θ⊗� A)
� R −(Θ⊗� A),Γ; Δ � B

[Θ : A],Γ; Δ � B cut2

This corollary is also important for the semantic completeness proof.

Although the formula −−A� A is not valid (unless A is green), cut elimination allows a syntactic

proof of the following admissible rule:

Lemma 7.2. If −−A is provable then A is also provable

Proof. Using cut elimination, we can easily show that the � R introduction rule is invertible:

;� − − A is provable iff ;−A � ⊥ is provable. The last inference rule of such a cut-free proof can

be either a � L rule, in which case ;� A is provable, a Lock rule with premise [:⊥];−A � ⊥ or

[−A :⊥];−A � ⊥ or a Pr rule with premise −A;� ⊥. The second possibility can be disregarded

since by Corollary 7.1, this sequent is provable iff ⊥� ⊥;−A � ⊥ is provable. By cut elimination

again, this sequent is equivalent to ;−A � ⊥. If the premise of Lock is [−A : ⊥];−A � ⊥, by

Corollary 7.1 this is equivalent to −−−A;−A � ⊥. But −−−A is provably equivalent to −A (even

in minimal logic), and so by eliminating a cut2 the sequent is equivalent to −A;−A � ⊥. But the

provability of this sequent is equivalent to the provability of −A;� ⊥ (by weakening and Dr). By

Corollary 7.1, this sequent is in turn equivalent to [:A];� ⊥. The last rule above this sequent can

only be another Lock on [:⊥], which is again a null operation, or an Unlock, which means that

;� A is provable. The final possibility (Pr) also has premise −A;� ⊥.

This admissible rule is easy to show semantically, but the syntactic argument is also an important

step in the semantic completeness proof.

7.1. Semantic completeness

The soundness of the sequent calculus with respect to its semantics is argued as usual by induction on

the structure of proofs. The completeness proof differs from other phase space completeness proofs

principally in the following ways. First, we prove the existence of a counter-model from the assump-

tion of an unprovable formula. Second, the unit/root of the monoid that we build is not an empty set

of formulas. Instead, it is a maximally consistent set with respect to ⊥, which has the characteristics

of a Hintikka set. Our proof also uses cut elimination, which we want to prove procedurally in any

case.

The most important argument of the proof is that, since the root is maximally consistent and

since B⊕ −B is provable, by cut elimination exactly one of B or −B must be in the root for

every formula B. Thus, any proper addition to the root will cause it to derive ⊥, i.e., ⊥ is represented

by all worlds above the root. Thus, a counter-model with the proper interpretation of ⊥ can be

constructed.

The completeness proof applies Lemma 4.3 and Corollary 7.1 and requires the following:

Proposition 7.3. If ;� A is not provable, then ;� A⊕⊥ is also not provable.
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Proof. This holds by the contrapositive of Lemma 7.2, and by cut elimination because A⊕⊥ is

provably equivalent to −− A:

;A � A
;A � A⊕⊥ ⊕R

[:A⊕⊥];A � ⊥ Unlock

[:A⊕⊥];� −A � R
;⊥ � ⊥

[:A⊕⊥];−− A � ⊥ � L

[:A⊕⊥];−− A � A⊕⊥ ⊕R

;−− A � A⊕⊥ Lock

The other direction is straightforward.

This lemma allows us to build a set of formulas that are maximally consistent with respect to both

A, the formula assumed to be unprovable, as well as ⊥. This set forms the root world of the model

that does not ‘force” ⊥ (r �∈ ⊥p).

Theorem 7.4. A formula is provable if and only if it is valid.

The remaining details of this proof, save for Lemma A1, mostly emulate Girard (1995) and

Okada (2002). The proof is found in Appendix A.

8. Natural deduction and computation

This section defines an alternative, natural deduction system with proof terms. We also define a

call-by-value based reduction system for these terms. Of course, there are other ways to reduce

terms and this section is intended as a demonstration of the computational significance of ACL.

The new system restricts to the two arrows → and �, and the two forms of false. We prefer to

associate a proof term with an entire subproof, as in Parigot (1992), and not just the stoup formula.

The system is found in Figure 5. There is much to explain, in particular the special elimination rules

� �E and → �E, which distinguishes types of the form E� R and E → R, where E is green but

R is red (hence the syntactic restrictions in the regular � E and → E rules). These forms delimit

the scope of control operators. First, however, we explain how this system relates to our sequent

calculus, linear λ-calculus, and λμ-calculus.

All formulas on the left-hand side of sequents are indexed by variables (e.g., Ax). We assume that

variables are always distinguishable and are renamed to avoid clash when necessary. In particular,

appropriate new variables are used to index copies of formulas in the Dr, Pr and Unlocke rules

(notation {x/y} represents substitution). In the Pr rule, we assume that duplicate copies of the

formula are merged into the set context by selecting the appropriate y1 . . . yn. In proof examples,

however, we will assume that these variable substitutions occur implicitly to avoid notational clutter.

