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A body in nonlinear near-wall shear flow:
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Direct numerical solutions are described for flow past a body placed in an otherwise
uniform shear layer adjoining a wall. The study is associated with potential impact of the
body onto the wall. Steady two-dimensional flow solutions are calculated for an inclined
flat plate in particular, covering cases of zero wall velocity, positive wall velocity and
negative wall velocity, with the plate being at varying orientations and distances from the
wall. Substantial flow separation is found with reduced proximity to the wall or increased
plate incidence, caused partly by the cutting off of the mass flux in the gap between the
body and the wall as impact is neared. Other distinct flow characteristics that emerge
with increased local Reynolds number are the extent of the enhanced wake responses,
greatly condensed upstream influence near the leading edge, increased sensitivity to body
orientation, the pressure dominance in the total lift and moment on the body, new insight
into the complex flow structure and quantitative agreement with a recent viscous–inviscid
interaction analysis on scales.

Key words: particle/fluid flow

1. Introduction

The fundamental problem of the coupled interaction and movement of a fluid and
a submerged body has many scientific and industrial relevancies, especially when
considered within the local vicinity of a wall or channel. As such the motivational
background for this work is concerned with a number of scenarios: the effects of ice
crystals, lumps, shards or other bodies such as debris or dust within the boundary layer
on a wing (Gent, Dart & Cansdale 2000; Purvis & Smith 2016); the transport or removal
of debris and dust in a range of settings such as turbine blades; and further still to the
movement of drugs or thrombi in blood vessel networks or lung airways (Muller, Fedosov
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& Gompper 2014). In each of these scenarios the aim is to understand and either mitigate
or encourage the impingement or deposition of these particles on the local wall. One
such example that is of specific interest to us is the scenario relevant to aircraft icing,
a significant topic in aviation safety. As aircraft pass through convective cloud systems
they may be impacted by ice crystals or supercooled large droplets, which may cause
ice formations to accrete on key components such as engines, pitot tubes and wings. In
turn, the formation of ice may lead to mechanical inefficiency (Mason, Strapp & Chow
2006), or at worst a complete system failure (Bureau d’Enquêtes et d’Analyses 2012). As
a result it is important that the movement of such bodies is well understood. The following
computational investigations, alongside the analytical investigations of a recent paper by
Palmer & Smith (2020), aim to provide physical insight into the above scenarios as these
bodies near impact. Hence the work is to aid the understanding and prediction of the
nonlinear fluid motion around a body near the solid surface of a transport vehicle or other
moving solid surface or near a fixed vessel wall. Here the body is close to the wall surface
such that it is travelling through the near-wall uniform shear layer present within the larger
scale fluid flow on the vehicle or inside the vessel.

Many basic fluid dynamical issues arise when considering such fluid–body interactions.
In particular, there are several studies of fluid and body motions affecting each other in
near-wall shear flow with a single body or many bodies present for boundary layer flow
(Hall 1964; Einav & Lee 1973; Petrie et al. 1993; Wang & Levy 2006; Schmidt & Young
2009; Dehghan & Basirat Tabrizi 2014) and for channel flow (Portela, Cota & Oliemans
2002; Smith & Ellis 2010; Loisel et al. 2013; Smith & Johnson 2016). Laminar flow theory
is addressed in Smith & Ellis (2010) and Smith & Johnson (2016) whereas the works in
Hall (1964), Einav & Lee (1973), Petrie et al. (1993), Schmidt & Young (2009) and Loisel
et al. (2013) are mostly numerical or experimental on flow transition and those in Portela
et al. (2002), Wang & Levy (2006) and Dehghan & Basirat Tabrizi (2014) are concerned
with computations or experiments on turbulent fluid motion. Within these settings there is
interest in the generation of instabilities that may arise due to the fluid–body interactions.
A basic point is whether a body is attracted to or repelled away from a nearby wall when
nonlinear effects are significant, as seen in Gavze & Shapiro (1997), Frank et al. (2003),
Poesio et al. (2006), Yu, Phan-Thien & Tanner (2007), Loth & Dorgan (2009) and Kishore
& Gu (2010). The influence of the Reynolds number and other parameters on attraction
and repulsion are particularly investigated in Frank et al. (2003) and Poesio et al. (2006)
where it is found that either phenomenon can occur as the flow rate increases.

In addition, there have been several direct-computational investigations and experiments
in this area, over various different parameter ranges: Shao, Raupach & Findlater (1993),
Ladd (1994), Foucaut & Stanislas (1997), Willetts (1998), Diplas et al. (2008), Eldredge
(2008), Schmidt & Young (2009), Loisel et al. (2013), Wang & Eldredge (2015) and Smith
et al. (2019). Further issues surround the possible impacts and clashes between a moving
body and a wall and the understanding of separations and eddy formations in the nearby
flows either on the body or on the wall, cf. Smith & Ellis (2010), Smith & Wilson (2013),
Smith & Johnson (2016), Smith (2017), Smith & Palmer (2019) and Palmer & Smith
(2019). Notably, these issues require inclusion of nonlinear effects. The understanding of
scales and parametric effects governing the interactive behaviour is also important.

In the present paper we focus on the steady fluid flow past a comparatively small body
which lies close to a solid surface. Inertial and viscous forces are comparable, as the typical
Reynolds number based on body length and incident shear has a moderate value, lying in
the range 10 to 1000. This incident flow is taken to be a uniform shear flow parallel to
the wall (and in reality would be generated by a larger scale configuration) but in addition
there is a constant contribution from the wall velocity. Thus a relative translation of the
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body with respect to the solid surface or wall is admitted. For example, this may be in the
sense of the body moving parallel to a fixed solid surface or of the solid surface moving
past an otherwise fixed body. Without the presence of the body, the unidirectional local
shear and constant flow gives a simple exact solution of the Navier–Stokes equations. The
body considered is a flat plate of finite length that is inclined to the wall direction.

