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Biological swimmers frequently navigate in geometrically restricted media. We study
the prescribed-stroke problem of swimmers confined to a planar viscous membrane
embedded in a bulk fluid of different viscosity. In their motion, microscopic swimmers
disturb the fluid in both the membrane and the bulk. The flows that emerge have
a combination of two-dimensional (2-D) and three-dimensional (3-D) hydrodynamic
features, and such flows are referred to as quasi-two-dimensional. The cross-over from
2-D to 3-D hydrodynamics in a quasi-2-D fluid is controlled by the Saffman length, a
length scale given by the ratio of the 2-D membrane viscosity to the 3-D viscosity of
the embedding bulk fluid. We have developed a computational and theoretical approach
based on the boundary element method and the Lorentz reciprocal theorem to study the
swimming of microorganisms for a range of values of the Saffman length. We found that a
flagellum propagating transverse sinusoidal waves in a quasi-2-D membrane can develop
a swimming speed exceeding that in pure 2-D or 3-D fluids, while the propulsion of a 2-D
squirmer is slowed down by the presence of the bulk fluid.

Key words: propulsion, thin films

1. Introduction

Microscopic biological organisms have adapted to a viscous world in which their inertia
is inconsequential to their locomotion. For a typical micro-scale organism the Reynolds
number Re = ρUL/η is small. For example, Escherichia coli has a characteristic length
L ∼ 10 μm and a characteristic swimming speed U ∼ 10 μm s−1 in water (density
ρ ≈ 103 kg m−3 and dynamic viscosity η ≈ 10−3 Pa s), leading to a negligibly small
Reynolds number Re = ρUL/η ∼ 10−5–10−4 (Purcell 1977). At this scale, a swimmer
reacts instantaneously to any forces, oblivious to any history of prior dynamics (Purcell
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Figure 1. Illustration of a flagellum confined to a plane of a thin membrane of 2-D viscosity ηm sandwiched
between two semi-infinite slabs of bulk fluid of 3-D viscosity η. The flagellum propagates transverse planar
waves travelling with speed c with respect to the flagellum.

1977; Childress 1981; Lauga & Powers 2009), and so the primary method of locomotion
for macroscopic swimmers such as fish and humans, which relies on trading momentum
with the fluid to generate a propulsive force, is ineffective here. Rather, the net translations
of a microorganism are determined by the sequence of configurations it adopts to swim,
independent of its deformation rate. Microswimmers must continually paddle or deform
their bodies in a swimming pattern with non-reciprocal forward and reverse strokes to
manipulate the drag forces for propulsion (Purcell 1977; Childress 1981; Lauga & Powers
2009).

It is common for microorganisms to swim in geometrically confined media: in channels,
near surfaces and interfaces and in films. A significant amount of theoretical and
experimental work has been devoted to studying the effects of confinement on the motion
of microscopic swimmers near solid walls (Pedley & Kessler 1987; Lauga et al. 2006;
Berke et al. 2008; Drescher et al. 2009; Li & Tang 2009; Or & Murray 2009; Crowdy &
Or 2010; Li et al. 2011; Or, Zhang & Murray 2011; Spagnolie & Lauga 2012; Molaei et al.
2014; Ishimoto, Cosson & Gaffney 2016), near fluid–fluid interfaces (Guasto, Johnson
& Gollub 2010; Di Leonardo et al. 2011; Wang & Ardekani 2013; Lopez & Lauga 2014;
Masoud & Stone 2014; Stone & Masoud 2015) and in thin fluid layers atop a solid substrate
(Lambert et al. 2013; Mathijssen et al. 2016a,b; Ota et al. 2018).

Motivated by recent experimental and theoretical studies of bacteria swimming in
biofilms, in freely suspended thin films (Aranson et al. 2007; Sokolov et al. 2007) and
on active proteins mimicking biological swimmers in lipid membranes (Huang, Chen
& Mikhailov 2012), we study here the hydrodynamics of swimming microorganisms in
a thin membrane. We treat the membrane as a continuous incompressible viscous fluid
film of very small thickness. Flow fields in such a membrane are uniform throughout
the thickness of the membrane. In contrast to a thin-film model that involves integration
of three-dimensional (3-D) hydrodynamic equations across the thickness of the film, our
membrane model is intrinsically two-dimensional (2-D), in the sense that the motion of
molecules within the membrane in the direction normal to the plane of the membrane is
forbidden. The membrane is embedded in a 3-D fluid of different viscosity. The motion of
a swimmer in the membrane generates flows both in the membrane and in the surrounding
fluid (see figure 1). While there have been some recent investigations of the hydrodynamics
of swimmers in a thin layer of fluid sandwiched between fluids of a different viscosity
(Leoni & Liverpool 2010; Rower, Padidar & Atzberger 2019), this problem is still largely
unexplored.
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Swimming of microorganisms in quasi-2-D membranes

As was demonstrated by Saffman & Delbrück (1975) and Saffman (1976), the amount of
momentum imparted by the membrane to the bulk fluid is controlled by a hydrodynamic
length scale, the so-called Saffman length �S, given by the ratio of the 2-D membrane
viscosity ηm to the 3-D viscosity of the bulk fluid η, �S = ηm/(2η). If the membrane is
perturbed by a localized force (applied in the plane of the membrane) at a point x, for
distances (measured from x) much smaller than the Saffman length, the effect of the flows
in the bulk on the membrane hydrodynamics is negligible. In this region, the fluid velocity
in the membrane decays slowly (logarithmically) with distance, as in purely 2-D fluids. On
the other hand, for distances much larger than the Saffman length, the contribution of the
bulk fluid to the membrane dynamics is significant, and the membrane flow field decays
inversely with the distance, a behaviour consistent with a 3-D dynamics.

Levine & MacKintosh (2002) (LM) derived a Green function for a more general case of
viscoelastic membranes. In the case of a purely viscous membrane that we consider here,
there is no elastic response of the membrane, and a disturbance caused by a force results
in the velocity field alone. The velocity of the membrane at position x′ due to an in-plane,
localized force f (x) = f δ(x) is determined by the LM response tensor α(x − x′),

v(x) = 1
4πηm

α(x − x′) · f (x′). (1.1)

Here, x and x′ are in-plane vectors with components (x, y) and (x′, y′), respectively (refer
also to figure 1 for our choice of the coordinate system). The response function α(x − x′)
in (1.1) plays the role of the Oseen tensor in 3-D hydrodynamics. The coupling between
the membrane and the embedding bulk fluid is implicitly incorporated in α(x − x′).

As was shown by LM, the response function may be split into ‘parallel’ and ‘transverse’
contributions. In the component form we have

ααβ(x) = α‖(|x|)x̂α x̂β + α⊥(|x|)[δαβ − x̂α x̂β], (1.2)

where α, β = x, y, and x̂α is the α component of the unit vector x̂ = x/|x|. In our notation,
ααβ corresponds to −iωααβ in the LM theory. The scalar functions α‖ and α⊥ are given
by

α‖(κ) = π

κ
H1(κ) − 2

κ2 − π

2
[Y0(κ) + Y2(κ)],

α⊥(κ) = πH0(κ) − π

κ
H1(κ) + 2

κ2 − π

2
[Y0(κ) − Y2(κ)],

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

where Hν are Struve functions and Yν are Bessel functions of the second kind
(Abramowitz & Stegun 1965); κ = |x|/�S is the non-dimensionalized distance between
the point of application of the force and the point where the membrane velocity response
is measured. Both α‖(κ) and α⊥(κ) diverge logarithmically as κ → 0, while for large κ

we have α‖(κ) ∼ 1/κ and α⊥(κ) ∼ 1/κ2.
In the small Reynolds number regime the inertia term in the Navier–Stokes equation

can be neglected. We assume that the membrane has thickness h and choose a coordinate
system with the origin at the top surface of the membrane with z = 0 (therefore, the
bottom side of the membrane is at z = −h). The dynamics of the membrane embedded in
a bulk fluid is governed by a modified Stokes equation and the incompressibility condition
(Saffman 1976),