We have generalized the Pr and ⊥E rules to arbitrary green formulas, which is valid by Lemma

4.3. We have modified the Lock rule based on the more general Peirce’s formula

((P� e)→ P )� P ,

so that e can be any green literal. We chose not to allow arbitrary green formulas here in order to

simplify term reduction. The notation [Θ :A]de has the logical meaning of the formula (Θ⊗� A)� e,

and is indexed by d. The new Locke rule only superficially violates the subformula property. It is

useless without Unlocke, which can only be applied if e is a subformula of the end sequent. Instances

of Locke, where e is not such a subformula can be discarded. The new lock/unlock rules are clearly
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Fig. 5. Natural deduction for a fragment of ACL. E is green, R is red, e is a green literal. [Θ :A]

may only appear to the left of ; If B is red, then C must also be red;

sound. Furthermore, the original rules can be recovered by Lock⊥ and by Unlock⊥ combined with

break:

t : Γ; ΔΘ � A
[d]t : [Θ : A]d⊥,Γ; Δ � ⊥

Unlock⊥

B([d]t) : [Θ : A]d⊥,Γ; Δ � e ⊥E

The soundness and completeness of the modified rules guarantee that cuts are still admissible. The

generalized rules are more useful in that they allow us to use the green formulas more meaningfully

as types. We can also consider a version of Lock that always copies the entire affine context, which

would remain complete by the admissibility of weakening. However, adopting such a rule would

make some of the subsequent examples syntactically clumsy, and thus we allow Lock to be more

selective. However, we have modified the Pr rule so that it affects all formulas in the affine linear

context: this modification is conservative with respect to the original Pr because of the Dr rule:

Γ, B; Δ � e
Γ, B,Δ;� e Dr

∗

Γ;B,Δ � e P r

The generalized Id rule holds by Lemma 4.2. Concerning rules for the connectives and constants,

the natural deduction style introduction and elimination rules are shown to be equivalent to sequent

calculus in the usual way, using cut elimination:

Lemma 8.1. A formula containing only → and � as connectives is provable in natural deduction

if and only if it is provable in sequent calculus.
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Proof. These arguments are standard and appear elsewhere, but perhaps less so for the affine-

linear � and for ⊥:

Γ; Δ′ � B
Γ; Δ � B� C ;B,B� C � C

Γ; Δ, B � C cut1

Γ; ΔΔ′ � C
cut1

Γ; Δ � ⊥ ;⊥ � E
Γ; Δ � E cut1

Γ; Δ � B ;B� C � B� C

Γ; Δ, B� C � C � E
Γ; Δ′, C � D

Γ; Δ′ � C� D
� I

Γ; ΔΔ′, B� C � D � E
Γ; Δ,⊥ � ⊥
Γ; Δ,⊥ � E ⊥E

By Lemma 4.3, ;⊥ � E is provable for any green formula E. The rules → �E and� �E change the

proof term, not provability.

There are two types of lambda abstraction: λ and λ!, that correspond to � and →, respectively.

There are also two types of application: (s t) and (s t): these correspond, respectively, to A� (A�

B) � B and A → (A → B) � B, two forms of Modus Ponens that are possible. One potential

problem with linear lambda terms is how to type terms, such as λx.((λf.λy.f (f y)) x): here, x

appears once before reduction but twice afterwards. The solution to this problem in our system

is obvious: the term λx.((λ!f.λy.f (f y)) x) cannot be assigned a red type, because of the context

restriction on → elimination. The term λx.((λ!f.λy.f (f y)) x) is not typable.

The rule Dr carries no computational meaning except for variable renaming. The rule Pr,

however, is more significant. All free variables inside the scope of ! may appear more than once.

However, this does not mean a complete classical collapse, for red subformulas of green formulas

will retain their non-classical strength: in !(y λx.t), x can still appear only once in t unless it is inside

the scope of another ! in t. The proof of (P � −P )� −P , for example, is λxλy.!xyy. Alternatively,

we can preserve the original version of Pr using terms such as !x.t, to indicate the singleton formula

that Pr affects. However, x must still be considered free in !x.t. We considered the possibility of

including such a binder to simulate dynamic scoping in our previous paper on PCL (Liang and

Miller 2013b). However, here the approach is problematic, because the variables that Pr affects are

not distinguishable from λ-bound variables (unlike γ-bound variables that are uniquely associated

with locked formulas), which means that !x should be subject to substitution during β-reduction.

Thus, we chose the simpler representation.

For background on the following, a clear explanation of λμ-calculus and control operators can

be found in de Groote (1994).

Terms γd.s represent contraction and are equivalent to μd.[d]s in classical λμ calculus. Whereas

γ can be seen as a logical constant of type ((P � e) → P ) � P , μ has type ¬¬A → A in classical

logic. This does not mean that we cannot derive the more general C control operator (Felleisen

et al. 1987), compared to call/cc. We can prove the purely classical ¬¬E → E, or the hybrid

((A� ⊥)→ 0)� A. Given that there are two implications, two constants for false, and two colours,

there are 64 versions of the double negation axiom that can be considered in the unified logic.