The novelty here is that we address numerical solutions of the full Navier–Stokes
equations for a nonlinear fluid–body interaction and compare with analysis. No other such
study has been conducted as far as we know. The works closest to our study are based on
high-Reynolds-number theory, namely Palmer & Smith (2019) on a linearised interaction
taking place at the edge of a wall layer and the recent paper by Palmer & Smith (2020)
on nonlinear interaction inside a wall layer, the latter being the only nonlinear analysis of
its kind to date. We aim to provide a qualitative and quantitative comparison at moderate
Reynolds numbers with the nonlinear asymptotic theory for a fluid–body interaction. The
major reasons for this investigation on such a basic near-wall flow problem are thus: it
describes a general situation near a wall, for example in a boundary layer or channel
flow; there has been little work done previously on the effects of increasing inertia, of
the gap width between a body and the wall and of the body inclination (it is noted that any
small gaps considered in this study are such that the continuum approach still applies, no
significant surface forces act and there is no relative slip velocity at a solid surface); flow
separation at moderate Reynolds numbers is of considerable interest given that asymptotic
analyses by Smith & Servini (2019), Palmer & Smith (2019) and Palmer & Smith (2020)
point to separation occurring on the body or on the wall; and, to repeat, we seek qualitative
and quantitative comparisons with asymptotic theory.

The study examines the effects of varying the off-wall distances of the leading and
trailing edges of the flat-plate body for a range of Reynolds numbers. The representative
Froude number is large. We have in mind the plate being on the verge of impact upon the
wall (with the unsteady impact process being examined in detail in Palmer & Smith (2020),
where the body is free to rotate and move normally and parallel to the wall). Here, the
fluid flow within the near-wall viscous–inviscid layer surrounding the body is investigated
through direct numerical simulations of the Navier–Stokes equations. By contrast, Palmer
& Smith (2019) consider a body in the outer reaches of such a viscous layer where the
body thickness is small relative to the viscous thickness. The typical near-wall behaviour
in the present situation is very sensitive within the nonlinear viscous wall layer. Cases of
interest have the velocity of the body relative to the wall being positive, zero or negative
when measured in the streamwise direction; a positive relative velocity for instance yields
an upstream-moving wall in the frame of the body and an incident velocity profile which is
negative at the wall. Corresponding studies include Inoue (1981), Van Dommelen & Shen
(1983), Degani, Walker & Smith (1998) and Labraga et al. (2007). Herein, both upstream
and downstream moving bodies are investigated as well as stationary ones.

Section 2 outlines the canonical two-dimensional problem and the aim of this work.
Section 3 provides details of the computational approach. In § 4 the results are discussed
where it is found that flow separation is a key property. Also, the wake effect is substantial
as the Reynolds number increases whereas upstream influence falls, in line with the
emergence of a so-called Euler region (Smith & Ellis 2010; Smith 2017; Palmer & Smith
2019; Smith & Palmer 2019). The wake velocity profiles thus affect the flow in the gap
between the body and the wall. Further significant properties explored in § 5 are the lift,
drag and moment on the body as well as the effects of increased wall velocity, increased
inclination and increasing Reynolds number: a distinguished scaling is identified relating
the wall pressure to the local Reynolds number. Conclusions are presented in § 6, including
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discussion of the significance and novelty of the work and its relation to the problems
identified in this introduction.

2. The canonical two-dimensional problem

The problem to be investigated relates to the local vicinity of a body near a wall where
fluid is flowing along the effectively flat wall surface, such as in a close-up view on an
airfoil or in a vessel, as in figure 1. The incident velocity gradient λ̄ in the shear flow
close to the wall is prescribed (where the bar notation denotes a dimensional quantity).
The working below is for the steady flow around a comparatively thin, short, flat body
that is located near the wall, as expressed by non-dimensional flow velocities (u, v),
corresponding Cartesian coordinates (x, y) and pressure p. The corresponding dimensional
parameters are Ū(u, v), L̄(x, y) and ρ̄Ū2p respectively, where Ū is the local representative
fluid velocity taken to be Ū = L̄ λ̄, where L̄ is the body length and ρ̄ is the uniform density
of the incompressible fluid. The velocity components (u, v), pressure p and coordinates
(x, y) are generally of order unity in the current local flow close to a wall located along
the axis y = 0. The local Reynolds number is given by R = ŪL̄/ν̄ = L̄2λ̄/ν̄ where ν̄ is the
uniform kinematic viscosity of the fluid.

The body is generally translating upstream or downstream relative to the wall at a
non-dimensional velocity comparable with the flow velocity u such that uw (the given
wall velocity relative to the body) is generally of order unity. With the problem limited
to what happens in the local vicinity of the body, near the wall, the flow conditions far
upstream are simply those of uniform shear flow, such that u = y + uw and v = 0, with
zero pressure, similar to those in Bhattacharyya, Mahapatra & Smith (2004) and related
papers. The velocity of the body relative to the wall may be zero (figure 1a), positive
(figure 1b), or negative (figure 1c) when measured in the streamwise direction. The body’s
location is fixed at a representative order-unity normal distance from the wall with the
leading edge gap denoted β1 and trailing edge gap β2. Note that the origin is placed along
the lower wall and aligns with the leading edge of the body.

The task is to solve numerically the steady incompressible non-dimensional
Navier–Stokes equations about the body and between the wall and the body

∇ · u = 0, (2.1)

(u · ∇) u = −∇p + ∇2u
R

. (2.2)

The boundary conditions are

u = uw, v = 0 at y = 0, (2.3)

u = v = 0 at y = f +(x), f −(x), (2.4)

u ∼ y + uw, v → 0, p → 0 in the far-field. (2.5)

Thus (2.3) imposes the conditions of no relative slip at the wall, while (2.4) represents
the no-slip requirement on the respective upper and lower surfaces f +, f − of the body.
Here, (2.5) applies at large distances, including the incident shear effect far upstream and
downstream.

