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Inertial lift forces are exploited within inertial microfluidic devices to position,
segregate and sort particles or droplets. However, the forces and their focusing
positions can currently only be predicted by numerical simulations, making rational
device design very difficult. Here we develop theory for the forces on particles in
microchannel geometries. We use numerical experiments to dissect the dominant
balances within the Navier–Stokes equations and derive an asymptotic model to
predict the lateral force on the particle as a function of particle size. Our asymptotic
model is valid for a wide array of particle sizes and Reynolds numbers, and allows
us to predict how focusing position depends on particle size.
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1. Introduction
Inertial microfluidic devices employ inertial focusing to segregate and sort chains

of particles, and to move particles between streams of different fluids. For example,
centrifuges on a chip (Mach et al. 2011; Sollier et al. 2014) trap circulating cancer
cells from blood in microchannel vortices, and sheathless high-throughput flow
cytometry (Hur, Tse & Di Carlo 2010; Chung, Gossett & Di Carlo 2013) fractionates
particles from a buffer in order to image and count rare blood cells. However, there
are no predictive theories that describe the trajectories of particles during inertial
focusing. Instead, the features of these devices, including flow rate and geometry,
are optimized by experimental trial and error. Although asymptotic theories exist
for inertial lift forces, they are quantitatively correct only for asymptotically small
particles, much smaller than the particles that are typically used in microfluidic
devices. Previous asymptotic theories also do not predict how differently sized
particles will be differently focused (Di Carlo et al. 2009).

Inertial migration of particles was first observed by Segré & Silberberg (1961).
Experiments showed that a dilute suspension of neutrally buoyant particles flowing
in a cylindrical pipe at moderate speeds will migrate across streamlines (Segré
& Silberberg 1961, 1962a,b). Particles initially uniformly dispersed through the
cross-section of the pipe became focused into a ring with radius 0.6 times the channel
radius. Since the reversibility of the Stokes equations (the limit of the Navier–Stokes
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Inertial migration of a rigid sphere in 3D Poiseuille flow 453

Study α Re Rep p Comments

Rubinow & Keller (1961) — — �1 5 Uniform flow and absence of walls

Saffman (1965) — — �1 2 Wall effect: particle lags behind
fluid

Cox & Brenner (1968) �1 �1 �α2 — Implicit analytic force expression
Ho & Leal (1974) �1 �1 �α2 4 Two-dimensional geometry
Vasseur & Cox (1976) �1 �1 �α2 — Agrees with Ho & Leal away

from wall
Cox & Hsu (1977) �1 �1 �α2 — Agrees with Ho & Leal near wall
Schonberg & Hinch (1989) �1 O(1) �1 4 Matched asymptotics
McLaughlin (1991) — — �1 2 Extends Saffman for finite slip

velocity
Hogg (1994) �1 O(1) �α 4 Studies non-neutrally buoyant

particles
Asmolov (1999) �1 O(103) �1 4 Extends Schonberg & Hinch for

large Re
Di Carlo et al. (2009) O(1) O(102) O(10) 3 Three-dimensional numerics and

experiments
This paper O(1) O(102) O(10) — Reconciles with α� 1 theory

TABLE 1. A comparison of the parameters α, Re and Rep, and the value of the exponent
p for the scaling law F ∼ ρU2ap, for various studies, where ρ is the fluid density, U is
the characteristic flow velocity and a is the particle radius.

equations (NSEs) when the Reynolds number Re = 0) prohibits movement across
streamlines, this migration must arise from inertia in the flow (Bretherton 1962).

Many theoretical studies of this effect using asymptotic theory are described below.
Each study focuses on a particular limit of two dimensionless groups, Re and α.
The first parameter, Re, is the channel Reynolds number, and depends only on the
dimensions of the pipe and the properties of unladen flow into the channel. The
second parameter, α, is a ratio of the particle size to a characteristic channel length
scale. Some studies take this length scale to be the width of the channel, others the
distance between the particle and the wall. Values for these parameters in various
studies are compiled in table 1.

