
 Robotica (1997) volume 15 ,  pp 547-553 .  Printed in the United Kingdom  ÷   1997 Cambridge University Press

 Time-optimal smooth-path motion planning for a mobile robot
 with kinematic constraints
 K .  Jiang ,  L . D .  Seneviratne ,  and S . W . E .  Earles
 Department of Mechanical Engineering , King ’ s College London , Strand , London WC 2 R  2 LS  ( UK )

 (Received in Final Form :  August 23 ,  1996)

 SUMMARY
 This paper presents a novel time-optimal motion
 planning strategy for a mobile robot with kinematic
 constraints .  The method works in environments in
 presence of obstacles ,  without needing to generate the
 configuration space for the robot .  Further ,  it derives a
 minimum time first derivative smooth path ,  as opposed
 to a minimum distance path which is commonly given by
 various present solution techniques .  The problem is
 solved in three stages :  (i) A reduced visibility graph for a
 point object is obtained .  (ii) The reduced visibility graph
 is converted into a feasible reduced visibility graph
 accounting for the size and kinematic constraints of the
 robot .  (iii) The A* algorithm is used to search the
 feasible reduced visibility graph with the cost function
 being the time of travel ,  to obtain a safe ,  time-optimal ,
 smooth path .  The algorithm runs in polynomial time .
 The method has been tested in computer simulations and
 test results are presented .

 KEYWORDS :  Time-optimal motion planning ;  Car-like robot ;
 Nonholonomic constraints ;  Visibility graph ;  Feasible visibility
 graph .

 1 .  INTRODUCTION
 Automated motion planning strategies are essential in
 order to realize autonomous mobile robots ,  and
 minimum time path planning algorithms increase their
 ef ficiency .  The objective of this study is to plan a
 collision-free path for a mobile rigid body robot through
 a workspace populated with obstacles .

 The most popular approach to the path planning
 problem is the configuration space method , 1  where the
 robot is shrunk to a point while correspondingly growing
 the obstacles ,  in order to obtain the robot’s free space .
 Techniques such as visibility graph , 2  Voronoi diagram 3

 and cell decomposition 4  can be used to search the free
 space for a collision free path .  The method works
 ef ficiently for free flying robots moving without changing
 its orientation ,  amongst fixed obstacles .  For such a robot ,
 working in Euclidean space  W  P  R n   ( n  5  2 or 3) ,  the
 configuration space can also be represented by an
 Euclidean space .  However ,  if the robot changes its
 orientation in  W ,  the configuration space becomes
 non-Euclidean ;  for  n  5  2 or 3 the configuration space
 becomes  R 2  3  S 1  or  R 3  3  S 3 / ,   respectively . 5  Thus the
 robot free space becomes computationally complex to
 represent and search .  Further ,  the complexity of the

 problem is additionally increased for robots that are
 subject to kinematic constraints ,  such as car like robots .

 The subject of car-like robot path planning has
 received much attention in recent years . 6–9  Such robots
 feature planar movements with nonholonomic con-
 straints .  An autonomous guided vehicles (AGV) is an
 example of such a robot .  A robust algorithm for
 minimum time ,  smooth path planning would help to
 increase the transportation ef ficiency of AGV .

 The smooth path planning problem was first addressed
 nearly thirty years ago by Dubins , 1 0  giving the form of
 the shortest bounded curvature path in the absence of
 obstacles .  Recently ,  Laumond published work on the
 problem for the case where the workspace contains
 obstacles . 6  He later extended the work to non-polygonal
 obstacles represented by closed curves . 8  Fortune and
 Wilfong 1 1  gave a decision algorithm to determine the
 existence of a path under a set of given conditions .  The
 algorithm is exact ,  runs in exponential time and space ,
 but does not generate the path in question .