The aim is to determine the velocities and pressure in the flow past and between the
body and wall, in the presence of a potentially zero or non-zero wall velocity u(x, 0) = uw.
Hence changes to the steady flow around the body are studied as the distance from the wall,
the orientation and the Reynolds number R are varied. As such a range of configurations for

915 A35-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.92


A body in nonlinear near-wall shear flow: numerical results

Solid wall

Body length, l = 1

u = y

x

y

Not to scale

β1 β2

u = y + uw, uw > 0 u = y + uw, uw < 0

(a)

(b) (c)

Figure 1. Sketch of the body situated near the wall within uniform shear flow parallel to the wall with the
typical gap width of O(1). (a) Zero wall velocity relative to the body. (b) Positive wall velocity relative to the
body. (c) Negative wall velocity relative to the body.

different β1, β2 and R are evaluated in this paper to understand how viscous and inviscid
effects close to the wall affect the developing flow structure and thus lead to nonlinearity
in the flow solution with flow separation along the plate, the development of eddies in the
flow, significant wake effects and upstream influence.

3. Direct numerical simulations

The direct numerical simulations were carried out in the latest release of OpenFOAM (at
the time of performing the analysis version 1812) from OpenCFD Ltd. This is an open
source computational fluid dynamics software that possesses a wide range of features and
may be used to solve a variety of complex fluid problems. OpenFOAM’s built in solver
simpleFoam was used to calculate the fluid flow about the plate. This is a steady-state
solver that uses the SIMPLE (semi-implicit method for pressure linked equations)
algorithm to produce solutions for incompressible flows that may also include turbulence
(Patankashar 1980). Briefly, the SIMPLE algorithm follows a segregated solution strategy
in which each of the quantities that describe the flow (the velocity, pressure and, where
appropriate, variables that characterise turbulence) are solved iteratively in a sequential
manner until the solution converges.

In seeking to understand how the flow structure about a single flat plate positioned
near a straight wall develops, several configurations are of interest. The first quantity
is the distance of the leading edge of the plate from the wall denoted β1 and shown
in figure 1(a). The aim is to understand how the flow structure upstream, around and
downstream of the plate evolves as the plate approaches impact with the wall. As such three
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scenarios are considered with β1 = 0.1, 0.05 and 0.01 respectively. The second quantity
of interest is the relative wall velocity. For each of the above scenarios, uw may be positive,
negative or zero hence three values are considered, uw = 0.1, 0 and −0.1, to gain an initial
understanding of the differences in each scenario. In later analysis in this paper larger
values of uw are considered as prompted by the earlier results. The third parameter is the
inclination of the plate relative to the wall. For each fixed β1 this is defined by β2 the
distance of the trailing edge from the wall. Within the initial analysis presented in the
next section this angle is fixed for each case such that β2 = 0.1 + β1. Later, plates of
greater inclination are considered to understand further the effect of increased steepness
on the flow characteristics. Finally, the last quantity of interest is the Reynolds number.
Since locally both U and L are of order unity, the Reynolds number is in effect R = 1/ν,
such that the uniform kinematic viscosity of the fluid is inversely proportional to the
Reynolds number and may be varied to investigate different scenarios. Here again three
main scenarios have been addressed: R = 10, 100 and 1000 (although because of space
considerations below we mostly show results only for R = 10 and 1000).

Regarding the meshes, the left and right far fields are set ten body lengths away
from the leading and trailing edge of the body, with the upper far field set five and
a half body lengths away from the middle of the body. Through several iterations
of the solution and varying these far-field distances, these values were found to be
far enough from the body to allow the solutions and interactions to fully develop
without any substantial boundary effects. The coarseness of the mesh also varied
throughout the solution with the mesh refining as the body is approached (scaling
by a factor of 1/100) providing greater accuracy in regions where the flow dynamics
induced by the presence of the body is most significant and complex. The boundary
conditions used are as follows: at the upstream edge of the domain we set u =
y + uw and ∂p/∂x = 0, while at the downstream edge ∂u/∂x = 0 and p = 0; at
the upper edge u = ymax + uw with ∂p/∂y = 0 and at the wall u = uw with v = 0;
on the body u, v are zero. Here typically ymax = 5.5 + β1, where β1 is the leading edge gap
between the body and the wall, and the streamwise edges were at x = −10.5 and 10.5. Of
note the zero gradient condition for pressure (∂p/∂n = 0 where n is the normal of the wall
face), zeroGradient in OpenFOAM, used here is appropriate due to the coupling of the
velocity and pressure in the SIMPLE algorithm and is applied in the pressure correction
step. In particular, when u is known on the boundary, there will be no velocity correction
and so the gradient of the pressure correction p′ normal to the boundary must be zero
(Patankar & Spalding 1972). This is the standard approach when applying the SIMPLE
algorithm. Note that the results presented below are post-processed to give zero pressure
at the inlet for a clearer comparison of the change in pressure throughout the domain in
each scenario.

The mesh resolution was also assessed prior to the full numerical study to ensure that
only acceptably small mesh-related effects or inaccuracies are present in the results. To
this end a quantitative comparison of results from two meshes (a finer mesh with 1 086 240
cells and a coarser mesh with 271 560 cells) for three different cases of Uw, with β1 = 0.05
and R = 1000, was carried out. This value of β1 is the middle of the three scenarios
considered later (β1 = 0.1, 0.05 and 0.01) and as such portrays flow characteristics seen
in the two extreme cases and importantly with the diminishing wall gap. In addition,
R = 1000 is the highest Reynolds number modelled in the investigation and is therefore
the most computationally difficult, requiring suitably refined meshes. For uw = 0.1, 0 and
−0.1 the comparison showed errors over the entire wall pressure solution of 0.335 %,
1.33 % and 1.20 % respectively, all of which are felt to be quantitatively insignificant.
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Given this, we used the coarser mesh set-up due to the gain in computational time
and power. The testing process provides confidence that the mesh resolution used is more
than sufficient for the presented results.

