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Abstract

We consider community detection in degree-corrected stochastic block models. We
propose a spectral clustering algorithm based on a suitably normalized adjacency matrix.
We show that this algorithm consistently recovers the block membership of all but a
vanishing fraction of nodes, in the regime where the lowest degree is of order log(n)

or higher. Recovery succeeds even for very heterogeneous degree distributions. The
algorithm does not rely on parameters as input. In particular, it does not need to know
the number of communities.
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1. Introduction

Social and information networks are omnipresent in our daily lives and have been the
interest of much recent research activity [25]. Studies have been focusing on local properties of
network systems as well as their large-scale properties. Among those large-scale phenomena,
community structure has received a lot of attention. A wide variety of networks are found
to have communities or blocks: groups of vertices with many links between themselves and
substantially fewer to the rest of the network, or vice versa. One of the fundamental problems
in network inference considers the detection of such communities; see [11] and [24] and the
references therein for an overview.

In this paper we consider an instance of a certain probabilistic model that might be a fit on the
observed data. One of the best known such models is the stochastic block model (SBM) [13].
In its simplest form, each of n vertices belongs to precisely one of K communities. Edges are
independently drawn between different nodes with probabilities depending only on the block
memberships of the involved vertices. This model is able to generate a diverse collection of
random graphs, while remaining analytically tractable.
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A spectral method for community detection 687

In practice however, the SBM fails to accurately describe the observed data: due to the
stochastic inidentifiability of nodes in the same community, it does not allow for degree
heterogeneity within blocks. The degree-correlated SBM (DC-SBM) was proposed in [16]
to overcome this issue. The DC-SBM allows, additional to a block structure, the fitting of
arbitrary degree sequences such that the expected degree of a vertex is independent of its
community. In this paper we deal with community detection in this model.

Several methods for community detection can be found in the literature. They include, but
are not limited to, modularity maximization [26], belief propagation [9], and spectral clustering.
For the latter, see, for instance, [30, Section 4].

Spectral algorithms employ eigenvectors of matrices representing network data to return
nonlocal information of the network. The most commonly used matrices are the adjacency
matrix and the (un)normalized graph laplacian [30]. In [32], the authors studied the spectra of the
adjacency matrix for networks possessing arbitrary degree distributions while simultaneously
exhibiting a community structure. They demonstrate that those spectra consist, in general, of
two components: a part containing the bulk of eigenvalues and a separated part with outliers
whose number is, in general, equal to the number of blocks present.

The contribution of our paper is as follows. We demonstrate with a clean analysis that
community detection in a moderately sparse DC-SBM is feasible under rather general conditions
on the degree sequence.

More specifically, we consider the matrix Ĥ with entry (u, v) given by Ĥuv = (1/D̂uD̂v)Auv

if Auv = 1 and Ĥuv = 0 otherwise (here A is the adjacency matrix of the graph and D̂u is the
observed degree of vertex u), which we shall call the normalized adjacency matrix.

We show that this matrix concentrates around a deterministic matrix P of rank L ≤ K when
the minimum expected degree is as small as log(n). To establish this concentration result, we
use Lemma 11 below, which could be of independent interest, as a simple alternative to the
commonly used Davis–Kahan theorem.

Due to the underlying community structure, the matrix that has the first L eigenvectors
of P as its columns has the favourable property that it has only K different rows. Hence, due
to this fact and the concentration of Ĥ around P , the rows of the corresponding eigenvector
matrix of Ĥ considered as points in an L-dimensional Euclidean space, must cluster around K

centres. This property indicates that Ĥ is the correct matrix to analyse when dealing with the
DC-SBM. Indeed, associating each vertex with its corresponding row, we show in this paper
that we retrieve the correct community of all but a vanishing fraction of nodes.

Further, we point out a natural connection between Ĥ and a random walk on the observed
graph.

The paper is organized as follows. First, we formally introduce the DC-SBM together with
the necessary notation. Next, we state our main result for community detection in this model,
followed by a discussion in Section 4: a discussion of relevant literature, performance on real
data, the conditions in the main theorem, and a connection between Ĥ and random walks.
Section 5 outlines the approach we take to prove the main theorem, which is accompanied by
a statement of all auxiliary lemmas. Section 6 contains algebraic preliminaries. All proofs are
deferred to Section 7. Finally, in Section 8 we give a suggestion for future research.

2. Model and notation

The DC-SBM denoted by G(B, K, {σu}nu=1, {Du}nu=1) is a generalization of the Erdős–
Rényi classical model of random graphs. We introduce a random graph on V := {1, . . . , n}.
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We partition the set of vertices into K communities of αkn members each: each vertex u is given
a label σu ∈ S := {1, . . . , K}. A weight Du is given to each vertex u to encode its expected
degree. Without loss of generality, we assume that D1 ≤ D2 ≤ · · · ≤ Dn. All weights and
labels will depend on n, but this is suppressed in the notation here. For each pair (u, v), we
include the edge (u, v) with probability

P(u ∼ v) =
⎧⎨⎩

DuDv

nD
Bσuσv if u �= v,

0 if u = v,

(1)

where B ∈ (R+)K×K is a symmetric matrix, independent of n and D = 1/n
∑n

l=1 Dl , the
average weight. Matrix B may be chosen completely independent of the weights {Du}nu=1: all
information about the community structure is then captured by B alone.

We make some further assumptions on the parameters of the model. For (1) to define a
probability, we assume that

DuDv

nD
Bσuσv ≤ 1 for all u, v. (2)

The vector α = (α1, . . . , αK) is assumed to be constant. Hence, the clusters are well
balanced, as the size of each community grows linearly with n. Further, the average weight in
a cluster,

Di = 1

αin

n∑
u=1

Du 1{σu=i},

is assumed to be asymptotically a fraction of the average weight D. That is, we assume that
there exist nonzero constants d1, . . . , dK such that

lim
n→∞

Di

D
= di for all i. (3)

Under this assumption, the following limit exists for all i:

Mi = lim
n→∞

Mi∑n
l=1 Dl

=
K∑

k=1

Bikαkdk, (4)

where Mi = ∑
l DlBiσl

.
We shall see in Section 4.4 that we need the following condition for the communities to be

identifiable: we assume that, for all i, l, there exists j such that

Bij

Mi

�= Blj

Ml

. (5)

In the analysis that follows, we shall consider the random graph in a moderately sparse
regime, i.e. we assume that either

lim
n→∞

D1

log(n)
= ∞, (6)

or, for some constant c < 1
2 ,

D1 ≥ CB,M log(n) and lim
n→∞

D2
n

nc
→ 0, (7)
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where CB,M is some constant depending on B, M = (M1, . . . , MK) and the convergence rate
in (4). Further, we assume the following condition on the weights:

D2
1

D
= �(log(n)). (8)

Note that under those assumptions, Du represents the expected degree of vertex u up to a
multiplicative factor that depends only on the community σu. Indeed, if D̂u denotes the observed
degree of vertex u then

E[D̂u] = Du

nD

∑
l �=u

DlBσuσl
= Du

nD
(Mσu − DuBσuσu) = DuMσu(1 + εn), (9)

where εn ≤ 2/MσuDu = on(1).
As an example, we let {σu}nu=1 be any sequence such that n/2 of its elements are 1 and

the other n/2 elements are 2. Then there are two equally sized communities: K = 2 and
α1 = α2 = 1

2 . Let {Du}nu=1 be any nondecreasing sequence with D1 > 0. Set

B =
(

a b

b a

)
for some constants a and b.

Then

P(u ∼ v) = DuDv

nD

{
a if σu = σv,

b otherwise .

This is exactly the extended-planted partition (EPP) model considered in [4].

3. Main results

Our aim is to retrieve the underlying community structure from a single observation of the
random graph. We do this by analysing the spectral properties of Ĥ ∈ R

n×n defined, for
u, v ∈ V , by

Ĥuv =
⎧⎨⎩

1

D̂uD̂v

Auv if Auv = 1,

0 otherwise ,

where A is the adjacency matrix of the observed graph. We shall demonstrate that this matrix
is close (in a sense to be specified below) to the matrix P defined for (u, v) as

Puv = 1

nD

Bσuσv

MσuMσv

.

Denote the rank of P by L. Due to the community structure, L ≤ K (see below for details).
In the regime where (6) holds, let f be any function tending to 0, such that

f (n) 
 1

D̂1
+ 1√

log(n)
+

√
log(n)

D̂1
.

For the regime where (7) holds, let f tend to 0 in such a way that

f (n) 
 1

D̂1
+ 1√

log(n)
+ 1

log1/3(n)
.

Further, let τ(n) = 1/f (n)1/3.
In Algorithm 1 we use Ĥ to reconstruct the communities.
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Algorithm 1. (i) Calculate the average degree in the graph, call it D̂average. Let L̂ be the number
of eigenvalues of Ĥ that are in absolute value larger than f (n)/D̂average.

(ii) Compute the first L̂ orthonormal eigenvectors of Ĥ ordered according to their absolute
eigenvalues. Denote these eigenvectors and their corresponding eigenvalues by x̂1, . . . , x̂L̂ and
λ̂1, . . . , λ̂L̂, respectively.

(iii) Associate to each node u ∈ V the vector

ẑu = (̂x1(u), . . . , x̂L̂(u)). (10)

Cluster the vectors (̂zu)
n
u=1 as follows. Pick τ(n) pairs of vertices and label them

(u(1), u′(1)), . . . , (u(τ (n)), u′(τ (n))).

Calculate δ(t) = √
n‖̂zu(t) − ẑu′(t)‖, and ε = mint :δ(t)>f 2/3(n) δ(t). Find a vertex m so that

{u′ : √
n‖̂zm − ẑu′ ‖ ≤ ε/8} has cardinality larger than f 1/3(n)n. Form a community consisting

of all nodes in {u′ : √
n‖̂zm − ẑu′ ‖ ≤ ε/4}. Remove those nodes and iterate this procedure.

Theorem 1. Consider a DC-SBM G(B, α, {σu}nu=1, {Du}nu=1). Assume that assumptions (2),
(3), (5), (8), and either (6) or (7) hold. Then Algorithm 1 retrieves the community of all but a
vanishing fraction of nodes.

The first step of the algorithm estimates L. Indeed, by definition there are only L nonzero
eigenvalues of P . Those are all of order 1/D and the corresponding first eigenvalues of Ĥ are
of the same order. The remaining eigenvalues of Ĥ are negligible with respect to f (n)/D.

