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INTERPRETABILITY LOGICS AND GENERALISED

VELTMAN SEMANTICS

LUKA MIKEC ANDMLADEN VUKOVIĆ

Abstract. We obtain modal completeness of the interpretability logics ILP0 and ILR w.r.t. generalised

Veltman semantics. Our proofs are based on the notion of full labels [2]. We also give shorter proofs

of completeness w.r.t. the generalised semantics for many classical interpretability logics. We obtain

decidability and finite model property w.r.t. the generalised semantics for ILP0 and ILR. Finally, we

develop a construction that might be useful for proofs of completeness of extensions of ILW w.r.t. the

generalised semantics in the future, and demonstrate its usage with ILW∗ = ILWM0.

§1. Introduction.

1.1. Interpretability logics. It iswell known that sufficiently strong formal theories
T can reason about their own provability. The usual way to do this is through
a certain Σ1-predicate that formalises provability, usually denoted as ProvT . For
example, the following is provable in T :

ProvT

(⌈
¬ProvT

(
⌈⊥⌉

)⌉)
→ ProvT

(
⌈⊥⌉

)
,

that is, (the formalised version of) Gödel’s second incompleteness theorem. It was
also Gödel who first noticed that many interesting properties or ProvT can be
expressed in a simple modal language, where ✷ stands for ProvT , and usages of
⌈·⌉ are left implicit. Gödel’s second incompleteness theorem can be expressed more
succinctly in this way:

✷¬✷⊥→✷⊥.

Examples of other properties of ProvT expressible in a modal language are ✷(A→
B)→ (✷A→ ✷B) and ✷A→ ✷✷A (where A and B are arbitrary sentences). The
idea of treating provability predicate as a modality was also considered by Kripke
and Montague. The correct choice of axioms, based on (the formalised version of)
Löb’s theorem, was seriously considered by several logicians independently: Boolos,
de Jongh, Magari, Sambin, and Solovay.
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The provability logic GL (Gödel, Löb) is a modal propositional logic with the
single unary modal operator ✷. The axioms of the system GL are all propositional
tautologies (in the new language), and all instances of the schemas K: ✷(A→ B)→
(✷A→✷B), and L:✷(✷A→A)→✷A. The inference rules of GL aremodus ponens
and necessitation A/✷A. All interpretability logics we consider are extensions, both
in terms of their language and their theoremhood, of GL.
Solovay [11] proved the arithmetical completeness theorem forGL. This theorem

holds for all extensions of I∆0+EXP, where EXP is the sentence formalising the
totality of exponentiation. This theorem shows that the language of provability
logic GL is too weak to distinguish between most of the theories that are usually
considered.1 For example, whether a theory is finitely axiomatisable does not affect
the theory’s provability logic.
Other formal properties, beside provability, have been explored through modal

or semimodal systems. For example, interpretability, Πn-conservativity and
interpolability.
We consider the usual modal treatment of interpretability: interpretability logics.

Let us briefly describe what is usually meant by “interpretability” in the context
of interpretability logics. Roughly, the theory S interprets the theory T if there is a
natural way of translating the language ofT into the language of S in such away that
the translations of the theorems ofT are provable in S. In a sufficiently strong formal
theory T in the language LT , one can construct a binary interpretability predicate
IntT . This predicate expresses that one finite extension of T interprets another finite
extension of T.
Modal logics for interpretability were first studied by Hájek (1981) and Švejdar

(1983). Visser introduced the modal logic IL (interpretability logic), a modal
logic with a binary modal operator representing interpretability, in 1990 [13]. This
operator is the only addition to the language; i.e., the language of interpretability
logics is given by

A ::=⊥|p |A→ A |A✄A,

where p ranges over a countable set of propositional variables. Other Boolean
connectives are defined as abbreviations, as usual. We treat ✄ as having higher
priority than →, but lower than other logical connectives. Since ✷B too can be
defined (over IL) as an abbreviation (expanded to ¬B✄⊥), we do not formally
include✷ in the language. Similarly, we do not include✸ in the language, where✸B
stands for¬✷¬B. IfA is constructed in thisway,wewill say thatA is amodal formula.
Any mapping A 7→ A∗, with A a modal formula and A∗ ∈ LT , such that:

• it commutes with logical connectives;
• if p is a propositional variable, p∗ is a sentence;

• (A✄B)∗ = IntT

(
⌈A∗⌉,⌈B∗⌉

)
, where ⌈X⌉ is the numeral of the Gödel number

of X ;

is called an arithmetical interpretation.

1However, it is possible that the provability logics of theories below I∆0+EXP differ from GL.
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The interpretability logic of a theory T, denoted by IL(T), is the set of all modal
formulas A such that T ⊢ A∗ for all arithmetical interpretations. While there are
open questions regarding interpretability logics of certain theories, it is known that
they all extend the basic system IL.

Definition 1. The interpretability logic IL is axiomatised by the following axiom
schemas.

• classical tautologies (in the new language);

(K) �(A→ B)→ (�A→�B);
(L) �(�A→ A)→�A;
(J1) �(A→ B)→ A✄B;
(J2) (A✄B)∧ (B✄C)→ A✄C;
(J3) (A✄C)∧ (B✄C)→ A∨B✄C;
(J4) A✄B→ (✸A→✸B);
(J5) ✸A✄A.

Rules of inference are modus ponens and necessitation A/✷A.

In this context, the axiom (K) is a formalisation of the deduction theorem. Axiom
(L) is a formalisation of Löb’s theorem. Particularly interesting are the axioms
(J4) and (J5). The axiom (J4) says that relative interpretability implies relative
consistency. The axiom (J5) is the arithmetised model existence lemma: from a
model of the consistency of A it is possible to unravel a model of A.
We say that a modal formula A is valid in a formal theory T if T ⊢ A∗ for every

arithmetical interpretation ∗. A modal theory S is sound w.r.t. T if all its theorems
are valid in T . A modal theory S is complete w.r.t. T if it proves exactly those
formulas that are valid in T . For the proof that the system IL is sound w.r.t. any
reasonable formal theory, see [13].
The system IL is, unlike GL, arithmetically incomplete w.r.t. any reasonable

theory. For example, IL does not prove all instances ofA✄B→A✄B∧✷¬A, which
are all valid in every reasonable theory. To achieve completeness, we have to study
extensions of the basic system IL. Extensions are built by addingnewaxiomschemas,
the so-called principles of interpretability. Two principles and the corresponding
extensions of IL are of particular interest because they are the interpretability logic
of many interesting theories.
Montagna’s principle M: A✄B→ A∧✷C✄B∧✷C is valid in theories proving

full induction. We denote by ILM the system obtained by adding all instances of
the principle M to the system IL as new axioms. Berarducci [1] and Shavrukov
[10] independently proved that IL(T) = ILM, if T is an essentially reflexive theory.
The persistence principle P: A✄B→ ✷(A✄B) is valid in finitely axiomatisable
theories. Visser [13] proved the arithmetical completeness of ILP w.r.t. any finitely
axiomatisable theory containing I∆0+SUPEXP, where SUPEXP asserts the totality
of superexponentiation (tetration). Thus the interpretability logic ILM of first-order
Peano arithmetic differs from the interpretability logic ILP of Gödel-Bernays set
theory. It is still an open problem what is the interpretability logic of weaker theories
like I∆0+EXP, I∆0+Ω1 and PRA.
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In particular, one can ask what is the set of principles valid in all reasonable
theories.2 This set is usually denoted as IL(All). Note that this does not mean that
there has to be a theory T that attains IL(All) as its interpretability logic, i.e.,
IL(T) = IL(All). Clearly IL ⊆ IL(All) ⊆ ILP ∩ ILM. In fact, we know that both
inclusions are proper. The ongoing search for IL(All) is the main motivation behind
studying extensions of IL today. Studying modal properties of lower bounds of
IL(All) turns out to be useful for finding new principles within IL(All). For example,
the principle R was discovered while trying to prove modal completeness of ILP0W
[5] (we will define all these principles later). See the most recent development [6] for
an overview of the progress that has been made in the search for IL(All).
Definitions and further details regarding interpretability and interpretability

logics in general can be found in e.g., [14]. The remainder of this paper deals with
modal semantics for interpretability logics.

1.2. Semantics. The most commonly used semantics for the interpretability logic
IL and its extensions is the Veltman semantics (or ordinary Veltman semantics).

Definition 2 ([3], Definition 1.2). A Veltman frame F is a structure (W ,R,{Sw :
w ∈W}), whereW is a nonempty set, R is a transitive and converse well-founded
binary relation onW and for all w ∈W we have:

a) Sw ⊆ R[w]
2, where R[w] = {x ∈W : wRx};

b) Sw is reflexive on R[w];
c) Sw is transitive;
d) if wRuRv then uSw v.