In the next section results for different β1, uw and R (as detailed above) are presented.
Here, discussion focuses on how changes in these quantities affect the development of
eddies in the flow, may lead to significant wake effects and can change the upstream
influence of the plate. Five main aspects of the fluid flow are pertinent: the streamlines; the
velocity profiles above and below the plate, upstream of the plate and in the plate’s wake;
and the wall pressure across the length of the domain. The results indicate how viscous
and inviscid effects influence the developing flow structure as wall impact is neared.

4. Numerical results

There are many parameters of interest both for fundamental fluid dynamics and for the
applications. We focus primarily on the effects of varying Reynolds number, the wall
velocity and the leading edge gap with a fixed inclination. Section 4.1 discusses the
numerical solutions for the streamlines followed by § 4.2 on the velocity profiles and
pressures. Here the main distinct flow features are to be explored qualitatively or otherwise
through the results, while specific quantitative comparisons are made in § 5 especially
concerning the influence of increasing Reynolds number.

4.1. Streamlines
Considering three different scenarios, where the wall velocity is taken to be positive, zero
and negative respectively, we investigate below how and when flow separation and reversal
occur and eddies form about the body depending on the gap size and Reynolds number.
Streamline plots about the body for uw = 0.1, 0 and −0.1 respectively, with β1 = 0.01, are
shown in figure 2(a–f ) for R = 10 and 1000. While the former case is relatively benign, by
contrast the R = 1000 case is of much interest. The streamlines of the flow solutions and
directional arrows for the flows help to illuminate the flow structure and give a first insight
into the results.

Firstly, considering uw = 0.1 in figure 2(a) (R = 10) and 2(b) (R = 1000), flow reversal
is seen between the plate and wall with a clear eddy forming towards the trailing edge
in the gap and becoming more significant with increased Reynolds number. In addition,
the influence of the wake can be seen to develop with increased Reynolds number both
downstream and under the body. The general trend for the positive wall velocity scenario
is that for decreasing gap size, flow reversal becomes more likely and dominant within
the underbody region. As the Reynolds number increases, for larger gaps an accelerating
jet forms between the plate and the wall yet disappears as the gap closes and the mass
flux is on the verge of being cut off. In addition, for larger Reynolds number the upstream
influence of the plate decreases, whilst the wake effects are delayed and become more
significant downstream in light of the developing eddy.

Secondly, for uw = 0 in figure 2(c) (R = 10) and 2(d) (R = 1000), an eddy develops
just off the trailing edge of the body, and of a slightly larger size in the R = 1000 case.
A similar trend to that of positive uw is seen with increased flow reversal, nonlinearity
and wake effects with decreasing gap size and larger Reynolds number respectively. The
main difference is that over this parameter range the effect of separation remains near the
vicinity of the trailing edge, rather than throughout the gap, and does not have a significant
influence upstream of it.
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(a)

(b)

(c)

(d)

(e)

( f )

Figure 2. Example of the fluid flow for a plate in uniform shear flow for β1 = 0.01, (a) R = 10 for uw = 0.1,
(b) R = 1000 for uw = 0.1, (c) R = 10 for uw = 0.0, (d) R = 1000 for uw = 0.0, (e) R = 10 for uw = −0.1, ( f )
R = 1000 for uw = −0.1.

Thirdly, when uw = −0.1 as in figure 2(e) (R = 10) and 2( f ) (R = 1000), two eddies
are seen, one ahead of the body and one behind the body. Depending on the gap size the
flow above and below the body behaves differently. For a larger gap, the flow beneath the
plate is largely negative, with the positive flow reversing within the gap as well as ahead
of the plate. When the gap decreases, the mass flux begins to be cut off, causing the flow
to turn and induces a significant positive flow close to the plate. Nonlinear effects are once
again significant throughout the gap region. Hence an eddy between the plate and wall
forms and flow reversal now causes the negative velocity to become positive beneath the
plate. As the Reynolds number increases the length scale of the upstream effect reduces
whilst that of the wake effect increases.
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Figure 3. Velocity profiles underneath and on top of the plate taken at various points for uw = 0.1. Flow
reversal is seen along the plate as the leading edge gap, β1, decreases.

4.2. Velocity profiles and pressures
Studied here are three different scenarios in which the leading edge gap is varied (β1 =
0.1, 0.05, 0.01) with a fixed relative trailing edge gap (β2 = β1 + 0.1). For each case the
wall velocity and Reynolds number are varied, uw = 0.1, 0, −0.1 and R = 10, 100, 1000.
Plots for R = 100 are not shown.