Although early theoretical studies (Rubinow & Keller 1961; Saffman 1965)
illuminated how inertial lift forces are generated by applied torques or body forces,
Cox & Brenner (1968) were the first to directly address lift forces on neutrally
buoyant particles. They consider a body of arbitrary shape suspended in a fluid
bounded by a system of walls in three dimensions, and observe that viscous stresses
dominate over inertial stresses, provided that Re � α. Assuming rapid flow field
decay, i.e. viscous stresses remain dominant over inertial stresses throughout the fluid,
they derive an implicit analytic expression for the force by a regular perturbation
expansion of the NSEs in the small parameter Re. They show that this assumption is
valid for the lateral migration of a sphere in flow through a cylinder with arbitrary
cross-section. Subsequently, they arrive at an integral formula for the lift force for
a neutrally buoyant sphere, but they do not evaluate the integrals to determine how
lift forces vary across the channel, or how they depend on particle size. Additionally,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.739


454 K. Hood, S. Lee and M. Roper

McLaughlin (1991) extended the theory of Saffman (1965) to non-neutrally buoyant
particles by considering a finite slip velocity.

Ho & Leal (1974) were the first to explicitly calculate the lift force on a particle
in the presence of channel walls, by developing an asymptotic theory for a particle
in two-dimensional (2D) Couette and Poiseuille flows. Since there are multiple scales
for the dynamics in the particle–channel system, Ho & Leal introduce the particle
Reynolds number Rep= α2Re. They observe that, provided Rep� α2, viscous stresses
dominate over inertial stresses throughout the fluid-filled domain. They develop a
scaling law for the lift force as a function of the particle position by a regular
perturbation series expansion in powers of Rep. Each term in this expansion can be
expanded in powers of α. Retaining only leading-order terms, they find that lift force
FL ∼ ρU2

mα
2a2, where ρ is the fluid density, Um is the maximum velocity of the

background flow and a is the particle radius, i.e. that lift force scales with the fourth
power of particle diameter.

Later computations by Vasseur & Cox (1976) apply the result of Cox & Brenner
(1968) to a spherical particle flowing between two parallel plates. Provided Rep �
α2, only the inner expansion is needed to calculate the first term in the expansion
for the migration velocity. The migration velocity is computed as a Fourier integral
and no definite scaling law for the lift force is derived. However, they compare their
numerical results to those of Ho & Leal (1974) and have good agreement, except
near the wall. Similarly, by considering a particle near a single wall and using the
results of Cox & Brenner (1968), Cox & Hsu (1977) calculate the migration velocity
of a particle near the wall. They do not derive a scaling law for the force, but their
numerical results compare well to those of Ho & Leal (1974) near the wall.

Although early theory assumed Re � 1, in inertial microfluidic devices, and in
the experiments of Segré & Silberberg (1961), the channel Reynolds number ranges
from 1 to 700. The first theory capable of describing migration of particles in these
moderate-Reynolds-number flows was developed by Schonberg & Hinch (1989), who
assumed small particle size (α� 1) and particle Reynolds number (Rep = α2Re� 1),
but allowed for Reynolds number Re = O(1). For particles in a 2D Poiseuille flow,
they separate the flow field into inner and outer regions. In the inner region, at
distances O(a) from the particle, the viscous stresses are dominant. In the outer
region, at distances a/Re−1/2

p from the particle, inertial stresses become co-dominant
with viscous stresses. In this outer region, the particle’s disturbance of the flow field
is weak enough to be linearized around the base flow, reducing the NSE to Oseen’s
linearized equations (Batchelor 1967). Although the authors solve for the inertial
migration velocity for a force-free particle, their calculation can readily be adapted to
calculate the lift force, and again predicts FL∼ρU2α2a2; i.e. that lift force scales with
the fourth power of particle size. Hogg (1994) extended the analysis of Schonberg &
Hinch (1989) to non-neutrally buoyant particles, while Asmolov (1999) extended the
theory of Schonberg & Hinch (1989) to large Re.