The standard logic of (the formalised) provability, the logicGL, is complete w.r.t.
the semantics based on the so-called GL-frames (where w 
 ✷A iff.: wRx implies
x 
 A). All interpretability logics that we study here conservatively extend the logic
of provability. So, it should not be surprising that (W ,R) in the preceding definition
is precisely a GL-frame. For reasons already explained earlier, we will usually work
as if the symbol ✷ is not in the language.
A Veltman model is a quadruple M = (W ,R,{Sw : w ∈W},
), where the first

three components form a Veltman frame. The forcing relation
 is extended as usual
in Boolean cases, and w 
 A✄B holds if and only if for all u such that wRu and
u 
 A there exists v such that uSw v and v 
 B.
In what follows we will mainly use a different semantics, which we will refer

to as the generalised Veltman semantics. R. Verbrugge [12] defined this specific
generalisation of Veltman semantics. Themain purpose of its introduction, and until
recently the only usage, was to show that certain extensions of IL are independent,
by Verbrugge [12], Vuković [16] and Goris and Joosten [5].

Definition 3. AgeneralisedVeltman frameF is a structure (W ,R,{Sw :w∈W}),
where W is a nonempty set, R is a transitive and converse well-founded binary
relation onW and for all w ∈W we have:

a) Sw ⊆ R[w]×
(
P(R[w])\{∅});

b) Sw is quasi-reflexive: wRu implies uSw {u};

2“Reasonable” usually means “an extension of S12 or I∆0 +Ω
′′
1 , or “as weak as possible under the

condition that IL(All) remains elegantly axiomatisable”.
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c) Sw is quasi-transitive: if uSwV and vSwZv for all v ∈ V , then uSw (
⋃
v∈V Zv);

d) if wRuRv, then uSw {v};
e) monotonicity: if uSwV and V ⊆ Z ⊆ R[w], then uSwZ.

A generalised Veltman model is a quadrupleM= (W ,R,{Sw : w ∈W},
), where
the first three components form a generalised Veltman frame. Now w
A✄B holds
if and only if for all u such that wRu and u 
 A there exists V such that uSwV and
V 
 B. By V 
 B we mean that v 
 B for all v ∈ V .

1.3. Principles, completeness, and decidability. Let us review some relevant results
and approaches.Whenwe need to refer to an extension of IL (an arbitrary extension
if not stated otherwise), we will write ILX.
Let (X) (resp. (X)gen) denote a formula of first-order or higher-order logic such

that for all ordinary (resp. generalised) Veltman frames F the following holds:

F 
 X if and only if F |= (X) (resp. F |= (X)gen).

Formulas (X) and (X)gen are called characteristic properties (or frame conditions)

of the given logic ILX. The class of all ordinary (resp. generalised) Veltman frames
F such that F |= (X) (resp. F |= (X)gen) is called the characteristic class of (resp.
generalised) frames for ILX. If F |= (X)gen we also say that the frame F possesses
the property (X)gen. We say that an ordinary (resp. generalised) Veltman model

M= (W ,R,{Sw : w ∈W},
) is an ILX-model (resp. ILgenX-model), or that model
M possesses the property (X) (resp. (X)gen), if the frame (W ,R,{Sw : w ∈W})

possesses the property (X) (resp. (X)gen). A logic ILX will be said to be complete

with respect to the ordinary (resp. generalised) semantics if for all modal formulas
A we have that validity of A over all ILX-frames (resp. all ILgenX-frames) implies
ILX ⊢ A.
We say that ILX has the finite model property (FMP) w.r.t. ordinary (resp.

generalised) semantics if for each formula A satisfiable in some ILX-model (resp.
ILgenX-model), A is also satisfiable in some finite ILX-model (resp. ILgenX-model).
If we include results from the current paper, we have the following table. Here, o

stands for ordinary Veltman semantics, and g for generalised Veltman semantics (as
defined earlier).

Principle Compl. (o) Compl. (g) FMP (o) FMP (g)

M A✄B→ A∧�C✄B∧�C + + + +
M0 A✄B→✸A∧�C✄B∧�C + + ? +
P A✄B→�(A✄B) + + + +
P0 A✄✸B→�(A✄B) - + ? +
R A✄B→¬(A✄¬C)✄B∧�C ? + ? +
W A✄B→ A✄B∧�¬A + + + +
W∗ A✄B→ B∧�C✄B∧�C∧�¬A + + ? +

De Jongh and Veltman proved the completeness of the logics IL, ILM and ILP
w.r.t. their characteristic classes of ordinary (and finite) Veltman frames in [3]. As
is usual for extension of the provability logic GL, all completeness proofs suffer
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from compactness-related issues. One way to go about this is to define a (large
enough) adequate set of formulas and let worlds be maximal consistent subsets of
such sets (used e.g., in [3]). With interpretability logics and the ordinary semantics,
worlds have not been identified with (only) sets of formulas. It seems that with the
ordinary semantics it is sometimes necessary to duplicate worlds in order to build
models for certain consistent sets (see e.g., [3]). In [7], de Jongh and Veltman proved
completeness of the logic ILW w.r.t. its characteristic class of ordinary (and finite)
Veltman frames.
Goris and Joosten introduced a more robust approach to proving completeness

of interpretability logics, the construction method [4], [5]. In this type of proofs,
one builds models step by step, and the final model is retrieved as a union. While
closer to the intuition and more informative than the standard proofs, these proofs
are hard to produce and verify due to their size. (They might have been shorter if
tools from [2] have been used from the start.) For the purpose for which they were
invented (completeness of ILM0 and ILW

* w.r.t. the ordinary semantics) they are
still the only known tools.
The completeness of interpretability logics w.r.t. the generalised semantics is an

easy consequence of the completeness w.r.t. the ordinary semantics. In [9] and [8],
the filtration technique was used to prove the finite model property of IL and its
extensions ILM, ILM0 and ILW

* w.r.t. the generalised semantics. In those papers,
generalised semantics was used because certain issues occur when trying to merge
multiple worlds into one in ordinary Veltman models. Those explorations yielded
some decidability results.
The aim of this paper is to show completeness (w.r.t. the generalised semantics)

and decidability of some interpretability logics. We introduce a very direct type of
proofs of completeness; similar to [3] in their general approach. We use smart labels
from [2] for this purpose. An example that illustrates benefits of using the generalised
semantics will be given in the section dedicated to ILM0.
The main new results of this paper are completeness and finite model property

(and thus decidability) of ILR and ILP0. The principle R is important because it
forms the basis of the, at the moment, best explicit candidate for IL(All). Results
concerning the principle ILP0 are interesting in a different way; they answer an
old question: is there an unravelling technique that transforms generalised ILX-
models to ordinary ILX-models, that preserves satisfaction of relevant characteristic
properties? The answer is no: we find ILP0 to be complete w.r.t. the generalised
semantics, but it is known to be incomplete w.r.t. the ordinary semantics.
Other results include reproving some known facts with, in some cases, much

shorter proofs (IL, ILP, ILM, ILM0). Of particular interest is the logic ILW, which
was known to be complete and decidable, but for which we nevertheless reprove
completeness w.r.t. the generalised semantics using our approach. We will explain
our motivation for doing so in the section dedicated to ILW and ILW*.

§2. Completeness w.r.t. the generalised semantics. In what follows, “formula” will
always mean “modal formula”. If the ambient logic in some context is ILX, a
maximal consistent set w.r.t. ILX will be called an ILX-MCS. Let us now introduce
smart labels from [2].
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Definition 4 ([2], a slightly modified Definition 3.1). Let w and u be some
ILX-MCS’s, and let S be an arbitrary set of formulas. We write w ≺S u if for
any finite S′ ⊆ S and any formula A we have that A✄

∨
G∈S′ ¬G ∈ w implies

¬A,�¬A ∈ u.

Note that the small differences between our Definition 4 and Definition 3.1 [2] do
not affect the results of [2] that we use.3

Definition 5 ([2], p. 4). Letwbe an ILX-MCS, andS an arbitrary set of formulas.
Put:

w�S = {�¬A : ∃S′ ⊆ S,S′ finite,A✄
∨

G∈S′

¬G ∈ w};

w⊡S = {¬A,�¬A : ∃S′ ⊆ S,S′ finite,A✄
∨

G∈S′

¬G ∈ w}.

Thus, w≺S u if and only if w
⊡
S ⊆ u. If S = ∅ then w�∅ = {�¬A :A✄⊥∈ w}. Since

w is maximal consistent, usages of this set usually amount to the same as the usages
of the set {�A :�A ∈ w}.
We will usually write w≺ u instead of w≺∅ u.

Lemma 6 ([2], Lemma 3.2). Let w, u and v be some ILX-MCS’s, and let S and T
be some sets of formulas. Then we have:

a) if S ⊆ T and w≺T u, then w≺S u;
b) if w≺S u≺ v, then w≺S v;
c) if w≺S u, then S ⊆ u.

We will tacitly use the preceding lemma in most of our proofs.
The following two lemmas can be used to construct (or in our case, find) a MCS

with the required properties.

Lemma 7 ([2], Lemma 3.4). Let w be an ILX-MCS, and let ¬(B✄C) ∈ w. Then
there is an ILX-MCS u such that w≺{¬C} u and B,�¬B ∈ u.

Lemma 8 ([2], Lemma 3.5). Let w and u be some ILX-MCS’s such that B✄C ∈
w,w≺S u and B ∈ u. Then there is an ILX-MCS v such that w≺S v and C,�¬C ∈ v.