 There has also been studies on planning time-optimal
 trajectories for robots .  The idea of path planning with
 constraints on the robot’s accelerations is presented in
 reference 12 .  The analysis is restricted to the case of a
 particle moving in one-dimension .  The problem of a
 particle having spatial motion is addressed in reference
 13 where a near-time-optimal safe trajectory for a
 particle moving in a plane is found ;  the particle is
 subjected to uniform  L ~   acceleration bounds on each
 axis .  However ,  this model does not apply to a mobile
 robot system .  Time-optimal trajectories for mobile
 robots with two independently driven wheels are
 presented in reference 14 .  Pontryagin’s maximum
 principle is used ,  and the accelerations are considered as
 either maximum or minimum .  This method does not
 consider collision avoidance ,  and the robots are not
 subject to kinematic constraints .

 The problem of time-optimal and collision-free motion
 planning for robot manipulators has also been studied .
 The algorithm in reference 15 finds the time-optimal
 trajectory for robot manipulators by minimizing the
 time-derivative of the return (cost) function for this
 problem ,  satisfying the Hamilton-Jacobi-Bellman equa-
 tion .  For multiple obstacles ,  the trajectory is generated
 using a pseudo return function ,  which is an approxima-
 tion of the return function .  The obstacles considered in
 this paper are circular ,  as commonly used in trajectory
 planning for manipulators .  This algorithm is dif ficult to
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 extend to the trajectory planning for car-like robots ,
 because of the dynamic model dif ferences between a
 manipulator and a car-like robot .

 This paper presents a novel time-optimal motion
 planning strategy for a car-like mobile robot with
 kinematic constraints ,  operating in an environment
 cluttered with obstacles .  The method works with the
 original polygonal obstacles .  The main idea behind the
 method is in modifying the visibility graph for a point
 robot into a feasible visibility graph for the given
 dimensioned mobile robot with kinematic constraints ,
 and converting the feasible visibility graph into time a
 graph ,  from which the time-optimal path is chosen .  The
 strategy finds the time-optimal path considering of only
 straight line and circular arc segments .  The problem is
 solved in three stages :  (i) A reduced visibility graph for a
 point object is obtained .  (ii) The reduced visibility graph
 is converted into a feasible visibility graph by ruling out
 the paths which are not feasible for a robot with
 dimensions and nonholonomic constraints .  Here all paths
 for the robot are constructed by straight lines and
 circular arcs of the minimum turning radius of the robot .
 (iii) The A* algorithm is used to search the feasible
 reduced visibility graph to obtain a safe ,  time-optimal ,
 first time derivative smooth path .  The algorithm is
 computationally ef ficient and runs in polynomial time .

 2 .  REDUCED VISIBILITY GRAPH
 The first step of the proposed algorithm is to construct
 the reduced visibility graph for a point robot .  The
 concept of a reduced visibility graph arises in the context
 of shortest path planning for a point robot ,  for which the
 basic problem can be stated as follows :

 In a workspace  W  P  R 2 ,  there is a set of polygonal
 obstacles  O  5  h o i  :  i  5  1 ,  2 ,  .  .  .  n j .  Given an initial point
 q init ( x s  ,  y s )   and a goal point  q goal ( x g  ,  y g ) for a point robot ,
 find the shortest collision free path .

 The solution to this problem is well established . 3  It
 consists of constructing a visibility graph ,  containing the
 shortest path ,  which is found by searching using an
 optimization algorithm .

 For polygonal obstables ,  the visibility graph is
 constructed from the set of nodes consisting of  q init ,   q goal

 and all the obstacle vertices .  A link is a straight line that
 connects any two nodes and a visible link connects two
 nodes that are visible to each other .  Thus a visible link

 Fig .  1 .  A visibility graph (all lines) and a reduced visibility
 graph (thick lines) for a scene with polygonal obstacles .

 will not intersect any of the obstacles .  The visibility
 graph consists of all the visible links ,  and a reduced
 visibility graph is constructed from the visible tangent
 links .  It can be shown 3  that a non-tangent visible link will
 not be a part of the shortest path .

 Figure 1 shows the visibility graph and the reduced
 visibility graph for a particular example consisting of
 three polygonal obstacles .

 The concept of visible tangent links can be extended to
 arbitrary shaped obstacles .  Here the edges of the
 arbitrary shaped obstacles are represented by cubic
 splines .  The visible tangent links can then be determined
 by a single variable optimization scheme .

