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Abstract. The technique for analytical investigation of the Alfvén resonance, pro-
posed by Dmitrienko [J. Plasma Phys. 57, 311 (1997); 62, 145 (1999)] is used to
obtain the matching conditions and to calculate the rate of resonant absorption
and heating in a nonlinear dissipative resonance layer. It is shown that one match-
ing condition is the invariability condition for the coefficient of the singular part of
the solution describing the MHD mode outside the resonance layer, and the other
condition is a jump of the coefficient of a regular solution, the value of which de-
pends on the ratio of the dissipative to nonlinear spatial scales. It is established that
the ratio of the jump of the imaginary part of the regular solution to the coefficient
of the singular solution is exactly equal to the rate of resonant heating, and this
heating is calculated as a function of the ratio of the linear dissipative to nonlinear
scales. The resonant absorption coefficient is calculated as well. It is shown that the
nonlinearity leads to a decrease of the heating rate and the absorption coefficient
compared with those predicted by linear theory.

1. Introduction
The goal of this paper is to investigate the influence of nonlinearity on plasma
heating and on the absorption of magnetohydrodynamic (MHD) waves in the re-
gion of Alfvén resonance. This heating is known to be due to the fact that a dis-
turbance of MHD type near the surface where its frequency is equal to the local
Alfvén frequency becomes small in scale, and in such a form (i.e. a small-scale
disturbance of Alfvén type) it transmits some of its energy via the collision mech-
anism to the thermal motion of particles. The physical meaning of the real pro-
cesses that are of necessity accompanied by the emergence of an Alfvén resonance
can be quite different. In the magnetosphere, these are FMS waves propagating
across magnetic shells (Southwood 1974), cavity modes (Southwood and Kivel-
son 1986), and surface modes (Chen and Hasegawa 1974); on the Sun, they are
the various disturbances in the corona and in solar arches (Ionson 1978); and in
laboratory plasma heating devices, they are low-frequency waves used in plasma
heating (Tataronis and Grossman 1973; Grossman and Tataronis 1973). The ab-
sorption of MHD waves in the magnetosphere implies the transformation of large-
scale small-amplitude disturbances to localized (near particular magnetic surfaces)
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small-scale geomagnetic pulsations observed on the ground. Plasma heating in this
region makes some contribution to energization of particles and to their precip-
itation into the ionosphere. Resonant absorption and heating is also recognized
as the mechanism responsible for the heating of solar arches. The character of a
small-scale resonance disturbance, which in its properties may be arbitrarily clas-
sified as a disturbance of Alfvén type, is determined by which effect(s) that bring
us beyond the model of ideal magnetohydrodynamics are predominant in the res-
onance region. We will neglect the effects causing a disturbance of the Alfvén type
to escape the resonance surface by assuming that the dominant small effects are
the resistivity µ� 0 and the viscosity ν � 0. Such a case was rather thoroughly
investigated within the linear approximation; specifically, it was found that the
rate of resonant heating due to the presence of finite dissipation is independent
of the value of the dissipative coefficients (Hollweg 1987; Davila 1987). We shall
consider a very simple model of the medium that allows for the existence of the
Alfvén resonance. This is a plasma with density that is inhomogeneous across a
homogeneous magnetic field, i.e. ρ0 = ρ0(x) and B0 = (0, 0, B0). It will be assumed
that there exists a disturbance of the form Ψ(x)e−iωt+kzz+kyy. This can be, for ex-
ample, a penetrating (from the transparent region) FMS wave or a disturbance
caused by some source on some surface across the magnetic field. In the opaque
region (ω2/v2