In inertial microfluidic experiments, particle diameters may not be small compared
to the channel width, and particle Reynolds numbers Rep can reach values of 10–20.
To determine lift forces in this experimentally relevant regime, and to consider
focusing in three-dimensional (3D) flows, Di Carlo et al. (2009) performed finite
element simulations for particles in square channels. They varied Reynolds number
Re between 20 and 80 and the ratio of particle size to channel size α between 0.05
and 0.2. They find that, unlike circular pipes, which focus particles to an annulus,
square channels focus particles to four symmetrically arranged positions. For particles
near the channel centre, numerical fitting of the numerical data generates the power

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.739


Inertial migration of a rigid sphere in 3D Poiseuille flow 455

10–3

10–4

10–5

10–6

10–1

10–2

10010–110–2

(a) (b)

FIGURE 1. (Colour online) (a) The physical system for the flow around a particle
suspended in a square channel. (b) Numerical computation of the lift force FL as a
function of particle size α for various Reynolds numbers, Re = 10 (triangles), Re = 50
(circles) and Re=80 (crosses). The curves collapse when lift force is scaled by ρU2

m`
2, but

the curves are neither a power law with exponent 3 nor exponent 4. A regular perturbation
expansion that we computed numerically fits the data extremely well (solid black line).

law FL ∼ ρU2αa2, asserting that the lift force FL increases with a3 rather than a4.
For particles closer to the channel walls, they find different exponents for the scaling
of lift force with particle size, depending on particle position. The different exponent
in the scaling casts doubt on the use of any of the previous asymptotic theories.
Additionally, Di Carlo et al. (2009) explore experimentally and numerically how
the focusing position of the particle varies with particle size; an observation that
is integral to inertial separation devices, but which is not considered in asymptotic
theory.

In this paper we explicitly compute the dominant balances in the equations of
motion of the particle to show that the asymptotics of Ho & Leal (1974) were
essentially correct, and hold for a much larger parameter space of Re and α than
the authors realized. Specifically, viscous and pressure stresses dominate over inertial
stresses over the entire width of the channel; and the drag force on the particle can
be computed by regular perturbation of the equations of slow creeping flow. We
perform this regular perturbation analysis to derive asymptotic expressions for the lift
force that are quantitatively accurate up to Re= 80, and with maximum particle size
limited only by the proximity of the walls. Our theory also predicts how focusing
position depends on particle radius. We show that the scaling observed by Di Carlo
et al. (2009) is actually a serendipitous fitting to a perturbation series in α by a
single apparent scaling law.

We organize the paper as follows. In § 2 we formulate and solve numerically for
the inertial lift force on a drag-free spherical particle, focusing on the dependence of
this lift force on particle size and channel Reynolds number. In § 3 we dissect out
the dominant balances in these equations. In § 4 we develop a regular perturbation
series for the lift force, similar to that of Ho & Leal (1974), and show that it is in
quantitatively good agreement with the numerically computed lift force (figure 1b). In
§ 5 we describe how we generalize the computation to 3D channel flows, and in § 6
we show good agreement of our asymptotic method with experiments and discuss its
possible applications.
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456 K. Hood, S. Lee and M. Roper

2. Equations of motion
We model flow through an infinitely long square channel of side length `. A 3D

Poiseuille flow ū′ flowing in the z′-direction is disturbed by a rigid sphere of radius
a (figure 1a). Here we use primes to denote dimensional variables. We denote the
fluid viscosity by µ, fluid density by ρ and the centre-line velocity of the background
flow by Um. The particle is located at (x′0, y′0, 0) and is allowed to translate in the
z′-direction with velocity U ′p = U′pez′ , and rotate with angular velocity Ω ′p, until it is
drag-free and torque-free. The objective of this paper is to calculate the lift forces
acting on the particle in the x′- and y′-directions.