Let B be a formula, and w a world in a generalised Veltman model. We write [B]w
for {u : wRu and u 
 B}.
In the remainder of the current paper, we will assume that D is always a finite set

of formulas, closed under taking subformulas and single negations, and⊤∈D. The
following definition is central to most of the results of this paper.

Definition 9. Let X be a subset of {M, M0, P, P0, R }. We say that M =
(W ,R,{Sw : w ∈W},
) is the ILX-structure for a set of formulas D if:

3The difference is a different strategy of ensuring converse well-foundedness for the relationR. Instead
of asking for the existence of some ✸F ∈ w\ u whenever wRu, as is usual in the context of provability
(and interpretability) logics, we will go for a stronger condition (see Definition 9). Since we will later put
R :=≺, this choice of ours is reflected already at this point.
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W = {w : w is an ILX-MCS and for some G ∈ D,G∧�¬G ∈ w};

wRu⇔ w≺ u;

uSwV ⇔ wRu,V ⊆ R[w], (∀S)(w≺S u⇒ (∃v ∈ V)w≺S v);

w 
 p⇔ p ∈ w.

Lemma 10. If ILX 0 ¬A then there is an ILX-MCS w such that A∧�¬A ∈ w.

Proof. We are to show that {A ∧�¬A} is an ILX-consistent set. Suppose
A,�¬A ⊢ ⊥. It follows that ⊢ �¬A→¬A. Applying generalisation (necessitation)
gives ⊢�(�¬A→¬A). The Löb axiom implies ⊢�¬A. Now, ⊢�¬A andA,�¬A ⊢
⊥ imply A ⊢ ⊥, i.e., ⊢ ¬A, a contradiction. ⊣

Lemma 11. Let X be a subset of {M,M0, P, P0, R}. The ILX-structureM for a set
of formulas D is a generalised Veltman model. Furthermore, the following holds:

M,w 
 G if and only if G ∈ w,

for all G ∈ D and w ∈W .

Proof. Let us verify that the ILX-structureM= (W ,R,{Sw :w∈W},
) forD is
a generalised Veltman model. Since ILX 0⊥ and⊤∈D, Lemma 10 impliesW 6= ∅ .
Transitivity of R is immediate. To see converse well-foundedness, assume there

are more than |D| worlds in an R-chain. Then there are x and y with xRy and for
some G ∈ D, G,�¬G ∈ x,y. However, �¬G ∈ x and G ∈ y obviously contradict the
assumption that xRy (x≺ y).
Next, let us prove the properties of Sw for w ∈W . Clearly Sw ⊆ R[w]×P(R[w]).

If xSwV , then w ≺∅ x implies there is at least one element v in V (with w ≺∅ v).
Quasi-reflexivity and monotonicity are obvious. Next, assume wRxRu and w≺S x.
Lemma 6 and w ≺S x ≺ u imply w ≺S u. Thus xSw{u}. It remains to prove quasi-
transitivity. Assume xSwV and vSwUv for all v ∈ V . Put U =

⋃
vUv. We claim that

xSwU . We have U ⊆ R[w]. Assume w ≺S x. This and xSwV imply there is v ∈ V
such that w≺S v. This and vSwUv imply there is u ∈Uv (thus also u ∈U) such that
w≺S u.
Let us prove the truth lemma with respect to the formulas contained in D. The

claim is proved by induction on the complexity of G ∈ D. We will only consider the
case G = B✄C.
Assume B✄C ∈w, wRu and u
B. Induction hypothesis implies B ∈ u. We claim

that uSw [C]w. Clearly [C]w ⊆ R[w]. Assume w ≺S u. Lemma 8 implies there is an
ILX-MCS v with w ≺S v and C,�¬C ∈ v (thus also wRv and v ∈W). Induction
hypothesis impliesM,v 
 C.
To prove the converse, assumeB✄C /∈w. Lemma 7 implies there is uwithw≺{¬C}

u and B,�¬B ∈ u (thus u ∈ W). It is immediate that wR u and the induction
hypothesis implies that u 
 B. Assume uSwV . We are to show that V 1 C. Since
w≺{¬C} u and uSwV , there is v ∈V such that w≺{¬C} v. Lemma 6 implies ¬C ∈ v.
The induction hypothesis implies v 1 C; thus V 1 C. ⊣

Theorem 12. Let X ⊆ {M, M0, P, P0, R}. Assume that for every set D the ILX-
structure for D possesses the property (X)gen. Then ILX is complete w.r.t. ILgenX-
models.
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Proof. Let A be a formula such that 0 ¬A. Lemma 10 implies there is an ILX-
MCS w such that A∧�¬A ∈ w. LetD have the usual properties, and contain A. Let
M = (W ,R,{Sw : w ∈W},
) be the ILX-structure for D. Since A∧�¬A ∈ w and
A ∈ D, we have w ∈W . Lemma 11 impliesM,w 1 ¬A. ⊣

Corollary 13. The logic IL is complete w.r.t. the generalised semantics.

Note that the method presented in [17] now implies completeness of IL w.r.t.
ordinary Veltman models. Unfortunately (but necessarily, as our result for ILP0

shows), this method does not preserve characteristic properties in general.
In the following sections we prove (or reprove) the completeness of the following

logics w.r.t. the generalised semantics: ILM, ILM0, ILP, ILP0, ILR, ILW, and ILW*.

2.1. The logic ILM. Completeness of the logic ILM w.r.t. the generalised
semantics is an easy consequence of the completeness of ILM w.r.t. the ordinary
semantics, first proved by de Jongh and Veltman [3]. Another proof of the same
result was given by Goris and Joosten, using the construction method [5].
Verbrugge determined the characteristic property (M)gen in [12]:

uSwV ⇒ (∃V ′ ⊆ V)(uSwV
′ & R[V ′]⊆ R[u]).

Lemma 14 ([2], Lemma 3.7). Let w and u be some ILM-MCS’s, and let S be a set
of formulas. If w≺S u then w≺S∪u�

∅

u.

Theorem 15. The logic ILM is complete w.r.t. ILgenM-models.

Proof. Given Theorem 12, it suffices to show that for any set D, the ILM-
structure for D possesses the property (M)gen. Let (W ,R,{Sw : w ∈W},
) be the
ILM-structure for D.
Let uSwV and take V

′ = {v ∈ V : w≺u�
∅

v}. We claim uSwV
′ and R[V ′]⊆ R[u].

Suppose w ≺S u. Lemma 14 implies w ≺S∪u�
∅

u. Since uSwV , we have that there is

v ∈ V with w≺S∪u�
∅

v. So, v ∈ V ′. Thus, uSwV
′.

Now let v ∈ V ′ and z ∈W be such that vRz. Since v ∈ V ′, w≺u�
∅

v. Then for all

�B ∈ u we have �B ∈ v. Since vRz, we have B,�B ∈ z. So, u≺ z i.e., uRz. ⊣

2.2. The logic ILM0. Modal completeness of ILM0 w.r.t. ordinary Veltman
semantics was proved in [4] by Goris and Joosten. Certain difficulties encountered
in this proof were our main motivation for using generalised Veltman semantics. We
will sketch one of these difficulties and show in what way the generalised semantics
overcomes it.
Characteristic property (M0)gen (see [8]):

wRuRxSwV ⇒ (∃V ′ ⊆ V)(uSwV
′ & R[V ′]⊆ R[u])).

Lemma 16 ([2], Lemma 3.9). Let w, u, and x be ILM0-MCS’s, and S an arbitrary
set of formulas. If w≺S u≺ x then w≺S∪u�

∅

x.

To motivate our proving of completeness (of ILM0, but also in general) w.r.t. the
generalised semantics, let us sketch a situation for which there are clear benefits
in working with the generalised semantics. We do this only now because ILM0 is
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Figure 1. Left: extending an ordinary Veltman model. Right: extending a
generalised Veltman model. Straight lines represent R-transitions, while curved
lines represent Sw-transitions. Full lines represent the starting configuration, and
dashed lines represent transitions that are to be added.

sufficiently complex to display (some of) these benefits. Suppose we are building
models step by step (as in the construction method [4]), and worlds w, u1, u2, and x
occur in the configuration displayed in Figure 1. Furthermore, suppose we need to
produce an Sw-successor v of x.
With the ordinary semantics, we need to ensure that for our Sw-successor v,

for each �B1 ∈ u1 and �B2 ∈ u2, we have �B1,�B2 ∈ v. It is not obvious that
such construction is possible. In case of ILM0, it was successfully solved in [4] by
preserving the invariant that sets of boxed formulas in ui are linearly ordered. This
way, finite (quasi-)models can always be extended by only looking at the last ui.
With the generalised semantics, we need to produce a whole set of worlds V, but
the requirements on each particular world are less demanding. For each ui, there
has to be a corresponding Vi ⊆ V with �Bi contained (true) in every world of Vi.
Lemma 16 gives a recipe for producing such worlds.

Theorem 17. The logic ILM0 is complete w.r.t. ILgenM0-models.