 Finding the shortest path for a point robot is
 computationally ef ficient .  Rohnert 3  presents an algorithm
 for computing the tangents between two convex polygons
 in  O (log  n 1  1  log  n 2 ) time ,  where  n 1  and  n 2  are the
 numbers of vertices of the two polygons ,  and the shortest
 path is computed in  O ( nk  1  n  log  n ) time ,  where  k  is the
 number of convex parts of the obstacles and  n  is the
 number of obstacle vertices .  Non-polygonal obstacles
 require iterative computations ,  and the computational
 time depends on the precision of determining the
 tangential points .

 3 .  FEASIBLE VISIBILITY GRAPH
 In this study the path for the dimensioned robot is found
 by locally modifying the reduced visibility graph for the
 point robot into a feasible visibility graph .  The
 modification involves moving the point path away from
 the vertices and edges of the obstables ,  in accordance
 with the algorithm presented .  The path modification
 algorithm depends on (i) the relative position between
 the point path and the obstacles ,  and (ii) the
 characteristics of the dimensioned robot .  The latter
 includes features such as configuration ,  turning radius ,
 manner of steering and kinematic constraints .  The
 modified reduced visibility graph ,  termed the feasible
 visibility graph ,  is then searched to yield the time
 minimum path for the dimensioned robot .  The path
 modification algorithm employs a steering model of the
 robot and minimum distance computations ,  and also
 satisfies the kinematic constraints on the robot .

 3 . 1  Robot steering model
 In this section a generalized steering model for a
 rectangular car like robot is presented .  A four wheel
 rectangular robot  R ,  which is 2 a  long and 2 b  wide ,  is
 considered .  A moving frame ,   F m  ,  is attached at the
 centroid of  R ,  Figure 2 .  The  x  axis of  F m   is along the
 main axis of the robot .  When the robot’s front and back
 wheel steering angles are  a   and  b   respectively ,  the
 coordinates of the robot’s instantaneous centre  O i  ,  with
 respect to  F m  ,  ( x o   and  y o ) ,  are given by

 x o  5  2
 l
 2
 S tan  a  1  tan  b

 tan  a  2  tan  b
 D

 y o  5 S  l
 tan  a  2  tan  b

 D  6  tan  a  ?  tan  b  (1)

 where  l  / 2 is the distance between  F m   and each the two
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 Fig .  2 .  The model of a moving robot .

 wheel axles .   a   and  b   are measured positive counter-
 clockwise from the robot’s main axis ,  and in practice will
 usually have opposite signs .

 Let  F  be a reference point on the robot’s main axis
 such that the velocity of  F  is along the main axis of the
 robot .  In the following sections ,  the motion of point  F
 will be used to specify the velocity of the robot .  For a
 robot steered by front wheels only ,  the reference point  F
 will be at the mid-point of the rear wheel axle .  The
 coordinates of  F  in frame  F m   are ( 2 x 0  ,  0) .

 The turning radius ,   r  ,  of the robot is given by  y o  ,  and
 it varies with  a   and  b  ,  (1) .  If there were no constraints
 on  a   and  b  ,  the robot could achieve any turning radius
 employing an appropriate choice of  a   and  b  .  However ,
 in practice ,  mechanical stops in the steering gear limit the
 range of  a   and  b  .  Let  a   and  b   be contained within the
 range  Ú g .  Then the minimum turn radius ,   r  ,  is given by
 r  min  5  l  / 2  tan  g  ,  when  a  5  2 b  5  g .

 Equation (1) represents a robot steered at both
 wheels .  It contains front wheel only steered robots
 ( b  5  0)   and back wheel only steered robots ( a  5  0) as
 special cases .  For both these cases ,   r  min  5  l  / tan  g .