There are three important dimensionless parameters: (i) the dimensionless ratio of
particle radius to channel diameter α = a/`, (ii) the channel Reynolds number Re=
Um`/ν, and (iii) the particle Reynolds number Rep = Uma2/`ν. Here we write ν =
µ/ρ for the kinematic viscosity. In common with previous theory (Cox & Brenner
1968; Ho & Leal 1974; Schonberg & Hinch 1989), we will perform dual perturbation
expansions in Rep and α, assuming that both quantities are asymptotically small. In
inertial microfluidic experiments (Di Carlo et al. 2009), particle diameters may be
comparable with the channel dimensions. We will show that our expansions converge
even at the moderate values of α accessed in these experiments.

The background flow, ū′, is square channel Poiseuille flow (Papanastasiou, Georgiou
& Alexandrou 1999), and takes the form ū′ = ū′(x′, y′)ez′ , where ū′ is defined by

ū′(x′, y′) = Um

− 1
2

(
y
′2 −

(
`

2a

)2
)

+
∞∑

n=0

−4`2(−1)n cosh
(
(2n+ 1)πax′

`

)
(2n+ 1)3π3a2 cosh

(
(2n+ 1)π

2

) cos
(
(2n+ 1)πay′

`

). (2.1)

The velocity ū′ and pressure p̄′ solve the Stokes equations with boundary condition
ū′ = 0 on the channel walls. We will also need the Taylor series expansion for ū′
around the centre of the particle:

ū′(x′, y′) = β ′ + γ ′x(x′ − x′0)+ γ ′y(y′ − y′0)+ δ′xx(x
′ − x′0)

2 + δ′xy(x
′ − x′0)(y

′ − y′0)

+ δ′yy(y
′ − y′0)

2 +O(r
′3). (2.2)

To illustrate the reference frame of the equations we will use later, we first list
the dimensionless equations of motion and boundary conditions for the velocity
and pressure fields u′′ and p′′ expressed in particle-fixed coordinates. We non-
dimensionalize these equations by scaling velocities by Uma/`, lengths by a and
pressures by µUm/`:

∇2u′′ −∇p′′ = Rep[(u′′ +Up) · ∇u′′], (2.3a)
∇ · u′′ = 0, (2.3b)

u′′ = Ωp × r ′′ on r′′ = 1, (2.3c)
u′′ = −Up on the walls, (2.3d)
u′′ = ū−Up as z′′→±∞. (2.3e)
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Inertial migration of a rigid sphere in 3D Poiseuille flow 457

Now we introduce the disturbance velocity and pressure fields u= u′′− ū+Up and
p= p′′− p̄, in which the background flow ū−Up (as measured in this reference frame)
is subtracted from u′′. For reference, the fluid velocity in the laboratory frame is given
by v = u+ ū. We then obtain the equations of motion and boundary conditions that
will be used throughout this paper:

∇2u−∇p = Rep(ū · ∇u+ u · ∇ū+ u · ∇u), (2.4a)
∇ · u = 0, (2.4b)

u = Ωp × r − ū+Up on r= 1, (2.4c)
u = 0 on the walls, (2.4d)
u = 0 as z→±∞. (2.4e)

We call the variables that appear in (2.4) the inner variables. Appendix A
summarizes the notations used for dimensionless and dimensional variables.

We formulated (2.4) as a finite element model (FEM) with approximately 650 000
linear tetrahedral elements, and solved for u and p using Comsol Multiphysics
(COMSOL, Los Angeles) in a rectangular domain with dimensions `/a× `/a×5(`/a),
prescribing u at the inlet z = −5(`/a), and imposing neutral boundary conditions
(vanishing stress) at the outlet z = +5(`/a). In the FEM, we vary Up and Ωp until
there is no drag force or torque on the particle. The FEM Lagrange multipliers,
which enforce the velocity boundary condition on the particle, are used to compute
the lift force FL on the drag-free and force-free particle. Bramble (1981) rigorously
demonstrates the accuracy of flux calculations from Lagrange multipliers for a
Poisson’s equation with Dirichlet boundary conditions. Additionally, we discuss
accuracy tests of the FEM discretization for our problem in appendix B.