Proof. Given Theorem 12, it suffices to show that for any set D, the ILM0-
structure for D possesses the property (M0)gen. Let (W ,R,{Sw : w ∈W},
) be the
ILM0-structure for D.
AssumewRuRxSwV and takeV

′ = {v∈V :w≺u�
∅

v}. We claim that uSwV
′ and

R[V ′]⊆R[u]. ObviouslyV ′ ⊆V ⊆R[w]. Assumew≺S u. Lemma 16 andw≺S u≺ x
imply w≺S∪u�

∅

x. Now xSwV and the definition of Sw imply there is v ∈V such that

w≺S∪u�
∅

v. Lemma 6 implies w≺u�
∅

v. So, v ∈ V ′.

It remains to verify that R[V ′]⊆ R[u]. Let v ∈ V ′ and z ∈W be worlds such that
vRz. Since w ≺u�

∅

v, for all �B ∈ u we have �B ∈ v, and since vRz, it follows that

�B,B ∈ z. Thus, u≺ z i.e., uRz. ⊣

2.3. The logic ILP. As in the case of the logic ILM, the completeness of ILPw.r.t.
the generalised semantics is an easy consequence of the completeness of ILP w.r.t.
the ordinary semantics, first proved by de Jongh and Veltman [3].
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Verbrugge determined the characteristic property (P)gen in [12]:

wRw′RuSwV ⇒ (∃V ′ ⊆ V) uSw′ V
′.

Lemma 18 ([2] Lemma 3.8). Let w, x, and u be some ILP-MCS’s, and let S and
T be arbitrary sets of formulas. If w≺S x≺T u then w≺S∪x⊡T

u.

Theorem 19. The logic ILP is complete w.r.t. ILgenP-models.

Proof. GivenTheorem12, it suffices to show that for any setD, the ILP-structure
forD possesses the property (P)gen. Let (W ,R,{Sw :w∈W},
) be the ILP-structure
for D.
Let wRw′RuSwV and takeV

′ =V ∩R[w′]. We claim uSw′V
′. Let T be arbitrary

such that w′ ≺T u. Lemma 18 and w≺∅ w
′ ≺T u imply w≺w′⊡T

u. Now, uSwV implies

that there is a v ∈V with w≺
w′⊡T
v. LetA✄¬

∧
T ′ ∈ w′ for some finite T ′ ⊆ T . Then

¬A,�¬A ∈ w′⊡T . Lemma 6 and w≺
w′⊡T
v imply ¬A,�¬A ∈ v. Thus w′ ≺T v. Finally,

V ′ ⊆ R[w′] holds by assumption, thus uSw′ V
′. ⊣

2.4. The logic ILP0. The interpretability principle P0 = A✄✸B → �(A✄B)
is introduced in J. Joosten’s master thesis in 1998. In [5] it is shown that the
interpretability logic ILP0 is incomplete w.r.t. Veltman models. Since we will show
that ILP0 is complete w.r.t. the generalised semantics, this is the first example of an
interpretability logic complete w.r.t. the generalised semantics, but incomplete w.r.t.
the ordinary semantics.
Characteristic property (P0)gen was determined in [5]. A slightly reformulated

version:

wRxRuSwV & (∀v ∈ V)R[v]∩Z 6= ∅ ⇒ (∃Z′ ⊆ Z)uSxZ
′.

The following technical lemma is almost obvious.

Lemma 20. Let x be an ILX-MCS, A a formula, and T a finite set of formulas.
Let BG be an arbitrary formula, and TG an arbitrary finite set of formulas, for every
G ∈ T. Furthermore, assume:

a) A✄
∨
G∈T BG ∈ x;

b) (∀G ∈ T) BG✄
∨
H∈TG

¬H ∈ x.

Then we have A✄
∨
H∈S′ ¬H ∈ x, where S′ =

⋃
G∈T TG.

Proof. Let G ∈ T . Since TG ⊆ S′, clearly ⊢
∨
H∈TG

¬H ✄
∨
H∈S′ ¬H. The

requirement b) and the axiom (J2) imply BG ✄
∨
H∈S′ ¬H ∈ x. Now |T | – 1

applications of the axiom (J3) give
∨
G∈T BG ✄

∨
H∈S′ ¬H ∈ x. Finally, apply the

requirement a) and the axiom (J2). ⊣

Next we need a labelling lemma for ILP0. This is where we use the technical
lemma above.

Lemma 21. Let w, x, and u be some ILP0-MCS’s, and let S be a set of formulas. If
w≺ x≺S u then w≺x�S

u.
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Proof. Let A be an arbitrary formula. Let T ⊆ x�S be a finite set such that
A✄

∨
G∈T ¬G ∈ w. We will prove that ¬A,�¬A ∈ u. If G ∈ T (⊆ x�S ), then G =

�¬BG, for some formula BG. Thus A✄
∨
G∈T ¬�¬BG ∈ w, and by easy inferences

and maximal consistency: A✄
∨
G∈T✸BG ∈ w, and A✄✸

∨
G∈T BG ∈ w. Applying

P0 gives�(A✄
∨
G∈T BG)∈w. The assumption w≺ x impliesA✄

∨
G∈T BG ∈ x. For

eachG ∈T (⊆ x�S ) there is a finite subsetTG of S such thatBG✄
∨
H∈TG

¬H ∈ x. Let

S′ =
⋃
G∈T TG. Clearly S

′ is a finite subset of S. Lemma 20 impliesA✄
∨
H∈S′ ¬H ∈

x. Finally, S′ ⊆ S and the assumption x≺S u imply ¬A,�¬A ∈ u. ⊣

The following simple observation is useful both for ILP0 and ILR.

Lemma 22. Let w, x, v, and z be some ILX-MCS’s, and let S be a set of formulas.
If w≺x�S

v≺ z then x≺S z.

Proof. Let S′ be a finite subset of S with A✄
∨
G∈S′ ¬G ∈ x. Then �¬A ∈ x�S .

Now w≺x�S
v and Lemma 6 imply �¬A ∈ v. Since v≺ z, we have ¬A,�¬A ∈ z. ⊣

Theorem 23. The logic ILP0 is complete w.r.t. ILgenP0-frames.

Proof. Given Theorem 12, it suffices to show that for any set D, the ILP0-
structure for D possesses the property (P0)gen. Let (W ,R,{Sw : w ∈W},
) be the
ILP0-structure for D.
Assume wRxRuSwV and R[v]∩Z 6= ∅ for each v ∈ V . We will prove that there

is Z′ ⊆ Z such that uSxZ
′.

Let S be a set of formulas such that w ≺ x ≺S u. Lemma 21 implies w ≺x�S
u.

Since uSwV , there is v ∈ V such that w ≺x�S
v. Since R[v]∩Z 6= ∅, choose a world

zS ∈R[v]∩Z. Now w≺x�S
v≺ zS and Lemma 22 imply x≺S zS. Put Z

′ = {zS : S is a

set of formulas such that x≺S u}. Clearly Z
′ ⊆ Z. So, Z′ ⊆ R[x], and since for each

set S such that x≺S u we have x≺S zS, it follow that uSxZ
′. ⊣

In [17] a possibility was explored of transforming a generalised Veltman model to
an ordinary Veltman model, such that these two models are bisimilar (in some aptly
defined sense). A natural question is whether such transformation exists if we add
the requirement that characteristic properties are preserved. The example of ILP0

shows that there are ILgenP0-models with no (bisimilar or otherwise) counterpart
ILP0-models.

2.5. The logic ILR. Completeness of ILR w.r.t. ordinary Veltman semantics is
an open problem (see [2]), but completeness w.r.t. the generalised semantics is not
yet resolved either. In this section we will prove that ILR is complete w.r.t. the
generalised semantics.
Characteristic property (R)gen was determined in [5]. A slightly reformulated

version:

wRxRuSwV ⇒ (∀C ∈ C(x,u))(∃U ⊆ V)(xSwU & R[U]⊆ C),

where C(x,u) = {C ⊆R[x] : (∀Z)(uSxZ⇒Z∩C 6= ∅)} is the family of “choice sets”.

Lemma 24 ([2], Lemma 3.10). Let w, x and u be some ILR-MCS’s, and let S and
T be arbitrary sets of formulas. If w≺S x≺T u then w≺S∪x�T

u.
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Theorem 25. The logic ILR is complete w.r.t. ILgenR-models.

Proof. GivenTheorem12, it suffices to show that for any setD, the ILR-structure
forD possesses the property (R)gen. Let (W ,R,{Sw :w∈W},
) be the ILR-structure
for D.
Assume wRxR u Sw V and C ∈ C(x,u). We are to show that (∃U ⊆ V)(x Sw

U & R[U]⊆ C). We will first prove an auxiliary claim:

(∀S)
(
w≺S x ⇒ (∃v ∈ V)(w≺S∪x�

∅

v & R[v]⊆ C)
)
.

So, let S be arbitrary such that w ≺S x, and suppose (for a contradiction) that for
every v ∈ V with w ≺S∪x�

∅

v, we have R[v] * C, that is, there is some zv ∈ R[v] \C.