Under the assumptions in Theorem 1, all but a negligible number of rows of the matrix
having the first L eigenvectors of Ĥ as it columns, cluster for large n to within negligible
distance of block-specific representatives that are separated by some nonvanishing gap (call the
corresponding vertices typical). This is exploited in the third step. There, with high probability,
all picked vertices are typical. Thus, for a pair t , δ(t) vanishes in front of f 2/3(n) if the vertices
in the pair belong to the same community. Hence, by calculating the distance between the other
vertices, we obtain ε as an estimator for the gap mentioned above. At most f (n)2/3n vertices
are not typical. Hence, the chosen ball around m with radius ε/8 contains a negligible number
of nontypical vertices, the remaining vertices should necessarily be in the same community. By
enlarging the radius of the ball around m, we include all vertices of a single community. See
the proof of Theorem 1 below for more details.

Remark 1. Note that the only input to the algorithm is the regime (i.e. either D1(n) =
	(log(n)) or D1(n) 
 log(n)). This information is used to pick the correct form of the
function f . Alternatively, we could adapt the algorithm so that it requires L = rank(B) and
αmin instead of the regime: step (i) can then be skipped, in step (ii) we replace L̂ by L and in
step (iii) we chose a vertex m that contains in its ε/8 neighbourhood at least αminn/2 vertices.

4. Discussion

Before we prove the main theorem, we make some observations and remarks.

4.1. Adjacency matrix

In [19] and [21], the authors used the adjacency matrix A of a graph to recover the underlying
community structure. They considered the matrix having the first K eigenvectors of A as
its columns and showed that, under appropriate conditions, its rows cluster in K different
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directions. However, results in [6] and [22] suggest that the algorithms in [19] and [21] fail
when the expected degree sequence is too irregular. Intuitively, if the prescribed degree sequence
follows a power law then so does the spectrum of the adjacency matrix. Further, as we shall
demonstrate below, the first K eigenvectors correspond only to the K top-degree nodes, and
should therefore not be expected to capture more global features of a graph, such as its underlying
block structure. The following theorem makes this observation more rigorous.

Theorem 2. Consider a DC-SBM G(B, K, {σu}nu=1, {Du}nu=1) such that

Du =
{

D1 if 1 ≤ u < n − k,

D1n
γ (u + 1 − (n − k)) if u ≥ n − k,

where k = nβ and the constants β and γ obey

D2
1(n)n2γ+4β−1 → 0 (11)

and
γ > 4β. (12)

Further, assume that

σu =
{

2 if u ≤ n/2,

1 if u > n/2.

Under these conditions, the first k eigenvectors become, for large n, indistinguishable from the
eigenvectors of a graph that is the disjoint union of k stars having degreesDn+o(1), . . . , Dn−k+
o(1).

For instance, D1(n) = n1/20, β = 1
20 and γ = 1

5 , meets the assumptions in Theorem 2. Fur-
ther, it verifies the conditions in the main theorem (Theorem 1): Algorithm 1 will successfully
return the community membership of all but a vanishing fraction of nodes.

We remark that the above theorem is inspired by the main result in [22]. There, random
graphs without community structure were considered and the power-law behaviour of the cor-
responding spectrum was obtained. To say something about the eigenvectors, we additionally
introduce a gap between the top k-degreed nodes and the remaining n − k nodes. This allows
us to use Lemma 11; see the proof of Theorem 2 below.

4.2. Spectral clustering on ratios-of-eigenvectors

Interestingly, the first eigenvectors of A do contain information about the underlying com-
munity structure, but in a hidden way. Indeed, the spectral clustering on ratios-of-eigenvectors
(SCORE) method proposed in [15] shows that, under some conditions, using the coordinate-
wise ratios of the leading eigenvectors leads to consistent clustering.

Note that we obtain the same random graph model as in [15] by putting θ(u) := Du/
√

nDα

and P(i, j) = αBij , where α−1 = maxi,j Bij . We further note that the conditions are more
stringent: (2.7) demands that P (or B) is nonsingular which is unnecessary here; see Remark 2
below.

4.3. Laplacian

As we pointed out, the adjacency matrix does not capture accurately global properties of
a graph. The normalized Laplacian is a more suitable candidate. It is defined by L = I −
D−1/2AD−1/2, where I is the identity matrix, A is the adjacency graph, and D the diagonal
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matrix with the row sums of A on its diagonal (i.e. the degrees). The object of study in [6] was
the Laplacian spectra of random graphs with a given degree sequence (d1, . . . , dn), where edges
are independently present between each pair of vertices (u, v) with probability dudv/

∑n
l=1 dl .

In the regime d2
1 
 D, with D = 1/n

∑n
l=1 dl , the eigenvalues satisfy the semicircle law with

respect to the circle of radius 2/
√

D centred at 1.
Denote the eigenvalues of the normalized laplacian by 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. It is

a well-known fact that all eigenvalues are located in the interval [0, 2] and that the algebraic
multiplicity of 0 is equal to the number of components in the graph. The authors of [6] further
studied the spectral gap λ = min{λ2, 2 − λn}, which reflects global properties of the random
graph. According to [6], when d1 
 log2(n),

λ ≥ 1 − 1 + o(1)

4/
√

w
− log2(n)

d1
,

thus in this dense regime, all nonzero eigenvalues are close to 1 and, thus, the spectrum of the
Laplacian contains no outliers, in contrast with the adjacency matrix. This bound is improved
in [5], to

λ ≥ 1 − 2

√
6 log(2n)

d1
for d1 
 log(n).

The SBM is a special case of the latent space model [12]. In this model an unknown vector zu

is associated to each node u (in a social network, this vector would represent the unknown social
position of person u) and an edge between u and v is present with probability depending only
on zu and zv . If A is the adjacency matrix of the graph, D the diagonal matrix containing the
degrees, and L = D−1/2AD−1/2, then the population version of these matrices are defined as
A = E[A | z1, . . . , zn], D = diag(

∑n
v=1 A1v, . . . ,

∑n
v=1 Anv), and L = D−1/2AD−1/2.

In [28], convergence of the empirical eigenvectors of L to the population eigenvectors of L
was shown. This follows from their novel result establishing the convergence of L2 to L2 in
Frobenius norm. This forms the basis of an algorithm that uses the first k eigenvectors to recover
the hidden communities in the SBM (thus, without degree corrections). The algorithm is shown
to succeed if those first k eigenvalues are sufficiently separated from the rest of the eigenvalues
and if the minimum expected degree exceeds

√
2n/

√
log n, which is more restrictive than the

lower bound of log n.
In [8], the matrix E[D]−1/2AE[D]−1/2 (reminiscent of the normalized Laplacian) was used

to retrieve the underlying community structure in the DC-SBM. Note that this method requires
the expected degrees to be known. It succeeds if the minimum degree is of order log6 n.

To deal with low-degree nodes, the authors in [4] used the degree-corrected random walk
laplacian: I − (D + τI )−1A, where τ > 0 is a constant, to find clusters in the EPP model,
where the expected minimum degree is �(log n). In the EPP model, B is a matrix where an
element is equal to p if it is on the diagonal, and q otherwise; it is, thus, a special case of
the DC-SBM. The algorithm based on the random walk laplacian requires τ as input and the
optimal value of τ depends in a complex way on the degree distribution of the graph. The
main theorem in [4] comes with lengthy conditions that are not easy to compare with other
results. This theorem, restricted to the setting where all the du are equal to d, assumes q to be
a constant, which is more restrictive than our assumptions. It is unclear whether the results for
the EPP model can be neatly generalized using the same operator to the DC-SBM, given the
complexity of the present conditions.
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Although the Laplacian captures global properties of a graph much better than the adjacency
matrix, its spectrum is still influenced by the underlying degree structure. Indeed, consider a
DC-SBM with 3000 vertices divided in K = 3 equally sized communities, with

B =
⎛⎝1 2 3

2 0 2
3 2 5

⎞⎠ ,

degree sequence

Du =

⎧⎪⎨⎪⎩
u1/3 if u = 1, . . . , 1000,

(u − 1000)1/3 if u = 1001, . . . , 2000,

(u − 2000)1/3 if u = 2001, . . . , 3000,

and community membership

σu =

⎧⎪⎨⎪⎩
1 if u = 1, . . . , 1000,

2 if u = 1001, . . . , 2000,

3 if u = 2001, . . . , 3000.

In Figure 1, we plot the eigenvectors corresponding to the first and second largest absolute
eigenvalues of I − E[D]−1/2

E[A]E[D]−1/2, where A is the adjacency matrix and D is the
diagonal matrix containing the row sums of A. The Laplacian concentrates around I −
E[D]−1/2

E[A]E[D]−1/2 if the minimum degree is large enough (see Section 8). The com-
munity structure is clearly perturbed by the degree sequence. In general, an additional step is
needed to determine the community membership of all nodes when using the Laplacian.

Compare this figure to Figure 2, containing the first two eigenvectors of

E[D]−1
E[A]E[D]−1.

The vertices are seen to be clearly divided into three communities.

Figure 1: Plot of the eigenvectors corresponding to the first and second largest absolute eigenvalue of
I − E[D]−1/2

E[A]E[D]−1/2, where A is the adjacency matrix of a random graph drawn according to the
DC-SBM defined at the end of Section 4.2, and D is the diagonal matrix containing the row sums of A.
For those eigenvectors, say (x1, . . . , xn)

′ and (y1, . . . , yn)
′, we draw a dot (xu, yu) for each element u.
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Now consider another two-community DC-SBM on n vertices with

B =
(

1 1
1 1

)
,

degree sequence

Du =
{

log2(n) if u ≤ n/2,

100 log2(n) if u > n/2.

and community membership

σu =
{

1 if u ≤ n/2,

2 if u > n/2.

Then, according to Lemma 11, the eigenvectors of H become eventually indistinguishable
from the eigenvectors of the n × n matrix with zero diagonal and all other elements equal to
1/nD. Clearly, the communities cannot be recovered from the latter matrix.

The off-diagonal elements of E[D]−1/2
E[A]E[D]−1/2 are given by

1

nD

√
Du

√
Dv = 2

101n
Zσuσv with Z =

(
1 10

10 100

)
.