−∇p + ηm

h
∇2v + 2f

h
= 0, ∇ · v = 0, (1.4a,b)

where p and v are the pressure and velocity fields of the membrane. The flows in the
membrane set the bulk fluid into motion. The resulting flows in the embedding fluid, in
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their turn, exert traction on the membrane. Since the membrane is only a few molecular
layers thick, the traction due to the bulk fluid produces a flow that is uniform throughout
the thickness of the membrane, i.e. the fluid velocity does not depend on z for −h < z < 0.
In (1.4a,b) the coupling between the membrane and the bulk fluid is described by the force
per unit volume 2 f /h, with

f = η
∂v(3D)

∂z

∣∣∣∣∣
z=0

, (1.5)

where v(3D) is the bulk fluid velocity. The factor of two in (1.4a,b) is due to an equal force
f acting on the bottom side of the membrane. Equation (1.4a,b) can be written in a more
compact form that we will use later,

∇ · σ = −2f
h

, (1.6)

where σ is the stress field of the membrane.
Being inertialess and swimming in the absence of external influences, a swimmer must

maintain a zero net force F (t) and a zero torque L(t) on its body at every time instant,

F (t) =
∫

S
σ · n dS, (1.7)

L(t) =
∫

S
x × (σ · n) dS, (1.8)

where the integration is over the surface of the swimmer and n is a unit vector normal to
the surface and pointing away from the swimmer.

Many microorganisms such as spermatozoa, E. coli, and Caulobacter crescentus swim
by moving thin extensions (flagella) on their bodies. Some creatures, like Paramecium,
are covered in thousands of short hair-like appendages called cilia and propel themselves
through a coordinated beating of these cilia. Since our primary goal is to study how
the confinement to the plane of a membrane affects the swimming dynamics of a
microorganism (rather than a detailed study of a particular microorganism), we consider
here only minimal theoretical models of flagellated and ciliated microorganisms.

In § 2 we consider a headless, infinitely long ‘flagellum’ of infinitesimally small
thickness propagating planar sinusoidal waves along its body. This is a 1-D analogue of
the Taylor swimmer (Taylor 1951), an infinite plane in viscous fluid passing transverse
sinusoidal waves. We recover Taylor’s result for the swimming velocity in the limiting
case of a pure 2-D hydrodynamics (the membrane in vacuum). We find that the membrane
incompressibility condition imposes a constraint on the fluid dynamics that allows the
flagellum to achieve much higher swimming speed than in pure 2-D and 3-D fluids for
large ratios of the wavelength to the Saffman length.

In § 3 we study the propulsion of a flagellum of finite length and find its swimming
speed and efficiency. In §§ 2 and 3 we apply the boundary-element method (BEM) that
two of us have recently developed in work on hydrodynamic interaction of inclusions in
freely suspended smectic films (Qi et al. 2014; Kuriabova et al. 2016; Qi et al. 2017).

In § 4 we formulate the Lorentz reciprocal theorem for a quasi-2-D fluid and derive
an equation for the swimming speed. We discuss the advantage of the method based
on the Lorentz reciprocal theorem over the BEM for studying microscopic swimmers
with swimming patterns that do not change the overall shape of the swimmers’ bodies
(for example, swimmers propagating longitudinal compressive waves along their bodies).
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Swimming of microorganisms in quasi-2-D membranes

As an example of such a creature, we consider a simple model of a 2-D ‘squirmer’, a
disk with a prescribed tangential velocity along its circumference. We find that, unlike its
flagellated counterpart, a squirmer does not benefit from the presence of the bulk fluid: its
swimming speed is lower than that in a purely 2-D fluid.

In § 5 we discuss our results and suggest further directions of investigation.

2. Infinitely long flagellum in a quasi-2-D membrane

The Taylor swimmer (Taylor 1951) is an infinite swimming 2-D sheet in a 3-D viscous
fluid that propagates transverse waves of amplitude b and wave speed c = ω/q. In a frame
moving with the swimming sheet (co-moving frame) the shape of the sheet is described
by

y = b sin(qx − ωt) = b sin ξ, (2.1)

where ξ = qx − ωt denotes the wave phase.
Taylor showed that the sheet with such a 1-D modulation travels, relative to the fluid at

infinity, with a speed U/c = (bq)2/2 + O((bq)4) in the direction opposite to the wave
velocity. We consider here a 1-D analogue of the Taylor swimmer: an infinitely long,
infinitesimally thin flagellum confined to the plane of a viscous membrane embedded in
bulk fluid (see figure 1) with prescribed motion given by (2.1), with x and y parametrizing
the shape of the flagellum.

The swimming velocity of an infinitely long flagellum is time independent. Indeed, two
snapshots of the waving flagellum taken at the same point on the x-axis differ only by
a shift x along the x-axis. Thus, a temporal shift at a fixed point x is equivalent to a
spatial displacement along the flagellum. A swimmer moving as a whole has the same
translational velocity along its entire length. The swimming velocity, being invariant with
respect to translations along the x-axis, must be invariant with respect to translations in
time as well. Therefore, we can calculate the swimming speed for a single time instant and
set t = 0 in (2.1).

As in Taylor (1951), we consider the case of an inextensible flagellum. In order to
calculate the portion of the swimmer’s velocity due to its distortion, we calculate the
position of a material point of the flagellum as a function of time. In a frame moving
with the wave (with speed c relative to the co-moving frame) the shape of the flagellum
does not change. The Cartesian coordinates for this frame are (x′, y), where x′ = x − ct.
In this reference frame a material particle of the flagellum travels a distance Λ equal to
the arclength of the flagellum spanned by one (linear) wavelength λ during one period of
oscillation T = 2π/ω,

Λ = 1
q

∫ 2π

0

√
1 + (bq)2 cos2 ξ dξ. (2.2)

We will call Λ the arcwise wavelength. The material particle’s speed is, therefore,

C = c
2π

∫ 2π

0

√
1 + (bq)2 cos2 ξ dξ (2.3)

≈ c
(

1 + 1
4

b2q2 − 3
64

b4q4
)

. (2.4)

To determine the position of a material particle of the flagellum, we define the material
coordinate S to be the arclength coordinate s of a material point at t = 0. In the frame in
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which the nodes of the wave are fixed, arclength is related to the Cartesian coordinate x′
by

s =
∫ x′

0

√
1 + (bq)2 cos2(qx′) dx′ (2.5)

≈ x′ + b2q
8

[2qx′ + sin(2qx′)] − b4q3

256
[12qx′ + 8 sin(2qx′) + sin(4qx′)]. (2.6)

Reverting the series leads to

x′ ≈ s − b2q
8

[2qs + sin(2qs)] + b4q3

256
[28qs + 16qs cos(2qs) + 16 sin(2qs) + 5 sin(4qs)].

(2.7)

Using y = b sin qx′ and s = S − Ct leads to the position of the material point labelled by
S as a function of time t

x ≈ S − b2q
8

[2qS + sin 2(qS − ωt)]

+ b4q3

256
[28qS + 16qS cos 2(qS − ωt) + 16 sin 2(qS − ωt) + 5 sin 4(qS − ωt)], (2.8)

y ≈ b sin(qS − ωt)

− b3

16
[4q3S cos(qS − ωt) + q2 sin(qS − ωt) + q2 sin 3(qS − ωt)]. (2.9)

In the co-moving frame the components of a material particle’s velocity uS are given by

uS =
(

∂x
∂t

∣∣∣∣
S
,

∂y
∂t

∣∣∣∣
S

)
. (2.10)

For an arbitrary value of b, the material particle’s velocity can be calculated numerically
using

uS,x = −C cos θS + c, (2.11)

uS,y = −C sin θS, (2.12)

with tan θS = ∂y/∂x|S. The total velocity of a material particle relative to the fluid at
infinity (for y → ±∞) is the sum of the surface disturbance and swimming velocities,
uS + U .

