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SUMMARY

This paper presents a novel time-optimal motion
planning strategy for a mobile robot with kinematic
constraints. The method works in environments in
presence of obstacles, without needing to generate the
configuration space for the robot. Further, it derives a
minimum time first derivative smooth path, as opposed
to a minimum distance path which is commonly given by
various present solution techniques. The problem is
solved in three stages: (i) A reduced visibility graph for a
point object is obtained. (ii) The reduced visibility graph
is converted into a feasible reduced visibility graph
accounting for the size and kinematic constraints of the
robot. (iii) The A* algorithm is used to search the
feasible reduced visibility graph with the cost function
being the time of travel, to obtain a safe, time-optimal,
smooth path. The algorithm runs in polynomial time.
The method has been tested in computer simulations and
test results are presented.

KEYWORDS: Time-optimal motion planning; Car-like robot;
Nonholonomic constraints; Visibility graph; Feasible visibility
graph.

1. INTRODUCTION

Automated motion planning strategies are essential in
order to realize autonomous mobile robots, and
minimum time path planning algorithms increase their
efficiency. The objective of this study is to plan a
collision-free path for a mobile rigid body robot through
a workspace populated with obstacles.

The most popular approach to the path planning
problem is the configuration space method,' where the
robot is shrunk to a point while correspondingly growing
the obstacles, in order to obtain the robot’s free space.
Techniques such as visibility graph,” Voronoi diagram’
and cell decomposition* can be used to search the free
space for a collision free path. The method works
efficiently for free flying robots moving without changing
its orientation, amongst fixed obstacles. For such a robot,
working in Euclidean space W e R" (n=2 or 3), the
configuration space can also be represented by an
Euclidean space. However, if the robot changes its
orientation in W, the configuration space becomes
non-Euclidean; for n =2 or 3 the configuration space
becomes R*X S' or R®X $?/~ respectively.” Thus the
robot free space becomes computationally complex to
represent and search. Further, the complexity of the
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problem is additionally increased for robots that are
subject to kinematic constraints, such as car like robots.

The subject of car-like robot path planning has
received much attention in recent years. Such robots
feature planar movements with nonholonomic con-
straints. An autonomous guided vehicles (AGV) is an
example of such a robot. A robust algorithm for
minimum time, smooth path planning would help to
increase the transportation efficiency of AGV.

The smooth path planning problem was first addressed
nearly thirty years ago by Dubins,'” giving the form of
the shortest bounded curvature path in the absence of
obstacles. Recently, Laumond published work on the
problem for the case where the workspace contains
obstacles.® He later extended the work to non-polygonal
obstacles represented by closed curves.® Fortune and
Wilfong'' gave a decision algorithm to determine the
existence of a path under a set of given conditions. The
algorithm is exact, runs in exponential time and space,
but does not generate the path in question.

There has also been studies on planning time-optimal
trajectories for robots. The idea of path planning with
constraints on the robot’s accelerations is presented in
reference 12. The analysis is restricted to the case of a
particle moving in one-dimension. The problem of a
particle having spatial motion is addressed in reference
13 where a near-time-optimal safe trajectory for a
particle moving in a plane is found; the particle is
subjected to uniform L. acceleration bounds on each
axis. However, this model does not apply to a mobile
robot system. Time-optimal trajectories for mobile
robots with two independently driven wheels are
presented in reference 14. Pontryagin’s maximum
principle is used, and the accelerations are considered as
either maximum or minimum. This method does not
consider collision avoidance, and the robots are not
subject to kinematic constraints.

The problem of time-optimal and collision-free motion
planning for robot manipulators has also been studied.
The algorithm in reference 15 finds the time-optimal
trajectory for robot manipulators by minimizing the
time-derivative of the return (cost) function for this
problem, satisfying the Hamilton-Jacobi-Bellman equa-
tion. For multiple obstacles, the trajectory is generated
using a pseudo return function, which is an approxima-
tion of the return function. The obstacles considered in
this paper are circular, as commonly used in trajectory
planning for manipulators. This algorithm is difficult to
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extend to the trajectory planning for car-like robots,
because of the dynamic model differences between a
manipulator and a car-like robot.