Now, Z has eigenvector (
1

10

)
corresponding to eigenvalue 101. The other eigenvalue is 0. Then that the minimal gap
between different eigenvalues of E[D]−1/2

E[A]E[D]−1/2 is 2 − O(1/n). According to [5],
ρ(D−1/2AD−1/2 − E[D]−1/2

E[A]E[D]−1/2) = o(1) with high probability, where ρ(X)

denotes the spectral radius of a matrix X. Consequently, Lemma 11 entails that for large n, clus-
tering according to the eigenvector of D−1/2AD−1/2, corresponding to its largest eigenvalue,
reveals the community membership of all but a vanishing fraction of nodes.

Figure 2: Plot of the eigenvectors corresponding to the first and second largest absolute eigenvalue of
E[D]−1

E[A]E[D]−1, where A is the adjacency matrix of a random graph drawn according to the DC-
SBM defined at the end of Section 4.2, and D is the diagonal matrix containing the row sums of A. For
those eigenvectors, say (x1, . . . , xn)

′ and (y1, . . . , yn)
′, we plot a point (xu, yu) for each element u. Note

that many elements are represented by the same point, clearly reflecting the community structure.
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Those two examples hint that whether the Laplacian L or the degree-normalized adjacency
matrix H should be used depends on the correlation between the degrees and the communities,
and the ‘signal strength’ of B. The first example shows that if the degrees are uncorrelated, L

seems to add some extra noise, whereas H ‘filters’ the degrees and reflects immediately the
underlying communities. In the second example, B gives no information about the communities,
but the vertices can be clustered according to their degrees. Matrix H ignores this degree
structure and, thus, fails to detect the communities. Laplacian L on its turn still reflects the
degree sequence and, therefore, the communities.

4.4. Regularized spectral clustering

Qin and Rohe [27] dealt with the shortcomings of the Laplacian by inflating the degrees:
given a number τ > 0, the regularized graph Laplacian [4], [27] is defined as

Lτ = D−1/2
τ AD−1/2

τ , (13)

where Dτ = D + τI .
The regularized spectral clustering algorithm in [27] starts with computing the matrix X =

[X1, X2, . . . , XK ], where X1, X2, . . . , XK are the eigenvectors corresponding to the K largest
eigenvalues. A matrix X∗ is then formed by projecting each row of X on the unit sphere.
Considering each row of X∗ as a point in R

K , and applying k-means with K centres on these
points gives an almost exact clustering, provided some conditions on δ + τ (δ is the smallest
expected degree) and the smallest strictly positive eigenvalue of Lτ hold. In particular, [27,
Theorem 4.2(a)] demands that δ + τ 
 log(n). Since simulation results suggest that τ should
be taken as the average degree, it is unclear if this method outperforms the algorithm proposed
in [27].

We note that [27] is the first work that relates the leverage scores (the Euclidean norm of the
rows of X) to the quality of the outputted clustering.

4.5. When does the degree-normalized adjacency matrix fail?

Consider a DC-SBM with K ≥ 2 communities, such that for two different communities
i �= j , for all l, Bil/Mi = Bjl/Mj . Then it can be verified that, for large n, in a dense enough
regime, the eigenvectors of H corresponding to nonzero eigenvalues do not distinguish between
communities i and j .

Further, the method breaks down in too sparse a regime. For instance, two low-degreed ver-
tices connected by an edge cause the top eigenvectors to concentrate around them. We observed
this when applying Ĥ on the sparse political blogs network [2], see Section 4.7.

4.6. Degree-normalized adjacency matrix

The same matrix H was used in [7] to perform community detection on the DC-SBM in the
sparse regime (the minimum degree is bounded from below by a constant). The main restriction
in their setting is that the minimum degree must be of the same order as the average degree,
more precisely, there exists ε > 0 such that Di > εD for all i. Hence, too much irregularity in
the degree sequence is not captured. In this sense our work complements their results.

Spectral clustering was performed in [7] on a minor of Ĥ where the rows and columns of
vertices with a degree smaller than Daverage/ log(n) (where Daverage is the observed average
degree in the graph) are set to 0, which is not the same as leaving out completely the nodes with
too low a degree. Due to the assumption that all expected degrees are of the same order, most
observed degree will exceed the lower bound Daverage/ log(n).
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There are alternative ways to deal with low-degree nodes; see, for instance, Section 8 on
future research.

4.7. Performance on real networks: karate club, dolphins, and political blogs

We have tested our method on three real networks, namely, Zachary’s karate club [31], the
dolphin social network [20], and the political blogs dataset [2]. The error rate for Zachary’s
karate club is 2/34 and for the dolphin social network 0/62.

The error rate for the political blogs dataset is 230/1221 when thresholding the Frobenius
eigenvector. We restricted ourselves to the giant component of 1221 nodes, as is common
in most other works (the original data contained 1490 blogs). Our clustering is worse than
that obtained by SCORE (where the error rate is 58/1221), but similar to the nonbacktracking
matrix (where around 15 percent of the nodes are misclassified [17]).

We observed that the leading eigenvectors are concentrated on a few nodes, due to the
presence of certain problematic structures (such as two low-degreed vertices connected by
an edge). However, the value of the Frobenius eigenvector on the remaining vertices is still
correlated with their community membership as can be observed in Figures 3 and 4.

Figure 3 is a histogram of the Frobenius eigenvector restricted to the roughly 600 nodes that
have corresponding value in the interval [0, 10−9]. The nodes seem to concentrate around two
centres according to their community. However, this phenomenon is only weakly visible (note
that our theory does not apply for sparse graphs).

In Figure 4 we have sorted the 1221 indices of the Frobenius eigenvector according to an
increasing corresponding value: the community structure then becomes clear.

We further observed that thresholding the eighth eigenvector leads to only 160 misclas-
sified vertices. Interestingly, if we inflate the degrees by replacing H = Auv/D̂uD̂v by
Hinflated = Auv/ max{D̂uD̂v, 200}, we obtain an error rate of 74/1221 by thresholding its
second eigenvector. This suggests that initial misclassifications are indeed due to low-degree
nodes (the average degree is 27, but there are also many leaves present).

4.8. Interpretation of the conditions

Note that, since ED̂u is related to Du according to (9), Ĥ normalizes the tendency of
communities to connect by the average degree of their nodes and loses, therefore, giving some
information about the graph.

Figure 3: Histogram of the Frobenius eigenvector restricted to the roughly 600 nodes that have
corresponding value in the interval [0, 10−9]. Two communities are shown.
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Figure 4: Ranking of the 1221 indices of the Frobenius eigenvector according to an increasing
corresponding value. Rank 1 is the node with smallest value in the eigenvector and rank 1221 the

node with largest value. Shaded circles indicate community membership.

Observation 1. If, for some i, j, l ∈ S,

Bij

Mi

= Blj

Ml

then

E[#edges between community i and j ]
E[total degree of vertices in community i] = E[#edges between community l and j ]

E[total degree of vertices in community l] .

Remark 2. The identifiability condition is violated if there are distinct i and l and there exists
some constant c > 0 such that

Bij = cBlj for all j.

Indeed, in that case, Mi = cMl and, thus,

Bij

Mi

= cBlj

cMl

= Blj

Ml

.

However, unlike the setting considered in [15] and [19], it is not necessary for B to be full rank.
Indeed, consider

B =
⎛⎝1 2 3

2 0 2
3 2 5

⎞⎠
which has rank 2. Let α1 = α2 = α3 = 1

3 and
∑

σu=i Du = iαin log2(n) for all i = 1, 2, 3.
Then it is easily verified that the identifiability condition is met.

Note that G(B, K, {σu}nu=1, {Du}nu=1) and G(B∗, K, {σu}nu=1, {D∗
u}nu=1) generate the same

ensemble of random graphs whenever

DuBσuσvDv

D
= D∗

uB∗
σuσv

D∗
v

D∗ .

Hence, the underlying block-matrix B cannot be estimated from a single observation of the
graph. Rather, we may estimate

nD ≈
∑
u

D̂u,
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and, denoting the assigned community membership (after applying our reconstruction algo-
rithm) of l by τl , (∑

u

D̂u

) ∑
u : τu=i

∑
v : τv=j Ĥuv

(
∑

u : τu=i 1)(
∑

v : τv=j 1)
≈ Bij

MiMj

.

Hence, for a DC-SBM G(B, K, {σu}nu=1, {Du}nu=1), the matrix(
Bij

MiMj

)K

i,j=1

is identifiable, not B. It is due to this degeneracy of the DC-SBM and the structure of Ĥ that
condition (5) in Theorem 1 is the best possible.

Lemma 1. Consider a DC-SBM G(B, K, {σu}nu=1, {Du}nu=1). Fix i and l then the following
are equivalent:

(i) for all j , we have
Bij

Mi

= Blj

Ml

;
(ii) there exist a DC-SBM G(B∗, K, {σu}nu=1, {D∗

u}nu=1) with the same community structure
{σu}u, such that, for all j ,

B∗
ij = B∗

lj

and, for all u, v,
DuBσuσvDv

D
= D∗

uB∗
σuσv

D∗
v

D∗ .

4.9. Random walk point of view

The matrix Ĥ is related to a random walk on an instance of the random graph. Indeed,

Ĥuv =
⎧⎨⎩

1

D̂u

1

D̂v

Auv = Auv

D̂u

Avu

D̂v

if Auv = 1,

0 if Auv = 0,

since Auv = Avu is either 1 (in case edge uv is present) or 0 (when u and v are not connected).
Now, D̂u = ∑n

l=1 Alu, as it is the observed degree, which we denoted here in increasing order:
D̂1 ≤ D̂2 ≤ · · · ≤ D̂n. Thus, Auv/D̂u is exactly the probability that a random walk (in an
undirected graph without weights) jumps from vertex u to v, given that it is currently at vertex u.
Denoting the latter probability by Pu(u → v), we see that

Ĥuv = Pu(u → v)Pv(v → u) = Pu(u → v → u)

due to the Markov property of the random walk. In other words, Ĥuv is the probability that a
random walk currently at vertex u will consecutively traverse edge uv and back.

Extending this observation to powers of Ĥ leads to

(Ĥ k)uv =
n∑

l1=1,...,lk−1=1

Pu(u → l1 → · · · → lk−1 → v)Pv(v → lk−1 → · · · → l1 → u),

the probability that a random walk, after traversing a path of length k starting at u and ending
at v, subsequently traverses that path in the exact opposite direction.
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Further, note that

(D̂1, . . . , D̂n)Ĥ = (1{D̂1 �=0}, . . . , 1{D̂n �=0}),

hence if v is an eigenvector of Ĥ with eigenvalue λ then

n∑
u=1

1{D̂u �=0} vu = λ

n∑
u=1

D̂uvu.