The linearity of Stokes equations allows us to model the fluid velocity field in the
membrane as a superposition of fluid velocities due to a (yet unknown) force density f (s)
along the flagellum

v(x) = 1
4πηm

∫
Γ

α(x − x′(s′)) · f (s′) ds′, (2.13)

where v(x) is the fluid velocity at an arbitrary point x on the membrane and the integration
is along the (infinite) contour of the flagellum.

The spatial periodicity of the flagellum modulation implies the invariance of the flow
field and the force density f (s) in (2.13) under translations along the x-axis by an integer
multiple of the wavelength λ = 2π/q. Defining x′

m = x′ + mλ, for all integers m, the
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Swimming of microorganisms in quasi-2-D membranes

integration on the right-hand side of (2.13) can be reduced to integration over a single
wavelength,

v(x) = 1
4πηm

∫
Γ0

∞∑
m=−∞

α(x − x′
m(s′)) · f (s′) ds′, (2.14)

where x′
m = (x′ + mλ, y′), and x′ indicate the points on the flagellum that belong to a

one-wavelength ‘window’ Γ0.
We impose a no-slip boundary condition on the surface of the flagellum by setting the

fluid velocity equal to the velocity of the material point on the flagellum, v(x) = uS(x) +
U , with the surface disturbance velocity uS(x) given by (2.10). Taking into account (2.14),
we have

uS(x(s)) + U = 1
4πηm

∫
Γ0

∞∑
m=−∞

α(x(s) − x′
m(s′)) · f (s′) ds′, (2.15)

where the points x(s) and x′(s′) belong to the flagellum contour Γ0.
To close the system of equations for the force density f (s) and the swimming velocity

U , we also require the net force on the flagellum be equal to zero. The net force on the
flagellum is the sum of all the forces applied along the flagellum contour and implicitly
includes the traction due to the bulk fluid embedding the membrane,∫

Γ0

f (s) ds = 0. (2.16)

We solved (2.15) and (2.16) numerically in Matlab by splitting the integration path into
N straight-line segments of equal length s and replacing the line integrals in (2.15) and
(2.16) by summation over the segments,

uS(xi) + U = 1
4πηm

N∑
j=1

M∑
m=−M

α(xi − xmj) · f (xj)s, (2.17)

N∑
j=1

f (xj) = 0. (2.18)

In (2.17) and (2.18) xi(j) are the coordinates of the segments’ midpoints. In (2.17) we
introduced the truncation parameter M for the infinite sum over the wavelengths.

For a starting value of parameter M (usually M = 10), we ran computations for five
different values of parameter N in the range 300–1000 and then extrapolated our results
for the swimming velocity to s → 0 (N → ∞). We then gradually increased the
value of M and repeated the computations until the solution for U converged, showing
changes smaller than 0.5 % with further increase of the number of terms in the sum
over m. The computations required increasingly more terms in the sum over m for large
amplitudes (bq > 1) and large Saffman lengths (λ/�S 
 1) due to strong long-range
hydrodynamic interactions between segments of the flagellum in this (nearly 2-D) regime,
and correspondingly large contribution to the flow field by the forces f (xj) separated by
multiple wavelengths along the flagellum.

We paid special attention to the diagonal term with m = 0 and i = j in (2.17). This term
gives the fluid velocity in the close proximity of a localized force f (x). The response
tensor α(x) diverges due to logarithmic singularities in the functions α‖(x) and α⊥(x) in
the limit x → 0 (see (1.3) and (1.4a,b)). In the close proximity of a localized force the fluid
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Figure 2. Calculated swimming speed vs. bq for various ratios λ/�S = 2π/(q�S) of an infinitely long
inextensible flagellum (a) scaled by the wave speed c, and (b) scaled by c(bq)2. The coloured (grey) curves
are the results of our BEM computations described in the text. The black dashed curve corresponds to the
swimming speed in a purely 2-D fluid, and the solid black curve is the local drag theory result of Gray and
Hancock (Gray & Hancock 1955) for a flagellum in a 3-D unbounded fluid oscillating with moderately large
amplitude. The solid curve in the inset in panel (b) represents an estimate for the ratio of the drag constants
as a function of the scaled wavelength, as discussed in the text. The wave amplitude in the inset was set to
bq = 10−3, and the dotted line corresponds to y = ln x + const. for reference.

velocity is parallel to the force and is, therefore, determined by the parallel component of
the response function α‖(x). We expanded α‖(x) about x = 0 and performed integration
analytically over s in the vicinity of x = 0. Therefore, for the diagonal term on the
right-hand side of (2.17), which we denote as Am=0

i=j , we have

Am=0
i=j (xi) = 1

4πηm
f (xi)

∫ s/2

−s/2
α‖(z) dz

= 1
4πηm

f (xi) 2 lim
ε→0

∫ s/2

ε

[
1
2

− γ + 2z
3�S

+ log
2�S

z

]
dz

= 1
4πηm

f (xi)s
[

3
2

+ s
6�S

− γ + log
(

4�S

s

)]
, (2.19)

where γ = 0.5772 is the Euler constant.
Our computations confirm that an infinitely long flagellum has a non-vanishing

component of the swimming velocity only along the x-axis, as expected by symmetry.
In figure 2 we plot the swimming speed as a function of the dimensionless amplitude
bq for a range of wavelengths scaled by the Saffman length. In the limit of a pure
2-D hydrodynamics, which corresponds to large Saffman lengths (and small scaled
wavelengths, λ/�S 
 1), the energy dissipation occurs primarily in the membrane, and the
membrane’s viscous drag on the flagellum makes the main contribution to the flagellum’s
propulsion. In this limit, our computations are in good agreement with the 2-D problem
of the Taylor swimming sheet, as expected because a Taylor ‘string’ in a thin very viscous
membrane is equivalent to the Taylor sheet in 3-D bulk fluid. For small amplitudes
(bq 
 1), we recover Taylor’s leading-order perturbative solution U/c = (1/2)(bq)2. For
larger amplitudes bq (and λ/�S 
 1), our calculated swimming speed is in agreement with
recent analytic and computational results of Sauzade and coworkers (Sauzade, Elfring &
Lauga 2011).
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Swimming of microorganisms in quasi-2-D membranes

In figure 2 the black dashed curve corresponds to a flagellum swimming in a pure 2-D
membrane (no bulk fluid surrounding the membrane). We briefly outline our computations
for this limiting case in appendix A. The computations are similar to the boundary integral
approach demonstrated in (Sauzade et al. 2011) with the only difference that we neglected
the double layer potential contribution. The solid black curve in figure 2 corresponds to
the local drag theory for an infinitely long flagellum passing waves of moderately large
amplitudes in a 3-D unbounded fluid (Gray & Hancock 1955).

As can be seen in figure 2, our BEM computations predict that, for wavelengths larger
than the Saffman length (λ/�S > 1), the swimming speed in a quasi-2-D membrane
exceeds that in purely 2-D and 3-D fluids. For qualitative explanation of this result we
compare our BEM computations with the local drag model of Gray & Hancock (1955).
In the local drag approximation, one assumes that the viscous drag force on a small
segment of the flagellum is proportional to the segment’s velocity, and the total drag on the
swimmer is a sum over these local drag forces. Thus, the local drag approximation does
not explicitly take into account the long-range hydrodynamic interactions between distant
segments of the flagellum. The local drag forces for the motion of a rod-like segment
parallel and perpendicular to its geometrical axis are given by F‖ = ζ‖v‖ and F⊥ = ζ⊥v⊥,
respectively, with the drag coefficients ζ‖ and ζ⊥.