Let Z = {zv : v ∈ V ,w ≺S∪x�
∅

v}. We claim that u Sx Z. Let T be arbitrary such

that x ≺T u, and we should prove that there exists z ∈ Z such that x ≺T z. From
w ≺S x ≺T u and Lemma 24 it follows that w ≺S∪x�T

u. Since uSwV , there is v ∈ V

with w≺S∪x�T
v. Now, x�∅ ⊆ x�T and Lemma 6 imply w≺S∪x�

∅

v, so there is a world

zv ∈ Z as defined earlier. Furthermore, w≺x�T
v≺ zv and Lemma 22 imply x≺T zv.

To prove uSxZ it remains to verify that Z ⊆R[x]. Let zv ∈Z be arbitrary and apply
Lemma 6 and Lemma 22 as before. Now, uSxZ and C ∈ C(x,u) imply C∩Z 6= ∅,
contradicting the definition of Z. This concludes the proof of the auxiliary claim.
Let U = {v ∈ V : w ≺x�

∅

v and R[v] ⊆ C}. Auxiliary claim implies U 6= ∅. If

w≺S x, auxiliary claim implies there is v ∈U such that w≺S∪x�
∅

v and R[v]⊆ C, so

v ∈U . Thus xSwU . It is clear that R[U]⊆ C. ⊣

§3. The logics ILW and ILW*. To prove that ILW is complete, one could try to
find a sufficiently strong “labelling lemma” and utilise Definition 9. One candidate
might be the following condition:

w≺S u ⇒ (∃G ∈ D)w≺S∪{�¬G} u and G ∈ u,

where D is finite, closed under subformulas and such that each w ∈W contains Aw
and ✷¬Aw for some Aw ∈ D.
Sinceweweren’t successful in finding a sufficiently strong labelling lemma for ILW,

we will use a modified version of Definition 9 to work with ILW and its extensions.
This way we won’t require a labelling lemma, but we lose generality in the following
sense. To prove the completeness of ILXW, for some X, it no longer suffices to
simply show that the structure defined in Definition 9 has the required characteristic
property (when each world is an ILX-MCS). Instead, the characteristic property of
ILX has to be shown to hold on the modified structure. So, to improve compatibility
with proofs based on Definition 9, we should prove the completeness of ILW with
as similar definition to Definition 9 as possible. That is what we do in the remainder
of this section. This approach turns out to be good enough for ILW* (ILWM0). We
didn’t succeed in using it to prove the completeness of ILWR. However, to the best
of our knowledge, ILWR might not be complete at all.
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In [5] the (complement of the) characteristic class for ILW is given by the
condition Not-W such that for any generalised Veltman frame F we have that

F |=Not-W if and only if F 1W.

Another condition is (W)gen from [8]:

uSwV ⇒ (∃V ′ ⊆ V)(uSwV
′ & R[V ′]∩S–1w [V ] = ∅).

Wewill use (this formulation of) (W)gen inwhat follows. In the proof of completeness
of logic ILW we will use the following two lemmas. In what follows, ILWX denotes
an arbitrary extension of ILW.

Lemma 26 ([2], Lemma 3.12). Let w be an ILWX-MCS, and B and C formulas
such that ¬(B✄C) ∈ w. Then there is an ILWX-MCS u such that w≺{�¬B,¬C} u and
B ∈ u.

Lemma 27 ([2], Lemma 3.13). Let w and u be some ILWX-MCS, B and C some
formulas, and S a set of formulas such that B✄C ∈ w,w≺S u and B ∈ u. Then there
is an ILWX-MCS v such that w≺S∪{�¬B} v and C,�¬C ∈ v.

Given a binary relation R, let Ṙ[x] = R[x]∪{x}.

Definition 28. Let X beW orW∗. We say thatM= (W ,R,{Sw : w ∈W},
) is
the ILX-structure for a set of formulas D if:

W = {w : w is an ILX – MCS and for some G ∈ D, G∧�¬G ∈ w};

wRu⇔ w≺ u;

uSwV ⇔ wRu,V ⊆ R[w] and one of the following holds:

(a) V ∩ Ṙ[u] 6= ∅;

(b) (∀S)(w≺S u⇒ (∃v ∈ V)(∃G ∈ D∩∪Ṙ[u]) w≺S∪{�¬G} v);

w 
 p⇔ p ∈ w.

Lemma 29. Let X be W or W*. ILX-structure M for D is a generalised Veltman
model. Furthermore, the following holds:

M,w 
 G if and only if G ∈ w,

for each G ∈ D and w ∈W .

Proof. Let us first verify that the ILX-structureM= (W ,R,{Sw :w∈W},
) for
D is a generalised Veltman model. All the properties, except for quasi-transitivity,
have easy proofs (see the proof of Lemma 11).
Let us prove the quasi-transitivity. Assume uSwV , and vSwUv for all v ∈ V . Put

U =
⋃
v∈V Uv. We claim that u SwU . Clearly U ⊆ R[w]. To prove u SwU we will

distinguish the cases (a) and (b) from the definition of the relation Sw for uSwV .
In the case (a), we have v0 ∈ V for some v0 ∈ Ṙ[u]. We will next distinguish two

cases from the definition of v0 SwUv0 .

In the case (aa) we have x ∈Uv0 for some x ∈ Ṙ[v0]. Since v0 ∈ Ṙ[u], we then have

x ∈ Ṙ[u]. Since x ∈Uv0 ⊆U , then U ∩ Ṙ[u] 6= ∅. So, we have uSwU , as required.
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In the case (ab) we have:

(∀S)(w≺S v0⇒ (∃x ∈Uv0)(∃G ∈ D∩
⋃
Ṙ[v0]) w≺S∪{�¬G} x).

To prove uSwU in this case, wewill use the case (b) from the definition of the relation
Sw. Assume w≺S u. Then we have w≺S u≺ v0 or w≺S u= v0. Either way, possibly
using Lemma 6, we have w≺S v0, and so there are x ∈Uv0 and G ∈D∩

⋃
Ṙ[v0] with

w≺S∪{�¬G} x. Since uRv0 or u= v0, we have Ṙ[v0]⊆ Ṙ[u]. So, the claim follows.
In the case (b), we have:

(∀S)(w≺S u⇒ (∃v ∈ V)(∃G ∈ D∩
⋃
Ṙ[u]) w≺S∪{�¬G} v).

To prove u SwU we will use the case (b) from the definition of the relation Sw.
Assume w≺S u. Then there are v0 ∈V andG ∈D∩

⋃
Ṙ[u] such that w≺S∪{�¬G} v0.

From v0 ∈ V it follows that v0 SwUv0 . We will next distinguish between the possible
cases in the definition of v0 SwUv0 .

In the first case (ba) we have Uv0 ∩ Ṙ[v0] 6= ∅, i.e., there is x ∈ Uv0 ∩ Ṙ[v0]. Then
w≺S∪{�¬G} v0 = x or w≺S∪{�¬G} v0 ≺ x. In both cases (possibly using Lemma 6)
we have w≺S∪{�¬G} x.
In the case (bb):

(∀S′)(w≺S′ v0⇒ (∃x ∈Uv0)(∃G
′ ∈ D∩

⋃
Ṙ[v0]) w≺S′∪{�¬G′} x).

From w ≺S∪{�¬G} v0 it follows that there are some x ∈ Uv0 and G
′ ∈ D∩

⋃
Ṙ[v0]

such that w≺S∪{�¬G,�¬G′} x. Lemma 6 implies w≺S∪{�¬G} x, as required.
We claim that for each formulaG ∈D and each world w ∈W the following holds:

M,w 
 G if and only if G ∈ w.

The claim is proved by induction on the complexity of G. The only nontrivial case
is when G = B✄C.
Assume B✄C ∈ w, wRu and u
 B. Induction hypothesis implies B ∈ u. We claim

that uSw[C]w. Clearly [C]w ⊆ R[w]. Assume w ≺S u. Lemma 27 implies that there
is an ILX-MCS v with w ≺S∪{�¬B} v and C,�¬C ∈ v (thus v ∈W). Since C ∈ v,
the induction hypothesis implies v 
 C. Since w≺ v, i.e., wRv, then v ∈ [C]w. Now,
B ∈ D and B ∈ u imply B ∈ D∩

⋃
Ṙ[u]. Thus uSw[C]w holds, by the clause (b) from

the definition.
To prove the converse, assume B✄C /∈ w. Since w is an ILX-MCS, ¬(B✄C) ∈ w.

Lemma 26 implies there is u with w ≺{�¬B,¬C} u and B ∈ u. Lemma 6 implies
�¬B ∈ u. So, B∧�¬B ∈ u; thus u ∈W . The induction hypothesis implies u
 B. Let
V ⊆ R[w] be such that uSwV . We will find a world v ∈ V such that w ≺{¬C} v. We
will distinguish the cases (a) and (b) from the definition of the relation Sw. Consider
the case (a). Let v be an arbitrary node inV ∩ Ṙ[u]. If v= u, clearlyw≺{�¬B,¬C} v. If
uRv, thenwe havew≺{�¬B,¬C} u≺ v. Lemma 6 impliesw≺{�¬B,¬C} v. Consider the
case (b). From w≺{�¬B,¬C} u and the definition of Sw it follows that there is v ∈ V
and a formulaD∈D such thatw≺{�¬B,¬C,�¬D} v. In both cases we have w≺{¬C} v;
thus C /∈ v. Induction hypothesis implies v 1 C; whence V 1 C, as required. ⊣

Theorem 30. The logic ILW is complete w.r.t. ILgenW-models.
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Proof. In the light of Lemma 29, it suffices to show that the ILW-structureM
for D possesses the property (W)gen. Recall the characteristic property (W)gen:

uSwV ⇒ (∃V ′ ⊆ V)(uSwV
′ & R[V ′]∩S–1w [V ] = ∅).