Since it can be easily verified that Ĥ is primitive on connected components, the Perron–
Frobenius theorem implies that the eigenvector vmax corresponding to the largest eigenvalue
λmax (which is positive) has only positive elements. Hence,

λmax =
∑n

u=1 1{D̂u �=0} vu∑n
u=1 D̂uvu

≥
∑n

u=1 1{D̂u �=0} vu

D̂n

∑n
u=1 1{D̂u �=0} vu

= 1

D̂n

.

We may derive an upper bound by noting that the spectral radius is bounded from above by
the maximal absolute row sum

λmax ≤ n
max
u=1

( n∑
v=1

Pu(u → v → u)

)
.

5. Outline of proof of main theorem

In this section we consider the setting of Theorem 1. All lemmas here, except Lemma 5,
assume that either (6) or (7) hold. Lemma 5 assumes condition (6): the minimum degree should
grow faster than log(n). Lemma 6 assumes (7): the minimum degree is of order log(n).

Our first objective is to show that Ĥ is close to some matrix P , in the sense that their
difference W := Ĥ − P has negligible spectral radius relatively to that of P . Here, an entry
(u, v) of P is defined as

Puv = 1

nD

Bσuσv

MσuMσv

.

We relate P in turn to Z defined by

Zij = αjBij

MiMj

, i, j ∈ S.

Indeed, we show that if y = (y(1), . . . , y(K))� is an eigenvector of Z with eigenvalue λ then
(y(σ1), . . . , y(σn))

� fulfils that role for P with eigenvalue (1/D)λ. As a consequence, the
eigenvectors of P associated to nonzero eigenvalues are constant on blocks.

Finally, we consider the matrix that has the first L eigenvectors of P as its columns. We show
that the rows of this matrix cluster to within vanishing distance of block-specific representatives.
We start by inspection of the difference

W = Ĥ − P = (Ĥ − H) + (H − E[H ]) + (E[H ] − P), (14)

where H is defined as

Huv =
⎧⎨⎩

1

ED̂uED̂v

Auv if Auv = 1,

0 otherwise .
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Define
�(P ) = min{|λ − μ| : λ �= μ, λ, μ eigenvalue of P },

i.e. the smallest gap between consecutive eigenvalues. A crucial role will be played by
Lemma 11 below, which says that to any eigenvector x̂ of Ĥ there exists an eigenvector x

of P such that ‖x − x̂‖ → 0 as n → ∞, whenever

ρ(W)

�(P )
→ 0 as n → ∞,

where we recall that ρ(X) denotes the spectral radius of a matrix X. Hence, we need to
calculate �(P ).

Lemma 2. The smallest gap between subsequent eigenvalues of P is given by

�(P ) = �

(
1

D

)
.

All terms in the right-hand side of (14) have negligible spectral radius with respect to �(P ).

Lemma 3. The matrix E[H ] is close to P in the following sense:

ρ(E[H ] − P) = O

(
1

D1

)
1

D
= on(1)

1

D
.

Lemma 4. The matrix H concentrates with high probability around its expectation, as

ρ(H − E[H ]) = O

(
1√

log(n)

)
1

D
= on(1)

1

D
.

Lemma 5. Consider the DC-SBM in the dense regime, where (6) holds. Then, for the spectral
radius of the difference Ĥ − H , it holds with high probability that

ρ(Ĥ − H) = O

(√
log(n)

D1(n)

)
1

D(n)
= on(1)

1

D
.

Lemma 6. Consider the DC-SBM in the regime where (7) holds. Then, for the spectral radius
of the difference Ĥ − H , it holds with high probability that

ρ(Ĥ − H) = O

(
1

log1/3(n)

)
1

D(n)
= on(1)

1

D
.

We use these lemmas in conjunction with Lemma 11 below to prove the following lemma.

Lemma 7. To each normed eigenvector x̂ of Ĥ corresponds a normed eigenvector x of P such
that

x̂ · x = 1 − O

((
ρ(W)

�(P )

)2)
= 1 − on(1),

where
ρ(W) ≤ ρ(Ĥ − H) + ρ(H − E[H ]) + ρ(E[H ] − P).

Having proved this lemma, we show that Algorithm 1 indeed correctly reconstructs the
community of all but a vanishing fraction of vertices.
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Recall the definition of Ĥ and observe that Ĥ is symmetric. Consequently, there exist n

eigenvectors of Ĥ that form an orthonormal basis, thus, we are indeed able to findLorthonormal
eigenvectors of Ĥ corresponding to its first eigenvectors.

Next we show that the (̂zu)u∈V , defined in (10), tend to block-representatives.

Lemma 8. There exist K vectors {tk}k∈S , i.e. block-representatives, such that

‖√n̂zu − tσu‖ = O

((
ρ(W)

�(P )

)2/3)
= on(1)

for all but O(n(ρ(W)/�(P ))2/3) nodes.

The remaining and crucial step is to demonstrate that those block-representatives are indeed
distinct.

Lemma 9. Assume that, for all i, j , there exists i′ such that

Bii′

MiMi′
�= Bji′

MjMi′
(15)

then |tk − tl | = �(1) for all k �= l.

Proof of Theorem 1. After proving the above lemmas, it remains to show that L̂ in step (i)
of Algorithm 1 with high probability is equal to L. Further, we should verify that the procedure
in step (iii) forms the correct clusters. For the first step, note the following. In the regime where
(6) holds,

ρ(W) = O

(
1

D1
+ 1√

log(n)
+

√
log(n)

D1

)
1

D
,

and in the other regime, where (7) holds,

ρ(W) = O

(
1

D1
+ 1√

log(n)
+ 1

log1/3(n)

)
1

D
.

Compare this to f as in Algorithm 1: depending on the regime, the term in parentheses goes
to 0 upon division by f (n). To see this, note that due to Bernstein’s inequality (16) and (25),
D̂u ∈ (1/2Mσu, 3/2Mσu)Du for u = 1 and u = n with high probability. Hence, D̂1 ( D̂n ) is
of the same order of magnitude as D1 (respectively Dn). Now, due to Lemma 11 below, the
first L eigenvalues of Ĥ are of order 1/D −O(ρ(W)) 
 f (n)/D. The remaining eigenvalues
are of order O(ρ(W)) � f (n)/D. Further, Daverage may be written as twice the sum of
�(n2) independent Bernoulli random variables. It is thus with high probability a constant
away from D. Hence, L̂ = L with high probability.

In step (iii), the probability that all picked pairs contain only typical vertices (i.e. whose
corresponding rows cluster around K centres) is larger than (1 − f 2/3(n))2τ(n) which tends
to 1, since f 2/3(n)τ (n) → 0 as n → ∞. Thus, with high probability, for a pair t , δ(t) vanishes
in front of f 2/3(n) if the vertices in the pair belong to the same community. Then δ(t) is of
order �(1) otherwise. Hence, ε, as defined in step (iii) of Algorithm 1, is of order �(1); it thus
estimates the separation distance in Lemma 9.

Further, at most f (n)2/3n vertices are not typical. Hence, the chosen ball around m with
radius ε/8 contains at least (f (n)1/3 − f (n)2/3)n 
 f (n)2/3n typical vertices. Those must
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necessarily belong to the same community. Since all typical vertices belonging to the same
community are at most a distance f (n)2/3 apart, all of them are located in the ball of radius
ε/4 around m.

We see that the algorithm puts, with high probability, all but a vanishing fraction of nodes
in K clusters. �

6. Algebraic preliminaries

We shall make use of the following fact about the spectral radius.

Lemma 10. If |X| ≤ Y holds entry-wise for two real symmetric matrices X and Y then
ρ(X) ≤ ρ(Y ).

Proof. Due to the Rayleigh–Ritz theorem, we have

ρ(X) = max‖z‖=1
‖Xz‖.

Hence,
ρ(X) = max‖z‖=1

‖Xz‖ ≤ max‖z‖=1
‖ Y |z| ‖ = max‖z‖=1

‖Yz‖ = ρ(Y ). �

The following lemma could be of independent interest as a simple alternative to the com-
monly used David–Kahan theorem.

Lemma 11. Let A and δA be two n × n symmetric matrices. Let λ1 ≥ · · · ≥ λn be the
eigenvalues of A + δA and μ1 ≥ · · · ≥ μn be the eigenvalues of A. Let � = min{|μi −
μj | : μi �= μj , μi, μj eigenvalue of A}. Assume that ρ(δA) < �/2. Let vi be a normed
eigenvector of A + δA corresponding to eigenvalue λi , for any i = 1, . . . , n. Then

(i) |λi − μi | ≤ ρ(δA);

(ii) the dimension of the eigenspace Ei of A + δA corresponding to the eigenvalue λi is no
larger than the dimension of the eigenspace of A corresponding to the eigenvalue μi;

(iii) there exists a normed eigenvector v̂i of A corresponding to eigenvalue μi such that

vi · v̂i ≥
√

1 −
(

ρ(δA)

�/2

)2

.

Proof. (i) is due to Weyl’s inequality (see, for instance, [14]).

(ii) Letd be the dimension ofEi and writeλi = λi+1 = · · · = λi+d−1. Since |λi−μi | ≤ ρ(δA),

we have |μi −μi+1| ≤ 2ρ(δA) < �. Thus, μi = μi+1, and similarly for the other eigenvalues.

(iii) We start with some notation: let m be the number of distinct eigenvalues of A; denote those
distinct numbers as γ1 > · · · > γm. Define Si = {u ∈ {1, . . . , n} : μu = γi}, the set of indices
of eigenvalues that are all equal to γi . For u ∈ {1, . . . , n}, define τu ∈ {1, . . . , m} as the unique
index such that u ∈ Sτu . Write

vi =
∑
j

αjwj ,

where {wj }j are orthonormal eigenvectors of A with associated eigenvalues {μj }j . Then

(A + δA)vi =
∑
j

αjμjwj + (δA)vi .
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Hence,

(δA)vi =
∑
j /∈Sτi

αj (λi − μj )wj +
∑
j∈Sτi

αj (λi − μj )wi .

