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Resonant filament-assisted mode conversion (FAMC) scattering of high harmonic fast
waves (HHFW) by cylindrical field-aligned density inhomogeneities can efficiently
redirect a fraction of the launched HHFW power flux into the parallel direction. Within
a simplified analytic approach, this contribution compares the parallel propagation,
reflection and dissipation of nearly resonant FAMC modes for three magnetic field line
geometries in the scrape-off layer, in the presence of radio-frequency (RF) sheaths at
field line extremities and phenomenological wave damping in the plasma volume. When
a FAMC mode, excited at the HHFW antenna parallel location and guided along the open
magnetic field lines, impinges onto a boundary at normal incidence, we show that it can
excite sheath RF oscillations, even toroidally far away from the HHFW launcher. The RF
sheaths then dissipate part of the power flux carried by the incident mode, while another
part reflects into the FAMC mode with the opposite wave vector parallel to the magnetic
field. The reflected FAMC mode in turn propagates and can possibly interact with the
sheath at the opposite field line boundary. The two counter-propagating modes then form
in the bounded magnetic flux tube a lossy cavity excited by the HHFW scattering. We
investigate how the presence of field line boundaries affects the total HHFW power
redirected into the filament, and its splitting between sheath and volume losses, as a
function of relevant parameters in the model.

Keywords: fusion plasma, high harmonic fast wave heating, plasma filament, wave scattering,
mode conversion, surface waves, plasma sheaths

1. Introduction

Radio-frequency (RF) wave scattering in inhomogeneous magnetized plasmas has
recently attracted much attention, in particular as a mechanism of RF power redirection at
the periphery of magnetic fusion devices. Myra & D’Ippolito (2010), Ram & Hizanidis
(2016), Lau et al. (2020), Tierens et al. (2020a,b, 2022a,b), Biswas et al. (2021) and
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Zhang et al. (2021) provide an overview of recent modelling work on this topic in the lower
hybrid and ion cyclotron ranges of frequencies (ICRF). Scattering of fast magnetosonic
waves, without change of polarization, is generally modest in the ICRF range, because
the typical size of inhomogeneities transverse to the magnetic field does not match the
typical transverse wavelength of the fast wave (Myra & D’Ippolito 2010). Tierens et al.
(2020a,b, 2022a,b) proposed a more efficient process: evanescent filament assisted mode
conversion (FAMC) modes produced by the nearly resonant scattering of High Harmonic
Fast Waves (HHFW) off cylindrical field-aligned density inhomogeneities (likely turbulent
‘filaments’). The FAMC modes are similar to surface plasmons propagating along planar
or patterned dielectric/metal interfaces (Raether 1988; Garcia-Vidal et al. 2022) or near
the boundaries of plasma-filled waveguides (Girka & Thumm 2022). One can see the
FAMC modes as a generalization of plasmons to cylindrical interfaces in magnetized
plasmas, allowing for curvature effects and mode mixing in the HHFW regime. The
FAMC modes belong to a broader zoology of ICRF surface waves (Myra & D’Ippolito
2010; Tierens et al. 2020a). Using a spectral approach in the parallel direction, Tierens
et al. (2022a) estimated analytically their dispersion relation, as well as the fraction of the
launched HHFW power that they could parasitically divert from the core plasma. Tierens
et al. (2022a) evidenced finite RF power damping in the filament volume even in the
limit of vanishing anti-Hermitian part of the dielectric tensor. Statistics of this power
redirection, over a population of turbulent filaments observed on the National Spherical
Torus eXperiment (NSTX) in Princeton, could reproduce several experimental trends
about the missing HHFW power in the core of this device (Tierens et al. 2022b).

The previous Fourier treatment implicitly assumed straight magnetic field lines with
infinite parallel extent. One, however, suspects the resonant scattering to occur in the
Scrape-Off Layer (SOL) of magnetic fusion devices, where magnetic field lines have a
large but finite parallel extent. Experiments on NSTX suggest spurious interactions at the
extremities of specific magnetic field lines passing near the HHFW launchers (Perkins
et al. 2015, 2017). Although these extremities are located far away toroidally from the
HHFW antenna, they could also play a role in the power dissipation, but the previous
models did not consider them explicitly. Within a simplified analytic approach, the present
paper explores how the nearly resonant FAMC modes can possibly excite sheath RF
oscillations at the extremities of bounded filaments in the SOL of a tokamak. In the
limit of vanishing collisionality, finite collisional damping is only possible if the nearly
resonant mode can extend indefinitely in the parallel direction (Tierens et al. 2022a). As
the filaments guide the nearly resonant FAMC modes with weak parallel damping, the RF
sheath excitation can be efficient even at large parallel distances from the HHFW launcher,
and the sheath dissipation can possibly dominate the losses over the volume damping.

This document is organized as follows. Section 2 recalls the nearly resonant FAMC
modes on infinite magnetic field lines, as studied in the spectral domain in Tierens
et al. (2020a, 2022a). For practical use, we re-express the earlier results in the spatial
domain, and thereby estimate the typical parallel extent of the FAMC modes in unbounded
geometry, in the presence of weak dissipation in the plasma volume. We also compare the
spatial structures of FAMC modes with opposite resonant parallel wave vectors. In analogy
with Myra & Kohno (2019) for plane waves, § 3 investigates analytically the partial
reflection and dissipation of one FAMC mode at one isolated field line extremity, within
simplifying assumptions concerning the sheaths. These simplified processes involve the
FAMC mode with the opposite parallel wave vector. Using the results of this intermediate
step, § 4 investigates the multi-reflections and multi-pass power dissipation of two
interacting FAMC modes with opposite resonant parallel wave vectors, in the presence of
volume losses and two sheaths at both ends of a bounded magnetic field line. Throughout
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the text we investigate how the presence of field line boundaries affects the HHFW
power fraction redirected into the filament, and its splitting between sheath and volume
losses, as a function of relevant parameters of the model. For that purpose, a technical
appendix reformulates the Poynting theorem for electrostatic cylindrical filament modes.
Section 5 discusses our simplifying assumptions and possible ways towards more realistic
modelling.

2. Wave scattering by field-aligned cylindrical density inhomogeneity on infinite
magnetic field lines: from spectral to spatial description

Throughout this document we consider a cold magnetized plasma extending over an
infinite spatial domain in the (x,y) directions. The homogeneous background magnetic
field B0 is oriented along the z direction. In § 2 this parallel domain is also assumed
infinite. The propagation of monochromatic waves oscillating as exp(−iω0t) with
pulsation ω0 is governed by the Helmholtz equation for the electromagnetic field E

∇ × ∇ × E + k2
0εE = 0, (2.1)

where k0 = ω0/c is a wave vector in vacuum, c is the velocity of light in vacuum and ε is
a cold plasma (normalized) dielectric tensor of the form

ε =
⎡
⎣ ε⊥ −iε× 0

+iε× ε⊥ 0
0 0 ε‖

⎤
⎦ . (2.2)

We assume that the dielectric tensor is independent of z and t. It exhibits a field-aligned
density inhomogeneity. In cylindrical geometry (r,θ ,z) we idealize the inhomogeneity as

n(r) =
{

nf ; r < rf (“filament” plasma)
nb; r > rf (“background” plasma)

. (2.3)

In the SOL of tokamaks such inhomogeneity can possibly arise from filamentary
turbulent structures, that are considered here as time independent on the typical scale
of a RF wave period. Cold dielectric tensor element values are used (Stix 1992), with
one ion species, in the presence of a phenomenological friction with frequency ν. This
way we introduce dissipation to induce RF power losses in the plasma volume, thereby
regularizing the resonant scattering processes. We will call ‘nearly resonant’ the results
obtained in the limit ν → 0+. In the HHFW regime, one approximates the tensor elements
as

ε⊥ = −ω2
pib

ω2
0

(1 − iν∗), r > rf , (2.4)

ε⊥ = −R
ω2

pib

ω2
0

(1 − iν∗), r < rf , (2.5)

ε× = −ϕ Re(ε⊥), (2.6)

ε‖ = Mi

me
ε⊥. (2.7)

Here, we have introduced the following notations, consistent with (Tierens et al. 2022a):

• ωpib is the plasma pulsation for the ions in the background plasma.
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• ν∗ = ν/ω0 is a non-dimensional phenomenological friction parameter, assumed
positive and ‘small’ throughout the text. We will precise below several meanings
of ‘small’, associated with ‘weak mode dissipation’ or ‘short magnetic field lines’.

• R = nf /nb.
• ϕ = ω0/Ωci, where Ωci is the ion cyclotron pulsation.
• Mi/me is the ratio of ion to electron mass in the plasma.

In our model, an antenna launches a prescribed HHFW with fast wave polarization that
impinges onto the cylindrical inhomogeneity. We examine how the filament scatters the
incident wave, and the behaviour of the scattered RF fields near resonant conditions.