This paper presents a novel time-optimal motion
planning strategy for a car-like mobile robot with
kinematic constraints, operating in an environment
cluttered with obstacles. The method works with the
original polygonal obstacles. The main idea behind the
method is in modifying the visibility graph for a point
robot into a feasible visibility graph for the given
dimensioned mobile robot with kinematic constraints,
and converting the feasible visibility graph into time a
graph, from which the time-optimal path is chosen. The
strategy finds the time-optimal path considering of only
straight line and circular arc segments. The problem is
solved in three stages: (i) A reduced visibility graph for a
point object is obtained. (ii) The reduced visibility graph
is converted into a feasible visibility graph by ruling out
the paths which are not feasible for a robot with
dimensions and nonholonomic constraints. Here all paths
for the robot are constructed by straight lines and
circular arcs of the minimum turning radius of the robot.
(iii) The A* algorithm is used to search the feasible
reduced visibility graph to obtain a safe, time-optimal,
first time derivative smooth path. The algorithm is
computationally efficient and runs in polynomial time.

2. REDUCED VISIBILITY GRAPH
The first step of the proposed algorithm is to construct
the reduced visibility graph for a point robot. The
concept of a reduced visibility graph arises in the context
of shortest path planning for a point robot, for which the
basic problem can be stated as follows:

In a workspace W e R?, there is a set of polygonal
obstacles O ={0;:i=1,2,...n}. Given an initial point
Qinie(Xs, ;) and a goal point gyu.(x,, y,) for a point robot,
find the shortest collision free path.

The solution to this problem is well established.® It
consists of constructing a visibility graph, containing the
shortest path, which is found by searching using an
optimization algorithm.

For polygonal obstables, the visibility graph is
constructed from the set of nodes consisting of Ginit, Ggoal
and all the obstacle vertices. A link is a straight line that
connects any two nodes and a visible link connects two
nodes that are visible to each other. Thus a visible link

Fig. 1. A visibility graph (all lines) and a reduced visibility
graph (thick lines) for a scene with polygonal obstacles.
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will not intersect any of the obstacles. The visibility
graph consists of all the visible links, and a reduced
visibility graph is constructed from the visible tangent
links. It can be shown® that a non-tangent visible link will
not be a part of the shortest path.

Figure 1 shows the visibility graph and the reduced
visibility graph for a particular example consisting of
three polygonal obstacles.

The concept of visible tangent links can be extended to
arbitrary shaped obstacles. Here the edges of the
arbitrary shaped obstacles are represented by cubic
splines. The visible tangent links can then be determined
by a single variable optimization scheme.

Finding the shortest path for a point robot is
computationally efficient. Rohnert® presents an algorithm
for computing the tangents between two convex polygons
in O(logn, +logn,) time, where n, and n, are the
numbers of vertices of the two polygons, and the shortest
path is computed in O(nk + n logn) time, where k is the
number of convex parts of the obstacles and n is the
number of obstacle vertices. Non-polygonal obstacles
require iterative computations, and the computational
time depends on the precision of determining the
tangential points.

3. FEASIBLE VISIBILITY GRAPH

In this study the path for the dimensioned robot is found
by locally modifying the reduced visibility graph for the
point robot into a feasible visibility graph. The
modification involves moving the point path away from
the vertices and edges of the obstables, in accordance
with the algorithm presented. The path modification
algorithm depends on (i) the relative position between
the point path and the obstacles, and (ii) the
characteristics of the dimensioned robot. The latter
includes features such as configuration, turning radius,
manner of steering and kinematic constraints. The
modified reduced visibility graph, termed the feasible
visibility graph, is then searched to yield the time
minimum path for the dimensioned robot. The path
modification algorithm employs a steering model of the
robot and minimum distance computations, and also
satisfies the kinematic constraints on the robot.

3.1 Robot steering model

In this section a generalized steering model for a
rectangular car like robot is presented. A four wheel
rectangular robot R, which is 2a long and 2b wide, is
considered. A moving frame, F,, is attached at the
centroid of R, Figure 2. The x axis of F,, is along the
main axis of the robot. When the robot’s front and back
wheel steering angles are « and B respectively, the
coordinates of the robot’s instantaneous centre O;, with
respect to F,,, (x, and y,), are given by

l <tana + tan B

Xo=—=
2 \tan @ —tan 8

tan « # tan 3 (1)

_ ! )
Yo (tanoz —tan B

where [/2 is the distance between F,, and each the two
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Fig. 2. The model of a moving robot.

wheel axles. @ and B are measured positive counter-
clockwise from the robot’s main axis, and in practice will
usually have opposite signs.

Let F be a reference point on the robot’s main axis
such that the velocity of F is along the main axis of the
robot. In the following sections, the motion of point F
will be used to specify the velocity of the robot. For a
robot steered by front wheels only, the reference point F
will be at the mid-point of the rear wheel axle. The
coordinates of F in frame F,, are (—x,, 0).