Taking norms on both sides,

(ρ(δA))2 ≥
∑
j /∈Sτi

α2
j (λi − μj )

2 ≥
∑
j /∈Sτi

α2
j

(
� − �

2

)2

=
(

1 −
∑
j∈Sτi

α2
j

)(
�

2

)2

,

since, by definition |μi − μj | ≥ � if τi �= τj and our observation |λi − μi | ≤ ρ(δA) < �/2.

Set

v̂i = 1√∑
j∈Sτi

α2
j

∑
j∈Sτi

αjwj

then

vi · v̂i =
√√√√ ∑

j∈Sτi

α2
j ≥

√
1 −

(
ρ(δA)

�/2

)2

. �

Lemma 12. Consider a square n × n symmetric zero-diagonal random matrix A such that its
elements Auv = Avu are independent Bernoulli random variables with parameters

E[Auv] = auv

ω̂(n)

n
,

where the auv are constants independent of n and ω̂(n) = �(log(n)). Then, with probability
larger than 1 − O(1/n2), the spectral radius of A − E[A] satisfies

ρ(A − E[A]) ≤ O(
√

ω̂(n)).

Proof. This is precisely Lemma 2 in [29], where the authors quantified the term with high
probability. This was achieved by choosing c1 > 3 in its proof. Note that the latter proof builds
further on results by Feige and Ofek [10]. �
Lemma 13. (Bernstein’s inequality.) Let X1, . . . , Xn be zero-mean independent random vari-
ables all bounded from above by 1. Set σ 2 = (1/n)

∑n
u=1 var(Xu). Then

P

(
1

n

n∑
u=1

Xu > ε

)
≤ exp

(
− nε2

2(σ 2 + ε/3)

)
. (16)

Proof. See [3]. �
Note that Bernstein’s lemma can easily be extended to the case of noncentred random

variables.

7. Proofs

In the proofs below, we shall often write

Du = φuω(n), (17)

where 1 = φ1 ≤ φ2 ≤ · · · ≤ φn, and

ω(n) = D1. (18)
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Further, we introduce

g(n) =
n∑

l=1

φl, (19)

φ(n) = g(n)

n
, (20)

Proof of Lemma 2. Write

Puv = 1

nD

Bσuσv

MσuMσv

= 1

nD

Zσuσv

ασv

.

Let y = (y(1), . . . , y(K))� be an eigenvector of Z with eigenvalue λ, we show that w =
(y(σ1), . . . , y(σn))

� is an eigenvector of P with eigenvalue (1/D)λ. Indeed,

Pw =
⎛⎜⎝

∑n
l=1 P1l · y(σl)

...∑n
l=1 Pnl · y(σl)

⎞⎟⎠
= 1

nD

⎛⎜⎝
∑n

l=1 Zσ1σl
/ασl

· y(σl)
...∑n

l=1 Zσnσl
/ασl

· y(σl)

⎞⎟⎠

= 1

nD

⎛⎜⎝
∑K

k=1 nαkZσ1k/αk · y(k)
...∑K

k=1 nαkZσnk/αk · y(k)

⎞⎟⎠

= 1

D

⎛⎜⎝λy(σ1)
...

λy(σn)

⎞⎟⎠
= 1

D
λw.

Thus, (1/D)λ is an eigenvalue of P .
For the other direction, note that if σu = σv then row u and row v in P are identical. Hence,

if w = (w(1), . . . , w(n))� is an eigenvector of P corresponding to a nonzero eigenvalue then
w(u) = w(v). Let w = (w(σ1), . . . , w(σn))

� be an eigenvector of P with eigenvalue λ �= 0.
By carrying out a similar calculation as above, we see that (w(1), . . . , w(K))� is an eigenvector
of Z with eigenvalue Dλ.

The statement follows from this one-to-one correspondence between the eigenvectors of
both matrices corresponding to nonzero eigenvalues. �

Proof of Lemma 3. Note that

E[H ] − P = E[H ] − (P − diag(P11, . . . , Pnn)) + diag(P11, . . . , Pnn).

Now,

ρ(diag(P11, . . . , Pnn)) = O

(
1

nD

)
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as diag(P11, . . . , Pnn) contains only K different elements, each of order 1/nD. Further, for
u �= v,

E[Huv] = Du

E[D̂u]
Dv

E[D̂v]
Bσuσv

1

nD
= (1 + δ(n))

Bσuσv

MσuMσv

1

nD
= Puv + δ(n)Puv,

where δ(n) = O(εn) with, due to (9),

εn ≤ max
i

2

Mi

1

ω(n)

tending to 0 uniformly for all u, v. Hence, due to Lemma 10,

ρ(E[H ] − (P − diag(P11, . . . , Pnn)) + diag(P11, . . . , Pnn)) = O

(
1

D1

)
1

D
. �

Proof of Lemma 4. We start by introducing the constants Cij = Bij /MiMj and α =
maxij (1/MiMj ). Set, for u < v,

Xuv = Xvu = α−1ω2(n)(Huv − E[Huv]),
where ω(n) is defined in (18). That is,

Xuv = 1 + o(1)

α

(
1

MσuMσv

1

φuφv

Ber

(
DuDv

nD
Bσuσv

)
− Cσuσv

ω(n)

φ

1

n

)
,

with φu and φ defined in (17) and (20), respectively. Due to our choice of α and the assumption
that φu ≥ 1 for all u,

Xuv ∈ (1 + o(1))[−puv, 1 − puv],
where

puv = Cσuσv

α

ω(n)

φ

1

n
.

Let X̂uv = Xuv/(1+o(1)) such that X̂uv ∈ [−puv, 1−puv]. We shall compare the symmetric
zero-diagonal matrix X̂ to the deviation from its expectation of another symmetric zero-diagonal
matrix, where elements uv are given by Ber(puv) for u �= v. Since, by assumption (8),

ω(n)

φ(n)
= D2

1(n)

D(n)
= �(log(n)), (21)

Lemma 12 applies. Following an argument given in [29], we construct a function Yuv such
that Yuv has values only in {−puv, 1 − puv} and E[Yuv | X̂uv] = X̂uv. First, let {Uuv}u<v be
independent uniformly distributed random variables. Fix u < v. Define, for x ∈ [−puv, 1 −
puv] and w ∈ [0, 1],

Fuv(x, w) = 1 − puv − 1x≤w−puv and Yuv = Yvu = Fuv(X̂uv, Uuv).

Then
P(Fuv(X̂uv, Uuv) = 1 − puv | X̂uv) = X̂uv + puv
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and
P(Fuv(X̂uv, Uuv) = −puv | X̂uv) = 1 − puv − X̂uv;

thus,
E[Yuv | X̂uv] = X̂uv and P(Yuv = 1 − puv) = E[X̂uv] + puv = puv.

Hence, indeed, Yuv = Ber(puv) − puv .
Let Y be the symmetric zero-diagonal matrix with each element uv given by Yuv for u �= v.

Then, according to Lemma 12,

P

(
ρ(Y ) ≤ O

(√
ω(n)

φ

))
≥ 1 − O

(
1

n2

)
. (22)

We shall use this observation in the following comparison:

ρ(X̂) = ρ(E[Y | X̂]) ≤ E[ρ(Y ) | X̂],
by Jensen’s inequality. Set S = E[ρ(Y ) | X̂], we shall show that it is also upper bounded by
O(

√
ω(n)/φ).

First, note that |Y | is element-wise dominated by the all-one matrix, hence ρ(Y ) ≤ n.
Second, the sigma-algebra generated by S is contained in the sigma-algebra generated by X̂.
Hence,

E[ρ(Y ) | S] = E[E[ρ(Y ) | X̂] | S] = E[S | S] = S.

Further, both Y and X̂ take only finitely many different values, and thus ρ(Y ) and S take
values in a finite space. It therefore makes sense to consider, for t > 0, the function

β(·) = P(ρ(Y ) > t | S = ·).
We have

S = E[ρ(Y ) | S] ≤ β(S)n + (1 − β(S))t,

i.e.

β(S) ≥ S − t

n − t
.

Denote γ = P(S > t + 1) then

P(ρ(Y ) > t) = E[β(S)] ≥ E[β(S) 1{S>t+1}] ≥ γ

n − t
.

As a consequence, for t = O(
√

ω(n)/φ), by (22) we have

P(S > t + 1) = γ ≤ (n − t)P(ρ(Y ) > t) = (n − t)O

(
1

n2

)
= O

(
1

n

)
.

Therefore,

ρ(H − E[H ]) = α

ω2(n)
ρ(X) ≤ (1 + o(1))

α

ω2(n)
ρ(X̂) ≤ O

(√
1

φω3(n)

)
,

where the first inequality stems from the fact that the order 1 + εn term in (9) holds uniformly
over all vertices. Finally, due to (21),

ρ(H − E[H ]) = O

(√
φ

ω(n)

1

φω(n)

)
= O

(
1√

log(n)

)
1

D
. �
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Proof of Lemma 5. To prove this theorem we claim that in the present setting, it suffices to
show that with high probability,

(Ĥ − H)uv = εuvHuv,

where, for some constant Ĉ and all large enough n,

|εuv| ≤ Ĉε(n) (23)

with

ε(n) :=
√

6

mini Mi

2 log(n)

ω(n)
= O

(√
log(n)

D1(n)

)
→ 0 (24)

by assumption. Consequently, after an appeal to Lemma 10,

ρ(Ĥ − H) ≤ ρ(|Ĥ − H |) ≤ Ĉε(n)ρ(H).

Since, H = E[H ] + H − E[H ], it follows from Lemmas 3 and 4 that

ρ(H) = O

(
1

D

)
.

Consider the difference

1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

= 1

ED̂u

1

ED̂v

1

1 + (D̂u − ED̂u)/ED̂u

1

1 + (D̂v − ED̂v)/ED̂u

− 1

ED̂u

1

ED̂v

= 1

ED̂uED̂v

εuv;

thus,

εuv = ED̂u − D̂u

ED̂u

+ ED̂v − D̂v

ED̂v

+ O

((
ED̂u − D̂u

ED̂u

)2)
+ O

((
ED̂v − D̂v

ED̂v

)2)
.