A − k2
z − k2

y < 0) on some surface x = x0, the condition ω2/v2
A = k2

z

is satisfied. Our intent here is to obtain the matching conditions, and to calculate
the rate of resonant absorption and heating, based on the technique for analyt-
ical investigation of the Alfvén resonance proposed by Dmitrienko (1997, 1999).
It relies on the assumption that away from the resonance surface, the nonlinear-
ity and dissipation can be neglected in the input equations. Near the resonance
surface, the equations with dissipation and nonlinearity are simplified because of
a possibility of restricting our consideration to the first term of an expansion in
a series of functions describing the inhomogeneity of the medium; after that, the
outer and inner solutions are matched. In linear theory, essentially the same ap-
proach has been used in many publications: away from the resonance surface, the
influence of the small dissipation was considered unimportant, and the dissipa-
tion was taken into account only near the surface. A new element of this study, in
addition to taking the nonlinearity into account, is the procedure of formalizing
the problem suggested by Dmitrienko (1997, 1999) and further developed in this
paper.

As will be shown later in this paper, nonlinearity reduces resonant heating com-
pared with what is given by linear theory under the same conditions. It should be
noted in this connection that a decrease in Ohmic heating with an increase of the
driver amplitude in the nonlinear disturbance was revealed by simulating the heat-
ing of coronal arches through a numerical solution of nonlinearized MHD equations
by Ofman and Davila (1995). However, the decrease in heating reported by Ofman
and Davila (1995) manifested itself for a confined (in the z direction) disturbance;
in this paper, we consider a disturbance propagating along this direction. Unfortu-
nately, even this difference in the statement of the problem does not permit us to
compare in a meaningful manner the results of Ofman and Davila (1995) and those
obtained in this paper. Furthermore, Ofman and Davila totally neglect the gas kin-
etic pressure of plasma, whereas, within the framework of the problem considered
in this paper, this pressure is taken into account for a correct determination of the
zeroth harmonic.
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2. Basic equations
We restrict our consideration to one-fluid MHD in the form

∂tB =∇× (v× B) + µ∇2B,

∂tv + (v ·∇)v = −T∇n
min

+
(∇× B)× B

4πmin
+ ν∇2v (2.1)

∂tn +∇ · (nv) = 0.

Here µ is the resistivity and ν is the ion viscosity. We remark from the outset that
the presence of gas kinetic pressure in (2.1) lets us take it into account when estab-
lishing a total pressure balance in the situation where there is magnetic pressure
produced by a disturbance – and only such a role will be taken into consideration
here, i.e. we shall take into account the fact that pressure exists in the plasma only
when calculating the zeroth harmonic of the disturbance. Linear effects associated
with the presence of pressure will be neglected. This means that the linear limit
of our nonlinear theory is the linearized system (2.1) with T = 0. Such a system
describes the Alfvén resonance, in which only dissipative effects are important; it
is they that determine, within the linear approximation, the spatial scale of the
disturbance (Hollweg 1987; Davila 1987). In describing the disturbance, we shall
be using the quantities

b =
B− B0

B0
, u =

k

ω
v, r =

n0(x)
n0(x0)

.

We also denote θ = −ωt + kzz + kyy. Besides, it will be assumed that

n0(x) = n0(x0)
(

1 +
x− x0

l
+ . . .

)
,

and we denote ξ = (x− x0)/l, where, obviously, l−1 = (dr0/dx)|x=x0 .
If, within the framework of linear theory, not only gas kinetic pressure but also

dissipative effects are neglected, then for bz(ξ) we obtain a second-order differential
equation (Southwood 1974):

∂2
ξξbz − ∂ξ ln

(
ω2

k2
zv

2
A

− 1
)
∂ξbz + (kzl)2

(
ω2

k2
zv

2
A

− 1− k2
y

k2
z

)
bz = 0, (2.2)

for which ξ = 0 is a regular singular point. When ξ → 0,

bz = A±

(
kzkyl

2

2
ξ2 +O(ξ4)

)
+B±

(
kz
ky

+
kzkyl

2

2
ξ2 ln |ξ| +O(ξ4)

)
. (2.3)

The + and − signs refer to the regions ξ > 0 and ξ < 0 respectively. The coefficients
A and B correspond to two linearly independent solutions, one of which is regular,
while the other has a logarithmic singularity; (2.3) corresponds to such a choice of
these solutions where the phase of the logarithm in the second solution is included
in the coefficient A.