The turning radius, p, of the robot is given by y,, and
it varies with « and B, (1). If there were no constraints
on « and B, the robot could achieve any turning radius
employing an appropriate choice of a and 8. However,
in practice, mechanical stops in the steering gear limit the
range of @ and B. Let « and B be contained within the
range +vy. Then the minimum turn radius, p, is given by
Pmin =1[/2tan y, when o = —8 = v.

Equation (1) represents a robot steered at both
wheels. It contains front wheel only steered robots
(B =0) and back wheel only steered robots (a« =0) as
special cases. For both these cases, pi, = /tan .

3.2. Nonholonomic kinematic constraints

Consider a rectangular shaped mobile robot moving on
flat ground, Figure 2. When the wheels are in pure
rolling contact with the ground, the reference point F
describes a curve that is tangential to the main axis of the
robot. Hence the robot’s motion is constrained by:

—xsin@+ycos =0 2)

where (x,y) are the coordinates of F relative to a
globally fixed frame X-Y and 6 is the angle made by the
robot’s main axis relative to the global X axis, Figure 2.

Equation (2) is a kinematic constraint which must be
satisfied by the robot’s motion. Further equation (2) is
non-integrable and hence is a non-holonomic equality
constraint.

As mentioned previously, car-like robots in general
have limited steering angles which imposes a lower
bound, p.,, on the turning radius. Since v, the global
velocity of point F, is given by v=p X 8, where 8 is the
instantaneous angular velocity of the robot, it follows
that

V= poin X 0, ie. 2+ $2 — p>min 82=0 (3)
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Condition (3) must also be satisfied by all configura-
tions of the robot. It is a non-holonomic inequality
constraint.

3.3. Minimum distance computations

The algorithm presented finds a path for a point robot
and then locally modifies this path to account for
kinematic constraints and obstacle avoidance. It is
assumed that the geometry and the configuration of the
obstacles are known. Minimum distance computations
between the obstacles, and between the point path and
the obstacles are central to the path modification
algorithm. Such computations provide a measure of the
robot’s free space relative to the selected point path.

There are a number of possible algorithms for
computing the minimum distance between two
objects.'®!” These algorithms are based on either linear
or nonlinear programming, and involve recurrent
searches which can be time consuming. The computa-
tional time depends on the total number of vertices
between the two obstacles. Further, the minimum
distance between each pair of obstacles needs to be
computed.

The minimum distance between two polygonal
obstacles will be either between two vertices or between
an edge and a vertex, and hence can be obtained by
minimum distance computations between two points and
between a straight line and a point.

The algorithm for minimum distance computations
employed does not involve a recurring search. In
addition, the number of minimum distance computations
is minimized, by restricting the regions where such
information is computed.'® This is achieved by dividing
the obstacle set into various subsets relative to the point
path in question. The point path itself divides the
obstacles into a left set O' and right set O", Figure 3.
Further, the linear segments /; of the point path can be
used to divide the two obstacle sets into radial sets O
and O} (i=1,2,...m; where m is the total number of
linear path segments), Figure 3; overlapping obstables
belonging to two radial sets. The path modification

~—
~.

Left group o' \
— A

-
\\ .

selected path

initial point Ie) . o

Right group O §

Fig. 3. Obstalce groups divided by the path and the turn points
of the path.
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algorithm requires only the following minimum distance
computations:

(i) between [, and O'U O} and (ii) between O! and O~
Let the minimum distance between two obstacles be D,;,
and the minimum distance between /; and an obstacle be

D in. The minimum distances are computed by using,

D in(V;, V/) =min ||v;v;]| and Din(1;, V/) =min ||;v;,

where v; and v; are vertices of the relevant obstacles.
Figure 4 indicates the minimum distances computed for a
particular example.

3.4 Feasible visibility graph

A feasible visibility graph (FVG) is defined as a reduced
visibility graph which allows the dimensioned robot to
travel while acoiding collisions. Since the reduced
visibility graph for a point robot does not provide a
collision free path for a dimensioned robot, it has to be
converted into a FVG, which can be searched for the
time minimum path.

In order to detect possible collision regions, the
dimensions of the swept volume of the traveling robot
need to be known. Let a rectangle shaped robot R, 2a
long and 2b wide, move in a workspace W € R*>. The
robot R will sweep a certain width along its path. When
it moves along a straight line, its swept width is,

w, =2b ()

When it turns with steering angles « and B, at the
front and back wheels respectively, its swept width
w,(a, B) has the form, Figure 5:

Ws(a’ B) = pout(a’ B) - pin(aJ B), (5)

tan o + tan B>2 21 2
ey (A

tan o — tan tan o — tan

Pou(a, B) = <a +

A
tana —tan 8

pin(a, B) =

In the visibility graph the robot travels along straight
lines and changes direction only at obstable vertices.
Thus the visibility graph needs to be modified at obstacle
vertices. In addition, it also needs to be modified in
regions where D, the minimum distance between a
straight line segment of the visibility graph and the
obstacles, is less than 2b; D,,;, < 2b.

goal

Fig. 4. Minimum distances between obstacles in O} and O~
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Fig. 5. Swept area of a robot R.