To begin, the underbody velocity profiles are considered with the results presented in
figures 3–5. In figure 3, where the wall velocity uw = 0.1, for the largest gap width β1 =
0.1 (top row of results), as the Reynolds number increases the velocity in the gap under
the body also increases. The fluid undergoes an acceleration as it is squeezed between the
plate and the wall forming an accelerating jet. At the trailing edge this effect diminishes
as the developing wake begins to interact with the fluid flow in the gap. Above the body
the velocity profiles tend towards the outer linear velocity with increasing y, which is
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Figure 4. Velocity profiles underneath and on top of the plate taken at various points for uw = 0. An eddy
forms on the wall as the leading edge gap, β1, becomes smaller.

seen in all cases for figures 3–5. As the gap decreases, the fluid continues to undergo an
acceleration under the body close to the leading edge, but this becomes less pronounced
throughout the rest of the underbody region. For β1 = 0.05 the developing wake has a
greater influence near the leading edge, especially for the lower Reynolds number, with
greater potential for flow reversal seen close to the trailing edge. As β1 decreases further
the closing of the gap begins to cut off the mass flux beneath the body, inducing flow
reversal there. For each value of R, the onset of flow separation occurs close to the leading
edge, around x = 0.06, and fills the entire region under the body. This indicates that a
considerable eddy is forming between the plate and the wall. As would be expected, the
results here and in the rest of the present section are consistent with the streamline plots
of the previous section.
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Figure 5. Velocity profiles underneath and on top of the plate taken at various points for uw = −0.1. Flow
reversal becomes more prominent further along the body as the leading edge gap, β1, decreases. An eddy is
also forming ahead of the leading edge in most cases.

Similar trends are seen in figure 4 for uw = 0; however, flow reversal is now seen in
the β1 = 0.1 case when the Reynolds number is low. In each case with flow reversal in
figure 4, separation occurs closer to the trailing edge and does not extend as far into the
underbody gap. Hence owing to the lower velocities under the body, the developing wake
has a greater influence on the flow structure near the trailing edge.

For wall velocity uw = −0.1 the velocity profiles in figure 5 are markedly different. To
understand when flow reversal occurs in these scenarios we note that the far-field velocity
has u ≤ 0 for y ≤ 0.1 and u > 0 for y > 0.1. Starting with β1 = 0.1 and R = 10, the body
is stationed at the cusp of the change in velocity direction, y = 0.1. Flow separation is
shown from the x = 0.24 station onwards under the body, with the velocity remaining
negative for values of y > 0.1 in the underbody gap to the trailing edge. As R increases,
separation persists, but it is less prominent towards the body’s leading edge, moving closer
towards the trailing edge. For β1 = 0.05 and R = 10, flow reversal has reduced within
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Figure 6. Velocity profiles upstream of the plate’s leading edge for uw = 0.1.

the majority of the underbody gap. Above the body towards the leading edge, however,
the velocity has become positive for y < 0.1 indicating a reversal in the flow ahead of the
body. The mass flux is again beginning to be cut off under the body as the gap reduces
such that the flow is squeezed through the small gap, and hence an eddy begins to form (the
precise nature of which will be clearer in the subsequent upstream analysis). Examining
the underbody velocity at x = 0.9 (not included) marginal reversal of the flow is seen
close to the underside of the body indicating that an eddy is forming off the trailing edge.
This is due to the negative flow under the body undergoing a reversal as it interacts with
the developing wake (this will become clearer in the later wake analysis). Overall, as R
increases there is a marginal change in the velocity values, but the previously described
trends prevail. For β1 = 0.01, separation is more significant under the body as the gap
closes off the mass flux further with positive velocity values occurring around x = 0.5.
The reasons are as above, with the closing gap turning the flow back along the plate.
Given the location of the reversal near the trailing edge and close to the plate an eddy
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Figure 7. Velocity profiles upstream of the plate’s leading edge for uw = 0.

is forming in the wake. An eddy is also seen developing ahead of the leading edge with
u > 0 for y < 0.1.

Figures 6–8 present the upstream influence of the body on the fluid for uw = 0.1, 0
and −0.1 respectively. From figure 6, for β1 = 0.1 and uw = 0.1, the fluid underneath
the body (y < 0.1) undergoes a mild acceleration close to the wall at each x station
before decelerating as the underside of the plate is approached. Above the plate the fluid
accelerates to the far-field velocity as the distance from the plate increases. With larger
Reynolds number the profiles further upstream become more linear indicating a reduced
upstream influence, whilst the acceleration of the fluid in the leading edge region is
amplified as the leading edge is approached. When β1 is decreased similar behaviour
is seen, although the amplitude of the plate’s upstream influence further reduces. For
β1 = 0.01 the acceleration below the leading edge is no longer seen which is expected
due to the closing gap. The velocity profiles now more closely resemble those of the far
field.
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Figure 8. Velocity profiles upstream of the plate’s leading edge for uw = −0.1.

In figure 7 a similar dynamics is seen with the upstream influence again reducing with
Reynolds number and gap size. Interestingly for decreasing β1 the upstream influence is far
less significant in this scenario even close to the body. For β1 = 0.01 the velocity profiles
again closely resemble the shear flow of the far field.

When the wall velocity uw = −0.1, in figure 8, there is an initial, mild upstream
influence from the body for the largest gap size which again diminishes with larger R.
In contrast to the previous scenarios, decreasing the gap width leads to increased upstream
influence. For R = 10, β1 = 0.05 flow reversal is seen around y = 0.08 with the effects felt
further upstream. This continues to be seen for marginally larger y values as R increases
indicating the trend towards reduced upstream influence with R. Finally, with β1 = 0.01
the flow reversal is more pronounced upstream of the leading edge. The above results
corroborate the observations from the relevant underbody profiles with an eddy forming
ahead of and above the plate’s leading edge.
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Figure 9. Velocity profiles of the plate’s wake for uw = 0.1.

Presented in figures 9–11 are the wake developments for each case. For figure 9, overall
whilst R increases the extent of the downstream wake effect also increases. When the gap
between the plate and the wall is large, there is greater variation in the velocity profiles for
lower R. Having undergone a deceleration below the plate, the flow begins to accelerate
back towards the far-field shear flow. However, for larger R values this acceleration is
markedly less such that the wake and its effects persist further downstream of the trailing
edge (as shown by the bunching of the velocity profiles). At the highest R studied the
jet effect and the acceleration of the fluid (shown in figure 3) now continue through to
the trailing edge, and so the wake development is delayed further downstream. As the
gap size decreases, this trend in enhanced wake effects continues with the downstream
velocity profiles showing decreasing variation with increasing R. Hence, for β1 = 0.01
where separation occurs below the plate and flow reversal is significant, flow reversal
dominates in the wake far beyond the trailing edge. Decreasing wall gap leads to significant
wake effects and eddies forming under and beyond the plate, with effects beginning close
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Figure 10. Velocity profiles of the plate’s wake for uw = 0.

to the trailing edge and penetrating further downstream with increased R. Since the flow
reversal occurs in the middle of the gap an eddy sits between the plate and wall. Of further
interest, in each scenario, as the x distance from the trailing edge increases the velocity
profiles satisfactorily approach the far-field ones as expected.