Figure 6 displays two sample proofs. The first is for our version of Peirce’s formula. The proof

term is equivalent to the version found in the λμ-calculus, λx.μd.[d](x λy.μf.[d]y): the only difference

is the explicit contraction on d and the vacuous μf., which represents a weakening on the right-

hand side in Parigot’s multiple-conclusion system. Had we chosen to store locked formulas on the

right-hand side, we would also need such a mechanism (which we did in Liang and Miller (2013b)).

The second proof is new: �e� (��A� A). Here, A is any formula, red or green. The assumption

�e = e� 0 causes a collapse into classical logic, since it implies that 0, and therefore all formulas,

have the characteristics of green formulas. However, it is a one-time only assumption: the collapse is

momentary. In order for this use-once control operator to have its usual effect, a permission ‘token’
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Fig. 6. Sample proofs: Peirce’s formula and use-once control operator.

of type �e (or ∼e) needs to be present. A similar proof derives a call-once/cc operator, this time

with no colour restriction on Q: λxλz.γd.x(λy.A(z [d]y)) : ((P� Q)� P )��e� P .

8.1. Structural rules and delimited control

The transitions between different modes of proof, in the form of structural rules, also mark

boundaries that determine how cuts can be permuted. This behaviour is similar to those of

delimited control operators. This correspondence is consistent with the recent work of Ilik (2012),

which shows that delimited control behaviour can be seen as resulting from the transition between

non-classical and classical modes of proof. In this section, we explore this phenomenon and define a

call-by-value based reduction system for our terms that includes the evaluation of control operators.

Break versus abort

The manner in which colouring information determines how cut can be permuted corresponds

to an interesting computational effect. Consider

s : Γ; Δ � E1 � E2

t : Γ; Δ′ � ⊥
B(t) : Γ; Δ′ � E1

⊥E

(s B(t)) : Γ; ΔΔ′ � E2
� E

With E1 and E2 both green, there are two ways to permute this cut. The first is by usual β-reduction,

once s has been reduced to a lambda-term. A second possibility aborts β-reduction and reduces to

the following:

t : Γ; ΔΔ′ � ⊥
B(t) : Γ; ΔΔ′ � E2

⊥E

With weakening, the same t still proves the premise (Δ-variables do not appear free in t). The term

s is discarded. The same choice exists for →. However, if E2 was not green, then the only choice is

β-reduction. In contrast to an abort: A(t), which uses 0-elimination, the break generated by a B(t)
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cannot escape the entire program context but is thrown upwards towards the nearest red context,

i.e., the red continuation skips to where the break occurs. We can also say that it catches the break.

This is the function of the special-case � �E (and → �E) rules. The ‘delimiter’ � is a type

annotation that indicates a transition from green to red; it has no meaning independently of such

a context. β-reduction can be cancelled by B but resumes on �: that is, (λx.s) B(t) reduces to

B(t), but (λx.s) �B(t) reduces to s{B(t)/x}. The delimiter � has no meaning on its own, and must

be dropped after substitution. This gives the marker a dynamic behaviour. Instances of subterms

(s t), where s is of type E� R are not well-typed: they must be in the form (s �t). For example,

(λx.g �(f2 x)) �(f1 B(u)) should reduce to (g �B(u)). Both f1 and f2 are aborted. Here, f2 must

be of some type e� e′ and g of type e′� R. Reducing to a term that contains (f2 �B(u)) is not

type-sound. This behaviour is dynamic because one cannot determine which � will stop the break

without reducing the term.

Capturing delimited continuations

Besides Unlock and ⊥E, Pr is also sensitive to colouring information. Pr also marks a boundary

between classical and non-classical behaviour. Consider the following scenario:

λx.u : Γ;� E2 � R

λy.v : Γ;� E1� E2

t : Γ1; Δ1 � E1

[d]t : [:E1]de′ ,Γ1; Δ1 � e′
Unlocke′

...

s : [:E1]de′ ,ΓΔ;� E1

γd.s : ΓΔ;� E1
Locke′

!γd.s : Γ; Δ � E1
Pr

(λy.v)!γd.s : Γ; Δ � E2
� E

(λx.u) �((λy.v)!γd.s) : Γ; Δ � R � �E

With R red but E1, E2 and e′ green, it is possible to permute the cut with proof λy.v above the

Pr, and then above the Unlock. However, the only way to cut with λx.u is to substitute the right

subproof into u (β-reduction), as R will not be able to duplicate Pr:

Γ;� E2 � R

Γ;� E1 � E2

Γ;� E1� E2 Γ1; Δ1 � E1

Γ1Γ; Δ1 � E2
� E

[:E2]de′ ,Γ1Γ; Δ1 � e′
Unlocke′

...