The influence of the dissipation and nonlinearity in the region ξ/∆→∞ (where
∆ is the scale of the resonance layer) from (2.1) can be taken into account by
perturbation theory. Assuming that the disturbance amplitude is characterized by
a small parameter ε, one can obtain the expressions with estimates of the corrections
for dissipation and nonlinearity for bx(ξ) and by(ξ), the particular form of which
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will be used in our subsequent treatment:

bx = ε
{
ikyl

{
A±

[
1 +O(ξ2)

]
+B±

[
ln |ξ| +O(ξ2)

]}
+ O(µξ−3) +O(νξ−3)

}
+O(ε3ξ−3), (2.4)

by = −ε{A± [ 1
2k

2
yl

2ξ +O(ξ3)
]

+B±
[
ξ−1 + 1

2k
2
yl

2ξ ln |ξ| +O(ξ3)
]

+ O(µξ−4) +O(νξ−4)
}

+O(ε3ξ−4). (2.5)

By comparing, when ξ → 0, the main contribution to the solution and, inde-
pendently, each of the corrections, it is possible to calculate the dissipative and
nonlinear scales as scales at which the corresponding corrections are compared
with the main contribution. With such a determination, the resistive and viscous
scales are given by ∆µ = (µ/ωl2)1/3 and ∆ν = (ν/ωl2)1/3 respectively, as they must
(Hollweg 1987; Davila 1987), and the nonlinear scale turns out to be of order ε2/3

(Dmitrienko 1997). Note that the specific character of the nonlinearity in the case
under consideration is such that corrections for nonlinearity cannot be calculated
without taking the dissipation into account (Dmitrienko 1997). So the nonlinear
terms of (2.4) and (2.5) have been calculated by using the linear equations, derived
on the basis of the dissipative linear scale ∆L. In linear theory, such equations were
repeatedly obtained using an essentially allied method, even if formalized in an-
other way (see e.g. Goossens et al. 1995). The main (of order (µ + ν)0) terms of the
asymptotic forms of their solutions when (ξ/∆L) → ∞ are sufficient for obtaining
the nonlinear corrections and nonlinear scale.

From here on, for the resonance layer we shall be using the nonlinear spatial
scale. The values of the disturbance components as functions of the new variable

ζ = ε−2/3ξ (2.6)

are expanded in series in terms of ε1/3:

Ψi =


εΨ(1)

i (ζ, θ, τ ) + ε4/3Ψ(4/3)
i (ζ, θ, τ ) + . . . , i = 1, 4,

ε1/3Ψ(1/3)
i (ζ, θ, τ ) + ε2/3Ψ(2/3)

i (ζ, θ, τ ) + . . . , i = 2, 5,

ε2/3Ψ(2/3)
i (ζ, θ, τ ) + εΨ(1)

i (ζ, θ, τ ) + . . . , i = 3, 6, 7

(2.7)

(with Ψ = (b,u, r)). The boundary condition when ζ →∞ for the main order of the
y component of the magnetic field disturbance,

b(1/3)
y = Hye

iθ + c.c., (2.8)

follows from (2.5):

Hy = −B±ζ−1 +O

(
ζ−4µ

ε2

)
+O

(
ζ−4ν

ε2

)
+O(ζ−4). (2.9)

It is possible to obtain (with certain limitations to be specified later) the nonlinear
equation containing Hy only. Since its derivation does not contain any essential
differences from the derivation of the nonlinear equation in Dmitrienko (1997), we
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give it here in its final form:

i
∆3
L

ε2
∂2
ζζHy −

(
ζ − 1

β∗
|Hy|2

)
Hy = const, (2.10)

∆L =
(
µ + ν

ωl2

)1/3

, β∗ =
4πn0(x0)T

B2
0

.