First, we consider the lift force for particles located on the line of symmetry x0= 0.
Fixing particle position y0, we found that curves of lift force FL against particle size a
collapsed for different Reynolds numbers. Particles in different positions have different
apparent scalings for FL as a function of a (figure 5a,b). By assaying a large range
of particle sizes α, we see that the empirical fit FL ∼ ρU2a3 observed by Di Carlo
et al. (2009) is not asymptotic as a→ 0. The data for smallest particle sizes (α <
0.07) are consistent with a scaling law of FL ∼ ρU2a4/`2 as predicted by Ho & Leal
(1974) and Schonberg & Hinch (1989), but extrapolation of the asymptotic force law
to the moderate particle sizes used in real inertial microfluidic devices (α ≈ 0.1–0.3)
over-predicts the lift force by more than an order of magnitude.

3. Dominant balances in the equations of motion

The governing equation (2.4) is a balance between momentum flux and the pressure
and viscous stresses. Testing the hypothesis that two of these three contributions might
form a dominant balance within the equation, we plotted the resultants of the three
fluxes as functions of distance from the particle. Specifically, we integrate the `2 norm
of each flux over spherical control surfaces centred at the particle. Let Sr be the
boundary of a sphere of radius r centred at the origin, and define the `2 norm by
‖u‖2 =

√
u2 + v2 +w2. Then the dimensionless viscous stress resultant acting on the

sphere Sr is defined by

V(r)=
∫

Sr

‖∇u · n‖2 ds, (3.1)
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FIGURE 2. (Colour online) The dominant balance of the NSE for (a) a particle near the
channel centre (y0= 0.15/α and α= 0.11) and (b) a particle near the channel walls (y0=
0.35/α and α= 0.06). The viscous stresses V(r) for various Reynolds numbers are plotted
as thin (red) lines, and the inertial stresses I(r) are plotted as thick (black) lines. Reynolds
numbers are indicated by line style: Re= 10, solid line; Re= 50, dashed line; and Re= 80,
dotted line. The insets show that the inertial stresses I(r) collapse when scaled by Re,
suggesting that the high-Reynolds-number dynamics are determined by the low-Reynolds-
number dynamics.

and the dimensionless inertial term I(r) stress resultant by

I(r)= Rep

∫
Sr

‖[(ū−Up)u+ u(ū−Up)+ uu] · n‖2 ds. (3.2)

The integrand in I(r) is chosen to have divergence equal to the right-hand side of
(2.4), and we pick a form of the inertial flux that decays in `2 norm as r→∞.

Numerically evaluating these two terms as well as (1/r)
∫

Sr
‖pn‖2 ds, we find that,

contrary to the predictions of Ho & Leal (1974) and Schonberg & Hinch (1989), at
moderate channel Reynolds numbers, the viscous and pressure stress resultants are
numerically larger than the momentum flux. In particular, there is no region in which
V(r) and I(r) are co-dominant at Re= 10 (figure 2). Indeed, even at higher Reynolds
numbers (Re= 50, 80) for which inertial stresses are numerically larger than viscous
stresses, inertial stresses can be collapsed onto a single curve (see insets of figure 2a,b)
by rescaling with Re. This scaling suggests that the underlying dynamics, even at
moderate values of Re, are inherited from the small-Re dominant balance of pressure
and viscous stresses. Dominance of viscous stresses over inertial stresses is surprising
because, as Ho & Leal (1974) noticed, the resulting dominant balance equations are
not self-consistent for isolated particles in unbounded fluid flow.