 3 . 2 .  Nonholonomic kinematic constraints
 Consider a rectangular shaped mobile robot moving on
 flat ground ,  Figure 2 .  When the wheels are in pure
 rolling contact with the ground ,  the reference point  F
 describes a curve that is tangential to the main axis of the
 robot .  Hence the robot’s motion is constrained by :

 2 x ̊  sin  θ  1  y ̊  cos  θ  5  0  (2)

 where ( x ,  y ) are the coordinates of  F  relative to a
 globally fixed frame  X  - Y  and  θ   is the angle made by the
 robot’s main axis relative to the global  X  axis ,  Figure 2 .

 Equation (2) is a kinematic constraint which must be
 satisfied by the robot’s motion .  Further equation (2) is
 non-integrable and hence is a non-holonomic equality
 constraint .

 As mentioned previously ,  car-like robots in general
 have limited steering angles which imposes a lower
 bound ,   r  min ,  on the turning radius .  Since  v ,  the global
 velocity of point  F ,  is given by  v  5  r  3  θ ̊  ,  where  θ ̊    is the
 instantaneous angular velocity of the robot ,  it follows
 that

 v  $  r  min  3  θ ̊  ,  i . e .   x ̊  2  1  y ̊  2  2  r  2  min  θ ̊  2  $  0  (3)

 Condition (3) must also be satisfied by all configura-
 tions of the robot .  It is a non-holonomic inequality
 constraint .

 3 . 3 .  Minimum distance computations
 The algorithm presented finds a path for a point robot
 and then locally modifies this path to account for
 kinematic constraints and obstacle avoidance .  It is
 assumed that the geometry and the configuration of the
 obstacles are known .  Minimum distance computations
 between the obstacles ,  and between the point path and
 the obstacles are central to the path modification
 algorithm .  Such computations provide a measure of the
 robot’s free space relative to the selected point path .

 There are a number of possible algorithms for
 computing the minimum distance between two
 objects . 16 , 17  These algorithms are based on either linear
 or nonlinear programming ,  and involve recurrent
 searches which can be time consuming .  The computa-
 tional time depends on the total number of vertices
 between the two obstacles .  Further ,  the minimum
 distance between each pair of obstacles needs to be
 computed .

 The minimum distance between two polygonal
 obstacles will be either between two vertices or between
 an edge and a vertex ,  and hence can be obtained by
 minimum distance computations between two points and
 between a straight line and a point .

 The algorithm for minimum distance computations
 employed does not involve a recurring search .  In
 addition ,  the number of minimum distance computations
 is minimized ,  by restricting the regions where such
 information is computed . 1 6  This is achieved by dividing
 the obstacle set into various subsets relative to the point
 path in question .  The point path itself divides the
 obstacles into a left set  O l   and right set  O r ,  Figure 3 .
 Further ,  the linear segments  l i   of the point path can be
 used to divide the two obstacle sets into radial sets  O l

 i

 and  O r
 i   ( i  5  1 ,  2 ,  .  .  .  m ;  where  m  is the total number of

 linear path segments) ,  Figure 3 ;  overlapping obstables
 belonging to two radial sets .  The path modification

 Fig .  3 .  Obstalce groups divided by the path and the turn points
 of the path .

https://doi.org/10.1017/S0263574797000635 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000635


 550  Mobile robot

 algorithm requires only the following minimum distance
 computations :
 (i)  between  l i   and  O l

 i  <  O r
 i   and (ii) between  O l

 i   and  O r
 i  .

 Let the minimum distance between two obstacles be  D min

 and the minimum distance between  l i   and an obstacle be
 D #  min .  The minimum distances are computed by using ,

 D min ( … i  ,  … j )  5  min  i  … i … j  i  and  D #  min ( l i  ,  … j )  5  min  i  l i … j  i  ,

 where  … i   and  … j   are vertices of the relevant obstacles .
 Figure 4 indicates the minimum distances computed for a
 particular example .

 3 . 4  Feasible  y  isibility graph
 A feasible visibility graph (FVG) is defined as a reduced
 visibility graph which allows the dimensioned robot to
 travel while acoiding collisions .  Since the reduced
 visibility graph for a point robot does not provide a
 collision free path for a dimensioned robot ,  it has to be
 converted into a FVG ,  which can be searched for the
 time minimum path .