In figure 10, where uw = 0, the same trend is seen in each case; however, separation is
seen when β1 = 0.1 as well, close to the trailing edge of the plate. Interestingly, here the y
values indicate that the eddy is forming along the wall. In addition, from the cases where
β1 = 0.05 and β1 = 0.01, as R is increased the eddy moves further along the wall, away
from the body, due to the accelerating fluid jet between the plate and the wall delaying
the onset of the wake. So again, with a decreasing gap, flow reversal dominates the wake,
having a greater effect with higher R. Further downstream of the trailing edge the velocity
profiles approach the far-field ones for each value of R and β1.

Whilst a similar trend continues in figure 11 where uw = −0.1, there are several notable
differences depending on the size of β1. Firstly, in the cases where β1 = 0.1, we see that
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Figure 11. Velocity profiles of the plate’s wake for uw = −0.1.

u < 0 for y > 0.1 beneath the plate. Here, the dynamics noted for figure 5 is seen to persist
into the wake, with flow reversal occurring further downstream with increasing R and
being present further into the wake. This helps to confirm the earlier observation that
an eddy is forming off the trailing edge as the flow under the body interacts with the
developing wake. The presence of this developed wake eddy leads to the flow beneath
the body becoming almost wholly negative (reversed). Secondly, however, as the body is
placed closer to the wall, the flow reversal near the leading edge (previously noted due to
the closing of the mass flux) also persists into the wake. As before, in each scenario the
velocity profiles approach the far-field ones further downstream.

Plots for the wall pressure across the length of the domain and on top of the body are
presented in figures 12–14. Beginning with the case for uw = 0.1, figure 12(a), several
features stand out for increasing R. Initially, a quite localised jump in pressure is seen
clearly in line with the leading edge of the plate for R = 10, which then diminishes as
R increases. In addition the magnitude of wall pressure decreases with R as expected.
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Figure 12. Plot of pressure for uw = 0.1, (a) along the length of the lower wall, (b) along the upper surface of
the body, blue: R = 10, red: R = 100, yellow: R = 1000.
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Figure 13. Plot of pressure for uw = 0.0, (a) along the length of the lower wall, (b) along the upper surface of
the body, blue: R = 10, red: R = 100, yellow: R = 1000.
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Figure 14. Plot of pressure for uw = −0.1, (a) along the length of the lower wall, (b) along the upper surface
of the body, blue: R = 10, red: R = 100, yellow: R = 1000.
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Concerning flow separation the magnitude and sign of the pressure gradient are important.
In each of the β1 = 0.1 cases, a favourable pressure gradient persists under the body.
An adverse pressure gradient continues into the wake but in these cases the slope is not
too steep. As β1 decreases, however, the pressure minimum moves towards the leading
edge of the plate, creating a sharper shorter region of favourable pressure gradient and
introducing a significant adverse pressure gradient under the body which becomes more
pronounced with decreasing β1. The trend in the development of the adverse pressure
gradient beneath the body with R and β1 confirms the above observations regarding when
and where flow separation occurs beneath the body and the increased flow reversal within
the wake.

Regarding overbody pressure for uw = 0.1, figure 12(b), as the wall gap reduces the
magnitude of the pressure also reduces. In addition, for increasing Reynolds number
the pressure reduces further across the length of the body tending towards zero. Notably,
the values seen here are typically an order of magnitude less than the below wall pressure
as expected.

Figure 13(a), where uw = 0, displays the same trend for varying R and β1. However, now
the favourable pressure gradient is seen over the majority of the body for decreasing β1,
yet with an increasingly steep adverse gradient near the trailing edge and in the wake.
This corroborates the observations above. Regarding overbody pressure for uw = 0.0,
figure 13(b), the same trends of reduced wall gap leading to reduced overbody pressure
and increased Reynolds number reducing the pressure further across the body are seen.
The values are again an order of magnitude less than the below wall pressure.

Finally in figure 14(a), where uw = −0.1, the trends seen in flow separation and reversal
are reflected in the behaviour of the wall pressure for increasing R and decreasing β1. For
β1 = 0.1, the pressure is favourable under most of the body whereas in the wake (x ≥ 1) a
significant adverse gradient is introduced. With increasing R, the gradients remain largely
favourable in x beneath the extent of the body. For β1 = 0.05 and β1 = 0.01, similar trends
to figures 12 and 13 are seen in that there is a strong adverse gradient just after the leading
edge but a significant favourable gradient below the majority of the body. Ahead of the
body (x ≤ 0) there are also small gradients, in the region of flow reversal there, a finding
which agrees with the upstream dynamics and flow reversal seen ahead of the body in
figure 8 as discussed earlier in this section. In figure 14(b), uw = −0.1, the upperbody
pressure is very small indeed, remaining relatively close to zero for all cases.

5. Further properties

The additional features requiring consideration here are the lift, drag and moment exerted
on the given body, as described in § 5.1 below, and the effects of varying the body
inclination and the velocity of the wall as well as details of the dependence on Reynolds
number which are explored in § 5.2 below.