2.1. Wave scattering by filaments in the spectral domain
In an infinite spatial domain with vanishing scattered fields at infinity transverse to B0,
one can most easily solve the scattering problem in the spectral domain, by splitting
the incident and scattered waves into independent cylindrical modes oscillating as
exp(imθ + ik//z). This subsection briefly summarizes this method used Ram & Hizanidis
(2016) and Tierens et al. (2020a, 2022a). Tierens et al. (2020b) investigated numerically
non-cylindrical FAMC modes in more realistic geometries and with more realistic density
distributions. The RF fields inside and outside the filament are the superposition of
cylindrical wave modes with slow and fast wave polarizations, of the form

Ê(r, m, k‖) = exp(imθ + ik‖z)

{
Êf (m, k‖)Im(k⊥f r), r < rf

Êb(m, k‖)Km(k⊥br), r > rf

. (2.8)

Here, Im and Km are modified Bessel functions, where we have assumed evanescent
modes both inside and outside the filament. The perpendicular wave vectors k⊥b and k⊥f
are eigenvalues of the dispersion relation outside and inside the filaments, for prescribed
k//

|k × k − k · kI − k2
0ε| = 0; k =

⎡
⎣ik⊥

0
k‖

⎤
⎦ . (2.9)

The field polarizations Êb(m, k‖) and Êf (m, k‖) are the eigenvectors associated with
k⊥b and k⊥f . Once the incident spectral RF electric field Ê0(k‖) is prescribed, the
general scattering problem consists of ensuring continuous total tangential RF electric
and magnetic fields across the filament boundary, with an adequate linear combination of
scattered fast and slow waves inside and outside the filament. One describes this matching
by a 4 × 4 linear system of equations, whose unknows are the four complex amplitudes of
the scattered modes and the right-hand side is a drive from the incident wave.

Tierens et al. (2022a) investigated analytically a simplified scattering problem under the
following assumptions:

(i) Transverse to B0, the incident spectral RF electric field Ê0(k‖) is homogeneous over
the filament boundary. Parallel to B0, it still oscillates as exp(+ik//z).

(ii) The scattered fast wave is negligible, both inside and outside the filament.
(iii) Simplified dispersion properties are considered in the HHFW range of frequencies.
(iv) The scattered slow mode is considered as electrostatic.

Assumption (i) implies that only azimuthal modes m = ±1 can be excited. Assumptions
(iii) and (iv) yield the simplified dispersion relation for the slow mode in the absence of
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dissipation
−∇ · D = ε‖∂zzφ + ε⊥
⊥φ = 0

k⊥f ∼ k⊥b = k⊥ = |k‖|
√

Mi

me

⎫⎬
⎭ . (2.10)

The associated slow wave RF field is of the form

Ês(r, m, k‖) = −∇φ̂s(r, m, k‖), (2.11)

φ̂s(r, m, k‖) = φ̂s0(m, k‖)exp(imθ + ik‖z)F(k⊥r). (2.12)

F(x) ≡

⎧⎪⎪⎨
⎪⎪⎩

Im(x)
Im(k⊥rf )

, x < k⊥rf

Km(x)
Km(k⊥rf )

, x > k⊥rf

; k⊥ ∼ |k‖|
√

Mi

me
. (2.13)

In the HHFW domain the complex spectral amplitude φ̂s0(m, k‖) writes (Tierens et al.
2022a)

φ̂s0(m, k‖) = − i
2

rf Ê⊥0(k‖)
(R − 1)(1 − iν∗ − mϕ)

ξ(1 − iν∗)
(
R I′

I − K′
K

)− mϕ(R − 1)
. (2.14)

In this expression, ξ = k⊥rf , I = Im(ξ), I′ = dIm(x)/dx evaluated at x = k⊥rf , I′/I =
d log[Im(x)]/dx, K = Km(ξ), K ′ = dKm(x)/dx evaluated at x = k⊥rf , K ′/K = d log
[Km(x)]/dx.

2.2. Nearly resonant wave fields in the spatial domain
Nearly resonant HHFW scattering occurs when the real part of the denominator cancels
in expression (2.14)

ξres

(
R

I′

I
− K ′

K

)
= mϕ(R − 1). (2.15)

This dispersion relation defines a resonant parallel wave vector k//res, once all other
parameters (R, ϕ, rf , m) are fixed in the model. As the left-hand side of relation (2.15)
is positive, resonant m = +1 FAMC modes appear for over-density inside the filament
(nf > nb), which is the most frequent case for turbulent fluctuations in the SOL of
tokamaks. The m = −1 FAMC modes correspond to a local density depletion (nf < nb).
Close to k// = k//res, and for ν* values small enough, one can approximate the complex
spectral amplitude of the scattered wave as

φ̂s0(m, k‖) ≈ iφ0

2π

1
k‖ res − k‖ + iν∗ki

, (2.16)

where

φ0 ≡ π
ξresÊ⊥0(k‖ res)

mϕ
, (2.17)

ki ≡ Re

(
φ0

2πν∗φ̂s0(m, k‖)

)
ξ=ξres

= k‖ res

1 + ξres∂ξ log
(
R I′

I − K′
K

) . (2.18)

While spectral calculations are convenient for deriving dispersion relations, they are not
well suited for implementing parallel boundary conditions. One can, however, approximate
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FIGURE 1. Value of |φs0(m, z)|/|φ0| from (2.19) and (2.25) versus kiz over a scan of ν*.

from relation (2.16) the nearly resonant RF scattered fields in the spatial domain. Let us
first focus on positive values of k//res and apply an inverse Fourier transform to the spectral
waves (2.16)

φs0(m, z) =
∫ +∞

−∞
φ̂s0(m, k‖)exp(ik‖z) dk‖ ≈ − iφ0

2π
exp(ik‖ resz)

∫ +∞

−∞

exp(ik‖z)dk‖
k‖ − iν∗ki

= φ0H(z)exp(ik‖ resz − ν∗kiz); k‖ res > 0.

(2.19)

Here, H(z) is the Heaviside function. The above formula applies to positive values of
k//res, for which ki > 0 and the amplitude of the RF fields decays exponentially for large
positive values of z. Figure 1 plots |φs0(m, z)|/|φ0| from (2.19) versus kiz over a scan of the
dissipation parameter ν*.

As ν* decreases to 0+, the RF fields do not diverge in the spatial domain, unlike
their Fourier transform. However, the RF fields exhibit a discontinuity in z = 0, even
for finite ν*. In addition, the characteristic decay length 1/ν∗ki gets very large and the
RF fields exhibit nearly harmonic oscillations for z > 0. One can extrapolate formula
(2.19) to ν* = 0. However, the resulting RF fields are not square-integrable anymore, and
therefore one cannot apply the Fourier treatments (e.g. Parseval’s theorem) in a standard
way. Throughout the document, we will assume that the FAMC mode is weakly damped,
i.e. the ordering ν∗ki � k// res applies, so that the FAMC modes possess a well-defined
resonant parallel wave vector. Section 5.1 discusses this ordering.

Associated with the above RF electric fields one can define a Poynting flux PRF(z) across
each plane z = const. For quasi-static cylindrical FAMC modes, Appendix A shows that
the Poynting flux takes the form (A13)

PRF(z) ≡ 1
2

∫ 2π

0 dθ
∫ +∞

0 Re[(E∗(r, θ, z) × H(r, θ, z)) · ez]r dr

= −πε0ω0
∫ +∞

0 Im[ε‖φ∗(r, z)∂zφ(r, z)]r dr.
(2.20)
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For one isolated weakly damped FAMC mode this simplifies to leading order in the
small parameter ν∗ki/k// res

PRF(z) = YFAMC|φ0|2 H(z)exp(−2ν∗kiz); k‖ res > 0

YFAMC ≡ π

Z0|n‖ res|
ω2

pib

ω2
0

[∫ ξf

0 R|F(ξ)|2ξ dξ + ∫ +∞
ξf

|F(ξ)|2ξ dξ
]
⎫⎪⎬
⎪⎭ . (2.21)

In this expression, YFAMC has the dimension of an admittance, and depends only on the
Hermitian part of the dielectric tensor; Z0 ≡ (μ0/ε0)

1/2 is the characteristic impedance
of vacuum and n//res is the resonant parallel refractive index k//res/k0. As already noticed
in Tierens et al. (2022a), the power flux of the FAMC mode is proportional to the local
plasma density and is a fraction of the HHFW spectral power launched by the antenna
at k// = k//res. For z > 0, PRF(z) decreases with z, with a decay length 1/2ν∗ki. Using
Poynting’s theorem, Appendix A shows that the decay is due to power dissipation in the
plasma volume. The total loss over the magnetic field line is

PRF(0+) − PRF(+∞) = YFAMC|φ0|2. (2.22)

This coincides with the power loss estimated in Tierens et al. (2022a) using a spectral
approach. As already noticed in Tierens et al. (2022a), the total loss becomes independent
of ν* in the weak dissipation limit. This counter-intuitive result stresses the need to
regularize the initial scattering problem and to take the friction-less limit only at the end
of the calculations, in order to obtain valid results. The local power loss in a thin parallel
layer at position z, per unit of parallel length, is −∂zPRF(z). From (2.21)

P′
V(z) ≡ −∂zPRF(z) = 2ν∗kiPRF(z) − PRF(0+)δ(z). (2.23)

Let us first focus on z �= 0 and discuss the first term on the right-hand side. As ν∗ → 0 at
fixed z, PRF(z) → PRF(0+) and the local loss scales as ν∗PRF(0+). In the global power
balance, this decrease with lower ν* is compensated for by the fact that the power
is dissipated over a larger parallel decay length. Formula (2.23) shows that the ratio
Im(k//) ≡ P′

V(z)/2PRF(z), together with the expressions of P′
V(z) and PRF(z) in Appendix

A, provide an alternative definition of the parallel decay length of the FAMC mode, for
any form of the anti-symmetric part of the dielectric tensor, in the weak damping regime.
Then, Im(k//)/k//res writes

Im(k‖)
k‖ res

=
ω2

0
ω2

peb

∫ +∞
0 Im(ε‖)|F(ξ)|2ξ dξ + ω2

0
ω2

pib

∫ +∞
0 Im(ε⊥)

[
|∂ξ F|2 +

∣∣∣mF(ξ)
ξ

∣∣∣2] ξ dξ + m
π

[[Im(ε×)]] ω2
0

ω2
pib

2
[∫ ξf

0 R|F(ξ)|2ξ dξ + ∫ +∞
ξf

|F(ξ)|2ξ dξ
] .