[:E2]de′ ,ΓΔ;� E1

[:E2]de′ ,ΓΔ;� E2

ΓΔ;� E2
Locke′

Γ; Δ � E2
Pr

Γ; Δ � R � �E

Terms of the form !γd.s are different from γd.!s in terms of how cuts can be permuted: in the latter

case Pr is applied above Lock, i.e., the continuation is saved before a switch to a classical, ‘stateless’

context. Terms of the latter form do not affect the permutability of cuts above Lock (a cut with

E2 � R can take place beneath Pr, but still above Lock). However, if the continuation is saved after

the ! switch, as shown here, then terms of transitional type e� R cannot be captured above the

Lock (and corresponding Unlocks) because Pr cannot be replicated beneath.

To construct a system that allows the direct-style capture of delimited continuation, we need to

first fix a call-by-value like reduction strategy (as in Ong and Stewart (1997)). Terms γd.t are not
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considered values and thus terms of the form (λx.s) γd.t are not reduced by β: rather the cut is

permuted to instances of [d]w inside t. Our scheme differs from the usual definition of call-by-value

in that whether terms !t are considered values depend on the presence of �, which is itself not a

term constructor.

To define a reduction strategy to a variant of weak head-normal form, we first identify several

subcategories of terms, P , H , V and V ′. Terms are first reduced to pre-values P before the choice of

further reduction is made. These terms will include ‘rigid’ terms H of the form (x T1 . . . Tn), where

x is a variable. V represents those pre-values that can be treated as values that do not come after

�, such as those appearing in the redex (λx.T )V , while V ′ represents those pre-values that can be

treated as values after �. For simplicity, we shall only consider λ instead of λ! terms as additional

rules for λ! would be repetitive. The rules for the conventional abort, 0E are left out for the same

reason. Not all of the following terms are intended to be typable.

Definition 8.2.

All terms: T ::= x | λx.T | γd.T | !T | [d]T | (T T ) | (T �T ) | B(T )

Rigid-head terms: H ::= x | (H T ) | (H �T )

Pre-values: P ::= H | λx.T | γd.P | [d]P | !P | B(P )

Values: V ::= H | λx.T | [d]P

�-Values: V ′ ::= V | !P | B(P )

Furthermore, we shall use the symbol Q to represent pre-values that are not of the form !P , and

the symbol R to represent Q-terms that are not of the form B(P ).

In order to reduce cuts inside a γ binder (Lock), we will need to evaluate inside terms γd.T and

!T . We choose not to unravel the focused meaning of Unlock, and also treat terms [d]P as a value.

Whether a term !P is treated as a value depends on the presence of �. In (u !v), if u is not of

type e� R, then no delimitation is required despite the !. It is only when � and ! appear together

that evaluation will be affected. It is not possible to combine the introduction of � and ! into a

single rule as it would not be preserved under substitution.

The definition of evaluation context E must distinguish between redexes of the form (λx.s) !t,

which should move the Pr rule beneath the cut (to !(λx.s)t), and situations such as (λx.s) �!T , in

which case T may require further evaluation.

Definition 8.3. Evaluation contexts E are of the following forms

E ::= [ ] | E T | P E | E �T | P �E | !E | γd.E | [d]E | B(E)

Without the symbols γ, [d], !, � and B, this definition of context E becomes the standard one for

call-by-value reduction.

1. E[Q !P ] −→ E[!(Q P )] (permutation of cut above Pr).

2. E[!P Q] −→ E[!(P Q)] (permutation of cut above Pr).

3. E[!P1 !P2] −→ E[!(P1 P2)] (permutation of cut above Pr).

4. E[Q B(P )] −→ E[B(P )] (break).

5. E[B(P ) R] −→ E[B(P )] (break).

6. E[Q γd.P ] −→ E[γd.Q P {[d]Qu/[d]u}] (capture of evaluation context).

7. E[P1 �γd.P2] −→ E[γd.P1 �P2{[d]P1�u/[d]u}] (capture of evaluation context).

8. E[(λx.T ) V ] −→ E[T {V/x}] (beta-reduction).

9. E[(λx.T ) �V ′] −→ E[T {V ′/x}] (beta-reduction).

10. E[(γd.P ) V ] −→ E[γd.P {[d](u V )/[d]u} V ] (λμ-style reduction).

11. E[(γd.P ) �V ′] −→ E[γd.P {[d](u �V ′)/[d]u} �V ′] (λμ-style reduction).

1209

https://doi.org/10.1017/S0960129518000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000403


C. Liang

The first three rules permute Pr beneath cuts where possible. A term in the form (λx.s) γd.t will

be reduced by rule 6, whereas (λx.s) �!γd.t must be reduced by beta-reduction (rule 9).

Define a redex to be any term of one of the forms r found in an evaluation rule E[r] −→ s.

A term t is well-typed if there is a proof of t : Γ; Δ � A for some sequent Γ; Δ � A. We have the

following principle result concerning evaluation.