For the boundary conditions (2.9) to be satisfied, it is necessary to put

const = B+ = B− = B, (2.11)

which yields the matching of B+ and B−, and, incidentally, makes it possible to
refine the meaning of the parameter ε introduced above. This characterizes, as is
clear from, for example, (2.11) and (2.3), when B ∼ 1, the disturbance amplitude
of the z component of the magnetic field in the resonance layer, Bz ∼ εBB0. The
matching of (2.11) coincides with what was obtained in linear theory on an earlier
occasion (Southwood and Kivelson 1986). In view of (2.11), (2.10) takes the form:

i
∆3
L

ε2
∂2
ζζHy −

(
ζ − 1

β∗
|Hy|2

)
Hy = B. (2.12)

The nonlinear term in (2.12) is caused by the interaction of the fundamental har-
monic with the zeroth harmonic of the density perturbation generated by it. No
other components of the zeroth harmonic are involved in (2.12), by virtue of the fact
that the condition µ/ν� β∗−1 is assumed to be satisfied. In this case (Dmitrienko
1997), one may assume that the contribution of the density is dominant among
the contributions to the nonlinear term from different disturbance components at
the zeroth harmonic. An important property of (2.12) is that the nonlinear term
does not involve the contribution from the second harmonic. The contribution from
the second harmonic to the nonlinear term is zero because the contributions from
the different disturbance components compensate each other exactly (in the order
required for (2.12)) (Dmitrienko 1997). The constant B can be taken as real and
positive. On substituting

ζ ′ = β∗1/3B−2/3ζ,

G = (β∗B)−1/3Hy,

λ =
∆3
L

∆3
N

, ∆L =
(
µ + ν

ωl2

)1/3

, ∆N = β∗−1/3(εB)2/3,

(2.12) is brought to the form

iλ ∂2
ζ′ζ′G− (ζ ′ − |G|2)G = 1. (2.13)

The parameter λ characterizes the relative roles of dissipation and nonlinearity;
its value is determined by the ratio of the linear dissipative scale to the nonlinear
spatial scale.

3. Matching through the resonance layer and heating rate
To obtain the matching of the coefficients A+ and A−, we now turn to (2.4). We
shall use Hx similarly to Hy. The difference of the values of b(1)

x taken at the points
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symmetric about the resonance surface does not contain the term ln |ξ|:
Hx(ζ0)−Hx(−ζ0) = ikyl(A+ −A−) +O(µε−2ζ−3) +O(νε−2ζ−3) +O(ζ−3), (3.1)

on the other hand, in accordance with the ordering of the values of the disturbance
components from (2.7) and the scaling in (2.6), the relation

∂ζb
(1)
x + kyl ∂θb

(1/3)
y = 0, (3.2)

holds in the resonance layer, so that

Hx(ζ0)−Hx(−ζ0) = −ikyl
∫ ζ0

−ζ0

Hy dζ. (3.3)

When ζ0 →∞, we obtain

A+ −A−
B

= −
∫
−Gdζ ′. (3.4)

One can make sure that when λ→∞, corresponding to linear theory, the solution
(2.13) gives a linear matching in the form

A+ −A− = −πiB. (3.5)

This was obtained for the first time (in a different form, however) by Southwood and
Kivelson (1986). In the linear case, the jump of the coefficient A does not depend on
the value of the dissipative coefficients (Davila 1987). This is evident from the fact
that the parameter λ can be deleted from the linearized forms of (2.13) and (3.4)
on substituting h = ∆−1/3

L ξ and P = Gλ1/3. In the nonlinear case, a dependence on
λ is inevitable; the jump of A depends through λ on the disturbance amplitude and
the value of the dissipative coefficients.

The formal problem of matching the disturbance through the resonance layer
is closely associated with the problem of plasma heating in this layer. The Ohmic
heating of the resonance layer is

hµ =
µB2

0

2πl

∫ ∣∣∣∣∂by∂ξ
∣∣∣∣2 dξ.