(2.24)

This could be a way to incorporate other dissipation processes than the present
phenomenological friction, as Raether (1988) and Girka & Thumm (2022) did for other
types of surface waves. We can generalize most of the formulas below by substituting
ν∗ki → Im(k//).

Because of the local RF field discontinuity at z = 0 in (2.19), the Poynting flux in (2.21)
also exhibits a discontinuity there, that is responsible for the second term on the right-hand
side of (2.23). The power step Pin ≡ PRF(0+) − PRF(0−) coincides with the total power
dissipated over the domain z �= 0. Since it is the only power source in our model, it is
tempting to interpret Pin as the HHFW power fraction ‘redirected’ into the FAMC mode
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by the scattering of the incident HHFW wave. Since z = 0 is the only location where some
RF power is ‘injected’ into the FAMC mode, it is also tempting to identify it with a typical
parallel position of the HHFW antenna. Finite element modelling of the HHFW scattering
process supports this interpretation (Zhang et al. 2021); large modifications of the parallel
Poynting fluxes are observed near the toroidal position of the radiating straps.

2.3. Parallel symmetry properties of the RF electric fields
While we have so far considered positive values of k//res, resonant parallel wave vectors
may also be negative. For symmetry reasons, if k//res fulfils the FAMC dispersion relation
(2.15), so does −k//res. In this process, k⊥ remains invariant while ki transforms into –ki.
In order to fulfil the boundary conditions at the extremities of open magnetic field lines,
we will need to combine FAMC modes with opposite parallel wave vectors. Therefore, we
need to extend the previous formulas. While the spectral results up to (2.18) are valid for
both signs of k//res, the spatial representation (2.19) of the RF fields needs to be adapted
to ensure the regularity of the solution when ki < 0. For k//res < 0, the inverse Fourier
transform of (2.16) yields

φs0(m, z) = −φ0H(−z)exp(ik‖ resz − ν∗kiz); k‖ res < 0, (2.25)

i.e. when k// res → −k// res, φs0(m, z) → −φs0(m,−z) and the scattered electric field
components transform as E//(r, θ, z) → +E//(r, θ,−z) and E⊥(r, θ, z) → −E⊥(r, θ,−z).
Now the RF fields for the FAMC modes are non-zero in the half-space z < 0. Figure 1
also applies to k//res < 0, with kiz > 0 corresponding to z < 0. The damping factor ν∗kiz is
positive for k//res < 0 and z < 0. This ensures the regularity of solution (2.25) in the spatial
domain. Formula (2.20) is still valid, but instead of (2.21) the Poynting flux now reads

PRF(z) = −YFAMC|φ0|2H(−z)exp(−2ν∗kiz); k‖ res < 0. (2.26)

In this case PRF(z) < 0, i.e. the power now flows towards negative z and is null for z > 0.
The power step Pin = PRF(0+) − PRF(0−) (‘redirected HHFW power’) is still positive, and
is still equal to the total dissipated power PRF(−∞) − PRF(0−). Formula (2.23) remains
valid, and since ki < 0, the local power loss P′

V(z) is positive, as it should. But the volume
dissipation now occurs for z < 0.

Finally, when two FAMC modes with opposite k//res are excited simultaneously, PRF(z)
is the sum of the Poynting fluxes by each FAMC mode taken individually. Therefore, the
redirected powers and total dissipated powers add up in the weak damping regime. One
can see this as the manifestation of the Parseval theorem, valid for infinite parallel domains
in the weak dissipation limit. This property will need revision in bounded geometry.

3. The FAMC mode reflection and partial dissipation at prescribed RF sheath under
normal incidence.

Section 2 showed that, as the anti-Hermitian part of the dielectric tensor vanishes, the
typical parallel extent of the FAMC nearly resonant modes becomes infinite. This enables
dissipation of finite power in the filament, while the local loss per unit parallel length
vanishes. In the SOL, however, the field lines are bounded. For ν∗ki small enough the
nearly resonant FAMC modes may reach the extremities of the open magnetic field lines
before being fully damped in the plasma volume. Section 3 investigates how these modes
interact with RF sheaths at one extremity of a bounded magnetic field line. We expect
several physical processes:

• Part of the incident mode is reflected. In general the reflected wave is not a pure
FAMC mode. We will, however, find a simplified case where it is.
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FIGURE 2. Sketch of the model studied in § 3. The two nearly resonant FAMC modes in the
model have opposite parallel wave vectors and propagate along the same filament. The colour
shades are representative of the amplitudes for the isolated modes. In practice, the modes
interfere and the total RF field amplitudes oscillate spatially, but this is not represented. Inset:
equivalent model of TEM mode reflection by loaded transmission line.

• The local RF fields at the boundaries will likely excite RF sheath oscillations. The
RF sheaths may thereby dissipate part of the redirected HHFW power carried by
the incident FAMC mode. This process likely competes with the FAMC mode
dissipation in the plasma volume.

• In addition the sheath rectification likely changes the way RF sheaths reflect the
incident waves. We will neglect this process. This will yield linear boundary
conditions that are tractable analytically.

Section 3 investigates these processes analytically within simplifying assumptions for
the sheaths. We will thereby clarify in which conditions the ‘infinite field line model’ in
§ 2 remains valid in bounded geometry.

3.1. Outline of the model
Figure 2 sketches the model studied in § 3. We consider a semi-infinite magnetic field line
extending from z = –∞ to z = z+ > 0. We perform here for the weakly damped FAMC
modes a similar analysis as Myra & Kohno (2019) did for propagating electrostatic plane
waves with the slow mode polarization. Consistent with (2.19) we excite, via the HHFW
scattering process, an incident FAMC mode of the form

φ+(r, θ, z) = φ+(z)F(k⊥resr)exp(imθ)

φ+(z) = φ+
0 H(z)exp( + ik‖resz − ν∗kiz); k‖res > 0

}
. (3.1)

By using (2.19), we assume that the FAMC excitation is not disturbed by the presence
of a field line extremity. In the semi-infinite geometry, exciting a FAMC mode with
k//res < 0 yields a similar result as on infinite field lines in § 2. Throughout the rest of
this document, we will therefore assume k//res > 0, ki > 0. When needed we will add a
minus sign explicitly. This incident mode is excited at z = 0 and extends to z = z+ > 0.
At z = z+, the mode reaches a field line extremity and interacts with the sheaths. As the
sheath widths in SOL plasmas are far smaller than any other characteristic parallel scale
length in the system (magnetic field line extension, parallel decay length of the FAMC
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mode, parallel wavelength) it is legitimate to model the sheaths as boundary conditions
(BCs) that the RF fields need to fulfil at z = z+ (Myra 2017). In order to keep the
calculations tractable, we simplify the modelled geometry; we assume that the field lines
intercept the walls at normal incidence. Section 5.2 will discuss this assumption. The RF
sheath BCs then write (Myra 2017)

E⊥ = ∇⊥VshRF = ∇⊥(zshjsh); jsh ≡ −iω0ε0ε‖E‖. (3.2)

Here, the ⊥ subscript refers to the directions both normal to B0 and tangential to the
boundary. The // subscript refers to the direction both parallel to B0 and normal to the
boundary. Also, V shRF and jsh are the sheath oscillating voltage and the RF current density
at the sheath entrance and zsh is the sheath RF impedance. Myra (2017) and Myra et al.
(2021) describe its parametric dependence. In order to keep the calculations tractable,
we assume below that the sheath impedance is prescribed and that the product zshε// is
independent of r. Section 5.3 will discuss this assumption.

3.2. The RF field spatial structure, wave reflection coefficient
Under the above simplifying assumptions, the wave reflection problem at the sheaths is
linear. In these conditions, it is possible to fulfil the sheath BCs (3.2) using a linear
combination of the incident FAMC mode (3.1) and a reflected FAMC mode φ−

0 with the
same azimuthal mode number m and the opposite parallel wave vector, propagating along
the same filament

φ−(r, θ, z) = φ−(z)F(k⊥resr)exp(+imθ )

φ−(z) = φ−
0 exp(−ik‖ resz + ν∗kiz); k‖ res, ki > 0

}
. (3.3)

Unlike the incident mode, the reflected fields are present from z = −∞ to z = z+. In
addition, they are continuous at z = 0, since they are not directly excited by the HHFW
scattering process. In the presence of the two modes, (3.2) writes

φ+(z+) + φ−(z+) = −iω0ε0zshε‖(ik‖ res − ν∗ki)[φ+(z+) − φ−(z+)]

= −zshyw[φ+(z+) − φ−(z+)]
(3.4)

where we have introduced a complex wave admittance yw ≡ −ω0ε0ε//k//res(1 +
iν∗ki/k//res) = −ε//n//res(1 + iν∗ki/k//res)/Z0. In the weak damping regime, the wave
admittance is mainly real. From (3.4) we express the complex amplitude reflection
coefficient in the region z > 0

R+
φ (z) ≡ φ−(z)

φ+(z)
= R+

φ exp
[

2ik‖ res

(
1 + iν∗ ki

k‖ res

)
(z+ − z)

]

R+
φ ≡ φ−(z+)

φ+(z+)
= zshyw − 1

zshyw + 1

⎫⎪⎪⎬
⎪⎪⎭ . (3.5)

The FAMC mode reflection at the extremity of the filament is formally analogous
to that of a transverse electro-magnetic (TEM) mode in a (lossy) transmission line of
characteristic impedance 1/yw, loaded by the sheath impedance zsh (see inset of figure 2).
In the absence of dissipation in the plasma volume and in the sheaths, ywzsh is pure
imaginary. In these conditions the reflection coefficient at z = z+ is of amplitude 1:
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|φ−(z+)| = |φ+(z+)| and the mode reflection only introduces a phase shift. In the general
case

|R+
φ |2 = 1 − 4

Re(zshyw)
|zshyw + 1|2

Arg(R+
φ ) = Arctan

[
2Im(zshyw)
|zshyw|2 − 1

]
⎫⎪⎪⎬
⎪⎪⎭ . (3.6)

The case zsh = 0 (metallic BCs) yields φ− = −φ+, i.e. E⊥ = 0 at z = z+, as it should.
The opposite limit |zshyw| � 1 (insulating BCs) yields φ− = +φ+ i.e. jsh = 0. As in
a transmission line, the reflection is null if the sheath impedance matches the wave
impedance.