Once the positions where modifications are necessary
have been identified, a check is made to see if
modifications are possible. Using the minimum distance
between two obstacles, a collision free condition for the
robot to pass between the two obstacles is,

Dmin - Ws(a, B) > O

Thus for straight line segments,

Dmin > 2b (Oé = B = 0) (6)

and at obstacle vertices

2/
Dmin + .

tan o —tan 8
+ 2 2 2
_ \/(H,tarwtaw) F(br—2 V>0
tan o — tan tan o — tan B

(fora#B) (7)

Conditions (6) and (7) are algebraic expressions which
are environmental holonomic constraints to be satisfied
by the robot’s motion.

The application of (6) is straight forward. (7) contains
two variables, o and 3. Assuming that in practice, either
B =0 (front wheel steering) or a =0 (back wheel
steering) or a« = —B =0 (both front and back wheel
steering), then (7) can be used to solve for « (or 8) and
hence it can be determined whether passage for the
robot is possible.

If (6) or (7) is not satisfied in any region of the reduced
visibility graph, then all path segments in that region are
eliminated. In regions where (6) and (7) are satisfied, the
reduced visibility graph is modified to yield the feasible
visibility graph, FVG.

The approach adopted is to modify the reduced
visibility graph using circular arc segments. That is, it is
assumed that when the robot changes direction it does so
with a constant steering angle, as determined by (7).

Once the steering angle is determined, the turning
radius, p, is found from (1). The radii of the inner and
outer circles of the robot’s swept volume, p;, and p,y,
can then be found as outlined in this section. The centre
of the circular arc segment, C,, is located a distance p;,
away form the vertex, along the bisector of the angle
between the two adjacent edges at the vertex. The exact
position of the centre depends on the free space used by


https://doi.org/10.1017/S0263574797000635

Mobile robot

the swept volume. The circular arc segment is drawn,
with radius p and centre C;, Figure 5. The circular arc
path thus constructed will lead the robot to sweep the
area between p;, and p.,, and if the area between p;,
and p,, is free of obstacles, the robot motion is
collision-free in this area.

The FVG is completed by connecting consecutive
circular segments with tangential lines. The straight line
segments of the FVG are checked for collisions, and are
modified or rejected, as for the circular paths outlined
above, until a collision free FVG is obtained.

4. ROBOT TRAVEL TIME

The feasible visibility graph consists of a series of
connected path segments which are either straight lines
or circular arcs. The lengths of all the path segments of
the FVG are known.

In this investigation it is assumed that when the robot
travels along any given path segment, it is either moving
at its maximum speed, if this is attainable, or
accelerating/decelerating at its maximum value. Thus the
speed-time curves for any path segment are as shown in
Figure 6a or 6b. The modulus of the non-zero slopes of
Figure 6 will be equal to ap,, the maximum
acceleration/deceleration limit of the robot. v; and v;
are the speeds at the beginning and end of the segment
respectively. v, is the maximum possible speed of the
robot for the segment concerned, subject to the
kinematic constraint (3).

Let the maximum speed of the robot along a straight
line segment be v,,, and the maximum speed along a
circular segment be v,,.(p), which is in general a function
of p, the radius of the circular segment, and in general
Vie(p) =V,,,. 1t is assumed that v,,.(p) is known from
the specification of the robot. Hence v,=wv,, for a
straight line segment and v,=v,,(p) for a circular
segment. Further, for circular arc segments it is supposed
that v, =v3=v,.(p), i.e. the robot travels the entire
circular arc at its maximum speed. For straight line
segments, v; and v; will be equal to the maximum speeds
of the adjacent circular segments. The exception to this is
at the initial and goal points where v, and v; will be zero
respectively. If the segment is at the start or end of the
path, then v, or v; will respectively be zero. Thus v,, v,
and v; for any path segment are known.

LV

v

Time

Fig. 6a. A case where the maximum speed v, is reached.
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7
Time
Fig. 6b. A case where the maximum speed v, is not reached.