Suppose for a contradiction that there are w, u, and V such that:

uSwV & (∀V
′ ⊆ V)(uSwV

′ ⇒ R[V ′]∩S–1w [V ] 6= ∅). (1)

Let V denote all such sets V (we keep w and u fixed).
Let n = 2|D|. Fix any enumeration D0, ... ,Dn–1 of P(D) that satisfies D0 = ∅. We

define a new relation Siw for all 0≤ i < n, y ∈W and U ⊆W as follows:

ySiwU ⇐⇒ ySwU , Di ⊆
⋃
Ṙ[y], U ⊆


 ∨

G∈Di

�¬G



w

.

Let y ∈ W and U ⊆ R[w] be arbitrary. Let us prove that ySwU implies the
following:

(∃U ′ ⊆U)(∃i < n) ySiwU
′. (2)

If ySwU holds by (a) from the definition of Sw, the set U ∩ Ṙ[y] is nonempty.
Pick arbitrary z ∈ U ∩ Ṙ[y] and put U ′ = {z}. We have either wRyRz or y = z. If
wRyRz, we have ySw {z}. Otherwise y= z. Now quasi-reflexivity implies ySw {z}.
Since y ∈W , there is a formula G ∈ D such that G∧�¬G ∈ y. Fix i < n such that
Di = {G}. Clearly Di ⊆

⋃
Ṙ[y]. Since z ∈ U and ySwU , clearly U

′ ⊆ R[w]. Since
y= z or yRz, we also have �¬G ∈ z. Truth lemma implies U ′


�¬G; since if zRt,
G /∈ t, (truth lemma is applied here) t 1 G, so z 
 �¬G. Thus U ′ ⊆ [�¬G]w, and
ySiwU

′.
If ySwU holds by (b) from the definition of Sw, take:

U ′ = {z ∈U : (∃G ∈ D∩
⋃
Ṙ[y]) w≺{�¬G} z};

Di = {G ∈ D∩
⋃
Ṙ[y] : (∃z ∈U) w≺{�¬G} z}.

In other words, U ′ is the image of the mapping that is implicitly present in the
definition of the relation Sw (clause (b)): for each S, pick a world vS (to be included
in U ′), and a formula GS (to be included in Di).
Let m< n be maximal such that there are U ∈ V and U ′ ⊆ U with the following

properties:

(i) (∀x ∈U)[(∃y ∈ R[x])(∃Z ⊆U)(∃i ≤m) ySiwZ⇒ x /∈U ′];
(ii) (∀x ∈W)(xSwU ⇒ xSwU

′).

Since D0 = ∅, we have [
∨
G∈D0

�¬G]w = [⊥]w = ∅. So there are no Z ⊆

[
∨
G∈D0

�¬G]w such that ySwZ for some y ∈W . So, if we take m= 0 and U
′ =U

for any U ∈ V , (i) and (ii) are trivially satisfied.
Since n is finite and conditions (i) and (ii) are satisfied for at least one value m,

there must be a maximal m< n with the required properties.
Let us first prove that m < n – 1. Assume the opposite, that is (since m < n),

m = n – 1. Then there are U ∈ V and U ′ ⊆ U such that the conditions (i) and (ii)
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are satisfied for m = n – 1. Since U ∈ V , we have uSwU . The condition (ii) implies
uSwU

′. Now U ∈ V , U ′ ⊆U and uSwU
′ imply R[U ′]∩S–1w [U] 6= ∅. Thus there are

x ∈U ′ and y ∈ R[x] such that ySwU . Now (ii) implies ySwU
′. The earlier remark

(2) implies that there isZ⊆U ′ and i< n such that ySiwZ. Sincem= n – 1, it follows
that i ≤m. The condition (i) implies x 6∈U ′, a contradiction. Thus m< n – 1.
Let us now prove thatm is, contrary to the assumption, not maximal, by showing

that m+1 satisfies (i) and (ii). Let U ∈ V and U ′ ⊆ U be some sets such that the
conditions (i) and (ii) are satisfied for m. Denote:

Y = {x ∈U ′ : (∃y ∈ R[x])(∃Z ⊆U ′) ySm+1w Z}.

Let us prove that m+1 also satisfies (i) and (ii) with U ′ instead of U, and U ′ \Y
instead ofU ′. We should first show thatU ′ ∈ V . So, suppose that uSwT ⊆U ′. Now,
T ⊆U ′ ⊆U andU ∈V imply that there are some v∈T and z∈R[v] such that zSwU .
The property (ii) form (with setsU andU ′) implies zSwU

′. So, R[T]∩S–1w [U
′] 6= ∅,

as required.
Now let us verify the property (i) for the newly defined sets (U ′ and U ′ \Y).

Let x ∈ U ′,y ∈ R[x],Z ⊆ U ′, i ≤ m+1 be arbitrary such that ySiwZ. If i ≤ m, the
property (i) for m implies x /∈ U ′, so in particular, x /∈ U ′ \Y . If i = m+1, then
x ∈ Y . Thus x /∈U ′ \Y and the condition (i) is satisfied.
It remains to prove (ii). Take arbitrary x ∈W such that xSwU

′. For every y ∈Y ,
the definition of Y implies the existence of some zy ∈ R[y] and Uy ⊆ U

′ such that
zy S

m+1
w Uy. From the definition of the relation S

m+1
w we have Dm+1 ⊆

⋃
Ṙ[zy]. Now,

yRzy and the truth lemma imply y
✸G, for eachG ∈Dm+1. From the definition of
the relation Sm+1w and zy S

m+1
w Uy we have Uy ⊆ [

∨
G∈Dm+1

�¬G]w. So, the following

holds:

Y 


∧

G∈Dm+1

✸G and Uy 

∨

G∈Dm+1

�¬G,

for all y ∈Y . Thus, Uy∩Y = ∅, for every y ∈Y . For every y ∈U ′ \Y put Uy = {y}.
Again,Uy∩Y = ∅. Note that

⋃
y∈U′Uy =U

′ \Y . Now xSwU
′ and quasi-transitivity

imply xSwU
′ \Y .

The fact that (i) and (ii) hold for m+1 contradicts the maximality of m. ⊣

Goris and Joosten proved in [4] the completeness of ILW* (ILWM0) w.r.t.
ordinary Veltman semantics.

Theorem 31. The logic ILW* is complete w.r.t. ILgenW*-models.

Proof. With Lemma 29, it suffices to prove that the ILW*-structure for D
possesses the properties (W)gen and (M0)gen, for each appropriate D. So, let

M = (W ,R,{Sw : w ∈W},
) be the ILW*-structure for D. Theorem 30 shows
that the modelM possesses the property (W)gen. It remains to show that it possesses

the property (M0)gen.
Assume wR uR xSw V . We claim that there is V

′ ⊆ V such that u Sw V
′ and

R[V ′]⊆ R[u].
First, consider the case when xSwV holds by the clause (a) from the definition

of Sw. So there is v ∈ V such that x = v or xR v. In both cases, wRuRv, and so
uSw {v}. It is clear that R[v]⊆ R[x]⊆ R[u]. So it suffices to take V

′ = {v}.
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Otherwise, xSwV holds by the clause (b). Take V
′ = {v ∈ V : w≺u�

∅

v}. Clearly,

V ′ ⊆ V ⊆ R[w]. Assume w≺S u. Now w≺S u≺ x and Lemma 16 imply w≺S∪u�
∅

x.

The definition of xSwV (clause (b)) implies there is G ∈ D∩
⋃
Ṙ[x] (so G ∈ D∩⋃

Ṙ[u]) and v ∈ V such that w ≺S∪u�
∅
∪{�¬G} v, thus also v ∈ V

′. In particular,

w≺S∪{�¬G} v. Since S was arbitrary, uSwV
′. It remains to verify that R[V ′]⊆R[u].

Assume V ′ ∋ vRz. Since w≺u�
∅

v, for all �B ∈ u we have �B ∈ v, and since vRz, it

follows that �B,B ∈ z. Thus, u≺ z i.e., uRz. ⊣

In [8] it is shown that ILW* possesses finite model property w.r.t. generalised
Veltman models. To show decidability, (stronger) completeness w.r.t. ordinary
Veltman models was used, but the Theorem 31 would suffice for this purpose.