We will now present a first-order estimate of the size of the domain in which
inertial stresses may be expected to be dominant. The slowest-decaying component
of the disturbance flow associated with a force-free particle on the plane of symmetry
(x0 = 0) is given by the stresslet flow (Batchelor 1967; Kim & Karrila 2005):

ustresslet = 5γy(y− y0)zr
2r5

=O
(

1
r2

)
. (3.3)
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Cross-over radius αr∗ y0 = 0.15/α y0 = 0.35/α
α = 0.11 α = 0.06

Re 10 50 80 10 50 80

(i) αr∗ = 1/Re1/2 0.31 0.14 0.11 0.31 0.14 0.11
(ii) Stresslet with constants (from figure 3) 0.90 0.40 0.30 1 0.30 0.20
(iii) Stresslet with wall effects (from figure 4) >1 0.45 0.35 >1 0.40 0.30
(iv) NSE with wall effects (from figure 2) >1 0.60 0.40 >1 0.40 0.30

TABLE 2. The cross-over radius αr∗ at which I(r) > V(r) computed for Re = 10, 50,
80 using the following methods: (i) Ho & Leal’s (1974) calculation using the stresslet,
(ii) our calculation using the stresslet, (iii) our calculation using the stresslet and first wall
correction, and (iv) our calculation using the numerical solution to the full NSE.

Recall that γy is the strain rate, defined in (2.2). For this flow field, the viscous stress
term in (2.4) decays with distance like

V(r)∼O(∇ustresslet)∼O
(

1
r3

)
, (3.4)

whereas the inertial stresses vary with distance like

I(r)∼O(Rep(ustresslet)(ū−Up))∼O
(

Rep

r

)
. (3.5)

We define the cross-over radius, r∗, to be the distance at which the viscous and inertial
stresses are comparable,

r∗ =O
(

1

Re1/2
p

)
. (3.6)

In order to compare the cross-over radius to the width of the channel, we consider
when αr∗ = O(1/Re1/2) is equal to one. To ensure that viscous stresses dominate
over inertial stresses over the channel cross-section (i.e. αr∗� 1), Ho & Leal (1974)
restrict to cases where Re� 1. The asymptotic analysis of Schonberg & Hinch (1989)
allows that Re=O(1), but at the cost of needing to separately model and match the
flows at O(1) distances from the particle where viscous stresses are dominant, and at
O(1/Re1/2) distances where inertial and viscous stresses must both be included in the
dominant balance.

However, the predicted cross-over radius falls short of the numerical cross-over
radius (figure 2, table 2). There are two explanations for the dominance of viscous
stresses over inertial in these experimental geometries. First, the above estimates do
not consider the coefficients in the stresslet, merely the order of magnitude of the
terms. Second, although the stresslet describes the flow disturbance for a force-free
particle in an unbounded fluid, the leading-order flow is considerably altered by
the presence of the channel walls. Below, we demonstrate that both explanations
contribute to the dominance of viscous stresses throughout the channel cross-section,
pushing the cross-over radius r∗ out beyond the channel walls (table 2).
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FIGURE 3. (Colour online) The dominant balance that arises from the stresslet
approximation of the flow for (a) a particle near the channel centre (y0 = 0.15/α and
α = 0.11) and (b) a particle near the channel walls (y0 = 0.35/α and α = 0.06). The
viscous stresses V(r) for various Reynolds numbers are plotted as thin (red) lines, and
the inertial stresses I(r) are plotted as thick (black) lines. Reynolds numbers are indicated
by line style: Re= 10, solid line; Re= 50, dashed line; and Re= 80, dotted line.

3.1. Role of the stresslet constants
We compute I(r) and V(r) numerically for the stresslet flow field (i.e. substitute
u= ustresslet in (3.1) and (3.2)). We examine two representative cases: a medium-sized
particle near the channel centre (y0 = 0.15/α, α = 0.11) (figure 3a), and a small
particle near the channel wall (y= 0.35/α, α= 0.06) (figure 3b). For Re= 10, in both
cases the inertia is significantly smaller than the viscous stress throughout the channel.
At larger values of Re, I(r) eventually exceeds V(r), but the cross-over radius r∗ is
much larger than simple order-of-magnitude estimates would suggest (table 2).