3.3. Sheath oscillating properties and power dissipation
In (3.4) the quantity φ− + φ+ represents a sheath oscillating voltage at r = rf that we can
express as a function of the incident mode amplitude

VshRF(r, θ) = VshRF(rf )F(k⊥ resr)exp(imθ ), (3.7)

VshRF(rf ) = φ+(z+) + φ−(z+) = (1 + R+
φ )φ+(z+)

= 2
1 + 1/zshyw

φ+(z+).
(3.8)

The RF voltage is null for metallic BCs. It is maximal in amplitude at r = rf . The
amplitude is independent of θ . In terms of the original excitation, the sheath RF voltage
scales as |φ+

0 |exp(−ν∗kiz+). Its amplitude is maximal for ν∗kiz+ � 1 and vanishes for
ν∗kiz+ � 1. This is a first indication that the model recalled in § 2 is valid when the parallel
extent of the FAMC mode on infinite field limes is far smaller than the parallel distance
to the field line extremities. Since this model assumes fixed ki, this implies either that
z+ → +∞ or that ν* cannot go below some critical value. Below we will call ‘short field
line limit’ the regime ν∗kiz+ � 1, and ‘long field line limit’ the regime ν∗kiz+ � 1. The
RF current through the sheath is

jsh(r, θ) = jsh(rf )exp(imθ )
{

RF(k⊥ resr), r < rf
F(k⊥ resr), r > rf

, (3.9)

jsh(rf ) = yw[φ+(z+) − φ−(z+)]

= VshRF(rf )

zsh
= 2yw

zshyw + 1
φ+(z+),

(3.10)

where the quantities jsh(rf ), yw, zsh are evaluated in the background plasma. The sheath RF
current is null in the insulating limit. It is maximal in amplitude at r = rf . The amplitude
is independent of θ . We quantify the local RF power dissipation in the sheaths as

dPshRF(r, θ) = dPshRF(rf )

{
R|F(k⊥ resr)|2r < rf

|F(k⊥ resr)|2 r > rf
, (3.11)

dPshRF(rf ) = 1
2

Re[jsh(rf )V∗
shRF(rf )]

= 1
2

yw|φ+(z+)|2(1 − |Rφ|2) = 4Re(zsh)
∣∣∣∣ywφ+(z+)

zshyw + 1

∣∣∣∣
2

.

(3.12)
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Here again, dPshRF(rf ), yw, zsh are evaluated in the background plasma. The total RF
power dissipation in the sheaths is then

PshRF = π
yw|φ+(z+)|2(1 − |Rφ|2)

k2
⊥ res

[∫ ξf

0
RxF2(x) dx +

∫ ∞

ξf

xF2(x) dx

]

= YFAMC|φ+(z+)|2[1 − |R+
φ |2].

(3.13)

3.4. Power balance
In the half-plane z < 0, only the reflected FAMC mode φ−

0 is present. In this region the
Poynting flux is similar to (2.26)

PRF(z) = −YFAMC|φ−
0 |2 exp(2ν∗kiz); z < 0; ki > 0. (3.14)

In this region the Poynting flux is negative: the power flows from the FAMC excitation
point towards negative z. The power dissipation in this half-plane is due to the collisional
losses by the reflected mode in the plasma volume and amounts to

PRF(−∞) − PRF(0−) = YFAMC|φ+
0 |2|R+

φ |2 exp(−4ν∗kiz+). (3.15)

Since the half-plane is of infinite parallel extent, the volume power dissipation remains
finite in the collision-less limit. In the region 0 < z < z+ the two FAMC modes interfere.
This affects the Poynting fluxes. From (2.20)

PRF(z) = −πε0ω0Im[ε‖φ∗(z)∂zφ(z)]
1

k2
⊥ res

∫ ∞

0
xF2(x) dx, (3.16)

with

φ(z) = φ+(z) + φ−(z) = φ+(z)[1 + R+
φ (z)], (3.17)

∂zφ(z) = ik‖ res

(
1 + iν∗ ki

k‖ res

)
[φ+(z) − φ−(z)]

= ik‖ res

(
1 + iν∗ ki

k‖ res

)
φ+(z)[1 − R+

φ (z)],
(3.18)

ε‖ = Re(ε‖)(1 − iν∗). (3.19)

This yields, to first order in ν*,

PRF(z) = YFAMC|φ+(z)|2
[

1 − |R+
φ (z)|2 + 2ν∗

(
ki

k‖ res
− 1

)
Im(R+

φ (z))
]

= YFAMC|φ+
0 |2[exp(−2ν∗kiz) − |R+

φ |2exp(2ν∗ki(z − 2z+))

+ 2ν∗
(

ki

k‖ res
− 1

)
|R+

φ (0+)|sin[2k‖ res(z+ − z) + arg(R+
φ )]

]
; z > 0; ki > 0.

(3.20)
To leading order in ν*, the Poynting flux in the presence of the two FAMC modes is the

sum of a positive flux that would be obtained with the incident FAMC mode alone, and a
negative contribution corresponding to the reflected mode alone. In the presence of volume
dissipation, an additional oscillatory term of order ν* appears, due to the interference of
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the two modes. As |R+
φ | < 1 and 0 < z < z+, the leading contribution to (3.20) is positive:

in this region the power flows from the FAMC excitation point towards the sheath. In
addition,

∂zPRF(z) = −2ν∗kiYFAMC|φ+(z)|2 [1 + |R+
φ (z)|2

+ 2
(

1 − k‖ res

ki

)
|R+

φ (z)|cos[2k‖ res(z+ − z) + arg(R+
φ )]

]
, z > 0.

(3.21)

The first two contributions to (3.21) are the sum of the volume losses by each FAMC
mode taken individually. The third oscillatory term results from the interference of the two
modes, and can be of the same order as the other ones. As ν∗ → 0+ at fixed z, the local
loss scales as ν*. However, now the parallel domain is of finite parallel extent, so that the
cumulated volume losses PRF(0) − PRF(z+) vanish in the collision-less limit. To leading
order in ν*

Pin = PRF(0+) − PRF(0−) = YFAMC|φ+
0 |2. (3.22)

The redirected power is the same with the semi-infinite as with the infinite field line model.
Remarkably, Pin is independent of the collisionality, of the parallel distance z+, of the
sheath properties and more generally independent of which physical process dissipates the
FAMC modes. To leading order in ν∗ki/k//res, the Poynting flux at z = z+ amounts to

PRF(z+) = Pinexp(−2ν∗kiz+)[1 − |R+
φ |2]. (3.23)

PRF(z+) from (3.23) is equal to the sheath power dissipation PshRF from (3.13). Formula
(3.23) provides the fraction of redirected power lost in the sheaths. Figure 3 maps
PRF(z+)/Pin versus |R+

φ |2 and exp(−2ν∗kiz+). PRF(z+)/Pin increases with decreasing |R+
φ |2

and decreasing ν∗kiz+. Contour lines are hyperbolas with asymptotes |R+
φ |2 = 1 and

exp(−2ν∗kiz+) = 0. The RF sheaths do not dissipate all the redirected power, even when
the anti-Hermitian part of the dielectric tensor vanishes. The sheath power fraction can be
low for two reasons:

(1) ν∗kiz+ � 1 (long field line limit): most of the power from the incident FAMC mode
is damped in the plasma volume before reaching the sheath. In this regime, the
reflected FAMC mode hardly exists, the infinite field line model is fully valid.

(2) |R+
ϕ | ∼ 1: most of the power carried by the incident FAMC mode at z = z+ is

reflected into the mode φ−, and subsequently dissipated in the (infinite) plasma
volume −∞< z < z+.

4. Lossy cavity bounded by two dissipative RF sheaths.

In § 3, the reflected FAMC mode extended to z = −∞ in the limit ν∗ → 0+, when
keeping all other parameters constant. This raises the question of realistic magnetic field
lines in the SOL, bounded by sheaths at their two extremities. This is the topic of § 4.
When two sheaths face each other, we may expect multi-reflections of FAMC modes
between the two extremities, interferences all over the plasma volume, and ‘multi-pass’
wave dissipation in the plasma volume and in the sheaths, leading to a lossy cavity
excited by the incident HHFW wave. Similar kinds of cavities, e.g. Fabry–Perot resonators
(Renk 2017), guide our modelling. One also meets multi-pass wave damping in ICRF
heating scenarios; see e.g. Decamps et al. (1991), Fuchs et al. (1995) and Kazakov et al.
(2010).
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FIGURE 3. Colour map of PRF(z+)/Pin from (3.23) versus |R+
φ |2 and exp(−2ν∗kiz), together

with contour lines (one every 5 %). To be compared with figure 7 in a bounded geometry.