We quantify (ED̂u − D̂u)/ED̂u. Since D̂u is a sum of Bernoulli random variables with mean

E[D̂u] = DuMσu(1 − o(1)),

where the o(1) term follows from (9), we have for ε(n) as in (24), the Bernstein inequality (see
(16)),

P

(∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣ > ε(n)

)
≤ 2 exp

(
− ε2(n)

2 + ε(n)/3
E[D̂u]

)
= 2 exp

(
− ε2(n)

2 + ε(n)/3
DuMσu(1 − o(1))

)
≤ 2 exp

(
−ε2(n)

3
ω(n)

Mσu

2

)
≤ 2

n2 . (25)
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Invoking this we establish the union bound

P

(∣∣∣∣ED̂1 − D̂1

ED̂1

∣∣∣∣ ≤ ε(n), . . . ,

∣∣∣∣ED̂n − D̂n

ED̂n

∣∣∣∣ ≤ ε(n)

)
≥ 1 −

n∑
u=1

P

(∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣ > ε(n)

)
≥ 1 − 2

n
→ 1 as n → ∞.

Hence,

E =
{∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣ ≤ ε(n) for all u ∈ V

}
holds with high probability. Thus, we establish (23): |εuv| ≤ 2ε(n) + O(ε2(n)) ≤ Ĉε(n)

with Ĉ a large enough constant.
Henceforth, we condition on E. Then, for u �= v,

Ĥuv − Huv =
(

1

D̂u

1

D̂v

− 1

ED̂uED̂v

)
Auv = εuv

1

ED̂uED̂v

Auv = εuvHuv. �

Proof of Lemma 6. We define

ε(n) = 1

log1/3(n)
(26)

and we shall call a vertex u good if |ED̂u − D̂u| ≤ ε(n)ED̂u. We use this definition to split∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv = Muv + Mc
uv + M r

uv − Mcr
uv, (27)

where

Muv =
∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv 1{u and v good},

Mc
uv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv 1{v bad},

M r
uv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv 1{u bad},

Mcr
uv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv 1{u and v bad} .

We shall show that all terms in (27) have a negligible spectral radius compared to �(P ).
First note that the difference

1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

may be written as
1

ED̂uED̂v

εuv,

where

εuv = ED̂u − D̂u

ED̂u

+ ED̂v − D̂v

ED̂v

+ O

((
ED̂u − D̂u

ED̂u

)2)
+ O

((
ED̂v − D̂v

ED̂v

)2)
.

Now, similarly as in the proof of Lemma 5, there exists a constant Ĉ such that εuv ≤ Ĉε(n) if
both u and v are good. Consequently, ρ(M) ≤ Ĉε(n)ρ(Ĥ ).
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Next we analyse the other terms in (27). We start with Mc. The idea is that, although now∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣ = O

(
1

ED̂u

1

ED̂v

)
,

the total number of nonzero elements in a column of Mc is very small, so that its spectral radius
indeed vanishes upon division by �(P ). We note that

(Auv 1{v bad})u,v = (Auv 1{u bad})�u,v,

so that a similar statement holds for the maximal row sum of M r. Obviously, Mcr ≤ Mc as do
their spectral radii.

As a consequence of these observations, it thus suffices to prove our claim for Mc. To do
so, we proceed in three steps. First, we show that

P(E1) = P

({
for all u :

∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣ ≤ 1

2

})
≥ 1 − 2

n2 . (28)

From which it follows, after a short computation, that, with probability larger than 1 − 2/n2,
for all u, v, ∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣ ≤ 3
1

ED̂u

1

ED̂v

.

Keeping this in mind, it thus suffices to demonstrate that (Auv 1{v bad})uv has a spectral radius
much smaller than the spectral radius of A. The column sum in the former is equal to the
number of bad neighbours in a vertex. That is, the spectral radius is bounded by maxu Xu,
where, for u ∈ V ,

Xu =
∑

v∈N (u)

Zv (29)

with Zv = 1{v is bad}. Caution is needed here as the indicator functions in (29) are not
independent.

In the second step we shall show that with high probability the number of edges between
vertices in the neighbourhood of u is negligible compared to the expected degree of vertex u.
That is,

P(E2(u)) = P

({ ∑
x,y∈N (u)

Axy ≤ 1

2
ε(n)ω(n)

})
≥ 1 − 2

n2 , (30)

where ω(n) is defined in (18). Hence, except for possibly 1
4ε(n)ω(n) of them, the variables in

(29) form an independent set (conditional on not having any neighbours among N (u)).
The last step consists in showing that this leads to

P(Xu > ε(n)O(ED̂u) | E1, E2) = o

(
1

n

)
. (31)

The assertion follows now straightforwardly. With high probability, we have∑
v

Mc
uv ≤ 3

1

ED̂u

max
v

1

ED̂v

Xu

≤ 3
1

ED̂u

max
v

1

ED̂v

ε(n)O(ED̂u)
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≤ O

(
ε(n)

minv ED̂v

)
= O

(
ε(n)

ω(n)

)
.

Now D = O(ω(n)) since D2
1(n)/D(n) = �(log(n)). Consequently, due to the choice of ε(n)

in (26),

ρ(Mc) = O

(
ε(n)

ω(n)

)
= O

(
1

log1/3(n)

)
1

D(n)
= on(1)

1

D(n)
.

The first step, i.e. demonstrating (28), is easily carried out: fix u ∈ V and use Bernstein’s
inequality (16) to verify the bound

P

(∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣ >
1

2

)
≤ 2 exp

(
− 3

26
E[D̂u]

)
.

Now, for large enough n, ED̂u ≥ MCB,M log n, and by assumption, CB,M from (7) is so large
that 3

26E[D̂u] > 2 log(n). Hence,

P

(
1

2ED̂u

≤ D̂u ≤ 3

2ED̂u

)
≥ 1 − 2

n2 .

We proceed with the second step, i.e. (30). Set M = maxi Mi, B = maxi,j Bij . Set
C = max{1/2M, 5M

2
, B}. Consider, conditional on D̂u ≤ 2ED̂u,∑

x,y∈N (u)

Axy =
∑

x,y∈N (u)

Ber

(
Bσxσy

φxφyω(n)

g(n)

)

≤ bin

(
4(ED̂u)

2, B
φxφyω(n)

g(n)

)
≤ bin

(
5M

2
φ2

uω2(n), B
φxφyω(n)

g(n)

)
≤ bin

(
5M

2
φ2

nω2(n), B
φ2

nω(n)

g(n)

)
≤ bin

(
Cφ2

nω2(n), C
φ2

nω(n)

g(n)

)
,

where φu and g(n) are defined in (17) and (19), respectively. We now show that

P

(
bin

(
Cφ2

nω2(n), C
φ2

nω(n)

g(n)

)
≥ 1

2
ε(n)ω(n)

)
= o

(
1

n

)
.

First, note that

P

(
bin

(
Cφ2

nω2(n), C
φ2

nω(n)

g(n)

)
≥ 1

2
ε(n)ω(n)

)
≤

(
Cφ2

nω2(n)
1
2ε(n)ω(n)

)(
C

φ2
nω(n)

g(n)

)ε(n)ω(n)/2

.

(32)
Using the fact that (

n

k

)
≤

(
ne

k

)k

,
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we have (
Cφ2

nω2(n)
1
2ε(n)ω(n)

)
≤

(
2Ce

φ2
nω(n)

ε(n)

)ε(n)ω(n)/2

= exp

(
1

2
ε(n)ω(n) log

(
2Ce

φ2
nω(n)

ε(n)

))
≤ exp

(
c

2
ε(n)ω(n) log(g(n)) + 1

2
ε(n)ω(n) log(2Ce)

)
,

where c < 1
2 from (7) is such that φ2

nω2(n)/ log2/3(n)nc → 0 (and thus φ2
nω(n)/gc(n) =

on(1)/ log1/3(n) ≤ ε(n), since g(n) = 	(n) in the particular setting of this lemma). Write(
C

φ2
nω(n)

g(n)

)ε(n)ω(n)/2

= exp

(
−1

2
ε(n)ω(n) log

(
(g(n))1−c (g(n))c

Cφ2
nω(n)

))
≤ exp

(
−1

2
ε(n)ω(n) log((g(n))1−c)

)
= exp

(
−1 − c

2
ε(n)ω(n) log(g(n))

)
if n large enough. Combining these estimates, we see that (32) may be bounded from above by

exp

(
−1 − 2c

2
ε(n)ω(n) log(g(n)) + 1

2
ε(n)ω(n) log(2Ce)

)
≤

(
−1 − 2c

4
ε(n)ω(n) log(g(n))

)
since g(n) ≥ n 
 2Ce. Finally, since ((1 − 2c)/4)ε(n)ω(n) ≥ 2, for large n,

P(E2) = 1 − P

( ∑
x,y∈N (u)

Axy ≥ 1

2
ε(n)ω(n)

)
≥ 1 − e− log(g2(n)) ≥ 1 − 1

n2 ,

i.e. (30).
We proceed with the last step, i.e. establishing (31). Write

Xu =
∑

v∈N (u) : N (v)∩N (u) �=∅

Zv +
∑

v∈N (u) : N (v)∩N (u)=∅

Zv.

We already know from (30) that the first sum is smaller than 1
2ε(n)ω(n), with high probability.

The variables in the second sum, {Zv}v∈N (u) : N (v)∩N (u)=∅, are independent. For such a vertex
v ∈ N (u) that has no neighbour with u in common, we have D̂v = d ′

v + 1, where

d ′
v =

∑
x /∈N (u), x �=u

Ber

(
Bσvσx

DvDx

nD

)
,

the degree of v outside N (u) ∪ {u}. We show that v is a good vertex with high probability by
proving that d ′

v concentrates on its mean which on its turn is close to E[D̂v]. First, define

E∗[·] := E[· | N (u), E2, D̂u ≤ 2E[D̂u]]
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then
E∗[d ′

v] =
∑

x /∈N (u), x �=u

Bσvσx

DvDx

nD

=
∑
x �=v

Bσvσx

DvDx

nD
−

∑
x∈N (u)∪{u}, x �=v

Bσvσx

DvDx

nD

≥ E[D̂v] − O

(
φ2

nω(n)

g(n)

)
E[D̂u]

= E[D̂v] − O

(
φ3

nω2(n)

g(n)

)
= E[D̂v] − on(1).

Second, we use Bernstein’s inequality (16) to prove that d ′
v concentrates around E[D̂v] up to a

factor ε(n) as in (26), i.e.