We shall calculate only the zeroth harmonic of the heating rate. It is worthwhile
introducing, for the main order of the heating rate h(2)

µ , the dimensionless heating
rate

H (2)
µ =

∆3
µ

∆3
N

∫ ∞
−∞

∣∣∣∣∂G∂ζ ′
∣∣∣∣2 dζ ′, h(2)

µ =
B2

0ωl

2π
B2H (2)

µ .

In a similar manner, for the heating rate and dimensionless heating rate of ions
we shall use h(2)

ν and H (2)
ν . Let a total heating rate h(2) = h

(2)
µ + h

(2)
ν be expressed in

terms of a total dimensionless heating rate H:

H = λ

∫ ∞
−∞

∣∣∣∣∂G∂ζ ′
∣∣∣∣2 dζ ′. (3.6)

On multiplying (2.13) by G∗ and the complex conjugate of (2.13) by G, and sub-
tracting the latter equation obtained from the former, we get

iλ

∫ ∞
−∞

(
G∗

∂2G

∂ζ ′2
+ c.c.

)
dζ ′ = 2i Im

(
A+ −A−

B

)
.
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Thus, for the nonlinear resonant heating rate,

H = −Im
(
A+ −A−

B

)
. (3.7)

For the linear theory, from here,
H = π. (3.8)

For a nonlinear disturbance, the heating rate can be calculated numerically; results
of such calculations are presented in Section 5.

4. The absorption coefficient
So far we have not used any assumptions about the character of the inhomogeneity
profile of the medium; in the resonance layer, it was sufficient for us to have the
first term of the expansion in a Taylor series of the function describing the density
of the medium. For this reason, (2.11), (2.13), and (3.4) are applicable to Alfvén
resonances of different origins, both for a confined mode such as the cavity mode,
for the surface mode, and for the propagating MHD wave. Here we restrict ourselves
to integrating (2.11), (2.13), and (3.4) into the problem of FMS wave propagation
in an inhomogeneous plasma, and this inhomogeneity will be taken to be such
that in some region in the coordinate x when ξ > ξr, this wave is a propagating
one, there is one point of reflection ξr, and behind it when ξ < ξr there is an
opaque region. This region involves a resonance surface ξ = 0. It is known that this
wave leaves some of its energy in the resonance layer, and the energy flux density
in the reflected wave is therefore smaller when compared with the incident wave.
In the propagation region, the incident FI (ξ) and reflected FR(ξ) waves can be
chosen as two independent solutions (2.2); the coefficients CI and CR, with which
they are involved in the full solution, represent incidence and reflection coefficients
respectively. As the full solution continues into the opaque region, it takes near the
resonance surface the form (2.3). The relation between the incidence and reflection
coefficients and the coefficients A+ and B can be written in matrix form as(

CI
CR

)
= D̂

(
A+

B

)
, (4.1)

whose coefficients are determined by the inhomogeneity profile, and are calculated
from (2.2). Equation (2.2) is also used to calculate a relation between the coefficients
A− and B of the form

A− = δB, (4.2)

following from the boundary condition bz → 0 when ξ → −∞. To be able to com-
pare with previously reported results for linear theory (Southwood and Kivelson
1986; Forslund et al. 1975), we choose the linear profile of the plasma density. In
this case, when ξ� ξr, the incident and reflected waves are represented as

FI (ξ) = (kzl)1/2 ξ1/4exp
{− i 2

3 [(kzl)2/3 ξ − λ2
ex]3/2 − 1

4 iπ
}

+O(ξ−3/4),

FR(ξ) = (kzl)1/2 ξ1/4exp
{
i 2

3 [(kzl)2/3 ξ − λ2
ex]3/2 + 1

4 iπ
}

+O(ξ−3/4),

where

λex = kyl(kzl)−2/3. (4.3)
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The absorption coefficient is

κ =
|CI |2 − |CR|2
|CI |2

. (4.4)