4.1. Outline of the model
Figure 4 sketches the model studied in § 4. The bounded magnetic field line now consists
of two segments [−z−,0] and [0,z+], denoted respectively left and right. In each segment
there are two FAMC modes with positive wave vector +k//res > 0 (respective complex
amplitudes φ+

0l and φ+
0r at z = 0) and opposite wave vector −k//res < 0 (complex amplitudes

φ−
0l and φ−

0r at z = 0). The mode excitation occurs at z = 0. Consistent with expressions
(2.19) and (2.25), we model it as a kick on the complex amplitudes of the two modes

φ+
0r = φ+

0l + 
φ+
0 , (4.1)

φ−
0r = φ−

0l + 
φ−
0 . (4.2)

The prescribed excitation terms 
φ+
0 and 
φ−

0 are respectively due to nearly resonant
scattering of incoming HHFW spectral components at +k//res and −k//res. They are
expressed as a function of the incident wave using formula (2.17).

We describe the propagation of the modes in segments [−z−,0] and [0,z+] and their
reflection at z = z+ or z = −z−, using formulas similar to (3.15) in semi-bounded
geometry

φ−
0r = φ+

0rR
+
φ exp(2ik‖ resz+ − 2ν∗kiz+) = φ+

0rR
+, (4.3)

φ+
0l = φ−

0lR
−
φ exp(2ik‖ resz− − 2ν∗kiz−) = φ−

0lR
−, (4.4)

and we use formulas analogous to (3.5) to express R±
φ .

4.2. RF field structure, wave multi-reflections
Equations (4.1)–(4.4) fully define the system in terms of the excitations 
φ+

0 and 
φ−
0 .

One can directly solve the system, or alternatively proceed in an iterative way as in Renk
(2017),

φ
+(0)

0r = 
φ+
0 (excitation for n = 0 on the right side, for k// = +k// res)

φ
−(n)

0r = R+φ
+(n)

0r (reflection at right boudary)

φ
−(n)

0l = φ
−(n)

0r − 
φ−
0 δn,0 (Kronecker symbol δn,0 means kick for n = 0)

φ
+(n+1)

0r = φ
+(n)

0l = R−φ
−(n)

0l (reflection at left boundary, then continuity)

⎫⎪⎪⎬
⎪⎪⎭ . (4.5)
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FIGURE 4. Sketch of the bounded field line model in § 4. The two nearly resonant FAMC modes
in the model have opposite parallel wave vectors and propagate along the same filament. The
colour shades are representative of the amplitudes for the isolated modes. In practice, the modes
interfere and the total RF field amplitudes oscillate spatially, but this is not represented. Inset:
decomposition of the solution into partial waves.

In the iteration rules (4.5) one can identify the generic terms, e.g. φ
+(n)

0r , with the
complex amplitudes of ‘partial waves’ at z = 0, after n reflections on the left and right
boundaries. Within this interpretation the kicks at n = 0 represent the amplitudes of the
FAMC modes excited by the HHFW scattering process, before the first double reflection.
These are responsible for the RF field discontinuity at z = 0. One subsequently obtains
the solution as a ‘global wave’, i.e. the superposition of partial wave complex amplitudes,
allowing for interference

φ+
0r =

∞∑
n=0

φ
+(n)

0r = 
φ+
0 −R−
φ−

0

1 − R+R−

φ−
0r = R+φ+

0r = R+

1 − R+R− (
φ+
0 −R−
φ−

0 )

φ−
0l =

∞∑
n=0

φ
−(n)

0l = −
φ−
0 −R+
φ+

0

1 − R+R−

φ+
0l = R−φ−

0l = − R−

1 − R+R− (
φ−
0 −R+
φ+

0 )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.6)

For n > 1, each double reflection multiplies the partial wave amplitudes by R+R−. One can
decompose the coefficient R+ into an amplitude attenuation factor and a phase shift on the
right part of the bounded magnetic field line

|R+| = |R+
φ |exp(−2ν∗kiz+)

arg(R+) = 2k‖ resz+ + arg(R+
φ )

}
. (4.7)

A similar formula applies on the left side. In relation to the prototype Fabry–Perot
resonator (Renk 2017), |R+

φ R−
φ | quantifies the reflectivity of the cavity extremities, while
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FIGURE 5. Colour map (log scale) of |1 − R+R−|2 versus |R+R−| and sin2(arg(R+R−)/2),
together with contour lines. The straight line corresponds to |1 − R+R−| = 1 ((4.9)), the dashed
curves are contour lines for |1 − R+R−|2 < 1.

exp(−2ν∗ki(z+ + z−)) quantifies the ‘gain’ (actually a loss <1) of the medium. The phase
shift between successive partial waves is arg(R+R−), while the ‘single-pass attenuation’
due to dissipation is |R+R−|. In the presence of dissipation, |R+R−| < 1 and the series
converges. The behaviour of 1/(1−R+R−) is therefore a direct consequence of the
interference between multiple partial waves.

|1 − R+R−|2 = [1 − |R+R−|]2 + 4|R+R−|sin2[arg(R+R−)/2]. (4.8)

Figure 5 plots |1−R+R−|2 versus |R+R−| and sin2[arg(R+R−)/2]. The number of partial
waves to take into account (number of roundtrip transits for FAMC mode photons)
is typically 1/1−|R+R−| (Renk 2017). In the long field line limit ν∗kiz− → +∞, one
partial wave is enough: R−→0 and one recovers on the right side of the field line the
semi-bounded model in § 3. This semi-bounded model also applies to the left side if

φ−

0 =0 (no direct excitation of the FAMC mode at –k//res). The opposite limit is more
interesting to study. The interference between partial waves in (4.6) manifests in oscillatory
terms on the mode amplitudes, persisting in the short field line limit ν∗kiz− → 0 and
ν∗kiz+ → 0. As arg(R+R−) spans [0, π ], |1 − R+R−|2 ranges between (1 − |R+R−|)2 < 1
and (1 − |R+R−|)2 > 1. The factor is smaller than 1 if

sin2[arg(R+R−)/2] < (|R+
φ R−

φ |exp[ − 2ν∗ki(z+ + z−)] − 2)/4, (4.9)

so 1/|1−R+R−| can grow very large if the ‘single-pass attenuation’ is weak (|R+R−| close
to 1) and simultaneously the partial waves interfere constructively (sin2(arg(R+R−)/2)
� 1). This situation is characteristic of a resonant cavity with a large quality factor (Renk
2017). In conditions of weak dissipation one can approximate (4.8) as

|1 − R+R−|2 ≈ 4
[

Re(zshr)yw

|zshryw + 1|2 + Re(zshl)yw

|zshlyw + 1|2 + ν∗ki(z+ + z−)

]2

+ 4sin2[arg(R+R−)/2]

Re(zshr)yw

|zshryw + 1|2 � 1; Re(zshl)yw

|zshlyw + 1|2 � 1; ν∗ki(z+ + z−) � 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(4.10)
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4.3. Redirected Power
On the parallel segment [0,z+], a formula similar to (3.20) applies for the Poynting flux,
where one replaces φ+

0 with (
φ+
0 −R−
φ−

0 )/(1 − R+R−)

PRF(z) = YFAMC

∣∣∣∣
φ+
0 −R−
φ−

0

1 − R+R−

∣∣∣∣
2

[exp( − 2ν∗kiz) − |R+
φ |2exp(2ν∗ki(z − 2z+))]; z > 0.

(4.11)
As already noticed in (3.20) and (3.21), PRF(z) > 0 and ∂ zPRF(z) < 0 on the right side of

the magnetic field line. Similarly on the left side [−z−,0].

PRF(z) = −YFAMC

∣∣∣∣
φ−
0 −R+
φ+

0

1 − R+R−

∣∣∣∣
2

exp(2ν∗kiz) − |R−
φ |2exp( − 2ν∗ki(z + 2z−))]; z < 0.

(4.12)
On this segment PRF(z) < 0 and ∂ zPRF(z) < 0. We deduce the redirected power

Pin = PRF(0+) − PRF(0−)

= YFAMC

[∣∣∣∣
φ+
0 −R−
φ−

0

1 − R+R−

∣∣∣∣
2

(1 − |R+|2) +
∣∣∣∣
φ−

0 −R+
φ+
0

1 − R+R−

∣∣∣∣
2

(1 − |R−|2)
]

.
(4.13)

In order to compare with previous models, let us first take one single FAMC mode
excitation and assume 
φ−

0 = 0. Then

Pin = YFAMC|
φ+
0 |2 1 − |R+R−|2

|1 − R+R−|2 ; 
φ−
0 = 0. (4.14)

As already noticed in § 3, the redirected power depends only on R+R−, regardless of which
physical process dissipates the power. Compared with the ‘infinite field line model’, the
redirected power is multiplied by the factor

1 − |R+R−|2
|1 − R+R−|2 = 1 − |R+R−|2

(1 − |R+R−|)2 + 4|R+R−|sin2(arg(R+R−)/2)

= 1 + |R+R−|
1 − |R+R−|

1

1 + 4|R+R−|
(1 − |R+R−|)2 sin2(arg(R+R−)/2)

.
(4.15)