It can be shown that if

1
L;> (2‘/% - V% - V%),
2a

max

then Figure 6a applies and the total time of travel for the
segment

7; = (2V2 - Vi— VS)/amax
+ [Ll - (2‘/% - V% - V%)/Zamax]/v2 (9)

and, if

Li = (2‘/% - V% - V%))

amax

then Figure 6b applies and

'Z';_ = [\/2(2Liamax + V% + V%) — V= V3]/amax (10)

Using (9) and (10), a travel time for each path segment
is found. The travel time depends on the type of segment
(straight line, circular or other), the assumed speed
characteristics, the length of the segment and its adjacent
connectivity. Features such as vehicle dynamics and the
nature of the terrain covered are not considered in this
study. However these aspects may be included in this
approach.

5. SEARCHING FOR THE MINIMUM TIME
PATH

The FVG consists of feasible, collision free, first
derivative smooth paths for the dimensioned car like
robot. The links of the FVG are either straight lines or
circular arcs. Since any connected path in the FVG is first
derivative continuous, thus satisfying the non-holonomic
constraint (4).

Past investigations have been mainly concerned with
obtaining the minimum distance paths, where the cost
function is the total distance traveled. In this study the
cost function is taken to be the total time of travel, from
the start to the goal, along a path of the FVG. By
introducing (9) and (10), the FVG is converted into a
time graph, which is searched for the time minimum
path. The time spent in traveling path P, is,

1= T (a1


https://doi.org/10.1017/S0263574797000635

552

where T, is the time of travel for segment Py, and n is
the total number of segments of path P.

The A¥* algorithm is employed to find the time
minimum path with (11) as the cost function and 4, the
heuristic function still being the distance to the goal.

6. COMPUTER SIMULATIONS

The motion planning strategy presented is implemented
and tested for a variety of operating conditions, using
computer simulations. A wide range of obstacle shapes,
numbers, locations and robot models have been
employed. The algorithm generated collision-free motion
for all cases tested.

The results from a particular example consisting of 8
polygonal obstacles is given in Figure 8. The objective is
to move the robot from the start location (30, 30, 90°) to
the goal location (850,550,90°). The robot model
simulated has the following characteristics:
length: 2a = 1.5;
width: 2b =0.8;
the distance between the two axes: [ =1.3;
the distance between the two wheels: d = 0.8;
the steering angles for front and back wheels:
—45°< a <45% B =0
the maximum velocity and acceleration along a straight
line path: v,,, = 12/sec and a,,,. = 50/sec?;
the maximum velocity and acceleration along a circular
path: v,,.(p) = V,,.c(Pmax) = 8/s€C;

Ame(Pmax) = S0/sec;

The FVG generated by the algorithm is shown in
Figure 7a. The FVG is searched using the A* algorithm,
and the minimum time, first derivative smooth,
collision-free motion is shown in Figure 7b. The total
travel time is 74.6 seconds.

The algorithm is tested on a number of cluttered
environments, giving collision-free motions, and dem-
onstrating its robust nature.

7. DISCUSSION AND CONCLUSIONS

An algorithm for minimum time first derivative smooth
path motion planning for a rectangular car like robot
subject to kinematic constraints, is presented. The
algorithm operates on the original obstacles without

Fig. 7a. Feasible visibility graph of a simulation for a car-like
robot with limited 45° steering angle.
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\shonest path

-~ \gsecond stoftest_path

Fig. 7b. Final motion path of a simulation for a car-like
robottraveling from @i, t0 ,40a i Minimum time.

needing to generate the robot’s configuration space. The
algorithm has three stages: (i) The reduced visibility
graph for a point robot is generated. (ii) The reduced
visibility graph is modified to a feasible visibility graph,
FVG, for the care like robot. (iii) The FVG is searched
for the minimum time path.

The FVG consists of straight line segments and
tangential circular arcs; thus any connected path in the
FVG will satisfy the nonholonomic constraints acting on
the robot. Also all path in the FVG are first derivative
continuous.

The circular arc assumption also implies that the robot
employs a constant steering angle when changing
direction. For a robot whose steering angle is controlled
by a limit switch, this assumption is always valid, and the
algorithm will generate the minimum time path among
all smooth paths formed by straight lines and circular
arcs. The significance of this assumption for robots that
can vary their steering angles continuously, needs to be
investigated. The algorithm can be made more general
by using spline functions instead of circular arcs.

The FVG is generated by employing minimum
distance computations and the robot’s steering model.
The FVG is then converted to an equivalent time graph
based on the robot’s speed model; it is assumed that the
robot travels at its maximum possible speed when it is
not accelerating/decelerating at its maximum value. The
speed model does not include features such as robot
dynamics and the nature of terrain traveled.

The algorithm has been tested by computer simula-
tions, and is shown to be computationally efficient with
wide applicability. The algorithm can be used directly in
AGYV motion planning.
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