Having been defined by (4.4), it represents the ratio of the energy flux density
difference in the incident and reflected waves to the energy flux in the incident
wave. However, it is not a direct characteristic of energy storage in the resonance
layer, because the fraction of the energy that is lost by the fundamental harmonic
leaves the resonance layer together with a weak (∼ ε2) flow along the direction of
the inhomogeneity. The density of the energy flux associated with this flow, when
|ζ| → ∞, is

q
(2)
x0 =

1
4π

ω

k
B2

0

(
2u(1)

x b
(1)
z + u(2)

x

)
0 +O(ζ (−1)). (4.5)

Here u
(1)
x , b(1)

z , and u
(2)
x denote the respective disturbance components in ‘inner

orders’ following from (2.7). It follows from (2.1) that

u(1)
x = −b(1)

x , u
(2)
x0 = −(u(1)

x b
(1)
z )0 + const. (4.6)

The first term on the right-hand side of (4.5) is the energy flux density directly in
the fundamental harmonic of the wave, and the second term is the density of wave
energy associated with the formation of flow in the x direction. The jump of the
first flow is directed toward the resonance surface, and the jump of the second flow
is aimed away from it. On substituting (4.5) and (4.6) into the law of conservation
of energy, h(2)

x0 = −q(2)
x0 |∞−∞, we arrive again at the relation (3.7). From the properties

of the matrix D̂ (Dmitrienko 1999), one can obtain the relation

|CI |2 − |CR|2 = −B Im(A+ −A−). (4.7)

In view of (3.7) and (4.4), this means that

B2H = κ|CI |2; (4.8)

in the linear case, B2π = κ|CI |2.

5. Results of numerical calculations
A numerical integration of (3.4) for Gy, which is also obtained by a numerical
solution of (2.13), makes it possible to calculate the matching condition at a given
ratio of the dissipative to nonlinear spatial scales (λ); this quantity is independent
of any other parameters. As a test, the numerical solution of (2.13) without the
nonlinear term was obtained (this corresponds to the linear case). The straight
dashed line in Fig. 1 plots the result; it means that the value of the jump in the
imaginary part of the coefficient A of the regular part of the solution is independent
of λ in linear theory. In nonlinear theory (the solid curve in Fig. 1) the relation
between A+ and A− changes essentially with a change of λ and Im(A+ −A−)→ 0
when λ→∞, which signifies disappearances of the jump in the imaginary part of
the coefficient A. This means, in the language of the phase of the logarithm, that
its jump at the passage through the resonance layer tends to 0.

The curves plotted in Fig. 1, as a consequence of (3.7), express also the dependence
of a total dimensionless heating rate H on λ. The straight line corresponds to linear
theory: heating does not depend on λ. The solid curve gives the dependence of
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1
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4

k–1/3

H

–Im
A+ – A–

B0 1

Figure 1. Im[(A+ −A−)/B] and H as functions of λ: Dashed line, linear theory;
solid curve, nonlinear theory.

the total dimensionless heating on λ for nonlinear theory. It is evident that with
decreasing λ, i.e. with decreasing ratio of the linear to nonlinear spatial scales, this
rate decreases.

This decrease in the heating rate is similar to the decrease in heating rate that
was found by Ofman and Davila (1995) in a numerical simulation of the heating of
coronal arches, based on the nonlinear MHD equations, into which the source of a
large-scale disturbance was introduced. With Dmitrienko (1997, 1999), in mind, it
must be assumed that the difference of the cases considered by Ofman and Davila
(1995) and in this paper means that there is no way of making any quantitative
comparisons. On the one hand, Ofman and Davila neglected gas kinetic pressure
and viscosity when establishing the zeroth harmonic; in such a case, according to
Dmitrienko (1997), the non-stationary character of the disturbance, which is not
considered in this paper, can play a role in establishing the zeroth harmonic. On the
other hand, Dmitrienko (1997) and this paper investigate the disturbances propa-
gating along the external magnetic field, while Ofman and Davila (1995) examine
a standing disturbance, and there is as yet no possibility of clearly formulating to
what differences in nonlinear effects this difference of the disturbances involved can
lead. However, a qualitative explanation for this effect offered by Ofman and Davila
(1995), i.e. a perturbation of the resonance condition because of the appearance of a
nonlinear addition to the frequency, is applicable within the context of this paper as
well. The nonlinear term in (2.13) appears because of the fact that in the resonance
layer, equal roles are played by minor changes of unperturbed parameters (density)
in the direction across this layer as a consequence of their inhomogeneity, and by
changes of these parameters as a consequence of the presence of a disturbance in
this layer. These latter may be treated as a change of the local Alfvén frequency
under the influence of the nonlinearity.
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kL= 0.05
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kL= 0.01