Lemma 8.4. Every well-typed term T is either a pre-value P or of the form E[r], where r is a redex

and where E and r are unique.

Proof. By induction on the structure of terms. We detail the most important and representative

cases. What distinguishes a pre-value from a non-reduced term is the presence of application terms

(T1 T2) or (T1 �T2) that are not rigid H-terms. Assume that T is not a pre-value and is of the form

(T1 T2). We have the following mutually exclusive cases:

1. If T1 is not a P -term, then by inductive hypothesis, T1 = E ′[r]. So let E = E ′ T2 and so

T = E[r]. E is uniquely determined if E ′ is.

2. If T1 is a P term but T2 is not, then T is of the form (P T2). Again by inductive hypothesis

T2 = E ′[r] so let E = P E ′.

3. If T is of the form (P1 P2), then let E = []; If either P1 or P2 is prefixed by !, then it is reduced

by one of the first three rules, which permutes ! beneath cuts. Since terms (H P ) are pre-values,

and terms [d]P cannot be of arrow type, the only other possibilities are as follows:

a. P1 = λx.T : the redex r is either (λx.T ) V , (λx.T ) γd.P , or (λx.T ) B(P ), which are reduced

by rules 8, 6, 4, respectively.

b. P1 = γd.P . The redex is either (γd.P ) V , (γd.P ) γf.P ′ or (γd.P ) B(P ′), which are reduced by

rules 10, 6, 4, respectively.

c. P1 = B(P ). The redex depends on whether P2 is also of form the form B(P ′): (B(P ) B(P ′))

reduces by rule 4 uniquely and (B(P ) R) reduces by rule 5, where R represents P -values not

of the form B(P ′) or !P ′.

Now consider the case, when T is a not a P -term and is of the form (T1 �T2). The case when

T1 and T2 are not both P -terms result in either E = E ′ �T2 or E = P �E ′ by inductive hypotheses,

just as in the case of (T1 T2). We observe that a term (!P1 �P2) is not well typed because E� R

is red and thus Pr cannot be applied if P1 is of such a type. Thus, let E = [] and T = (Q �P ) (Q

cannot be !P1). Q also cannot be of the form B(T ) because it must be of type E� R, which is red

and thus cannot be the conclusion of break. Nor can Q be [d]T because Unlock cannot be applied

to an arrow type (the restriction to green literals is retained for Unlock), nor can it be an H-term

since T is not a P -term. Thus, the only possibilities for Q:

1. Q = λx.T : the redex is either (λx.T ) �V ′ (rule 9) or (λx.T ) �γd.P2 (rule 7), depending on the

form of P .

2. Q = γd.P1: the redex is either (γd.P1) �V ′ (rule 11) or (γd.P1) �γf.P2 (rule 7).

In the other cases when T is not a pre-value, it must be of the forms γd.T ′, [d]T ′, B(T ′), or !T ′,

where T ′ is not a pre-value. All of these cases are straightforward.

This lemma shows both the progress of evaluation and that evaluation is deterministic.§

Each evaluation rule corresponds to a valid proof transformation (permutation of cut), and thus

we can also show that evaluation is type sound (subject reduction):

§ Technically, a pre-value can also include a redex since T in the definition rigid-head terms H can be prefixed

by !: but this does not contradict the statement of the lemma.
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Lemma 8.5. If s : Γ; Δ � A is provable and s −→ t, then t : Γ; Δ � A is also provable.

Proof. Since any subproof can be replaced by another subproof that ends in the same sequent,

a reduction E[r] −→ E[r′] is type sound as long as r −→ r′ is. We show some representative cases

of the proof. For rule 1, if (Q !P ) is well typed then it must be a proof of the following form:

Q : Γ; Δ � E1 � E2

P : Γ′Δ′;� E1

!P : Γ′; Δ′ � E1
Pr

(Q !P ) : ΓΓ′; ΔΔ′ � E2
� E

which is reduced to

Q : Γ; Δ � E1 � E2 P : Γ′Δ′;� E1

(Q P ) : ΓΓ′Δ′; Δ � E2
� E

!(Q P ) : ΓΓ′; ΔΔ′ � E2
Pr

Rules 2 and 3 are similar. Consider rule 7 (rules 6, 10, 11 are similar) with no ! before γ, the term

P1 can be captured as part of the continuation despite the presence of �.

P1 : Γ; Δ � E� R

u : Γ1; Δ1Θ � E
[d]u : [Θ :E]de′ ,Γ1; Δ1 � e′

Unlocke′

...

P2 : [Θ :E]de′ ,Γ
′; Δ′Θ � E

γd.P2 : Γ′; Δ′Θ � E Locke′

P1 �γd.P2 : ΓΓ′; ΔΔ′Θ � R
� �E

↓

P1 : Γ; Δ � E� R

P1 : Γ; Δ � E� R u : Γ1; Δ1Θ � E
P1�u : ΓΓ1; ΔΔ1Θ � E � �E

[d]P1�u : [ΔΘ :E]de′ ,ΓΓ1; Δ1 � e′
Unlocke′

...