 In order to detect possible collision regions ,  the
 dimensions of the swept volume of the traveling robot
 need to be known .  Let a rectangle shaped robot  R ,  2 a
 long and 2 b  wide ,  move in a workspace  W  P  R 2 .  The
 robot  R  will sweep a certain width along its path .  When
 it moves along a straight line ,  its swept width is ,

 w s  5  2 b  (4)

 When it turns with steering angles  a   and  b  ,  at the
 front and back wheels respectively ,  its swept width
 w s ( a  ,  b  )   has the form ,  Figure 5 :

 w s ( a  ,  b  )  5  r  out ( a  ,  b  )  2  r  i n ( a  ,  b  ) ,  (5)

 where

 r  out ( a  ,  b  )  5 – S a  1  l
 tan  a  1  tan  b

 tan  a  2  tan  b
 D 2

 1 S b  1
 2 l

 tan  a  2  tan  b
 D 2

 r  i n ( a  ,  b  )  5
 2 l

 tan  a  2  tan  b
 2  b

 In the visibility graph the robot travels along straight
 lines and changes direction only at obstable vertices .
 Thus the visibility graph needs to be modified at obstacle
 vertices .  In addition ,  it also needs to be modified in
 regions where  D #  min ,  the minimum distance between a
 straight line segment of the visibility graph and the
 obstacles ,  is less than 2 b ;   D #  min  ,  2 b .

 Fig .  4 .  Minimum distances between obstacles in  O l
 i   and  O r

 i  .

 Fig .  5 .  Swept area of a robot  R .

 Once the positions where modifications are necessary
 have been identified ,  a check is made to see if
 modifications are possible .  Using the minimum distance
 between two obstacles ,  a collision free condition for the
 robot to pass between the two obstacles is ,

 D min  2  w s ( a  ,  b  )  .  0 .

 Thus for straight line segments ,

 D min  .  2 b  ( a  5  b  5  0)  (6)

 and at obstacle vertices

 D min  1
 2 l

 tan  a  2  tan  b
 2  b

 2 – S a  1  l
 tan  a  1  tan  b

 tan  a  2  tan  b
 D 2

 1 S b  1
 2 l

 tan  a  2  tan  b
 D 2

 .  0

 (for  a  ?  b  )  (7)

 Conditions (6) and (7) are algebraic expressions which
 are environmental holonomic constraints to be satisfied
 by the robot’s motion .

 The application of (6) is straight forward .  (7) contains
 two variables ,   a   and  b  .  Assuming that in practice ,  either
 b  5  0   (front wheel steering) or  a  5  0 (back wheel
 steering) or  a  5  2 b  5  0 (both front and back wheel
 steering) ,  then (7) can be used to solve for  a   (or  b  ) and
 hence it can be determined whether passage for the
 robot is possible .

 If (6) or (7) is not satisfied in any region of the reduced
 visibility graph ,  then all path segments in that region are
 eliminated .  In regions where (6) and (7) are satisfied ,  the
 reduced visibility graph is modified to yield the feasible
 visibility graph ,  FVG .

 The approach adopted is to modify the reduced
 visibility graph using circular arc segments .  That is ,  it is
 assumed that when the robot changes direction it does so
 with a constant steering angle ,  as determined by (7) .

 Once the steering angle is determined ,  the turning
 radius ,   r  ,  is found from (1) .  The radii of the inner and
 outer circles of the robot’s swept volume ,   r  in  and  r  out ,
 can then be found as outlined in this section .  The centre
 of the circular arc segment ,   C i  ,  is located a distance  r  i n

 away form the vertex ,  along the bisector of the angle
 between the two adjacent edges at the vertex .  The exact
 position of the centre depends on the free space used by
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 the swept volume .  The circular arc segment is drawn ,
 with radius  r   and centre  C i  ,  Figure 5 .  The circular arc
 path thus constructed will lead the robot to sweep the
 area between  r  i n  and  r  out ,  and if the area between  r  i n

 and  r  out  is free of obstacles ,  the robot motion is
 collision-free in this area .