§4. Finite model property and decidability. For IL, ILM, ILP, and ILW, the
original completeness proofs were proofs of completeness w.r.t. appropriate finite
models [3], [7]. For these logics, the FMP w.r.t. the ordinary semantics and
decidability are immediate (and completeness and the FMP w.r.t. the generalised
semantics are easily shown to follow from these results). These completeness proofs
use truncated maximal consistent sets, that is, sets that are maximal consistent with
respect to the so-called adequate set. The principal requirement is that this set is
finite. Already with ILM, defining adequacy is not trivial (see [3]).
For more complex logics, not much is known about the FMP w.r.t. the ordinary

semantics. The filtration method can be used with generalised models to obtain
finite models. This approach was successfully used to prove the FMP of ILM0 and
ILW * w.r.t. the generalised semantics [8, 9]. A drawback of this approach is in
that the FMP w.r.t. the ordinary semantics does not follow from the FMP w.r.t.
the generalised semantics. Decidability can be obtained from the FMP w.r.t. either
semantics (unless the logic in question is incomplete w.r.t. the ordinary semantics).
At the moment it is not clear whether the choice of semantics would affect our
ability to produce results regarding computational complexity of provability and
consistency of ILX.
Let us overview basic notions and results of [9] and [8]. Let A be a formula. If A

equals ¬B for some B, then∼A is B, otherwise∼A is ¬B. We need to slightly extend
the definition of adequate sets4 that was used in [9]. The modified version will satisfy
all the old properties.

Definition 32. Let D have the usual the properties: a finite set of formulas that
is closed under taking subformulas and single negations, and ⊤ ∈ D. We say that a
set of formulas ΓD is an adequate set w.r.t. D if it satisfies the following conditions:

1. ΓD is closed under taking subformulas;
2. if A ∈ ΓD then ∼A ∈ ΓD;
3. ⊥✄⊥ ∈ ΓD;
4. A✄B ∈ ΓD if A is an antecedent or succedent of some ✄-formula in ΓD, and
so is B;

4Note that this is a different notion of adequacy than the one used for completeness proofs in [3], [7],
and [4].
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5. if A ∈ D then �¬A ∈ ΓD;
6. ΓD should be the smallest set satisfying the preceding properties.

Since D is finite, ΓD is finite too. Next we require the concept of bisimulations
between generalised models.

Definition 33 ([15]). A bisimulation between generalised Veltman models
M= (W ,R,{Sw : w ∈W},
) andM′ = (W ′,R′,{S′w′ : w

′ ∈W ′},
) is a nonempty
relation Z ⊆W ×W ′ such that:

(at) if wZw′, then w
 p if and only if w′ 
 p, for all propositional variables p;
(forth) if wZw′ and wRu, then there is u′ ∈W ′ such that w′R′ u′, uZ u′ and for

all V ′ ⊆W ′ such that u′ S′w′ V
′ there is V ⊆W such that uSwV and for

all v ∈ V there is v′ ∈ V ′ with vZv′;
(back) if wZw′ and w′R′ u′, then there is u ∈W such that wRu, uZ u′ and for

all V ⊆W such that uSwV there is V
′ ⊆W ′ such that u′ S′w′ V

′ and for
all v′ ∈ V ′ there is v ∈ V with vZ v′.

Given a generalised Veltman model M, the union of all bisimulations on M,
denoted by ∼M, is the largest bisimulation on M, and ∼M is an equivalence
relation [15].
An ∼M-equivalence class of w ∈W will be denoted by [w]. For any set of worlds

V, put Ṽ = {[w] : w ∈ V}.
A filtration of M through ΓD, ∼M is any generalised Veltman model M̃ =

(W̃ , R̃,{S̃[w] : w ∈W},
) such that for all w ∈W and A ∈ ΓD we have w 
 A if
and only if [w] 
 A (we denote both forcing relations as 
, as there is no risk of
confusion).
The following lemma combines key results of [9] (Lemma 2.3, Theorems 2.4 and

Theorem 3.2).

Lemma 34. LetM=(W ,R,{Sw : w ∈W},
) be a generalised Veltman model, and
∼M the largest bisimulation onM. Define:

(1) [w]R̃ [u] if and only if for somew′ ∈ [w] and u′ ∈ [u], w′Ru′ and there is�A∈ΓD
such that w′ 1�A and u′ 
�A;

(2) [u] S̃[w] Ṽ if and only if [w] R̃ [u], Ṽ ⊆ R̃[[w]], and for all w′ ∈ [w] and u′ ∈ [u]
such that w′Ru′ we have u′ Sw′ V

′ for some V ′ such that Ṽ ′ ⊆ Ṽ ;
(3) for all propositional variables p ∈ ΓD put [w] 
 p if and only if w 
 p, and
interpret propositional variables q 6∈ ΓD arbitrarily (e.g., put [w] 1 q for all
[w] ∈ W̃).

Then M̃ = (W̃ , R̃,{S̃[w] : w ∈W},
) is a filtration of M through ΓD,∼M. The

model ˜̃
M is finite.

Lemma 34 implies that IL has the FMP w.r.t. the generalised semantics. To prove
that a specific extension has the FMP, it remains to show that filtration preserves its
characteristic property.
Since we are going to use ILX-structures as the starting modelsM, we can make

use of their properties. In particular, we do not have to make sure that there is a
formula�A such that x1�A and y
�A when we want to show that xRy implies
[x] R̃ [y].
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Lemma 35. LetM= (W ,R,{Sw :w∈W},
) be a generalised Veltman model such
that for some setD (with the usual properties) we have that for all w∈W there is some
B ∈ D such that w 
 B∧✷¬B. Then:

1. for all [w] ∈ W̃ there is some B ∈ D such that [w] 
 B∧✷¬B;
2. for all x,y ∈W, if xRy then [x] R̃ [y].

Proof. To see that the first claim holds, note that if B ∈ D then �¬B ∈ ΓD, and
filtration preserves the truth value of formulas within ΓD.
For the second claim, we should find a formula �A ∈ ΓD such that x 1 �A

and y 
 �A. Since y ∈W , there is a formula B ∈ D such that y 
 B∧�¬B. Since
x R y, we have x 1 �¬B. Since B ∈ D, we have �¬B ∈ ΓD. Thus we can take
A= ¬B. ⊣

Note that all previously defined ILX-structures (Definitions 9 and 28) satisfy
requirements of the preceding lemma. Given w ∈W , there is a formula B ∈ D such
thatB∧�¬B∈w. Depending onX, we can use Lemma 11 or Lemma 29 to conclude
w 
 B∧�¬B ( �¬B might not be in D, but ∼B is; since R[w] 
∼B, we must have
w 
�¬B).

Lemma 36. LetM= (W ,R,{Sw :w∈W},
) be an ILP0-model such that for some
set D (with the usual properties) we have that for all w ∈W there is some B ∈ D such
that w 
 B∧✷¬B. Let ∼M be the largest bisimulation onM. Then the filtration M̃
as defined in Lemma 34 possesses the property (P0)gen.

Proof. Assume [w] R̃ [x] R̃ [u] S̃[w]V and R̃[[v]]∩Z 6= ∅ for each [v]∈V . We claim
that there exists Z′ ⊆ Z such that [u] S̃[x]Z

′.
Since [w] R̃ [x], there are w0 ∈ [w] and x0 ∈ [x] such that w0Rx0. Let x

′ ∈ [x] and
u′ ∈ [u] be any worlds such that x′Ru′. The condition (back) implies that there is
a world ux′,u′ such that x0Rux′,u′ and ux′,u′ ∼M u

′. Now, [u] S̃[w]V , ux′,u′ ∈ [u] and

w0Rux′,u′ imply there is a set Vx′,u′ such that ux′,u′ Sw0 Vx′,u′ and Ṽx′,u′ ⊆ V . Since

R̃[[v]]∩Z 6= ∅ for each [v] ∈ V , we have R̃[[v]]∩Z 6= ∅ for each v ∈ Vx′,u′ . For each
v ∈ Vx′,u′ , choose a world zv such that [zv] ∈ R̃[[v]]∩Z. Now [v] R̃ [zv] implies that
there are some v′ ∈ [v] and z′v ∈ [zv] such that v

′Rz′v. Applying (back), we can find a
world z′′v such that vRz

′′
v and z

′
v ∼M z

′′
v . Put Zx′,u′ = {z′′v : v ∈ Vx′,u′}. Note that we

have R[v]∩Zx′,u′ 6= ∅ for each v ∈ Vx′,u′ .

Applying (P0)gen gives ux′,u′ Sx0 Z
′
x′,u′ for some Z

′
x′,u′ ⊆ Zx′,u′ . Clearly Z̃

′
x′,u′

⊆

Z̃x′,u′ ⊆ Z. Continuing our first application of (back), there is a set Z
′′
x′,u′ such that

u′ Sx′ Z
′′
x′,u′ , and for each z

′′ ∈ Z′′
x′,u′ there is z

′ ∈ Z′
x′,u′ such that z

′ ∼M z
′′. This

implies Z̃′′
x′,u′

⊆ Z̃′
x′,u′
. Let T =

⋃
x′∈[x],u′∈[u],x′Ru′Z

′′
x′,u′ and Z

′ = T̃ . It is easy to see

that Z′ ⊆Z. Lemma 35 implies Z′ ⊆ R̃[[x]]. We have u′Sx′ Z
′′
x′,u′ with Z̃

′′
x′,u′

⊆Z′ for

all x′ ∈ [x] and u′ ∈ [u] with x′Ru′. Thus, [u] S̃[x]Z
′. ⊣

Corollary 37. ILP0 is decidable.