We expect our BEM results to be in qualitative agreement with the local drag
approximation in the limit of bq 
 1 and λ/�S � 1. For small amplitudes bq the segments
of an inextensible flagellum separated by large contour distances (>λ) do not come too
close to each other, and for the wavelengths larger than the Saffman length the spatial
decay of the flow field is faster (∼1/r), in comparison with slower (logarithmic) decay
rate for λ/�S 
 1. Thus, in the regime of bq 
 1 and λ/�S � 1, the cooperativity effect
between distant segments of the flagellum is expected to be small. Gray & Hancock (1955)
obtained the swimming velocity of an infinitely long and thin flagellum to the leading order
of amplitude bq,

U
c

= (bq)2

2

(
ζ⊥
ζ‖

− 1
)

. (2.20)

In three dimensions, the ratio of the drag coefficients for an infinitely thin rod is ζ⊥/ζ‖ = 2.
For inclusions in quasi-2-D membranes, the ratio ζ⊥/ζ‖ depends on the Saffman length.
In the inset of figure 2 we plot our BEM results for (ζ⊥/ζ‖)estim ≡ 1 + 2U/(cb2q2) as a
function of λ/�S. According to (2.20), (ζ⊥/ζ‖)estim should give us an estimate for the local
drag anisotropy. For the plot in the inset we chose a small amplitude bq = 10−3, when
the comparison with the local drag calculation of Gray and Hancock is justified. As can
be seen in the inset of figure 2, the effective ratio (ζ⊥/ζ‖)estim grows logarithmically with
λ/�S for λ/�S � 1.

This result is in qualitative agreement with the work of Levine and collaborators
(Levine, Liverpool & MacKintosh 2004), some of which we summarize here. Levine et al.
studied the drag coefficients for a rod-like inclusion of length L moving in a quasi-2-D
membrane, and showed that for rod-like inclusions of lengths smaller than the Saffman
length (L/�S 
 1), where the viscous dissipation occurs primarily in the membrane,
the dependence of the drag coefficients on the size and orientation of the rod is weak:
ζ⊥/ζ‖ → 1. For longer rods with L/�S � 1, the dissipation is governed by the 3-D fluid
surrounding the membrane, and the drag coefficients show a stronger dependence on the
size of the rods. Levine et al. found that the drag coefficient ζ‖ for a thin rod in a quasi-2-D
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membrane is qualitatively similar to that in three dimensions and is given by

ζ‖ = 2πηL
ln (0.43L/�S)

. (2.21)

However, the dependence of ζ⊥ on L in a quasi-2-D membrane is very different from that
in three dimensions

ζ⊥ = 2πηL; (2.22)

ζ⊥ depends on L linearly, without the logarithmic factor in the denominator. The linear
dependence of ζ⊥ on L indicates the local character of the drag and the effective absence
of hydrodynamic interactions between different sections of the rod.

As emphasized by Levine et al. (2004), this behaviour of ζ⊥ arises from the
incompressibility of the membrane, ∇⊥ · v⊥ = 0, where the symbol ⊥ denotes
differentiation ‘in plane’ and the components of the velocity field in the plane. In the
case of a rod moving perpendicular to its long axis in a 3-D fluid, the fluid can flow
past the rod by moving over and under it. In this flow pattern, the in-plane part of the
incompressibility condition does not vanish: ∂xvx + ∂yvy /= 0. A 2-D version of such a flow
(its projection on the xy-plane) is impossible due to the membrane incompressibility. In a
quasi-2-D membrane, the fluid moves the long way around the rod, and the flow extends
over distances comparable to the largest rod dimension L. The membrane incompressibility
constraint only affects the perpendicular drag on a filament. A segment of filament being
dragged parallel to its long axis does not produce divergent flows in a simple fluid, and
thus the flow character is unchanged by the presence of a membrane.

Therefore, for long wavelengths (λ/�S � 1), the membrane incompressibility is
expected to lead to a logarithmic growth of the flagellum’s effective drag anisotropy,
ζ⊥/ζ‖ ∝ log(λ/�S). An organism that relies on the drag anisotropy for propulsion would
achieve greater swimming speeds in a quasi-2-D membrane than in pure 2-D or 3-D fluids,
as is confirmed by our BEM computations.

For larger values of the amplitude, bq > 1, the distant parts of the flagellum come closer
to each other, and the long-range hydrodynamic interactions between the segments of the
flagellum cannot be ignored. Thus, the drag force on a segment of the flagellum depends
not only on the velocity of that segment but also on the motion of other parts of the
flagellum. Our assumption is that locally the drag on a small segment of the flagellum
is still anisotropic (the drag force is not strictly antiparallel to the segment velocity), and
the anisotropy is more pronounced for larger values of the scaled wavelength, λ/�S � 1.
However, the drag force is now a complicated function of the flagellum’s surface
disturbance velocity field.

For a qualitative explanation of the swimming velocity results for larger values of bq, we
can think about two competing contributions to the flagellum motility. On the one hand,
larger values of bq correspond to steeper angles between the segments of the flagellum and
the direction of wave propagation and, respectively, a larger drag, which tends to increase
the swimming speed. On the other hand, the long-range hydrodynamic interactions tend
to reduce the viscous drag and the swimming speed.

In a quasi-2-D membrane in the regime of λ/�S � 1, the membrane incompressibility
condition leads to an enhanced drag anisotropy (in comparison with the motion in a 3-D
fluid). At the same time, the hydrodynamic interactions tending to slow down the swimmer
are less pronounced for λ/�S � 1 due to a fast (1/r) spatial decay rate of the fluid flow
(similar to that in a 3-D fluid) and a reduced cooperativity between the distant parts of the
flagellum. This qualitatively explains why the swimming speed in a membrane is greater
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Swimming of microorganisms in quasi-2-D membranes

s = 0

s = Lx

y
T(s)

Figure 3. In the body frame the ‘head’ of the flagellum is motionless and is placed at the origin of
the coordinate system. The position of a material particle is determined by the arclength s measured from
the left end of the flagellum. The tangent vectors T (s) describe the instantaneous shape of the flagellum. The
flagellum propagates planar sinusoidal waves to the right.

than that in a pure 2-D or 3-D fluid for large values of λ/�S � 1. For smaller values
of λ/�S, the drag anisotropy (helping the creature to swim faster) is less pronounced
and the cooperativity effects (reducing the swimming speed) are stronger due to slower
(logarithmic) spatial decay rate of the flow field. This explains why the swimming speed
approaches that of a flagellum in a pure 2-D fluid for λ/�S 
 1 and arbitrary values of bq.

3. Finite-length flagellum in a quasi-2-D membrane

We also applied the BEM to the case of an inextensible, headless, infinitely thin flagellum
of finite length. As in the case of an infinitely long flagellum, the motion of the swimmer
is prescribed by a sinusoidal modulation, y(s, t) = b sin(qx(s) − ωt + φ0). Here, s is the
arclength along the flagellum measured from the flagellum’s hypothetical ‘head’ and φ0
is the initial phase. At every time instant, the shape of the flagellum is described by the
curve X (s, t), where X (s, t) = (X(s), Y(s)) = (x(s), y(s, t) − y(0, t)) (see figure 3). The
unit tangent to the curve is T (s) = (dX/ds, dY/ds).

In the frame of the flagellum, a material point at position s moves with velocity
uS(s, t) = ∂X (s, t)/∂t. As was demonstrated by Higdon (1979), in the case of transverse
waves propagating along the flagellum, the material particle’s velocity can be calculated in
a different manner. In a reference frame moving with the wave, the shape of the flagellum is
given by X w(s − Ct), where C is the arcwise speed that we introduced in (2.3). Following
Higdon, we note that

Xw(s + Λ) = Xw(s) + λ, Yw(s + Λ) = Yw(s), (3.1a,b)

where Λ is the arcwise wavelength (see (2.2)) and λ is the linear wavelength. The
tangential vectors are identical in the body and wave frames since the wave frame
simply translates with respect to the body frame and does not undergo rotation. Thus,
T w(s − Ct) = T (s − Ct). The velocity of a material particle at s in the wave frame is
calculated as uw(s, t) = ∂X w(s − Ct)/∂t = −C∂X w/∂s = −CT (s − Ct). The velocity of
the ‘head’ in the wave frame is −CT (s − Ct)|s=0 = −CT (−Ct). Therefore, the wave
frame translates with respect to the body frame with velocity CT (−Ct). Therefore, we
can calculate the velocity of the material point s in the body frame as

uS(s, t) = CT (−Ct) − CT (s − Ct). (3.2)

The material velocity with respect to the fluid at infinity is then

uS(s, t) + U(t) + Ω(t) × X (s, t), (3.3)

where U(t) and Ω(t) are the translational and angular velocities of the flagellum.
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(a) (b)

Figure 4. Propulsion of a flagellum during one period of oscillation. The time instants are separated by one
eighth of the period. Flagella drawn with dashed lines correspond to the time moments t = 0 and t = T . The
thin dotted line is the trajectory of the flagellum’s ‘head’ over one cycle of motion. The flagellum length is
(a) NΛ = 0.5, (b) NΛ = 1. In both (a,b) the amplitude and the wavelength were set to bq = 1 and λ/�S = 1,
respectively.