 The FVG is completed by connecting consecutive
 circular segments with tangential lines .  The straight line
 segments of the FVG are checked for collisions ,  and are
 modified or rejected ,  as for the circular paths outlined
 above ,  until a collision free FVG is obtained .

 4 .  ROBOT TRAVEL TIME
 The feasible visibility graph consists of a series of
 connected path segments which are either straight lines
 or circular arcs .  The lengths of all the path segments of
 the FVG are known .

 In this investigation it is assumed that when the robot
 travels along any given path segment ,  it is either moving
 at its maximum speed ,  if this is attainable ,  or
 accelerating / decelerating at its maximum value .  Thus the
 speed-time curves for any path segment are as shown in
 Figure 6a or 6b .  The modulus of the non-zero slopes of
 Figure 6 will be equal to  a max ,  the maximum
 acceleration / deceleration limit of the robot .   …  1  and  …  3
 are the speeds at the beginning and end of the segment
 respectively .   …  2  is the maximum possible speed of the
 robot for the segment concerned ,  subject to the
 kinematic constraint (3) .

 Let the maximum speed of the robot along a straight
 line segment be  … m s  ,  and the maximum speed along a
 circular segment be  … m c ( r  ) ,  which is in general a function
 of  r  ,  the radius of the circular segment ,  and in general
 … m c ( r  )  #  … m s .  It is assumed that  … m c ( r  ) is known from
 the specification of the robot .  Hence  …  2  5  … m s   for a
 straight line segment and  …  2  5  … m c ( r  ) for a circular
 segment .  Further ,  for circular arc segments it is supposed
 that  …  1  5  …  3  5  … m c ( r  ) ,  i . e .  the robot travels the entire
 circular arc at its maximum speed .  For straight line
 segments ,   …  1  and  …  3  will be equal to the maximum speeds
 of the adjacent circular segments .  The exception to this is
 at the initial and goal points where  …  1  and  …  3  will be zero
 respectively .  If the segment is at the start or end of the
 path ,  then  …  1  or  …  3  will respectively be zero .  Thus  …  1  ,  …  2
 and  …  3  for any path segment are known .

 Fig .  6a .  A case where the maximum speed  …  2  is reached .

 Fig .  6b .  A case where the maximum speed  …  2  is not reached .

 It can be shown that if

 L i  .
 1

 2 a max

 (2 …  2
 2  2  …  2

 1  2  …  2
 3 ) ,

 then Figure 6a applies and the total time of travel for the
 segment

 T i  5  (2 …  2  2  …  1  2  …  3 ) / a max

 1  [ L i  2  (2 …  2
 2  2  …  2

 1  2  …  2
 3 ) / 2 a max ] / …  2  (9)

 and ,  if

 L i  #
 1

 2 a max

 (2 …  2
 2  2  …  2

 1  2  …  2
 3 ) ,

 then Figure 6b applies and

 T i  5  [ 4 2(2 L i a max  1  …  2
 1  1  …  2

 3 )  2  …  1  2  …  3 ] / a max  (10)

 Using (9) and (10) ,  a travel time for each path segment
 is found .  The travel time depends on the type of segment
 (straight line ,  circular or other) ,  the assumed speed
 characteristics ,  the length of the segment and its adjacent
 connectivity .  Features such as vehicle dynamics and the
 nature of the terrain covered are not considered in this
 study .  However these aspects may be included in this
 approach .

 5 .  SEARCHING FOR THE MINIMUM TIME
 PATH
 The FVG consists of feasible ,  collision free ,  first
 derivative smooth paths for the dimensioned car like
 robot .  The links of the FVG are either straight lines or
 circular arcs .  Since any connected path in the FVG is first
 derivative continuous ,  thus satisfying the non-holonomic
 constraint (4) .

 Past investigations have been mainly concerned with
 obtaining the minimum distance paths ,  where the cost
 function is the total distance traveled .  In this study the
 cost function is taken to be the total time of travel ,  from
 the start to the goal ,  along a path of the FVG .  By
 introducing (9) and (10) ,  the FVG is converted into a
 time graph ,  which is searched for the time minimum
 path .  The time spent in traveling path  P j   is ,

 T j  5  O n
 k 5 1

 T j k  (11)
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 where  T j k   is the time of travel for segment  P j k  ,  and  n  is
 the total number of segments of path  P j .