B

h(2)

Figure 2. Dependence of the heating h(2) on B: Dashed curve, linear theory; solid curves,
linear theory for λL = λ|B|2 = 0.05, 0.01, respectively.

Although H depends only on one parameter, this parameter, in turn, depends
on the other two parameters (the dissipative and nonlinear spatial scales), and a
decrease in λ can be caused by, for example, an increase in disturbance amplitude
with the invariable dissipation or by a decrease in the dissipative coefficients with
the invariable amplitude. In either case, the ratio of the linear to nonlinear scales
decreases, and the influence of the nonlinearity is enhanced. The first case is illus-
trated in Fig. 2. There it has been taken into account that the amplitude of the
z component of the magnetic field disturbance in the resonance layer is bz ∼ εB,
so it is possible (assuming ε to be unchanged) to change the amplitude by means
of changing B. The heating h(2) contains a dependence on the parameter B apart
from the one that was involved in H. Figure 2 presents the dependence of the heat-
ing h(2) on B, with the dissipative coefficients and β remaining unchanged; they
can together be characterized by the parameter λL = λ|B|2. It is seen that the
quadratic growth of heating with increasing disturbance amplitude changes to a
linear growth with subsequent increase; a change in the character of the depen-
dence of h(2) on B occurs at λ ∼ 1, i.e. at such an amplitude where the linear and
nonlinear scales become equal. When neglecting the nonlinear term in (2.13), the
dashed curve with quadratic growth was obtained.

It is clear that the decrease of resonant heating with decreasing ratio of the linear
scale to the nonlinear one leads to a decrease in the absorption coefficient of the
large-scale disturbance. In linear theory, the absorption coefficient depends on only
one parameter, λex (4.3). This parameter characterizes the large-scale disturbance,
and determines, in particular, the connection of the amplitudes of the incidence
FMS wave and the FMS disturbance in the resonance layer. In the nonlinear case,
the absorption coefficient κ depends not only on λex but on λ as well: κ = κ(λex, λ).
We want to have a dependence of κ on λex when the amplitude CI is constant. It
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Figure 3. Dependence of the absorption coefficient on λex: Dashed curve, linear theory;
solid curves, nonlinear absorption at |CI |λ−1/2

L = 2, 3, 4, 5, respectively.

is possible to obtain this dependence on the basis of (2.13). From (4.1), (4.2), and
(3.4) it follows that

CI =
[
d11

(
δ −

∫
−Gdζ ′

)
+ d12

]
B,

so

λ =
λL
∣∣d11(δ − ∫−Gdζ ′) + d12

∣∣2
|CI |2 .

Numerical solution of this equation gives λ as λ(λex, λL/|CI |2). On substituting
λ into (4.8), we get κ = κ(λex, λL/|CI |2). The last parameter depends in turn on
the amplitude of the incident wave and the dissipation value. Figure 3 illustrates
the dependence of the resonant absorption coefficient on λex. The dashed curve
corresponds to the linear case (such a curve was given in Southwood and Kivelson
(1986), where it was taken from Forslund et al. (1975)), and the solid curves repre-
sent the nonlinear absorption at different values of |CI |λ−1/2

L . It is seen that with a
decrease of this parameter, the curves become more flattened, with an increasingly
less pronounced maximum.