Similarly to our treatment of an infinitely long flagellum in § 2, we model the fluid
velocity due to the flagellum’s motion as a linear superposition of velocities due to a
force density (see (2.13)). Now the path of integration Γ stands for the curve X (s, t)
describing the instantaneous shape of the flagellum. The instantaneous swimming and
angular velocities and the force density are calculated from the coupled integral equations
for a no-slip boundary condition on the surface of the flagellum and the requirements of
zero net force and torque on the flagellum,

uS(s, t) + U(t) + Ω(t) × X = 1
4πηm

∫
Γ

α(X − X ′) · f (s′, t) ds′, (3.4)∫
Γ

f (s, t) ds = 0, (3.5)∫
Γ

X × f (s, t) ds = 0, (3.6)

where X ≡ X (s, t) and X ′ ≡ X (s′, t).
Similar to the approach discussed in § 2, we solved the discretized version of

these equations for the instantaneous velocities Ω(t), U(t) and the force density
f (s, t). We normally calculated the angular and swimming velocities for approximately
60–80 snapshots per one period of oscillation and averaged them over one cycle
of motion, 〈Ω〉 = (1/T)

∫ T
0 Ω(t) dt ≈ (1/NT)

∑NT
i=1 Ω(ti) and 〈U〉 = (1/T)

∫ T
0 R(t) ·

U(t) dt ≈ (1/NT)
∑NT

i=1 R(ti) · U(ti), where R(t) is the rotation operator that transforms
the swimming velocity vector to the initial coordinate system X (s, 0), which is motionless
with respect to the fluid at infinity, and NT is the number of snapshots per one period.

Our computations predict that 〈Ω〉 = 0, and the flagellum swims in a straight line.
In addition to an overall translation along the net swimming direction, 〈U〉, the finite
flagellum’s motion involves pitching (rotation of the swimmer’s centreline with respect
to 〈U〉 – note that the flagellum centreline is parallel to the wave centreline (about which
actuation occurs) and passes through the centre of mass of the flagellum) and bobbing
(motion of the flagellum’s centre of mass perpendicular to 〈U〉), see figure 4. During
each cycle of motion, the flagellum goes through the same sequence of configurations.
Two kinds of flagellum configuration, even and odd, are of particular interest. In the
even configuration (illustrated in figure 5a) the flagellum has reflection symmetry with
respect to the vertical line that passes through the flagellum’s centre of mass. In the
odd configuration the shape of the flagellum has point symmetry about the centre of the
flagellum (marked by cross-hairs in figure 5b).
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Figure 5. The swimming trajectory of the head (black) for a flagellum (a) starting its motion in an even
configuration, and (b) starting its motion in an odd configuration. The arrow shows the direction of the average
swimming velocity, and the dotted line is the centreline of the flagellum in the odd configuration shown. (c)
The maximum pitching angle (in degrees) as a function of the flagellum’s contour length NΛ. We set bq = 1.

Koehler, Spoor & Tilley (2012), in work on the swimming of finite-length flagella
in a Newtonian 3-D fluid, used symmetry arguments to prove that a flagellum in an
even conformation has an instantaneous swimming velocity parallel to the flagellum’s
centreline. Koehler et al. (2012) pointed out that the time reversal of the material particles’
velocities should lead to the reversal of the instantaneous swimming velocity, U−t =
−U t, due to kinematic reversibility of Stokes equations. On the other hand, in an even
configuration, the mirror reflection of the material particles’ velocities about the vertical
line is equivalent to the time reversal. Therefore, the instantaneous swimming velocity in
an even configuration must be identical to the mirror image of the time-reversed velocity.
This condition requires the component of the swimming velocity normal to the centreline
be equal to zero. Koehler et al. (2012) also proved that a flagellum in an odd configuration
has zero angular velocity. Thus, if a flagellum starts its motion from an even configuration,
as shown in figure 5(a), its initial pitching angle is equal to zero. As the flagellum continues
its motion, the pitching angle increases and reaches its maximum value at t = T/4, when
the flagellum reaches an odd configuration. At this moment Ω(t) = 0, and the pitching
angle goes through a ‘turning point’. The grey curve in figure 5(a) shows the flagellum in
one of its odd configurations. The magenta arrow shows the net direction of swimming,
〈U〉. The dotted line is the flagellum’s centreline in the odd configuration, and γmax denotes
the maximum pitching angle.

If one aligns the x-axis of the laboratory frame with the flagellum’s centreline when the
flagellum is not in an even configuration, as in figure 5(b), the flagellum will appear to
swim diagonally in such a coordinate system. A similar swimming pattern was reported
by Peng, Pak & Elfring (2016) in the work on flagella locomotion in granular media.

The maximum pitching angle depends on the length of the flagellum. In figure 5(c)
we show the maximum pitching angles as a function of the flagellum’s contour length,
NΛ = L/Λ scaled by the arcwise wavelength Λ for bq = 1 and various values of λ/�S.

In figure 6(a) we plot the swimming speed averaged over one period of oscillations,
U = |〈U〉|, as a function of a dimensionless parameter bq for the flagellum contour length
equal to one arcwise wavelength, NΛ = 1. Two competing mechanisms influence the
swimming speed of the flagellum. On the one hand, larger values of bq correspond to
steeper angles between the flagellum and the direction of wave propagation and, therefore,
a stronger propulsion force. On the other hand, for larger bq values the segments of the
flagellum come closer to each other. The hydrodynamic interactions between the segments
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Figure 6. Calculated swimming speed scaled by the wave speed of an inextensible, headless finite-length
flagellum (a) as a function of parameter bq for a flagellum length equal to one arcwise wavelength, NΛ = 1,
(b) as a function of the scaled flagellum length NΛ for bq = 1. In (b) the circles represent calculations based on
the Lorentz reciprocal theorem (see (4.9)). The horizontal dotted black lines are asymptotes for the swimming
velocities in the limit NΛ → ∞ calculated using the method described in § 2.

tend to slow down the swimmer. The hydrodynamic interactions are stronger in the limiting
case of a 2-D hydrodynamics (small λ/�S ratios) due to a slow, logarithmic spatial decay
rate of the flow field. In the opposite limit of large λ/�S ratios, our calculations do not
reproduce Higdon’s results for the swimming speed in a purely 3-D fluid (Higdon 1979).
Being qualitatively similar to Higdon’s prediction, our calculations show much larger
swimming speeds for λ/�S � 1. As we discussed at the end of § 2, the incompressibility
of the membrane sets a constraint on the fluid dynamics that leads to an effective drag
anisotropy that grows logarithmically as a function of λ/�S for λ/�S � 1. The enhanced
drag anisotropy in a quasi-2-D membrane is responsible for larger swimming speeds in
quasi-2-D membranes (in comparison with pure 2-D or 3-D fluids).