5.1. Lift, drag and moment
Tables 1–3 show the results for the lift, drag and moment on the body. These are of basic
fluid-dynamical concern as well as application. In the three uw cases, the sizes of the
drag, lift and moment values increase with the smaller wall gap, and reduce with larger
Reynolds number as expected (though this trend is less pronounced in the uw = 0 case).
Of particular interest, the lift is an order of magnitude larger than the drag in each run
across each of the three cases, which is in line with the relevant asymptotic analysis in
Palmer & Smith (2020).
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Drag Lift Moment

β = 0.1, R = 10 0.03674 −0.35533 −0.02914
β = 0.05, R = 10 0.09564 −0.94683 0.02965
β = 0.01, R = 10 0.52013 −5.15943 0.96713
β = 0.1, R = 100 0.00373 −0.03480 −0.00187
β = 0.05, R = 100 0.01013 −0.09939 0.00430
β = 0.01, R = 100 0.05306 −0.52605 0.09927
β = 0.1, R = 1000 0.00203 −0.02024 0.00230
β = 0.05, R = 1000 0.00211 −0.02072 0.00146
β = 0.01, R = 1000 0.00655 −0.06490 0.01135

Table 1. Drag, lift and moment acting on the body for uw = 0.1 with varying wall gap and local Reynolds
number.

Drag Lift Moment

β = 0.1, R = 10 0.01132 −0.10584 −0.02639
β = 0.05, R = 10 0.01514 −0.14698 −0.02233
β = 0.01, R = 10 0.02154 −0.21443 −0.00947
β = 0.1, R = 100 0.00134 −0.01198 −0.00179
β = 0.05, R = 100 0.00204 −0.01959 −0.00128
β = 0.01, R = 100 0.00286 −0.02838 0.00042
β = 0.1, R = 1000 0.00084 −0.00825 0.00062
β = 0.05, R = 1000 0.00075 −0.00733 0.00031
β = 0.01, R = 1000 0.00087 −0.00857 0.00070

Table 2. Drag, lift and moment acting on the body for uw = 0.0 with varying wall gap and local Reynolds
number.

Drag Lift Moment

β = 0.1, R = 10 −0.01461 0.14912 −0.02340
β = 0.05, R = 10 −0.06595 0.65921 −0.07400
β = 0.01, R = 10 −0.47696 4.73001 −0.98426
β = 0.1, R = 100 −0.00115 0.01194 −0.00163
β = 0.05, R = 100 −0.00625 0.06250 −0.00686
β = 0.01, R = 100 −0.04767 0.47274 −0.09846
β = 0.1, R = 1000 0.00014 −0.00129 0.00010
β = 0.05, R = 1000 −0.00045 0.00453 −0.00049
β = 0.01, R = 1000 −0.00489 0.04846 −0.01007

Table 3. Drag, lift and moment acting on the body for uw = −0.1 with varying wall gap and local Reynolds
number.

5.2. Varying inclination; increasing wall velocity; influences of Reynolds number
Taking the preceding results together, three outstanding questions now need investigating
further. Throughout the paper the trailing edge gap has been defined as β2 = β1 + 0.1;
however, given the significant effect that the leading edge gap has on flow reversal it is
worthwhile investigating how the size of β2 influences the fluid flow. Figure 15 presents
the wall pressure for uw = 0.1 with β1 = 0.01 and R = 1000, but now with three different
trailing edge gaps, β2 = 0.11, 0.21 and 0.31, where β2 = 0.11 is the same as the previous

915 A35-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.92


A body in nonlinear near-wall shear flow: numerical results

0.10

0.05

–0.05

–0.10

–0.15

–0.20

–10 –5 0 5 10

0

0.10

0.05

–0.05

–0.10

–0.15

–0.20

–0.25

–10 –5 0 5 10

0

0.10

0.05

–0.05

–0.10

–0.15

–0.20

–10 –5 0 5 10

0

W
al

l 
p
re

ss
u
re

W
al

l 
p
re

ss
u
re

Distance from the leading edge of the body

β2 = 0.11

β2 = 0.31

β2 = 0.21
(b)(a)

(c)

Figure 15. Wall pressure for R = 1000 with β1 = 0.01 and β2 = 0.11, 0.21 and 0.31. With increased β2,
relative to fixed β1, the adverse pressure gradients cover a larger region under the body and into the wake.

case for reference. As the body increases in pitch, the adverse pressure gradient that is
seen to cover the whole body and wake for the β2 = 0.11 case begins to extend further
downstream. The severe slope that existed for a shorter distance towards the leading edge
now becomes less steep downstream of the body’s midpoint but the adverse gradient
continues into the wake. As expected, increasing inclination leads to flow separation under
the body and further downstream.

Next, given the difference in the form of the fluid flow and dynamics seen for the
different wall velocities, larger values of uw are now considered to understand how
the interaction changes. In figure 16 the wall pressures are shown for the case where
β1 = 0.01, β2 = 0.11 and R = 1000 with uw = 0.2 and −0.2. Compared to the previous
results figures 12 and 14 it is seen that in both cases the magnitude of the wall pressure has
doubled yet the region over the body and wake for which the pressure varies has remained
the same (x-distance along the wall). Thus, the pressure gradient across the body and in
the wake for both scenarios has become increasingly adverse indicating the flow reversal
is more likely to occur with greater influence, inducing larger changes in flow velocities
and directions. This trend in the results agrees with the findings of the asymptotic theory
in Jones & Smith (2003) which apply for negligible incident shear.
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Figure 16. Wall pressure for R = 1000 with uw = 0.2 and −0.2. With increased uw there are larger adverse
pressure gradients under the body and in the wake.