P(d ′
v ≥ (1 + ε(n))ED̂v | N (u), E2, D̂u ≤ 2E[D̂u])

≤ exp

(
− (ε(n)E∗d ′

v + (1 + ε(n))on(1))2

2(E∗d ′
v + 1/3(ε(n)E∗d ′

v + (1 + ε(n))on(1)))

)
≤ exp

(
− (ε(n)E∗d ′

v)
2(1 + on(1)/ε(n)E∗d ′

v)

4E∗d ′
v

)
≤ exp(−Cε2(n) log(n)),

where we redefined C = 1
8 . Similarly,

P(d ′
v ≤ (1 − ε(n))ED̂v | N (u), E2, D̂u ≤ 2E[D̂u]) ≤ exp(−Cε2(n) log(n)).

Hence, each vertex v ∈ N (u) that has no neighbour with u in common is thus a good vertex with
probability 2 exp(−Cε2(n) log(n)). Consequently, conditional on N (u), E2, D̂u ≤ 2E[D̂u],∑

v∈N (u) : N (v)∩N (u)=∅

Zv ≤ bin(2ED̂u, 2 exp(−Cε2(n) log n)).

We have
P
(
bin(2ED̂u, 2 exp(−Cε2(n) log n)) ≥ 1

2ε(n)ED̂u

)
≤

(
2ED̂u

1
2ε(n)ED̂u

)
(2 exp(−Cε2(n) log n))ε(n)ED̂u/2

≤
(

4e

ε(n)

)ε(n)ED̂u/2

(2 exp(−Cε2(n) log n))ε(n)ED̂u/2

= exp

(
1

2
ε(n)ED̂u

(
log

8e

ε(n)
− Cε2(n) log n

))
= o

(
1

n

)
,

since ε(n) = 1/ log1/3(n). Hence,

P

(
Xu >

1

2
ε(n)(ω(n) + ED̂u)

∣∣∣∣ E1, E2

)
= o

(
1

n

)
.

The last step (i.e. (31)) is completed by noting that ω(n) = O(ED̂u). �
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Proof of Lemma 7. All matrices in

W = (Ĥ − H) + (H − E[H ]) + (E[H ] − P)

are real and symmetric, hence, combining Lemmas 2–6,

ρ(W) ≤ ρ(Ĥ − H) + ρ(H − E[H ]) + ρ(E[H ] − P) = on(1)
1

D(n)
.

Employing Lemma 11 yields that to each eigenvector x̂ of Ĥ = P + W corresponds an
eigenvector x of P such that

x̂ · x ≥
√

1 − (
ρ(W)

�(P )
)2 = 1 − O

((
ρ(W)

�(P )

)2)
= 1 − on(1),

since �(P ) = �(1/D(n)). �
Proof of Lemma 8. Invoking Lemma 7, to each x̂i (with eigenvalue λ̂i) there exists a normed

eigenvector xi (with eigenvalue λi) of P such that

x̂i · xi = 1 − fi(n)

with fi(n) = on(1). We claim that all λi are larger than 0 (note that we refer here to a set of L̂

eigenvalues). This can be seen as follows. From Lemma 2 we know that the first L eigenvalues
of P are of order 1/D and all other eigenvalues are 0. By Lemma 11,

|λi − λ̂i | ≤ ρ(W) � 1

D
,

hence the first L eigenvalues of Ĥ are also of order �(1/D) − O(ρ(W)) = �(1/D), and
the other n − L are of order O(ρ(W)). Now, the L̂ eigenvalues of Ĥ that are picked in
step (i) of Algorithm 1 are precisely those whose absolute eigenvalue exceeds f (n)/D̂average =
�(f (n)/D) 
 ρ(W), by the construction of f in Section 3. Hence, those eigenvalues must
necessarily be of order �(1/D) (i.e. they are indeed nonzero) and L = L̂ with high probability.

Since xi corresponds to a nonzero eigenvalue, it follows from the proof of Lemma 2 that xi

is constant on each block, i.e. xi (u) = xi (v) if σu = σv . Let x
(k)
i be the value of xi on block

k ∈ S. Set
tk = √

n(x
(k)
1 , . . . , x

(k)
L ).

Then
1

n|{u ∈ V : ‖√n̂zu − tσu‖2 ≥ T 2}| ≤ 1

nT 2

n∑
m=1

‖√n̂zu − tσu‖2

= 1

T 2
∑n

u=1 ‖(̂x(u)
1 , . . . , x̂

(u)
L ) − (x

(σu)
1 , . . . , x

(σu)
L )‖2

= 1

T 2
∑L

k=1 ‖x̂k − xk‖2

= 1

T 2
∑L

k=1 fk(n)
,

and to complete the proof, let T = (
∑L

k=1 fk(n))1/3 = O((ρ(W)/�(P ))2/3) = on(1). �
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Proof of Lemma 9. Below we shall make a spectral decomposition in terms of L orthonormal
eigenvectors of Z that span the union of all eigenspaces corresponding to nonzero eigenvalues.
Recall from the proof of Lemma 2 how we can obtain the eigenvectors of Z from the eigenvectors
of P .

Recall that, by construction, {x̂i}Li=1 are orthonormal eigenvectors of Ĥ corresponding
to nonzero eigenvalues spanning an L-dimensional space. Recall further from the proof
of Lemma 8 that the corresponding eigenvectors {xi}Li=1 of P are associated with nonzero
eigenvalues. Lemma 11(ii) entails that the space spanned by those {xi}Li=1 has also dimension L.
And Lemma 7 implies that {xi}Li=1 become an orthonormal set for n tending to ∞ (because
they become more and more aligned with the orthonormal set {x̂i}Li=1).

Let, as in the proof of Lemma 8, x
(k)
i be the value of xi on block k ∈ S. Note that∑

k nαk(x
(k)
i )2 = 1 for i ∈ {1, . . . , L}. Setting yi = √

n(x
(1)
i , . . . , x

(K)
i )�, we see that each yi

is a normalized eigenvector of Z in the sense that
∑

k αk(yi(k))2 = 1. Now, assume for a
contradiction that |tk − tl | → 0 as n → ∞, i.e.

L∑
i=1

|√nx
(k)
i − √

nx
(l)
i |2 =

L∑
i=1

|yi(l) − yi(k)|2 → 0.

We conclude that there exist orthonormal eigenvectors of Z, {y1, . . . , yL} (with eigenvalues
{λi}Li=1 after a possible relabelling of indices), that span the range of Z, such that

yu(k) = yu(l) for all u.

The other K − L eigenvectors have 0 as an eigenvalue.
To proceed, consider the matrix

N =
(√

αu

Buv

MuMv

√
αv

)
u,v

.

If (x(1), . . . , (x(K))� is an eigenvector of Z then (
√

α1x(1), . . . ,
√

αKx(K))� is an eigen-
vector of N , as is easily verified. Hence, N has {(√α1yi(1), . . . ,

√
αKyi(K))�}Li=1 as eigen-

vectors corresponding to nonzero eigenvalues, and K −L eigenvectors with 0 as an eigenvalue
(which do not contribute to the spectral decomposition of N ). Hence,

N =
( L∑

l=1

√
αuyl(u)λl

√
αvyl(v)

)
u,v

.

Thus, for all u,

Bku

MkMu

=
∑
m

ym(k)λmym(u) =
∑
m

ym(l)λmym(u) = Blu

MlMu

,

violating assumption (15). �
7.1. Comparison to spectral analysis on the adjacency matrix

Proof of Theorem 2. This proof leans strongly on ideas borrowed from [22], where graphs
without a community structure were considered. Parts of their proof carry through for the
DC-SBM considered here. Note that limn→∞ g(n)/n = 1.
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By definition, we require, without lose of generality, D1 ≤ D2 ≤ · · · ≤ Dn. However, we
obtain the same graph (with now a decreasing degree sequence) by a rearrangement of indices,
if we set

φu =
⎧⎨⎩

φ1

u
if u ≤ 1 ≤ k = nβ,

1 if u > nβ,

where φ1 = nγ+β , and Du = φuω(n) (with ω as in (18)). Then

σu =
{

1 if u ≤ n/2

2 if u > n/2.

Denote a sample of the random graph by G. We decompose G into the following graphs (exactly
as in [22]):

• G1, which is a union of vertex disjoint stars S1, . . . , Sk . Star Su has as its centre node u

and as leaves those vertices from among {k + 1, . . . , n} adjacent to u, but not adjacent
to {1, . . . , u − 1};

• G′
1 is the graph consisting of all edges of G with one endpoint in {1, . . . , k} and the other

endpoint in {k + 1, . . . , n}, except for those edges in G1;

• G2 is the subgraph of G, which is induced by {1, . . . , k};
• G3 is the subgraph of G, which is induced by {k + 1, . . . , n}.

Further, let Fu be the subset of vertices in {k + 1, . . . , n} that are adjacent to {1, . . . , u− 1} and
let C be a constant, independent of n, whose value might change along the course of the proof.

We claim that d̂u, the degree of vertex u in G1, concentrates around its mean. Indeed,
consider

d̂u =
n∑

l=k+1

Ber

(
DuDl

g(n)ω(n)
Bσuσl

)
−

∑
l∈Fu

Ber

(
DuDl

g(n)ω(n)
Bσuσl

)
,

where g is defined in (19). Then

du = E[d̂u] ≥ ω(n)φu

g(n)

( n∑
l=k+1

Bσuσl
− CE[|Fu|]

)
,

which we bound from below by estimating E[|Fu|] for u ≤ k = nβ : for large enough n,

E[|Fu|] =
n∑

l=k+1

u−1∑
v=1

DlDv

ω(n)g(n)
Bσuσl

≤ C
ω(n)φ1

g(n)

n∑
l=k+1

u−1∑
v=1

1

v

≤ Cω(n)φ1
n − nβ

g(n)
nβ

≤ Cω(n)nγ+2β,

after recalling the special choice for the degree sequence.
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Consequently, we have

n

g(n)

B11 + B12

2
Du ≥ du ≥ B11 + B12

2
Du

(
n

g(n)
− C

ω(n)nγ+2β

g(n)

)
.

Invoking large deviation theory on d̂u (which is a sum of Bernoulli random variables), we
deduce that

P(|d̂u − du| >
√

c′du log n) ≤ 2

nc′/4
for c′ > 0 a constant. (33)

We take c′ = 8 to establish (33) uniformly over all vertices. We next investigate �(G1), the
smallest gap between different eigenvalues of G1. This graph is the union of vertex disjoint
stars with degree d̂u so that its spectrum is given by{

±
√

d̂1 − 1, . . . , ±
√

d̂k − 1

}
.