In figure 6(b) we plot the swimming speed as a function of the scaled flagellum length
NΛ for bq = 1. For NΛ < 1 the flagellum performs large yawing motion that is inefficient
for swimming (see figure 4a). For larger values of NΛ the long-range hydrodynamic
interactions taper off the growth of the swimming speed, and the speed approaches the
values found for an infinitely long flagellum (shown as horizontal dotted lines in figure 6(b)
for λ/�S = 100 and λ/�S = 10). The per cent difference between the swimming speeds of a
finite flagellum of length NΛ = 8 and an infinitely long flagellum is 1.4 % for λ/�S = 100
and 2.8 % for λ/�S = 10. For smaller values of λ/�S the convergence of the swimming
speed to that of an infinitely long flagellum is slower, due to greater influence of the
long-range hydrodynamic interactions on the flagellum’s dynamics. The ‘bumps’ in the
curves reflect smaller yawing of the flagellum for the values of NΛ that are close (but not
exactly equal) to the pitching angle minima in figure 5(c).

To find the flagellum motion that is optimal in terms of the power consumption,
we calculated the swimming efficiency. As discussed in Koehler et al. (2012), there
are multiple efficiency metrics. Here, we calculated the efficiency as the ratio of the
power required to pull the flagellum through the fluid at its average swimming speed,
FpullU = (1/μ‖)U2, to the average power 〈P〉 consumed by the swimmer over one period
of motion,

η = (1/μ‖)U2

〈P〉 . (3.7)
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Figure 7. Calculated flagellum efficiency of an inextensible finite-length flagellum (a) as a function of the
flagellum amplitude bq for NΛ = 1, (b) as a function of NΛ for bq = 1.

Here, μ‖ is the translational mobility of an inactive (straightened) flagellum for the motion
along the flagellum’s axis. The average power consumption is

〈P〉 = 1
T

∫ T

0
dt
∫

Γ

dsf (s, t) · uS(X , t). (3.8)

We calculated the mobility and the power consumption numerically using the BEM.
Our calculated flagellum efficiency is in qualitative agreement with Higdon (1979). In

figure 7(a) we plot the efficiency as a function of the amplitude bq for a few values of
the scaled wavelength λ/�S for a flagellum of length NΛ = 1. For smaller values of bq
the segments of the flagellum have small angles with respect to the direction of wave
propagation and produce a weak thrust. For larger values of bq the flagellum ‘shrinks’
along the x-axis, and the stronger interference between the segments of the flagellum leads
to a decrease in efficiency. The efficiency increases with λ/�S due to the reduced role
of the long-range hydrodynamics on length scales exceeding the Saffman length �S. The
maximum efficiency falls at bq ≈ 1.1–1.2.

In figure 7(b) we plot the efficiency as a function of the flagellum length NΛ for a for
a few values of λ/�S for bq = 1. For small values of NΛ the swimming of the flagellum
is inefficient due to an excessive yawing motion and a weak overall thrust (see figure 4a).
The efficiency reaches a maximum at NΛ ≈ 1.3–1.4, close to the pitching angle minima
in figure 5(c). We note that this result is in accord with calculations of the efficiency of
undulatory headless flagella in three dimensions (Higdon 1979; Dresdner, Katz & Berger
1980; Koehler et al. 2012). The efficiency decreases with further growth of NΛ due to
interference between the crests of the flagellum. The interference is stronger for larger
amplitudes bq since the crests are closer to each other, and the efficiency drops off more
abruptly from its optimal value for larger values of bq. The secondary maxima correspond
to a smaller yawing and larger propulsion for various values of NΛ. Figure 4 demonstrates
that the flagellum travels a considerable distance along the y-axis while making moderate
overall progress along the x-axis.

In the following section we discuss an alternative computational approach to finding the
swimming velocities using the Lorentz reciprocal theorem.
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4. Lorentz reciprocal theorem for a quasi-2-D membrane

Finding the analytical solution for the swimming velocity can be a daunting task. One of
the major difficulties is that one needs to solve Stokes equations with time dependent
no-slip boundary conditions on the surface of the swimmer. Stone & Samuel (1996)
offered an elegant way to find the swimming velocity using the Lorentz reciprocal theorem
(LRT) (Happel & Brenner 1965). For a fluid in three dimensions the LRT states that, if
there are two solutions to Stokes equations and the incompressibility condition with the
velocity fields and the stress tensors (v, σ ) and (v′, σ ′), respectively, that satisfy the same
boundary conditions at infinity, then for a volume of fluid V bounded by surface S, we
have ∮

S
v · σ ′ · n dS =

∮
S
v′ · σ · n dS, (4.1)

where n is the outward normal to the surface S.
Here we formulate the LRT approach for a finite swimmer confined to a quasi-2-D

membrane. Let v and σ be the membrane velocity and the stress fields for the swimming
problem. These velocity and stress fields are solutions of the Stokes equations and the
incompressibility condition, (1.4a,b). They also satisfy the conditions of zero net force
and torque on the swimming body, (1.7) and (1.8). For the reciprocal solution of (1.4a,b)
we choose the membrane velocity v′ and stress σ ′ fields due to an inactive object of the
same shape as the swimmer and being dragged as a solid body with constant translational
velocity U ′.

When the condition ∇ · σ = 0 is relaxed (see (1.6)), a more general form of the LRT is
(Kim & Karrila 1991)∮

S
v′ · (σ · n) dS −

∫
V

v′ · (∇ · σ ) dV =
∮

S
v · (σ ′ · n) dS −

∫
V

v · (∇ · σ ′) dV, (4.2)

where V is the swimmer’s volume bounded by the surface S. Here, we treat the volume
occupied by the swimmer as being equivalent to the fluid domain of the same shape as the
swimmer’s and having the same velocity distribution as that of the material particles of
the swimmer.

Let us consider the first term on the left-hand side of (4.2)∮
S
v′ · (σ · n) dS = U ′ ·

∫
Sw

dF , (4.3)

where we took into account that v′ = U ′ is a constant vector at the surface of the domain
(uniform translation). Also, since σ does not have z-components, only σ · n dS = dF on
the curvy wall of the domain, Sw (see figure 8), will make a non-zero contribution.

Taking into account (1.6), the second term on the left-hand side of (4.2) can be
rearranged as

−
∫

V
v′ · (∇ · σ ) dV = U ′ ·

∫
V

2f
h

dV = U ′ ·
∫

St,b

2f dS, (4.4)

where we take into account that the traction forces 2 f due to the fluid flows in the
surrounding fluid act on the flat sides of the domain St,b (see (1.6) and figure 8), and
dV = h dS. Therefore, the left-hand side of (4.2) becomes

U ′ ·
(∫

Sw

dF +
∫

St,b

2f dS

)
= U ′ · F = 0, (4.5)

where F is the net force on the swimmer and is equal to zero.
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x

y

h

z

St Sw
Sb

η

ηm

Figure 8. A region in a quasi-2-D membrane of the same geometry as a swimmer. The integration surface S in
(4.5) is comprised of the curvy wall Sw embedded in the membrane, the top (St) and the bottom (Sb) surfaces
of the membrane that are in contact with the bulk fluid.

Similarly, for the terms on the right-hand side of (4.2) we have∮
S
v · (σ ′ · n) dS −

∫
V

v · (∇ · σ ′) dV =
∫

Sw

v · (σ ′ · n) dS +
∫

St,b

v · (2f ′) dS

=
∮

S
v · dF ′, (4.6)

where in the last line of (4.6) we merged two terms into one integral over the total surface
of the swimmer, and dF ′ denotes an elementary traction force on the inactive ‘swimmer’
being dragged with constant velocity. Thus, the Lorentz reciprocal relation, (4.2), assumes
a compact form,

0 =
∮

S
v · dF ′. (4.7)

Decomposing the surface velocity of the swimmer into the translational U(t) and
the surface disturbance uS(t) velocities, v(t) = U(t) + uS(t), we rewrite the Lorentz
reciprocal relation in the form

F ′(t) · U(t) = −
∮

S(t)
uS · dF ′, (4.8)

similar to the equation derived by Stone & Samuel (1996) for a swimmer in a 3-D fluid.
In (4.8) the integration is performed over the instantaneous surface area of the swimmer.
The generalization of (4.8) for the motion that involves rotation is

F ′(t) · U(t) + L′(t) · Ω(t) = −
∮

S(t)
uS · dF ′, (4.9)

where L′(t) is the torque applied to the inactive inclusion and Ω(t) is the swimmer’s
angular velocity.