P2{[d]P1�u/[d]u} : [ΔΘ :E]de′ ,ΓΓ′; Δ′Θ � E
P1 �P2{[d]P1�u/[d]u} : [ΔΘ :E]de′ ,ΓΓ′; ΔΔ′Θ � R

� �E

γd.P1 �P2{[d]P1�u/[d]u} : ΓΓ′; ΔΔ′Θ � R Locke′

Observe that even if P2 was of the form !P , the new proof would still be valid because the subproof

!P {[d]P1�u/[d]u} would still be of type E. The � may affect further reduction of the cuts with P1

inside the γ binder. This is not the case if ! was outside the γ as the next case we consider shows.

Consider rule 9, the exact forms of which depends on V ′. Say V ′ =!P . If the term is well typed

then the redex represents a proof of the form

T : Γ; Δ, Ex � R
λx.T : Γ; Δ � E� R

� I
P : Γ′Δ′;� E

!P : Γ′; Δ′ � E Pr

(λx.T )�!P : ΓΓ′; ΔΔ′ � R
� �E

Here, the !P must be substituted into proof T entirely, resulting in

T {!P/x} : ΓΓ′; ΔΔ′ � R.

Unlike rule 1, ! cannot be moved to the outside because Pr is not valid with red R in the stoup.

Unlike rule 7, the ! here is outside the γ. The case where V ′ = B(P ) is similar.
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The type of delimited control operator that γ implements is dynamic since the captured term

[d]Pu or [d]P�u is not itself delimited: it depends on the context that it occurs. We shall not

attempt any termination results as it is known that dynamic control/prompt operations can lead

to non-terminating behaviour under call-by-value (see Kameyama and Yonezawa (2008)), even in

typed settings. That does not contradict cut elimination, since β-reduction is still possible. However,

the full power of delimited control operators are only revealed in a direct style, call-by-value setting

where terms λx.T are captured as part of the continuation (as opposed to applied immediately with

call-by-name). Under such a setting, delimitation is logically necessitated in ACL.

9. Conclusion

ACL is the culmination of our attempts to find a unified logic, with a unified proof theory, in which

each logic is found easily as a fragment, but which allows proofs in different logics to mix without

a collapse into classical logic. The original motivation for this project was Girard’s LU system,

which is largely based on linear logic and polarization as used in focusing. Our earlier attempts

(LKU in particular) were also based largely on focusing and linear logic. However, we found this

approach limiting because it does not adequately explain the different treatment of implication (→
and �) in classical and non-classical logics. These connectives are obviously of great importance

computationally. We found a semantic explanation of the difference: → and � are always negative,

but they can be red or green. One might mistake green formulas as equivalent to ?-formulas in

linear logic, or some form of double negation. However, no such formula can explain structural

rules that enable contractions on other formulas when a green formula is encountered in a proof.

ACL is a new logic with its own semantics and proof theory. The uniqueness of its proof theory is

found not just in its structural rules but also in its cut-elimination proof. We have demonstrated

the computational relevance of ACL in terms of control operators, although we believe that more

can be done in this respect.
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Appendix A. Proof of Completeness

We show that if A is not provable, there exists a counter-model as follows. A set or multiset Θ is

said to be consistent with respect to a formula P , if P is not derivable from it. The root world of

the model will be a set that is maximally consistent with respect to A and to ⊥. We write Γ; Δ �� A
to mean Γ; Δ � A is not provable.

We know from Proposition 7.3 that if ; �� A, then ; �� A⊕⊥. We also need the following:

Lemma A1. If B⊕ C,Γ;� A⊕⊥ is not provable, then either B,Γ;� A⊕⊥ or C,Γ;� A⊕⊥ is not

provable.

Proof. This holds because A⊕ ⊥ is green, which enables the relaxed Pr rule by Lemma 4.3. If

B⊕ C,Γ; �� A⊕⊥, then Γ;B⊕ C �� A⊕⊥ by the DR rule (arguing the contrapositive). But then by

the⊕L rule either Γ;B �� A⊕⊥ or Γ;C �� A⊕⊥. Thus, by the (relaxed) Pr rule either B,Γ; �� A⊕⊥
or C,Γ; �� A⊕⊥.

Define a proxy subformula B of a formula P to be either a subformula of P or a formula Δ⊗� B,

where B and every D ∈ Δ are subformulas of P . The Lock rule is implicitly applied to proxy

subformulas.

For the purpose of the completeness proof, we extend the notion of the provability of Γ; Δ � B
to allow Γ to be an infinite set. Such a sequent is provable if Γ′; Δ � B is provable for some finite

subset Γ′ of Γ.