We claim that
�(G1) ≥ C

√
ω(n)n(γ−3β)/2 → ∞ (34)

with high probability. Indeed, define

x±
u = du ± √

c′du log n

and note that with high probability d̂u ≥ x−
u and d̂u+1 ≤ x+

u+1. To investigate the difference
x−
u − x+

u+1, we first bound du − du+1 from below, i.e.

du − du+1 ≥ B11 + B12

2
ω(n)φ1

(
n/g(n)

u(u + 1)
− C

ω(n)nγ+2β

n

1

u

)
= B11 + B12

2
ω(n)φ1

1

u

(
n/g(n)

u + 1
− C

ω(n)nγ+2β

n

)
≥ B11 + B12

2
ω(n)φ1

1

u

(
n/g(n)

nβ + 1
− C

ω(n)nγ+2β

n

)
≥ B11 + B12

4
ω(n)φ1

1

nβ

1

nβ

= B11 + B12

4

ω(n)nγ+β

n2β

= B11 + B12

4
ω(n)nγ−β.

Next we show that the
√

du log n terms are negligible, i.e.

√
du log n ≤

√
((B11 + B12)/2)n

g(n)Du log n

≤ C

√
ω(n) log(n)nγ+β

≤ Cω(n)n(γ+β)/2

� ω(n)nγ−β
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due to (12). Hence,
x−
u − x+

u+1 ≥ Cω(n)nγ−β.

As a consequence,

�(G1) ≥ min
u∈{1,...,k}

(√
d̂u − 1 −

√
d̂u+1 − 1

)
≥ min

u∈{1,...,k}

(√
x−
u − 1 −

√
x+
u+1 − 1

)
= min

u∈{1,...,k}

(
x−
u − x+

u+1√
x−
u − 1 +

√
x+
u+1 − 1

)

≥ C
ω(n)nγ−β

√
ω(n)n(γ+β)/2

= C
√

ω(n)n(γ−3β)/2,

i.e. (34).
We continue with an inspection of G′

1, i.e. we focus on m̂u = D̂u|Ĝ′
1
, the degree of vertex u

in G′
1, and show that

m̂u ≤ 2c′ log n, (35)

with high probability (here, mu is the expectation of m̂u). We shall use this in combination with
the fact that the spectral radius of a graph is bounded by its largest degree. Write

m̂u =
∑
l∈Fu

Ber

(
φuω(n)

g(n)
B1σl

)
.

This expression allows us to deduce an upper bound for mu,

mu = E[m̂u] ≤ CE[Fu]φuω(n)

g(n)
≤ Cω(n)nγ+2βnγ+β 1

u

ω(n)

g(n)
≤ Cω2(n)

n2γ+3β

n
,

which tends to 0 due to (11). Standard bounds for Bernoulli random variables yield

P(|mu − m̂u| ≤ c′ log n) ≤ 2 exp

(
− (c′ log n)2

2(mu + c′ log(n)/3)

)
≤ 2 exp

(
−1

4
c′ log n

)
= 2

nc′/4
.

We conclude that, with probability at least 1 − 2/n2,

m̂u ≤ mu + c′ log n ≤ 2c′ log n,

i.e. (35) holds. An identical estimate holds when u > k.
We next bound the number of edges in G2, denoted by E(G2). The square root of E(G2) is

an upper bound for the spectral radius of G2. Thus,

E[|E(G2)|] = C

k∑
u=1

k∑
v=1

φuφvω(n)

g(n)
≤ C

nγ+βnγ+βω(n)nβnβ

g(n)
≤ C

n2γ+4β

n
,

vanishing for large n. Again, upon invoking standard large deviation theory, we have, with
probability at least 1 − 2/n2,

E[|E(G2)|] ≤ 2c′ log n. (36)
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Consider the degree of a vertex u > k in G3,

E[D̂u|G3 ] =
n∑

v=k

φuφvω(n)

g(n)
Bσvσu ≤ C

ω(n)

g(n)
n ≤ Cω(n).

Hence,

P(D̂u|G3 > Cω(n) + √
c′ log(n)Cω(n)) ≤ 2

nc′/4
. (37)

Combining these observations leads to our assertion that the first k eigenvectors of A become
undistinguishable from those of the k stars when n tends to ∞. Indeed, split A according to
the described graph composition, i.e.

A = A|G1 + A|G′
1
+ A|G2 + A|G3

and note that the spectral radii of A|G′
1
, A|G2 , and A|G3 vanish in the presence of �(G1).

This follows because (as mentioned above) for any graph its spectral radius is bounded by
the minimum of its largest degree and the square root of its number of edges. Hence, due to
(35)–(37),

ρ(A|G′
1
) ≤ 2c′ log n, ρ(A|G2) ≤ √

2c′ log n,

and
ρ(A|G3) ≤ Cω(n) + √

c′ log(n)Cω(n),

with high probability. All these three bounds vanish indeed upon division by �(G1) ≥
Cω(n)n(γ−3β)/2. An application of Lemma 11 completes the proof. �
7.2. Interpretation of the conditions

Proof of Remark 1. Assume that Bij /Mi = Blj /Ml then

Bij

MiMj

= Blj

MlMj

.

Now, set φi = (1/αin)
∑

σu=i φu then

Bij

MiMj

= αiφiBijαjφj

αiφiMiMjαjφj

.

We give a probabilistic interpretation to the terms appearing in the denominator, i.e.

nαiφiMi = nαiφi

K∑
k=1

∑
u:σu=k

φuBiσu

= nαiφi

K∑
k=1

nαkφkBik

=
K∑

k=1

(nαi)(nαk)φiBikφk

=
K∑

k=1

∑
u:σu=i

φu

∑
v:σv=k

φvBik
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= n

ω(n)

K∑
k=1

∑
u:σu=i

∑
v:σv=k

P(l ↔ m)

= n

ω(n)

∑
u:σu=i

n∑
m=1

P(l ↔ m)

= n

ω(n)
{expected total degree of vertices in community i}.

An inspection of the numerator reveals that

nαiφiBijφjαjn =
∑

u:σu=i

φu

∑
v:σv=j

φvBij

= n

ω(n)

∑
u:σu=i

∑
v:σv=j

P(u ↔ v)

= n

ω(n)
{expected #edges between community i and j}. �

Proof of Lemma 1. Assume first that for some i and l, we have, for all j , B̂ij = B̂lj and, for
all u, v,

φuBσuσvφv

g(n)
= φ̂uB̂σuσv φ̂v

ĝ(n)

with φu defined in (17) and g in (19) (φ̂u and ĝ are defined analogously). Fix j . Let α, β, and γ

be any indices such that σα = i, σβ = j , and σγ = l. Then

φ̂αB̂ij φ̂β

ĝ(n)
= φαBijφβ

g(n)
�⇒ Bij = φ̂α

φα

φ̂β

φβ

g(n)

ĝ(n)
B̂ij

and
φ̂γ B̂lj φ̂β

ĝ(n)
= φγ Bljφβ

g(n)
�⇒ Blj = φ̂γ

φγ

φ̂β

φβ

g(n)

ĝ(n)
B̂lj ,

implying that (since B̂ij = B̂lj )

Bij = φ̂α

φα

φ̂β

φβ

g(n)

ĝ(n)
B̂lj = φ̂α

φα

φγ

φ̂γ

Blj .

Since j was arbitrary, there exist c such that, for all j , Bij = cBlj , hereby violating the
identifiability condition, as pointed out in Remark 2, i.e.

Bij

Mi

= Blj

Ml

for all j.

Now assume that (a) holds, i.e.

Bij

Mi

= Blj

Ml

for all j.

Define, for k, l ∈ S and u ∈ V ,

B̂kl = 1

Mk

1

Ml

Bkl and φ̂u = f (n)φuMσu,
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where f (n) = ∑
v φvMσv/

∑
w φw. Then

B̂ij = 1

Mi

1

Mj

Bij = 1

Mi

1

Mj

Mi

Ml

Blj = 1

Mj

1

Ml

Blj = B̂lj

and (as above, we define ĝ analogously to g)

φ̂uB̂σuσv φ̂v

ĝ(n)
= 1∑

w f (n)φwMσw

φuMσuf (n)
Bσuσv

MσuMσv

f (n)Mσvφv

= φuBσuσvφv∑
w φw

= φuBσuσvφv

g(n)
. �

8. Future research

8.1. Exact recovery

The obtained clustering here is almost exact: only a vanishing fraction of nodes is mis-
classified. It is plausible that an exact clustering could be obtained from this clustering, by
using it as input to the ‘clean-up’ algorithm presented in [1, Section 7.2] or, alternatively, [23,
Algorithm 2].

8.2. Nonconstant B

In this paper we assumed B to be a constant matrix. The current analysis could be extended
to a setting where B is allowed to change with n. We need, however, the existence of a constant
δ > 0 such that for all n, ρ(Z) ≥ δ for Ĥ to concentrate. For identifiability we need the
existence of some ε > 0 such that for all i, j , and n, maxi′ |Bii′/MiMi′ �= Bji′/MjMi′ | ≥ ε.

8.3. Sparser graphs

The main issue with both the normalized adjacency matrix and the Laplacian is proving when
those matrices concentrate around a deterministic matrix. For the Laplacian, if the degrees are
of order �(log(n)), matrices concentrate according to [5]. But, if the minimum degree is of
order o(log(n)), the graph is seen to have some isolated vertices. Those contribute to multiple
zeros in the spectrum; hence, the matrix does not concentrate. There are multiple ways to
overcome this issue, for instance removing the low-degree vertices or raising all the degrees.
The latter strategy was proposed in [18] for the inhomogeneous Erdős–Rényi random graph
(where edges are independently present with probabilities (puv)

n
u,v=1) and also in [4] and [27]

(see Section 4.4) for the DC-SBM. According to [18], for τ ∼ d with d = n maxuv puv , with
high probability,

ρ(Lτ − (E[Dτ ]−1/2
E[A]E[Dτ ]−1/2)) = O

(
1√
d

)
,

where Lτ is defined in (13).
Based on these observations, it might be fruitful to use Ĥ on a graph where the degrees have

been artificially inflated.
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