Finally, concerning scales with respect to increasing Reynolds numbers, from figures 12,
13 and 14 it is observed that the magnitude of wall pressure falls with increasing Reynolds
number. In fact, given the set-up and definition of the fluid quantities we anticipate that a
distinguished scaling exists between the Reynolds number and the order of magnitude for
the wall pressure. This can be readily seen. From the modelled problem, the components
of (2.2) to leading order suggest that uux ∼ (1/R)uyy. Given the expectation that U =
O( y) and that x = O(1) is known, we thus require y ∼ R−1/3. Furthermore, for (2.2) to
balance we have that px ∼ uux ∼ R−2/3. Hence, we anticipate that given these scalings,
for β1 = R−1/3, β2 = 2 × R−1/3 and uw = R−1/3, the wall pressure response should be
O(R−2/3). Presented in figure 17 are five such scenarios where R = 10, 50, 100, 500 and
1000. Of note, in each case the magnitude of wall pressure is falling with R, such that in
comparison to R−2/3 the scaling holds quantitatively to within a multiplicative constant in
each case: see table 4.

6. Conclusion

The major aims of this study have centred on understanding the influence that a thin
inclined body has on the fluid motion when placed within a uniform near-wall shear
flow. In particular, the effect of distance between the body and the wall has been of
chief concern in order to appreciate how the flow structure changes about the body as
impact is neared. The investigations conducted here have considered how the gap size, the
wall speed and Reynolds number each affect the flow solution and lead to nonlinearity
and accompanying flow separations within the fluid flow. Our interest has been in a fixed
body in a steady-state flow. The occurrences of significant flow reversal beneath the body
(for positive wall velocity), off the trailing edge (for zero wall velocity) and ahead of
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Figure 17. Wall pressure for β1 = R−1/3, β2 = 2 × R−1/3 and uw = R−1/3 with R = 10, 50, 100, 500 and
1000. In each case the magnitude of the wall pressure is of the order R−2/3, indicating (see also table 4)
that a distinguished scaling exists between wall pressure and Reynolds number.

R 10 50 100 500 1000

R−2/3

max(Pwall)−min(Pwall)
8.4813 6.5794 6.0833 5.2822 5.0249

Table 4. Scaling results for magnitude of wall pressure compared to R−2/3 for R = 10, 50, 100, 500 and 1000,
with uw = R−1/3, β1 = R−1/3 and β2 = 2 × R−1/3. The magnitude of wall pressure is seen to be within a
multiplicative constant of R−2/3, hence the wall pressure appears to be O(R−2/3) as expected.

the body (for negative wall velocity) as impact is neared are most notable. There is also
much dependence on the streamwise translation of the body and on the Reynolds number,
particularly for flow within the upstream and wake regions. Recent work in Palmer &
Smith (2020) describes an asymptotic investigation of body-motion effects. In summary,
the latter work applies to a thin body moving in the lower reaches of a boundary layer
or channel flow at high Reynolds number with the interaction then becoming centred
in the viscous–inviscid layer near the wall where the 1/3 scalings, discussed at the
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end of § 5, hold in all such cases. The governing system there comprises the nonlinear
interactive boundary layer equations subject to wall and body-surface conditions as in
the present paper in effect but with important short scale upstream influence arising in
an Euler region surrounding the leading edge of the body and with a Kutta condition at
the trailing edge. These flow properties are coupled with the mass-acceleration equations
of the body movement forced by the flow pressure acting at the body surface, thereby
yielding a dynamic interaction between the fluid and body motions. Of most relevance
here are the significant regions of flow reversal encountered and the nonlinear dynamics of
viscous–inviscid unsteady fluid motions, especially with regard to unusual flow structures
during impacts upon the wall, combined with the quantitative comparison of table 4 and
§ 5.2.

Addressing numerical solutions of the Navier–Stokes equations for a nonlinear
fluid–body interaction over a range of moderate Reynolds numbers and also comparing
qualitatively and quantitatively (as above) with analysis for high Reynolds numbers have
been novel facets of the current paper. This fills a gap in knowledge in the sense that there
has been little work done previously on the effects of increasing inertia, of the gap width
between a body and the wall and of the body inclination. Substantial flow separation has
been found to occur on the body surface and at the wall as suggested in asymptotic theory
along with higher pressure variations on top of the body when the gap width is increased
(Palmer & Smith 2019, 2020). With increased local Reynolds numbers enhanced wake
responses have been found, together with greatly condensed upstream influence near the
leading edge, increased sensitivity to body orientation, pressure dominance in the total
lift and moment on the body, new insight into the complex flow structure developing
and quantitative agreement with recent viscous–inviscid interaction analysis, as mentioned
earlier concerning scales.

Connections, however remote, exist with the original applications mentioned in the
Introduction. These are principally for the movement of ice crystals, for example near
the solid surface of a transport vehicle, and in terms of increased physical understanding
to improve models used in industry. Additional connections exist with the scientific
problems or issues also mentioned in the Introduction, for example: through the question of
attraction or repulsion of a body near a solid surface in the presence of inertial influences
at moderate Reynolds numbers, for which the current work confirms that either response
is possible depending on the specific positioning of the body; and through increased
appreciation of the dominant physical scales and parametric effects acting at moderate
flow rates.

Following the current work there are many other issues that would benefit from future
study. To start, a wider range of body shapes need investigating. In particular, the body
shape and the initial conditions of the body position will affect whether leading edge,
trailing edge or mid-chord locations are closest to the wall as impact is neared. This is
important since shapes are varied in reality and thus more details of trailing edge and
mid-chord impacts are required, in particular concerning trailing edge separations and
upstream influence (Smith 1984; Jones & Smith 2003). The development of the fluid flow
about the body and the potential nonlinearity of the flow are expected to be changed by
these additional features. In addition future developments in understanding would benefit
from three-dimensional analysis, as well as the inclusion of unsteady flows and multiple
bodies; the current work on two-dimensional flow acts rather as a reasonable first model
whereas three-dimensional interactions have still to be considered seriously.
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