In this expression, 1 − |R+R−|2 quantifies the power dissipated in one pass by a partial
wave of amplitude 1, while 1/|1−R+R−| quantifies the enhancement of amplitude for
the global wave due to the multi-reflections. Figure 6 plots the multiplication factor
(4.15) versus |R+R−| and sin2(arg(R+R−)/2). At fixed |R+R−|, figure 6 displays Airy
curves characteristic of a Fabry–Perot cavity (Renk 2017): as arg(R+R−) increases
from 0 (constructive interference) to π (destructive interference), the factor decreases
from (1 + |R+R−|)/(1 − |R+R−|) > 1 (amplification) to (1 − |R+R−|)/(1 + |R+R−|) < 1
(reduction). The factor is larger than 1 if

|R+R−| < 1 − 2sin2(arg(R+R−)/2); (4.16)

(straight line in contour plot).
The range of the variation broadens as |R+R−| increases. For |R+R−| � 1 one recovers

the infinite field line model (factor 1), regardless of the dissipation process. This also
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FIGURE 6. Colour map (log scale) together with contour lines of the multiplication factor for
the total dissipated power (formula (4.15)) versus |R+R−| and sin2(arg(R+R−)). The straight line
corresponds to factor 1 ((4.16)).

applies to the semi-bounded field line model, for which R− = 0. When |R+R−| is
close to 1 and arg(R+R−) close to 0, the multiplication factor becomes very sensitive
to small changes in the parameters: formula (4.15) behaves locally as the ratio (1 −
|R+R−|)/2sin2(arg(R+R−)/2). In figure 6 the contour curves appear locally as straight
lines converging at the critical point. This behaviour is characteristic of a high-Q resonant
cavity, with a quality factor proportional to 1/(1−|R+R−|) (Renk 2017). The half-width of
the resonant peak scales as |R+R−|1/2/(1 − |R+R−|).

When the HHFW scattering process simultaneously excites two counter-propagative
modes 
φ+

0 and 
φ−
0 in the system, the dissipated power is NOT the sum of the dissipated

powers by each mode excited separately with the same amplitude. In other words the
Parseval theorem, as formulated on infinite field lines, does not apply to the bounded
magnetic field line. This is also a consequence of the mode reflections. Instead, (4.11)
shows that Prf(0+) is proportional to |
φ+

0 −R−
φ−
0 |2, while (4.12) shows that Prf(0−) is

proportional to |
φ−
0 −R+
φ+

0 |2.

4.3. Sheath oscillating properties and power partitioning.
On the bounded field line model, the sheath RF voltages are analogous to expression (3.8)
for the isolated sheath in § 3, upon the substitution φ+

0 → φ+
0r=(
φ+

0 −R−
φ−
0 )/(1 −

R+R−) or φ−
0l= − (
φ−

0 −R+
φ+
0 )/(1 − R+R−)

∣∣∣∣ VshRFr(rf )


φ+
0 −R−
φ−

0

∣∣∣∣ =
∣∣∣∣∣ 1 + R+

φ

1 − R+R−

∣∣∣∣∣ exp(−ν∗kiz+)

∣∣∣∣ VshRFl(rf )


φ−
0 −R+
φ+

0

∣∣∣∣ =
∣∣∣∣∣ 1 + R−

φ

1 − R+R−

∣∣∣∣∣ exp(−ν∗kiz−)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (4.17)

Depending on the excitation and on the interference patterns, the amplitudes of sheath
oscillations can differ at the two extremities of the bounded field line. As ν∗kiz− → +∞,
the sheath oscillations on the left side tend to 0, and one recovers exactly expression (3.8)
on the right sheath. The sheath voltages are proportional to the local wave amplitudes;
when 
φ−

0 =0, the voltage on the right sheath is multiplied by a factor 1/|1 − R+R−|

https://doi.org/10.1017/S0022377822001155 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001155


RF sheath excitation at the extremities 19

FIGURE 7. Colour map of PRF(z+)/PRF(0+)) from (4.18) versus |R+
φ |2 and exp(−2ν∗kiz+),

together with contour lines (one every 5 %). To be compared with figure 3 in semi-infinite
geometry.

compared with (3.8). The power losses at the sheaths also exhibit similarity with previous
results

PRF(z+)

PRF(0+)
= exp(−2ν∗kiz+)

1 − |R+
φ |2

1 − |R+
φ |2exp(−4ν∗kiz+)

PRF(z−)

PRF(0−)
= exp(−2ν∗kiz−)

1 − |R−
φ |2

1 − |R−
φ |2exp(−4ν∗kiz−)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4.18)

These power fractions are independent of arg(R+) and arg(R−). In addition, the power
fractions on the two sides of the magnetic field line are independent of each other. Figure 7
maps PRF(z+)/PRF(0+) versus |R+

φ |2 and exp(−2ν∗kiz+). PRF(z+)/PRF(0+) increases with
decreasing |R+

φ |2 and decreasing ν∗kiz+. As already observed on the right segment in § 3,
in the presence of dissipative sheaths

lim
ν∗kiz+→0

PRF(z+) = PRF(0+); |R+
φ | < 1

lim
ν∗kiz−→0

PRF(−z−) = PRF(0−); |R−
φ | < 1

⎫⎬
⎭ . (4.19)

Consequently, in the short field line limit ν∗kiz− → 0 and ν∗kiz+ → 0, the sheaths
dissipate all the redirected power. One could anticipate this result; the magnetic field line
has a finite parallel extent, so that the volume dissipation vanishes in the collision-less
limit, despite a possible RF field enhancement by multi-reflection. The only exception to
property (4.19) occurs when one replaces both sheaths by perfect metallic walls. In that
case |R+

φ | = 1 and |R−
φ | = 1, all the redirected power is dissipated in the plasma volume

even in the short field line limit. When |R+
φ | is close to 1 and ν∗kiz+ is small (upper-right

corner of figure 7), PRF(z+)/PRF(0+) is very sensitive to small changes in the parameters.
The power ratio locally behaves as

PRF(z+)

PRF(0+)
≈ 1/

(
1 + 4ν∗kiz+

1 − |R+
φ |2

)
; 4ν∗kiz+ � 1, |R+

φ | ≈ 1. (4.20)
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One can see the fraction of redirected power lost in the sheaths as a weighted average of
formulas (4.18) on the two sides of the magnetic field line

PRF(z+) − PRF(−z−)

Pin
= PRF(0+)

Pin

PRF(z+)

PRF(0+)
+ |PRF(0−)|

Pin

PRF(−z−)

PRF(0−)
. (4.21)

When the field line geometry is left–right symmetric, i.e. |R+
φ | = |R−

φ | and z+ = z−, one
finds a result similar to (4.18)

PRF(z+) − PRF(−z−)

Pin
= exp(−2ν∗kiz+)

1 − |R+
φ |2

1 − |R+
φ |2exp( − 4ν∗kiz+)

|R+
φ | = |R−

φ |, z+ = z−

⎫⎪⎬
⎪⎭ . (4.22)

This fraction is larger than the previous result (3.23) for semi-bounded magnetic field
lines, by a factor 1/[1 − |R+

φ |2exp(−4ν∗kiz+)]. When the magnetic field line is asymmetric
but 
φ−

0 =0, the power fraction lost in the sheaths amounts to

PRF(z+) − PRF(−z−)

Pin
= exp( − 2ν∗kiz+)

1 − |R+
φ |2|R−

φ |2exp( − 4ν∗ki(z+ + z−))
×[1 − |R+

φ |2[1 − (1 − |R−
φ |2)exp( − 2ν∗ki(z+ + z−))]], 
φ−

0 =0.

(4.23)

One recovers formula (3.23) in the long field line limit on the left side (ν∗kiz− � 1),
as well as (4.22) for a left–right symmetric system. It simplifies to exp(−2ν∗kiz+) when
|R+

φ | = 0.

5. Discussion of the simplifying assumptions in the above models
5.1. Weakly damped FAMC mode.

Throughout the document we have applied the weak damping ordering ν∗ki � k// for the
FAMC modes. This simplifies the formulas for the Poynting fluxes. Figure 8 plots ki/k//res
versus ξ res of the FAMC mode for several harmonics ω/�ci, from formula (2.18) using the
tensor elements (2.4)–(2.7). To produce the graph, we followed the same procedure as in
Tierens et al. (2022a). We chose the values of m, ξ res and ω/�ci. We then deduced the value
of the resonant density ratio nf /nb in order to fulfil the FAMC dispersion relation (2.15).
The solution may not exist if k//res is too large. We finally inserted all the FAMC parameters
into expression (2.18). Figure 8 shows that over the parametric domain under study,
ki/k//res is of order unity. Therefore weak damping essentially occurs if ν∗ � 1. Following
Tierens et al. (2022a), one can interpret the anti-Hermitian part of the dielectric tensor
as artificial dissipation, i.e. as a mathematical way to regularize the HHFW scattering
problem in a collision-less plasma, without clear physical counterpart. The essence of this
approach is to let ν*→0 at the end of the calculations, and the weak damping ordering
becomes legitimate in this limit. Alternatively one can interpret the volume dissipation as
a simplified way to account for a physical friction with an immobile background, e.g. with
residual neutrals in the SOL. Within this interpretation the friction parameters ν* expected
in typical SOL plasmas are far less than 1. Therefore, the weak damping ordering should
also be valid in the case of physical friction.

Formula (2.24) generalized the expression of Im(k//). It shows that, as long as
the anti-Hermitian part of the dielectric tensor remains negligible with respect to the
Hermitian part, we expect Im(k//) � k// res.
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FIGURE 8. Resonant density ratio nf /nb and wave vector ratio ki/k//res vs ξ res for a FAMC mode
with azimuthal number m = 1, and several harmonics ω/�ci. For information, the graph also
shows the k//res associated with ξ res for deuterium ions and a filament radius rf = 1 cm.