The Lorentz reciprocal relation, (4.9), is particularly useful for computation of the
swimmer’s translational and rotational velocities, U(t) and Ω(t), when the stress tensor
of the reciprocal problem (motion of an inactive body) is known. Unfortunately, it is
also difficult to solve the reciprocal problem analytically for an inclusion of an arbitrary
shape in a quasi-2-D membrane, since the coupling with the bulk fluid makes the problem
essentially three-dimensional. When the reciprocal solution is not available, (4.9) can serve
as an alternative computational path for finding the swimming velocity.

As a test of (4.9), we found the swimming velocities of a finite inextensible flagellum
as described in § 3. We solved the reciprocal problem numerically by finding the force
densities f (x, t) for the uniform rotation of the flagellum about the z-axis and for the
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x

φ

Figure 9. The flow field due to a squirmer is modelled as a superposition of the flow fields due to point-like
forces (blobs). The blobs on the circumference (red) move with tangential velocity uS(φ) = B1 sin φ +
B2 sin(2φ) in the body frame of the squirmer. The blobs in the interior of the squirmer (blue) are motionless in
the body frame.

translational motion of the flagellum along the x- and y- axes for multiple flagellum
conformations corresponding to various time instants of the swimming cycle. We then
solved the resulting system of three equations (4.9) for the instantaneous angular velocity
and x- and y-components of the translational velocity and found the average swimmer’s
speed over one period of oscillations. In figure 6(b) circles superimposed on the curves
show the swimming velocities obtained using the Lorentz equation (4.9).

4.1. The 2-D squirmer example
The LRT can significantly simplify computations in the case of tangential deformations
of the swimmer’s body, when the overall shape of the creature remains unchanged. In this
case the reciprocal problem can be solved for a single time instant, and the instantaneous
swimming velocity can then be found from (4.9) by plugging in the time-dependent surface
disturbance velocity uS(t).

As an example, we consider a 2-D version of a squirmer, a creature that propels itself
by beating its multiple hair-like appendages (cilia) in a periodic fashion. The periodic
motion of the cilia carpet can be modelled by prescribing a velocity field on the surface
of the squirmer. In a minimal model of a 2-D squirmer, a disk-like body of radius a is
propelled due to a tangential disturbance velocity uS(φ) = B1 sin φ + B2 sin(2φ) on the
disk circumference (see figure 9), where B1 and B2 are constants. Here, B1 corresponds
to the strength of a source dipole flow field, and B2 determines the strengths of the force
dipole and source quadrupole fields (Blake 1971; Papavassiliou & Alexander 2015). The
material points in the interior of the disk are motionless in the frame of the squirmer, and
they represent a passive body such as in a disk-shaped creature that only has cilia on its
circular edge. When the constants B1 and B2 have the same sign, they describe a contractile
swimmer. Otherwise, the model corresponds to an extensile swimmer.

In the limit of a/�S 
 1 the reciprocal problem for a disk was solved by Saffman (1976)
in the studies related to the Stokes paradox and a particle mobility in a quasi-2-D fluid. In
appendix B we outline calculations for the swimming velocity of the squirmer in the limit
a/�S 
 1 using Saffman’s solution for the reciprocal stress tensor σ ′. The LRT reproduces
the known swimming speed U = B1/2, for a 2-D squirmer in the limiting case of a pure
2-D hydrodynamics.

Since the analytical solution for the reciprocal problem for a disk of arbitrary radius
a/�S is not readily available, we found the reciprocal stress σ ′ numerically by adopting the
method of regularized Stokeslets (RS) for a quasi-2-D membrane developed by Camley &
Brown (2013) in their work on mobility of inclusions in a quasi-2-D membrane. In Camley
& Brown (2013) the flow field due to a moving inclusion is modelled as a superposition of
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Swimming of microorganisms in quasi-2-D membranes

the flow fields due to point-like forces (blobs) tiling the disk area (see figure 9),

uα(x) =
N∑

i=1

ααβ(x − xi)f ′
β(xi), (4.10)

where α, β = x, y; N is the total number of blobs; xi is the in-plane coordinate of the
ith blob; ααβ is the Levine–MacKintosh response function (see (1.2)); and f ′

β(xi) is the
unknown force distribution.

In the reciprocal problem the disk is being pulled through the membrane as a solid
object with some given velocity U ′. The force distribution f ′

β(xi) over the blobs is found
by imposing a no-slip boundary condition on each blob,

U′
α =

N∑
j=1

ααβ(xi − xj)f ′
β(xj). (4.11)

Due to the squirmer’s reflection symmetry about the x-axis, the rotational motion of the
squirmer in an unbounded domain is ruled out, and the swimming velocity U can be found
from the discretized version of (4.8),

( N∑
i=1

f ′(xi)

)
· U = −

∑
blobs on rim

uS(xj) · f ′(xj). (4.12)

The summation on the right-hand side of (4.12) is carried out only over the blobs on the
squirmer’s circumference since the inner blobs are motionless in the creature’s frame. In
the RS method the logarithmic singularity of the membrane response functions for κ → 0
is eliminated by the regularization (smoothing) process that involves integration of the
response function over the blob envelope function centred at κ = 0. Camley & Brown
(2013) selected a Gaussian function for the regularization. The width of the Gaussian is
controlled by an auxiliary parameter ε. Camley and Brown set ε = δ/2, where δ is the
distance between the centres of adjacent blobs, calculated the inclusion mobilities for
several values of δ in the range (0.03–0.07)a and extrapolated the results to the limit
δ → 0. While the numerical calculations for the inclusion mobilities are only weakly
dependent on the choice of ε, in our case of a swimming squirmer, the swimming velocities
are more sensitive to the choice of the regularization parameter ε, since it effectively
determines the thickness of the squirmer’s deforming outer ring and its permeability, and
therefore becomes a physical parameter.

In figure 10(a) we plot the LRT results for the scaled swimming speed of a squirmer,
U/(B1/2), as a function of the squirmer radius for several values of parameter ε. As in
Camley & Brown (2013), for a selected dependence of ε on δ (e.g. ε = δ/6), we calculated
the swimming speed for a range of δ values and extrapolated it to δ → 0. As can be seen
in figure 10(a), the regularization parameter ε = δ/12 gives the swimming velocity that is
close to the known value of B1/2 in the limiting case of a pure 2-D membrane (membrane
in vacuum). Our calculations also show that the scaled swimming velocity U/(B1/2) is
independent of the ratio B2/B1.

In figure 10(b) we compare the results of calculations for the swimming speed obtained
within the LRT and the BEM for ε = δ/12. For the direct BEM calculation of the
swimming speed and the force distribution we solved simultaneously the equations that
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Figure 10. LRT results for the squirmer swimming speed scaled by B1/2 as a function of scaled squirmer
radius a/�S (a) for various values of the regularization parameter ε, where δ is the distance between the centres
of neighbouring blobs, (b) for ε = δ/12 (circles). The black curve corresponds to the BEM calculations for
ε = δ/12. The swimming speed is independent of the ratio B2/B1.

impose no-slip boundary conditions and a zero net force on the swimmer,

Uα =
∑

interior blobs

ααβ(xj − xi)fβ(xi), (4.13)

Uα + uSα(xj) =
∑

blobs on rim

ααβ(xj − xi)fβ(xi), (4.14)

0 =
N∑

i=1

f (xi). (4.15)

As can be observed in figure 10(b), the squirmer swimming velocity decreases with an
increase of a/�S ratio. Larger values of a/�S correspond to a larger viscosity of the fluid
embedding the membrane, which leads to a stronger traction on the ‘back’ and ‘belly’ of
the creature.