Proof. Since ILP0 is complete, it remains to show that it has the finite model
property. LetM= (W ,R,{Sw :w∈W},
) be the ILP0-structure for an appropriate
D, and apply Lemma 36. As the resulting model M̃ itself also satisfies the conditions
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of Lemma 36 (see Lemma 35), we can apply Lemma 36 oncemore, and byLemma 34
obtain a finite model. ⊣

Let us prove the same for ILR.

Lemma 38. LetM= (W ,R,{Sw : w ∈W},
) be an ILR-model such that for some
set D (with the usual properties) we have that for all w ∈W there is some B ∈ D such
that w 
 B∧✷¬B. Let ∼M be the largest bisimulation onM. Then the filtration M̃
as defined in Lemma 34 possesses the property (R)gen.

Proof. Assume [w] R̃ [x] R̃ [u] S̃[w]V , and letC ∈ C([x], [u]) be an arbitrary choice
set. We are to prove that there is a set U such that Ũ ⊆ V , [x] S̃[w] Ũ and R̃[Ũ]⊆ C.
Put Cx′ = {c ∈ R[x′] : [c] ∈ C} for all x′ ∈ [x].
Let us first prove that for somex0 ∈ [x],u0 ∈ [u] withx0Ru0wehaveCx0 ∈C(x0,u0).

Suppose not. Then for all x′ ∈ [x],u′ ∈ [u] with x′Ru′, there is a set Zx′,u′ such that
u′Sx′ Zx′,u′ withZx′,u′ ∩Cx′ = ∅. PutZ=

⋃
x′∈[x],u′∈[u],x′Ru′Zx′,u′ . Lemma 35 implies

Z̃ ⊆ R̃[[x]]. Thus [u] S̃[x] Z̃. Since C ∈ C([x], [u]), there is z ∈Z such that [z] ∈C∩ Z̃.
Thus z ∈ Zx′,u′ for some x

′ ∈ [x],u′ ∈ [u] and x′Ru′. The definition of Cx′ implies
z ∈ Cx′ . Thus, Zx′,u′ ∩Cx′ 6= ∅, a contradiction.
Now we claim that for all y ∈ [x] there is uy ∼ u0 with yRuy and Cy ∈ C(y,uy).

Since y ∼M x0 and x0 Ru0, the (back) condition implies that there is a world uy
such that uy ∼M u0 and yRuy (and other properties that we will return to later).
We will show that Cy ∈ C(y,uy). Let Z

′ be such that uy SyZ
′, and we are to prove

that Cy∩Z
′ 6= ∅. The earlier instance of (back) condition for uy further implies that

there is a set Z with u0 Sx0 Z, and for all z ∈ Z there is z
′ ∈ Z′ with z ∼M z

′. Let
z ∈ Z∩Cx0 be an arbitrary element (which exists because, as we proved, Cx0 is a
choice set). Then there is z′ ∈ Z′ such that z′ ∼M z. Since [z] ∈ C, i.e., [z

′] ∈ C, we
have z′ ∈ Cy. In particular, Z

′∩Cy 6= ∅. Thus Cy ∈ C(y,uy).
Let us prove that there is a set U such that Ũ ⊆ V , [x] S̃[w] Ũ and R̃[Ũ]⊆ C. Let

w′ ∈ [w] and y ∈ [x] be such that w′ Ry. Since [u] S̃[w] V , there is a set Vw′,y such

that uy Sw′ Vw′,y and Ṽw′,y ⊆ V . Applying (R)gen with Cy, there is Uw′,y ⊆ Vw′,y such

that ySw′ Uw′,y and R[Uw′,y] ⊆ Cy. Let U =
⋃
w′∈[w],y∈[x],w′RyUw′,y. Clearly Ũ ⊆ V .

Lemma 35 implies Ũ ⊆ R̃[[w]]. The definition of S̃[w] implies [x] S̃[w] Ũ .
It remains to verify that R̃[Ũ] ⊆ C. Let t ∈ U and z ∈W be such that [t] R̃ [z].

Then we have t ∈Uw′,y for some w
′ ∈ [w] and y ∈ [x]. Since [t] R̃ [z], there are t′ ∈ [t]

and z′ ∈ [z] with t′Rz′. The condition (forth) implies that there is z′′ such that tRz′′

and z′ ∼M z
′′. SinceR[Uw′,y]⊆Cy and z

′′ ∈R[Uw′,y], we have z
′′ ∈Cy. The definition

of Cy implies [z
′′] ∈ C, or equivalently, [z] ∈ C. ⊣

Corollary 39. ILR is decidable.

§5. Conclusions and future work. Let us briefly recapitulate our results. We
introduced a new type of completeness proofs for interpretability logics. Our proofs
are based on the notion of full labels [2], which encapsulate more information
regarding the relation between two given maximal consistent sets than the classical
notion of criticality. Combined with the robustness of the generalised semantics,
this approach allows for shorter and more natural proofs in some cases (most
notably ILM0). We prove completeness of ILR, where R is a recently discovered
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principle valid in all reasonable theories. We also prove completeness of ILP0, a
logic known to be incomplete w.r.t. the ordinary semantics. For logics that we find
to be complete, we also prove the finite model property and decidability.
Future work concerns the related questions of completeness and finite model

property and decidability. The largest subset of IL(All) for which we have a
completeness result w.r.t. the ordinary semantics is ILW* [4]. In this line of research
it is natural to ask:

1. Is ILR complete w.r.t. the ordinary semantics [5]?

The most promising method for obtaining this result, out of currently available
methods, is the construction method. This method was previously used to prove the
completeness of ILM0 and ILW

* [4].
If we look at the corresponding situation in the generalised semantics, there are

two different and mutually incomparable subsets of IL(All) that we now know

to be complete: ILW* [4] and ILR (current paper). We do not know whether
the combination of these, the logic ILR * (= ILWR = ILWRM0), is complete or
incomplete. At the moment, we do not even know whether a complete superset of
ILWR that is also a subset of IL(All) even exists. (Although, it would be surprising
if one did not exist.) Thus one natural step is to tackle the following question:

2. Is ILWR or one of its sufficiently weak extensions complete?

There are preliminary indications that ILWR may be incomplete. We expect to
address this question in future work. Another open problem concerns the two
recently discovered series of principles [6]. The logic ILWR enriched with these
principles is the best explicit candidate for IL(All) (however, it is an unlikely
candidate, see [6]). The first step in this direction would be to determine the
following:

3. What are the two series’ frame conditions w.r.t. the generalised semantics?

The next step towards the completeness proof would be to determine the labelling
lemmas corresponding to these principles.

4. What are the two series’ labelling lemmas?

The criteria of what constitutes an appropriate labelling lemma in this context is
simply the lemma’s usefulness in proving completeness.

5. Are logics of form ILX complete, where X ⊆ {W,R1,R2, ... ,R
1,R2, ...}, X 6=

{W},{R}?

There is some intrinsic interest in exploring semantics for interpretability logics (e.g.,
to ease reasoning, or even provide decision procedures). There is a more palpable
interest in this too. Occasionally new principles of interpretability are found not
by arithmetical considerations, but rather by (i) determining which principles are
required in order to establish completeness, or by (ii)modifying the frame conditions
for known principles, and extracting formulas defining the modified conditions. For
example, both the principle R [5] and the two series [6] were found through semantic
means.5

5There are some indications that trying to establish completeness for ILWR may result in new
principles too.
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Let us turn to the finite model property and decidability. In all known cases of
(decidable) interpretability logics, the simplest way to show decidability is via the
generalised semantics [9], [8]. Decidability does not seem to be a problematic issue
in the context of interpretability logics; currently there is no known complete logic
that is not known to be decidable too. Furthermore, taking into account the results
of this paper, we know e.g., that ILWR has the finite model property, and so if it is
complete, it has to be decidable. Thus the next natural question regarding the finite
model property concerns the two series. The most straightforward way of obtaining
the finite model property is via filtrations, which presupposes that we have already
answered the question 5.

6. Are the principles R1,R2, ... ,R
1,R2, ... preserved under filtration? (See

Lemma 34.)

At the moment, and as long as we do not provide a better approximation of IL(All),
this may also be the only open question regarding the finite model property.6
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[12] L.C. Verbrugge, Verzamelingen-Veltman frames en modellen (set Veltman frames andmodels).
Unpublished manuscript, Amsterdam, 1992.
[13] A. Visser, Interpretability logic, Mathematical Logic, Proceedings of the Heyting 1988 Summer

School in Varna, Bulgaria (P. P. Petkov, editor), Plenum Press, Boston, 1990, pp. 175–209.
[14] A. Visser, An overview of interpretability logic, Advances in Modal Logic, vol. 1 (M. Kracht,

M. de Rijke, H.Wansing, and M. Zakharyaschev, editors), CSLI Publications, Stanford, CA, 1998, pp.
307–359.
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