5.2. Modelled geometry.
We have envisaged cylindrical filaments, aligned with a straight confinement magnetic
field and homogeneous in the parallel direction. This is necessary to carry out simple
analytical calculations in cylindrical geometry, and is motivated by the small transverse
scale lengths of the filament, in comparison with characteristic parallel lengths in the
problem. Turbulent filaments measured in the SOL of NSTX are field-aligned structures,
but their transverse cross-section is generally not circular (Zweben et al. 2016). In
addition, the filament typical transverse dimension may be comparable to typical density
gradient lengths in the quiescent plasma background. Tierens et al. (2020b) investigated
numerically FAMC modes in a less idealized geometry, showing that both the transverse
structure of the mode and its resonant parallel wave vector could depend sensitively on
the details of the density distribution in the background plasma and inside the filament.
Yet the more realistic models in Tierens et al. (2020b) do preserve the parallel symmetry
properties outlined in § 2.3, that are essential to the mode reflection processes in § 3.

In the parallel direction, the filaments may not extend all along the magnetic flux tubes
to their extremities. At least the density ratio nf /nb (hence k//res, k⊥, ki. . . ) may vary in
the parallel direction. This is particularly true on the high-field side of the torus, on the
way towards the inner divertor targets, where the curvature of the magnetic field lines
is favourable (Scotti et al. 2020). Experiments, however, suggest RF sheath excitation at
some field line extremities on NSTX (Perkins et al. 2015, 2017). If the filaments vanish
smoothly enough in the parallel direction, the FAMC modes may reflect in the plasma
volume before reaching the sheaths. It may be possible to account for this effect within
the present models, by adapting both the field line lengths (z+, z−) and the reflection
coefficients (R+

φ , R−
φ ).

We assumed that the filaments impinge onto the sheath boundaries at normal incidence.
This assumption is necessary to fulfil the sheath BCs using two FAMC modes with the
same azimuthal mode number and opposite parallel wave vectors. This normal incidence
is doubtful for magnetic flux tubes in the SOL, especially in the divertor region, rather
shaped for grazing incidence of the field lines. The incidence could be different at the two
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extremities of the magnetic field lines. This non-ideality breaks the cylindrical symmetry
of the initial geometry. The reflected wave may therefore involve several azimuthal mode
numbers. Oblique incidence also mixes of the parallel and transverse electric fields in the
RF sheath BCs. Dispersion relation (2.10) implies that the ratio |E///E⊥| for electrostatic
modes is typically (ε⊥/ε//)

1/2 = (me/Mi)
1/2. Therefore the mix becomes non-negligible

for small deviations from normal incidence, of the order of (me/Mi)
1/2. Due to this

non-ideality, part of the incident wave reflects into other wave types, generally not
FAMC filament modes. For plane waves, (Myra & Kohno (2019) showed that, at oblique
incidence, the incident and reflected modes have different wave vectors normal to the
planar boundary.

5.3. Radial invariance of ywzsh?
When one nearly resonant mode impinges onto the sheaths, the radial invariance of ywzsh
ensures that the reflected wave consists only of the FAMC mode with the opposite parallel
wave vector. The wave impedance yw is proportional to ε//, i.e. the local plasma density.
In our models it takes two different values inside and outside the filament. In the more
realistic models of Tierens et al. (2020b) the variations are even more complicated; zsh
also depends on r, it changes with the local plasma density and with the local sheath
RF voltage, two quantities varying radially. The local sheath voltage depends a priori
on the local sheath impedance. Consequently, rigorous calculations should, in principle,
be nonlinear and self-consistent, while the simplified approach in §§ 3 and 4 was linear
with prescribed sheath impedance. More specifically, Myra (2017) and Myra et al. (2021)
proposed a parametrization of the sheath impedance. At normal field line incidence, it
takes the form

zsh = kTe

ne2cs
z̄sh

(
ω0

ωpi
,

eVshRF

kTe
,

jshDC

necs

)
, (5.1)

where Te is the local electron temperature, while cs ≡ √
kTe/Mi is the sound speed in the

presence of cold ions. Taking Re(ε//) ∼ −ω2
pe/ω

2
0, the product ywzsh writes

ywzsh = Mi

me

cs

c
|n‖ res|

(
1 + iν∗ ki

k‖ res

)
z̄sh

(
ω

ωpi
,

eVshRF

kTe
,

jshDC

necs

)
. (5.2)

In our models, the pre-factor in (5.2) is radially invariant. We still have to discuss the
parametric dependence of the normalized sheath impedance z̄sh. At low frequencies or high
densities ω0/ωpi � 1, the electronic contribution generally dominates the RF impedance.
Within a single-plate model of the RF sheath, this contribution takes the form

z̄sh ∼ eVshRF

2kTe

I0

(
eVshRF

kTe

)
I1

(
eVshRF

kTe

) ; ω0

ωpi
� 1. (5.3)

This normalized impedance is independent of the local density. It is constant for
eVshRF � kTe, and proportional to eVshRF/kTe for large sheath oscillating voltages (the
most interesting situation). For a typical NSTX case, the HHFW frequency is ∼30 MHz,
and the criterion ω0/ωpi � 1 defines a critical density ne � 4 × 1016 m−3. Therefore,
formula (5.3) is suitable in the SOL region of NSTX where filaments interact with HHFW.
In the opposite limit ω0/ωpi � 1 (large frequency, low density), capacitive displacement
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currents generally dominate the RF impedance. The normalized RF impedance scales as

z̄sh ∝ i
ωpi

ω0
; ω0

ωpi
� 1,

eVshRF

kTe
� 1

z̄sh ∝ i
ωpi

ω0

(
eVshRF

kTe

)3/4

; ω0

ωpi
� 1,

eVshRF

kTe
� 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (5.4)

So, aside from asymptotic regimes (metallic or insulating BCs), for which the sheath
losses vanish, the assumption of radial invariance is approximate. The approximation
needs assessment but may be not so bad because:

• The dispersion relation (2.15) can ‘select’ filaments with large density ratios (see
e.g. figure 8), for which our assumptions are doubtful. Yet most of the filaments
observed in the SOL of NSTX have nf /nb close to 1 (Zweben et al. 2016). Over a
statistical average, these will likely dominate the results.

• V shRF is a smooth function of the radius r, but it may be steep near the filament
boundary. What may matter most for the mode reflection is the region close to the
filament boundary, where the sheath RF voltage is maximal.

The nonlinearity of zsh complicates the resonance of the cavity :

– Near the resonance, the amplitude of the sheath RF voltages is sensitive to 1 −
|Rφ|2.

– via the nonlinear zsh, |Rφ|2 depends on the amplitude of the sheath RF voltages.

Another consequence of the non-ideality is that part of the incoming FAMC mode
may reflect into other wave types, generally not FAMC filament modes. This process
might therefore dissipate part of the redirected power outside the sheaths, even in the
collision-less limit. In terms of the electromagnetic cavity defined in § 4, one can view
this process as a loss mechanism broadening the resonance of the cavity and reducing its
quality factor. Renk (2017) proposes several generalizations of the Fabry–Perot resonator
model. Along this line of thought one could possibly adapt the above theory using ad
hoc ‘effective reflection coefficients’ for the FAMC modes in the sheath, whose amplitude
would be smaller than the ‘ideal reflection coefficients’ in §§ 3 and 4. With this definition,
the power carried by the incident FAMC mode would be larger than the power reflected in
the other FAMC mode plus the power dissipated in the sheath. One could possibly quantify
these effective coefficients numerically from more sophisticated (and more demanding)
nonlinear full wave simulations.

5.4. Limitations of the redirected power.
We assumed that the presence of field line extremities did not affect the FAMC mode
excitation. Figure 6 suggests that in some conditions the redirected power may become
very large. In these conditions the redirected power is very sensitive to the value of k//res. In
practice, the redirected power cannot exceed the finite amount of power initially launched
by the HHFW antenna. The discussion above suggests that the resonant cavity conditions
are hard to reach. More fundamentally, the infinite field line model in § 2.1 assumed that
the scattering process does not modify the incident HHFW. Using this model, Tierens
et al. (2022a,b) estimated that the fraction of HHFW power redirected into the FAMC
mode is in the range 0.1 % per typical filament observed in NSTX. The high sensitivity
on k//res may violate an underlying assumption used to obtain (2.16); ν∗ki should be the
shortest wavenumber in the spectral problem. In the presence of strong power redirection,
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Field line geometry Infinite Semi-infinite Bounded

Sheath RF voltage∣∣∣∣VshRFr(rf )


φ+
0

∣∣∣∣ ; 
φ−
0 =0

No sheath |1 + R+
φ |exp(−ν∗kiz+)

∣∣∣∣ 1+R+
φ

1−R+R−

∣∣∣∣ exp(−ν∗kiz+)

Redirected power
Pin

YFAMC|
φ+
0 |2 ; 
φ−

0 = 0;
ν∗ki � k//

1 1 1−|R+R−|2
|1−R+R−|2

Power fraction
lost in sheaths
PRF(z+)−PRF(−z−)

Pin
;

ν∗ki � k//

0 exp(−2ν∗kiz+)

×
[
1 − |R+

φ |2
] exp(−2ν∗kiz+)

× 1−|R+
φ |2

1−|R+
φ |2exp(−4ν∗kiz+)

,

Symmetric field line

Power fraction lost in
sheaths, ν*→0

0 % 1 − |R+
φ |2 100 %

Validity ν∗kiz− � 1,

ν∗kiz+ � 1
ν∗kiz− � 1,

finite ν∗kiz+
finite ν∗kiz− , finite ν∗kiz+

TABLE 1. Main properties of FAMC mode model in the three field line geometries studied in
the main text.

we expect a retroaction of the FAMC mode onto the incident HHFW wave to keep the
redirected power fraction below 1. In a slightly different context, Decamps et al. (1991)
showed that exciting ICRF cavity modes can affect the load resistance of the ICRF antenna.