Now, we construct a counter-model CA as follows:

1. A possible world in W consists of a set Γ and a multiset Δ of formulas that we simply write as

ΓΔ. Let Γ∞ represent a multiset such that, for each distinct formula A in Γ, there are countably

infinite many occurrences of A in Γ∞ (and nothing else). This device type casts a set into a

multiset and simplifies some arguments. Δ will always be a finite multiset so if A occurs in

both Δ and Γ, then it is absorbed in Γ∞Δ. The partial ordering is defined as ΓΔ � Γ′Δ′ iff

Γ∞Δ ⊆ Γ′∞Δ′, where ⊆ here is the multi-subset relation. The monoid operation is defined to be

ΓΔ · Γ′Δ′ = ΓΓ′ΔΔ′;

2. Construct the root world r = Γr as follows. Enumerate all proxy subformulas B of A and their

negations −B. Then, construct Γr to be a maximally consistent set with respect to A⊕ ⊥ by

inserting each B or −B into Γr as long as Γr remains A⊕ ⊥-consistent (by ‘inserting’ we of

course mean a hypothetical construction to show that such a saturation exists). By Corollary 7.1,

inserting −(Δ⊗� C) is equivalent to inserting [Δ : C]. Two other properties are assured:

a. It cannot be the case that B and −B are both in Γr as that would mean that ⊥ and thus

A⊕⊥ are derivable from Γr . Since Γr is ⊥-consistent, it must also be 0-consistent.

b. If Γ; �� A⊕⊥, then B⊕−B,Γ; �� A⊕⊥ because ;� B⊕−B is provable and cut is admissible.

By Lemma A1, this means that in a maximally consistent saturation exactly one of either B

or −B will be inserted into Γr . With Γr thus saturated, it follows that any proper addition to

Γr (limited to the proxy subformulas of A and their negations) will render it ⊥-inconsistent.

In other words, either ΓrC = Γr or Γr;C � ⊥ becomes provable. This is the most critical

use of cut elimination in the completeness proof. It confirms that the Lock rule, which is

required to prove B⊕ −B but is otherwise not directly referred to in this proof, is required

for completeness.

3. The worlds W consist of all pairs ΓΔ of proxy subformulas and their negations such that Γr ⊆ Γ.

Furthermore, we can assume that the number of formulas in Γ\Γr is finite. This assumption is

important.
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It is easily verified that Γr satisfy the requirements of being the root. I(W ) corresponds to those

worlds where the proper multiset Δ is empty.

The rest of the proof mostly emulates Okada. However, we borrow some notation from Girard

(1995).

4. For any formula A, let Pr(A) = {ΓΔ : Γ; Δ � A is provable}. By the admissibility of weakening,

Pr(A) is upwardly closed. The set of facts D of the model are restricted to be those subsets

of W that are equivalent to
⋂
Pr(Ai), where Ai ranges over an arbitrary collection of formulas

A0, . . . Ai, . . .. Clearly, we have �p ∈ D, since Pr(�) = W and ⊥p ∈ D since Pr(⊥) = W\{r}.
D is certainly closed under the cl operator as defined. Furthermore, if B ∈ D, then {x :

for all y ∈ A, xy ∈ B} ∈ D. Assume that B =
⋂
Pr(Ci) and ΓΔ is in this set. Then, for any

ΓrΓ
′Δ′ ∈ A, we have that ΓΓ′; ΔΔ′ � Ci is provable for all Ci. Since we can assume that Γ′

and Δ′ are finite sets and multisets, this means that Γ; Δ � Γ′& → Δ′⊗� Ci is provable. Thus,

ΓΔ ∈
⋂
Pr(Γ′& → Δ′⊗� Ci) for all Ci, therefore, qualifying as a fact. Thus, all the conditions

required of facts are satisfied.

5. The valuation of atomic formulas is defined to be

ap = Pr(a) = {ΓΔ : Γ; Δ � a is provable}.

Naturally, green atoms are mapped to ⊥p or �p, since all ΓΔ above Γr derives ⊥ and, therefore,

all green formulas (by cut). The fact 0p =
⋂
D is Pr(0) = {ΓΔ : Γ; Δ � 0 is provable}. Clearly,

this is the smallest fact since (by cut) Pr(0) ⊆ Pr(B) for all formulas B. 0p is not empty if 0 is a

subformula of the formula that’s assumed to be unprovable.

6. We can show that Bp = Pr(B) for all formulas B. However, for completeness it is only necessary

to show that ΓrB ∈ Bp and Bp ⊆ Pr(B). This is proved by mutual induction on the structure of

B. The cases for atoms and constants are trivial. We show a selection of representative cases for

the connectives.