6. Conclusions

This paper is a continuation of the study, initiated in Dmitrienko (1997, 1999), of
the influence of nonlinear effects on the processes accompanying the propagation
of an MHD mode in the region where its frequency coincides with the local Alfvén
velocity. We have obtained the matching conditions for such a mode through the
resonance layer in which the influence of both the dissipation (resistivity and vis-
cosity) and nonlinearity is important. The MHD mode outside the resonance layer
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is described by a linear combination of two linearly independent solutions, one of
which is regular while the other has a singularity. The coefficients of these solu-
tions are generally different on different sides of the resonance surface. A complete
description of the mode calls for a matching of these coefficients through the res-
onance layer. In this paper, it has been found that one matching condition is the
condition of constancy of the coefficient of the singular solution. This property of a
resonant disturbance arises in both the nonlinear and nonlinear cases; for the linear
case, it is even known as a conservation law (in a different form, however) (Goossens
and Ruderman 1995). According to its physical meaning, such a matching is a for-
malization of the concept (which was often taken as a postulate in earlier studies)
of a minor influence of a resonant Alfvén disturbance on a large-scale disturbance
generating it, the amplitude of which in the resonance region is just characterized
by the coefficient of the singular solution. The other matching condition, as shown
in this paper, is the jump of the coefficient of the regular solution. This jump is
expressed in terms of an integral in the sense of the principal value of a function
describing a resonant disturbance, and depends on the ratio of the dissipative to
nonlinear spatial scales that is characterized by the parameter λ. In the linear case
(when the linear dissipative scale is much larger than the nonlinear scale, i.e. λ� 1),
it becomes a jump of the logarithm phase at the transition through the resonance
layer, and is −πi; as λ decreases, its imaginary part decreases and tends to 0. The
value of the imaginary part of the jump of the coefficient of the regular solution
in the nonlinear case, as in the linear case, is connected with the loss of energy
by the large-scale MHD disturbance in the resonance layer. In this paper, we have
established a relation between the imaginary part of the jump of the coefficient of
the regular solution and the rate of resonant heating of the plasma. It was found
that if a dimensionless resonant heating rate that depends on λ only is introduced,
then the ratio of the jump of the imaginary part of the regular solution to the
coefficient of the singular solution is exactly equal to this dimensionless resonant
heating rate. Such a simple relationship holds because the only linear small effect
that has been taken into account in this paper is the dissipation, and the energy
that is lost by a large-scale disturbance transforms to thermal energy of particles.
In the presence of non-stationarity, but with dissipative effects being unimportant
(Dmitrienko 1999), the jump in the imaginary part of the regular solution is associ-
ated with the accumulation of energy in the resonance layer in the form of Alfvén
waves. In the last case, we are dealing with a non-stationary resonance layer, which
can be linear or nonlinear depending on the ratio of the linear non-stationary to
nonlinear scales. The case considered in this paper, however, may be character-
ized as a nonlinear dissipative resonance layer. In a linear dissipative layer (when
λ� 1), the dimensionless rate of resonant heating does not depend on the value of
the dissipative coefficients; in the nonlinear case, it decreases with decreasing λ.

The rate of actual physical resonant heating depends, in addition to λ, on the
amplitude of the MHD mode in the resonance layer; it increases with increasing
amplitude, but this growth is linear as against quadratic in the linear case. The
decrease in the resonant heating rate due to the nonlinearity effect might, perhaps,
be interpreted as resulting from a violation of the resonance condition of the Alfvén
and large-scale MHD waves because of the nonlinear addition to the local Alfvén
frequency.

Formulas have also been obtained that relate the heating rate to the absorption
coefficient of the large-scale compressible mode and to the jump of the plasma flow
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velocity across the layer. It has been shown that these quantities are both dependent
only on λ and on the parameter λex that characterizes the degree of penetration
of the compressible mode to the resonance surface; as λ decreases, both of them
decrease and tend to zero.
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