6. Conclusions and outlook

This contribution compared analytically the parallel propagation, reflection and
dissipation of nearly resonant FAMC modes in three magnetic field line geometries, in
the presence of both RF sheaths and wave damping in the plasma volume. The simple
formalism developed in this paper is not specific of FAMC modes. One can apply it to other
kinds of surface waves or guided modes for which the spectral resonance (2.16) appears, in
contexts different from a tokamak SOL. For example, we found some analogy with loaded
transmission lines. Appendix A envisaged a general form for the anti-Hermitian part of
the dielectric tensor. Table 1 summarizes our main findings.

The FAMC modes can possibly propagate along large parallel distances and excite RF
sheaths far away toroidally from the HHFW launchers. A typical parallel extent of the
FAMC mode in unbounded field lines is 1/(ν∗ki). When the magnetic field lines impinge
onto the walls at normal incidence, the paper described analytically how RF sheaths reflect
an incident FAMC mode into another FAMC mode with the opposite resonant parallel
wave vector. As in Myra & Kohno (2019) for plane electrostatic waves, the ‘single-pass’
reflection coefficient R+

φ depends on the product of the sheath RF impedance by the wave
admittance of the FAMC mode. The sheath RF voltages are proportional to the local
amplitude of the incident FAMC modes and to |1 + R+

φ |. Section 5 suggested that, in more
realistic tokamak situations, the incident FAMC mode may partly reflect into non-FAMC
waves.
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The FAMC modes divert some fraction of the spectral HHFW power launched into the
plasma at the resonant wave vector k// = k//res. In the weak damping regime considered
here (ν∗ki � k//res), this fraction is independent of which physical mechanism dissipates
the power: it depends only on R+R−, the complex factor that multiplies the partial FAMC
mode amplitudes after one reflection at each field line extremity. In the limit |R+R−|
� 1 (strong ‘single-pass’ damping), the ‘infinite field line’ FAMC model in Tierens et al.
(2022a) yields the correct power, even in bounded geometry. In the opposite limit (|R+R−|
close to 1), the bounded magnetic field line behaves like a resonant cavity for the FAMC
modes, similar to a Fabry–Perot resonator (Renk 2017). The total redirected power then
becomes sensitive to small variations in the parameters of the model, via |R+R−| and the
single-pass phase shift arg(R+R−). Section 5 suggests, however, that reaching this resonant
cavity regime is unlikely in realistic tokamak situations.

In our model, the HHFW power diverted into the FAMC modes can damp either in
the plasma volume or in RF sheaths. In a left–right symmetric bounded magnetic field
line, the power partitioning depends on two parameters: |R+

φ |2 and exp(−2ν∗kiz+), the
‘single-pass’ volume dissipation factor. One can see the argument of the exponential as
the ratio of the field line length 2z+ over the parallel extension of the FAMC mode in
unbounded geometry. In the ‘long field line’ limit ν∗kiz+ � 1, one recovers the ‘infinite
field line’ model (Tierens et al. 2022a), where RF sheath excitation is modest and volume
dissipation dominates. When the anti-Hermitian part of the dielectric tensor vanishes, one
can reach this ‘long field line limit’ only with infinite flux tubes. In the opposite limit
ν∗kiz+ → 0, the sheaths dissipate all the redirected power, even when the ‘single-pass’
sheath absorption is modest. This happens because in our lossy cavity model, sheaths are
the only power loss channel remaining on ‘short field lines’. Section 5 outlined, however,
several alternative ways for the redirected HHFW power to ‘leak’ from the physical system
in more realistic tokamak situations. The fate of this ‘leaking power’ is still an open
question. The semi-bounded field line model provides an intermediate power sharing; the
total field line length is infinite, but the sheath is located at finite distance from the FAMC
excitation point z = 0.

Like the ‘infinite field line FAMC model’ in Tierens et al. (2022b), the proposed
bounded field line model deserves comparison with HHFW experiments, in particular
the RF sheath behaviour on NSTX, not addressed so far (Perkins et al. 2015, 2017).
For this first exploration, we have adopted a simple analytical approach relying on
many idealizations. Section 5 suggests that several assumptions are questionable in
realistic tokamak cases and outlined several areas of improvement. One can likely attempt
more realistic FAMC modelling numerically. We expect this effort to be much heavier
computationally than our simple approach and therefore leave it for further work. Section
5 suggested that one could possibly use the numerical results to adapt the main parameters
identified in our analytical models.
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Appendix A. Poynting theorem reformulated for quasi-electrostatic cylindrical
filament modes

This appendix reformulates the Poynting theorem for quasi-electrostatic cylindrical
filament modes, such as those introduced in Tierens et al. (2022a) and investigated
throughout this document. We are interested in the following form of the Poynting relation

P′
V(z) = −∂zPRF(z), (A1)

where P′
V(z) is the power dissipated in a thin plasma layer at z = const., per unit of axial

length, and PRF(z) is the Poynting flux across the plane z = const.

A.1. Power dissipation in the plasma volume
We first evaluate the power loss P′

V(z) in the plasma volume

P′
V(z) ≡ ω0

2

∫ 2π

0
dθ

∫ +∞

0
Im[E∗(r, θ, z) · D(r, θ, z)]r dr. (A2)

As the studied cylindrical modes oscillate azimuthally as exp(imθ), E∗ · D is
independent of θ

P′
V(z) = πω0

∫ +∞

0
Im[E∗ · D]r dr. (A3)

Let us now introduce the quasi-electrostatic assumption E = −∇φ, and the definition
D ≡ ε0εE

P′
V(z) = πε0ω0

∫ +∞

0
Im[∇φ∗ · ε∇φ]r dr. (A4)

One can identify three contributions to P′
V(z) related to the three dielectric constants

P′
V(z) = P′

V‖ (z) + P′
V⊥(z) + P′

V×(z), (A5)

where

P′
V‖(z) = πε0ω0

∫ +∞

0
Im(ε‖)|∂zφ|2r dr, (A6)

P′
V⊥(z) = πε0ω0

∫ +∞

0
Im(ε⊥)|∇⊥φ|2r dr. (A7)

To evaluate P′
V×(z) we notice that |φ| vanishes at r = 0 and r→+∞, while the dielectric

tensor ε exhibits an abrupt step at the filament boundary r = rf . Associated with this step
is a discontinuity of some RF field components at r = rf . For any discontinuous quantity
F(r) we will note [[F]] the step at r = rf , i.e.

[[F]] ≡ F(r+
f ) − F(r−

f ). (A8)

Consistent with standard continuity conditions between two media (Stix 1992) (see also
Tierens et al. 2022a), we assume below [[φ]] = 0, [[Hθ ]] = 0, [[Dr]] = 0

P′
V×(z) = πε0ω0

∫ +∞

0
Im(ε×)

m
r

∂r|φ|2r dr

= −πmε0ω0
[[

Im(ε×)
]]

|φ|2(rf , z).
(A9)
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A.2. Poynting flux
We now evaluate the Poynting flux PRF(z)

PRF(z) ≡ 1
2

∫ 2π

0
dθ

∫ +∞

0
Re[(E∗(r, θ, z) × H(r, θ, z)) · ez]r dr

= π

∫ +∞

0
Re[(E∗ × H) · ez]r dr = π

∫ +∞

0
Re[E∗ · (ez × H)]r dr.

(A10)

Let us introduce the quasi-electrostatic approximation and integrate by parts

PRF(z) = −π

∫ +∞

0
Re[∇φ∗ · (ez × H)]r dr

= −π

∫ +∞

0
Re[φ∗(∇ × H)z]r dr.

(A11)

Here, we implicitly used [[φ]] = 0 and [[Hθ ]] = 0 at the filament boundary. We now
recall Maxwell–Ampère equation

∇ × H = −iω0D = iε0ω0ε∇φ, (A12)

We obtain

PRF(z) = −πε0ω0

∫ +∞

0
Im[ε‖φ∗∂zφ]r dr. (A13)

Let us take the axial derivative of the latter expression

∂zPRF(z) = −P′
1(z) − P′

2(z), (A14)

with

P′
1(z) = πε0ω0

∫ +∞

0
Im(ε‖)|∂zφ|2r dr, (A15)

P′
2(z) = πε0ω0

∫ +∞

0
Im[ε‖φ∗∂2

zzφ]r dr. (A16)

To evaluate P′
2(z) we use the dispersion relation (2.3) for the electrostatic mode

P′
2(z) = −πε0ω0

∫ +∞

0
Im[ε⊥φ∗
⊥φ]r dr. (A17)

Let us integrate by parts, and take into account the discontinuities at the filament
boundary

P′
2(z) = πε0ω0Im[rε⊥φ∗∂rφ] + πε0ω0

∫ +∞

0
Im(ε⊥)|∇⊥φ|2r dr. (A18)

We re-express the first term on the right-hand side using [[φ]] = 0 and [[Dr]] = 0, i.e.
r [[ε⊥∂rφ]] = −mφ

[[
ε×
]]

P′
2(z) = −πε0ω0

[[
Im(ε×)

]]
|φ|2(rf , z) + πε0ω0

∫ +∞

0
Im(ε⊥)|∇⊥φ|2r dr. (A19)
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In summary

− ∂zPRF(z) = P′
1 + P′

2 = P′
V‖ + P′

V⊥ + P′
V× = P′

V(z). (A20)

This is the requested reformulation.
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