For ΓrA⊗ B ∈ (A⊗ B)p = cl(ApBp): by inductive hypothesis ΓrA ∈ Ap, ΓrB ∈ Bp thus ΓrAB ∈
ApBp ⊆ cl(ApBp) =

⋂
{F ∈ D : ApBp ⊆ F}. But each F in cl(ApBp) is of the form

⋂
Pr(Ci) for

some collection of formulas Ci. If ΓrAB ∈
⋂
Pr(Ci), then Γr;A,B � Ci is provable and by⊗L so

is Γr;A⊗ B � Ci. Thus, ΓrA⊗ B is in each such Pr(Ci) and therefore in cl(ApBp).

Notice here, we can apply cut elimination to show that in fact Pr(A⊗ B) ⊆ (A⊗ B)p, but this is

not necessary.

For (A⊗ B)p = cl(ApBp) ⊆ Pr(A⊗ B): by inductive hypothesis Ap ⊆ Pr(A), Bp ⊆ Pr(B) so

ApBp ⊆ Pr(A)Pr(B). By the⊗R rule, Pr(A)Pr(B) ⊆ Pr(A⊗ B). Since (A⊗ B)p is the intersection

of all facts that contain ApBp and Pr(A⊗ B) is a fact, it holds that (A⊗ B)p ⊆ Pr(A⊗ B).

For ΓrA∨ B ∈ (A∨ B)P = cl(I(Ap) ∪ I(Bp): by inductive hypothesis Γr , A ∈ Ap, Γr , B ∈ Bp but

since Ap, Bp are facts of the form PR(Ci), ΓrA
∞ ∈ I(Ap) and ΓrB

∞ ∈ I(Bp) (by the DR rule). So

ΓrA
∞ ∈ cl(I(Ap) ∪ I(Bp)) and likewise for ΓrB

∞. But cl(I(Ap) ∪ I(Bp)) is a fact, which is some

PR(Di). Thus by the ∨L rule, Γr , A∨ B;� Di also holds, so ΓrA∨ B ∈ cl(I(Ap) ∪ I(Bp).
For (A∨ B)p = cl(I(Ap) ∪ I(Bp)) ⊂ PR(A∨ B): inductive hypotheses give that Ap ⊂ PR(A) and

Bp ⊂ PR(B). Thus, I(Ap) ⊂ PR(A) and I(Bp) ⊂ PR(B). This means that if Γ ∈ I(Ap), then

Γ;� A is provable and likewise if Γ ∈ I(Bp). By the∨R rule, PR(A∨ B) contains I(Ap) ∪ I(Bp).
Now cl(I(Ap) ∪ I(Bp)) is the intersection of all facts that contains I(Ap) ∪ I(Bp) and PR(A∨ B)

is a fact, thus if ΓΔ ∈ cl(I(Ap) ∪ I(Bp)), then ΓΔ ∈ PR(A∨ B). A subtlety here is that nothing is

assumed for Δ: it does not have to be empty in the closure. The argument will fail if weakening

is not embedded into the∨R rule.

Mutual induction is required in the case of implication. For ΓrA � B ∈ (A � B)p we need

to show that if ΓΔ ∈ Ap, then ΓΔ, A � B ∈ Bp. By inductive hypothesis Ap ⊆ Pr(A) and
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ΓrB ∈ Bp =
⋂
Pr(Ci), where Ci ranges over a collection of formulas. Thus if ΓΔ ∈ Ap, then

Γ; Δ � A is provable and Γr;B � Ci is provable. By the� L rule this means that Γ; Δ, A� B � Ci
is provable and so ΓΔ, A� B ∈ Bp as well.

For (A � B)p ⊆ Pr(A � B), by inductive hypothesis ΓrA ∈ Ap and Bp ⊆ Pr(B). Thus if

ΓΔ ∈ (A� B)p, then ΓΔ, A ∈ Bp ⊆ Pr(B). So by the � R rule, we have that ΓΔ ∈ Pr(A� B).

For the implication →, if A ∈ Ap, then A∞ ∈ Ap ∩ I(W ) (by the DR rule), and if ΓΔ ∈ Ap ∩ I(W ),

then Δ must be empty. With these observations similar arguments as for � can then be applied.

7. Completeness then follows since Γr; �� A and thus Γr �∈ Pr(A), so Γr �∈ Ap. That is, the unit/root

of the monoid is not found inside Ap (in terms of Kripke models, Γr �|= A).

Theorem 7.4: A formula is provable in sequent calculus if and only if it is valid.

One might expect the completeness proof to shed light on the question of decidability for ACL.

Propositional affine linear logic is decidable (Kopylov 1995), and Lafont (1997) gave a phase model

proof. The models of ACL are consistent with those of affine linear logic (facts are ideals). Although

the model CA of the completeness proof is infinite, it is possible to construct a quotient model by

defining a congruence relation. However, we are not able to duplicate Lafont’s arguments further

because the quotient model is not finitely generated. This is because there can be infinitely many

proxy sub-formulas of a formula. To prove decidability along these lines, we would need to show

that the number of possible formulas subject to Lock in a proof can be finite. It would be somewhat

of a surprise, however, if ACL is not decidable. For the time being, we leave the question of

propositional decidability to future work.
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