In figure 11 we show our results for the squirmer efficiency as a function of the scaled
radius R/�S for various B2/B1 ratios. The efficiency is defined as the ratio of the power
required to drag an inactive disk through the membrane with the speed equal to the
swimming speed of the squirmer, (1/μ)U2, to the power expended by the squirmer P,

η = (1/μ)U2

P
. (4.16)

Here, μ is the translational mobility of a disk. The analytical expression of the disk
mobility for arbitrary disk radii R/�S was found by Hughes, Pailthorpe & White (1981)
(HPW). In our calculations, we used an accurate approximation of the complicated HPW
mobility expression developed by Petrov & Schwille (2008). The power consumed by the
squirmer is determined by

P =
∑

blobs on rim

uS(xi) · f (xi). (4.17)

The ‘neutral’ squirmer, with B2 = 0, achieves the maximum efficiency. Similar to its
3-D and 2-D counterparts, a quasi-2-D squirmer uses only the B1 term in its surface
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Figure 11. Calculated squirmer efficiency as a function of squirmer radius.

disturbance velocity for propulsion, while the B2 term determines whether the swimmer
is a ‘pusher’ (B2 < 0) or ‘puller’ (B2 > 0), and leads to additional energy costs. The
swimming efficiency is independent of the sign of the B2/B1 ratio, which is consistent
with Blake’s results for a 2-D squirmer (Blake 1971).

The peaks in the efficiency curves indicate two competing contributions to the
squirmer’s energy budget. Our model squirmer employs only the viscous drag generated
in the membrane for propulsion. The traction due to the bulk fluid is detrimental to the
squirmer’s locomotion. In the limit R/�S 
 1, the viscous drag due to the bulk fluid is
negligible. However, the long-range character of the flow field generated by the squirmer
leads to a smaller thrust force, in comparison with the 3-D squirmer (Lighthill 1952;
Blake 1971), leading to less efficiency than the case of R/�S ≈ 1. In the opposite limit of
R/�S � 1, the faster spatial decay rate of the flow field leads to a stronger thrust. However,
the traction due to the bulk fluid is significant in this regime. From the dimensional
analysis, we expect the thrust force generated by the squirmer in the membrane be
proportional to ηmU, and the drag force due to the bulk fluid proportional to ηUR. Thus,
the ratio of the ‘harmful’ drag to the ‘useful’ drag is given by Rη/ηm ∼ R/�S, again leading
to a lower efficiency compared to the case of R/�S ≈ 1.

5. Conclusion

We have studied analytically and computationally the locomotion of microscopic
organisms confined to a plane of a thin fluid membrane embedded in a bulk fluid of
different viscosity. In our model the membrane is sufficiently thin, with material particles
moving only in the plane of the membrane (motion in the perpendicular direction is
forbidden).

The presence of the bulk fluid allows the introduction of a hydrodynamic length scale,
the Saffman length, that controls the energy exchange between the membrane and the
surrounding fluid. By varying the Saffman length, we make our model continuously
vary between a pure 2-D system (large Saffman length) and a quasi-2-D system (small
Saffman length). The hydrodynamic flows in the quasi-2-D membrane have features of
both 3-D and 2-D hydrodynamics. We show that a flagellated swimmer in a viscous
film (Saffman length smaller than swimmer characteristic length scale) swims faster
than the same swimmer in a 3-D fluid. The speed up comes from the effectively larger
perpendicular drag coefficient, which arises from the incompressibility of the membrane.
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It would be interesting to test this general prediction by measuring the swimming speed in
both thin films and unconfined fluids of undulatory swimmers such as mammalian sperm
or Caenorhabditis elegans. On the other hand, a circular squirmer, whose propulsion
mechanism does not employ the local drag anisotropy, slows down for smaller Saffman
lengths (in comparison with the squirmer’s radius). Paramecium cells have recently been
shown to exhibit sinusoidal trajectories in thick fluid films and frequent turns in thin fluid
films (Jana et al. 2015). In these films there is one solid bounding surface; our results could
be used to help study how swimming behaviour depends on film thickness in films with
two liquid interfaces.

The coupling of the membrane with the bulk fluid makes the problem three-dimensional
and quite difficult for analytical treatment. We developed numerical schemes based on the
boundary element method and the LRT. We show how the Lorentz reciprocal theorem can
be used to simplify the computation of swimming speed, especially for swimmers such as
the squirmer that do not change shape during a stroke. While we considered the minimal
models of a flagellated swimmer and of a squirmer, our approach can be generalized to
other swimmers’ geometries and swimming strokes, including catalytic particles such as
Janus particles (Paxton et al. 2004; Michelin & Lauga 2017).
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Appendix A. Infinitely long flagellum in 2-D fluid

In the 2-D limit (membrane in vacuum) the system of (2.17) becomes

uS(xi) + U = 1
4πηm

N∑
j=1

(∫
Sj

Gp(xi − x′) dx′
)

· f (xj),

N∑
j=1

f (xj) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A1)

where Gp(x) is a 2-D periodic Stokeslet,

Gp(x − x′) =
∞∑

m=−∞
−I ln(qrm) + x̄mx̄m

r2
m

, (A2)

with x̄ ≡ {x̄, ȳ} = x − x′, x̄m = {x̄ + m(2π/q), ȳ} and rm = |x̄m|. In (A1) and (A2) all
variables are dimensional. The periodic Stokeslets can be expressed in closed form
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(Pozrikidis 1987; Sauzade et al. 2011) using the analytic formula for the summation,

A =
∞∑

m=−∞
ln(|qrm|) = 1

2 ln[2 cosh(qȳ) − 2 cos(qx̄)]. (A3)

The components of the periodic Stokeslet can be found as

Gp
xx = −A − Ay + 1, (A4)

Gp
xy = (qȳ)Ax, (A5)

Gp
yy = −A + (qȳ)Ay, (A6)

where Ax, Ay indicate the derivatives of A with respect to qx̄ and qȳ respectively. Similar
to our treatment of the diagonal terms in (2.19) we eliminate the logarithmic singularity
by analytic integration,∫

Si

Gp(xi − x′) dx′ = I 2 lim
ε→0

∫ s/2

ε

(1 − log(qz)) dz = Is(1 − log(qs/2). (A7)

Appendix B. Swimming velocity of a squirmer in the 2-D limit

We consider a tangential squirmer with a prescribed surface velocity of the form

uS(φ) = uS(φ)φ̂ = (B1 sin φ + B2 sin(2φ))φ̂, (B1)

with free parameters B1 and B2. Since the disturbance velocity has only a φ̂-component,
the right-hand side of (4.9) becomes∮

S(t)
uS · dF ′ =

∫
Sw

uS(φ)φ̂ · (σ ′
rφφ̂) dSw

= 2ha
∫ π

0
uS(φ)σ ′

rφ dφ, (B2)

where we took into account dSw = ha dφ, where h is the thickness of the membrane.
Therefore, (4.9) becomes

F ′(t) · U(t) = −2ha
∫ π

0
uS(φ)σ ′

rφ dφ. (B3)

The membrane stress tensor element σ ′
rφ(r, φ) is determined as

σ ′
rφ(r, φ) = −ηm

h

[
1
r

∂u′
r

∂φ
+ ∂u′

φ

∂r
− u′

φ

r

]
. (B4)

For a special case of a 
 �S Saffman (1976) found

F ′ = 4πηmU ′

log(2�S/a) − γ
, (B5)

σ ′
rφ(r, φ) = ηm

h
4α sin φ

r3 , (B6)

with

α = a2U′

2(γ − log(2�S/a))
. (B7)

Here, γ = 0.577 is the Euler constant.
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Plugging (B5), (B6) and (B7) in (4.9), after some simplifications we arrive at the
squirmer swimming velocity in the limit of a/�S 
 1

U =
∫ π

0
uS(φ) sin φ dφ = B1

2
. (B8)
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