 The A* algorithm is employed to find the time
 minimum path with (11) as the cost function and  h ,  the
 heuristic function still being the distance to the goal .

 6 .  COMPUTER SIMULATIONS
 The motion planning strategy presented is implemented
 and tested for a variety of operating conditions ,  using
 computer simulations .  A wide range of obstacle shapes ,
 numbers ,  locations and robot models have been
 employed .  The algorithm generated collision-free motion
 for all cases tested .

 The results from a particular example consisting of 8
 polygonal obstacles is given in Figure 8 .  The objective is
 to move the robot from the start location (30 ,  30 ,  90 8 ) to
 the goal location (850 ,  550 ,  90 8 ) .  The robot model
 simulated has the following characteristics :
 length :  2 a  5  1 . 5 ;
 width :  2 b  5  0 . 8 ;
 the distance between the two axes :   l  5  1 . 3 ;
 the distance between the two wheels :   d  5  0 . 8 ;
 the steering angles for front and back wheels :
 2 45 0  ,  a  ,  45 0 ;   b  5  0 0 ;
 the maximum velocity and acceleration along a straight
 line path :   … m s  5  12 / sec and  a m c  5  50 / sec 2 ;
 the maximum velocity and acceleration along a circular
 path :   … m c ( r  )  5  … m c ( r  m a x )  5  8 / sec ;
 a m c ( r  m a x )  5  50 / sec ;

 The FVG generated by the algorithm is shown in
 Figure 7a .  The FVG is searched using the A* algorithm ,
 and the minimum time ,  first derivative smooth ,
 collision-free motion is shown in Figure 7b .  The total
 travel time is 74 . 6 seconds .

 The algorithm is tested on a number of cluttered
 environments ,  giving collision-free motions ,  and dem-
 onstrating its robust nature .

 7 .  DISCUSSION AND CONCLUSIONS
 An algorithm for minimum time first derivative smooth
 path motion planning for a rectangular car like robot
 subject to kinematic constraints ,  is presented .  The
 algorithm operates on the original obstacles without

 Fig .  7a .  Feasible visibility graph of a simulation for a car-like
 robot with limited 45 8  steering angle .

 Fig .  7b .  Final motion path of a simulation for a car-like
 robottraveling from  q init  to  q goal  in minimum time .

 needing to generate the robot’s configuration space .  The
 algorithm has three stages :  (i) The reduced visibility
 graph for a point robot is generated .  (ii) The reduced
 visibility graph is modified to a feasible visibility graph ,
 FVG ,  for the care like robot .  (iii) The FVG is searched
 for the minimum time path .

 The FVG consists of straight line segments and
 tangential circular arcs ;  thus any connected path in the
 FVG will satisfy the nonholonomic constraints acting on
 the robot .  Also all path in the FVG are first derivative
 continuous .

 The circular arc assumption also implies that the robot
 employs a constant steering angle when changing
 direction .  For a robot whose steering angle is controlled
 by a limit switch ,  this assumption is always valid ,  and the
 algorithm will generate the minimum time path among
 all smooth paths formed by straight lines and circular
 arcs .  The significance of this assumption for robots that
 can vary their steering angles continuously ,  needs to be
 investigated .  The algorithm can be made more general
 by using spline functions instead of circular arcs .

 The FVG is generated by employing minimum
 distance computations and the robot’s steering model .
 The FVG is then converted to an equivalent time graph
 based on the robot’s speed model ;  it is assumed that the
 robot travels at its maximum possible speed when it is
 not accelerating / decelerating at its maximum value .  The
 speed model does not include features such as robot
 dynamics and the nature of terrain traveled .

 The algorithm has been tested by computer simula-
 tions ,  and is shown to be computationally ef ficient with
 wide applicability .  The algorithm can be used directly in
 AGV motion planning .
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