3.2. Role of wall effects
To estimate how wall modifications of the disturbance flow affect the dominant
balances in (2.4), we numerically computed the first wall correction. That is, we
substitute u = ustresslet + uimage into (3.1) and (3.2), where uimage is a solution of
Stokes’ equations with boundary condition uimage = −ustresslet on the channel walls.
We examine the same two representative cases as in § 3.1: (y0 = 0.15/α, α = 0.11)
and (y0 = 0.35/α, α = 0.06) (figure 4a,b). For Re = 10, in both cases the inertia is
significantly smaller than the viscous stress throughout the channel. At larger values
of Re, I(r) eventually exceeds V(r), but the cross-over radius r∗ is larger than that
predicted from the stresslet coefficients (table 2).

We can rationalize the larger values of the cross-over radius αr∗ by considering the
boundary conditions on the channel walls. Because the velocity field u vanishes on
the channel walls, the inertial stresses vanish there. Therefore I(r) is suppressed at
larger radii. We see less suppression of V(r), presumably because viscous stresses do
not need to vanish on the channel walls. Suppression of I(r) increases the cross-over
radius at which inertial stresses must be considered in the dominant balance.

4. A series expansion for the inertial lift force
Our careful evaluation of the stresslet prefactors and wall contributions shows

that viscous stresses are dominant over inertial stresses over much of the fluid-filled
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FIGURE 4. (Colour online) The dominant balance that arises from the stresslet and first
wall correction of the flow for (a) a particle near the channel centre (y0 = 0.15/α and
α=0.11) and (b) a particle near the channel walls (y0=0.35/α and α=0.06). The viscous
stresses V(r) for various Reynolds numbers are plotted as thin (red) lines, and the inertial
stresses I(r) are plotted as thick (black) lines. Reynolds numbers are indicated by line
style: Re= 10, solid line; Re= 50, dashed line; and Re= 80, dotted line.

domain, including at much greater distances from the particle than previous estimates
have suggested. We therefore develop an asymptotic theory, based on Cox & Brenner
(1968) and Ho & Leal (1974), in which the flow field u, pressure p, particle velocity
Up and rotation Ωp are expanded in powers of Rep, with inertia completely neglected
in the leading-order equations:

u= u(0) + Repu(1) + · · ·, p= p(0) + Repp(1) + · · ·, etc. (4.1a,b)

Notice that this is an expansion in the particle Reynolds number Rep and not the
channel Reynolds number Re. Although in experiments the channel Reynolds number
is typically large, the expansion is formally valid provided that α2 is small enough
that Rep=α2Re. 1. In fact, when we compare our theory with numerical simulations
in § 4.5, we find that the perturbative series gives a good approximation to the lift
force even for Rep = 7 (figure 1b).

First we compute the first two terms in the perturbative series u(0) + Repu(1)
numerically, showing that retaining these two terms gives the lift force quantitatively
accurately over the entire dynamical range of experiments.

Series-expanding (2.4) and collecting like terms in Rep we arrive at equations for
(u(0), p(0)), the first-order velocity and pressure:

∇2u(0) −∇p(0) = 0, ∇ · u(0) = 0, (4.2a)
u(0) =U(0)

p +Ω (0)
p × r − ū on r= 1, (4.2b)

u(0) = 0 on channel walls and as z→±∞. (4.2c)

Similarly, the next-order velocity and pressure (u(1), p(1)) satisfy the equations:

∇2u(1) −∇p(1) = (ū · ∇u(0) + u(0) · ∇ū+ u(0) · ∇u(0)), ∇ · u(1) = 0, (4.3a)
u(1) =U(1)

p +Ω (1)
p × r on r= 1, (4.3b)

u(1) = 0 on channel walls and as z→±∞. (4.3c)
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For both cases, we only need to solve the Stokes equations with a known body
force term. In (4.2), the body force term is equal to 0; in (4.3) the body force term
is equal to the inertia of flow u(0).

In fact, we can apply Lorentz’s reciprocal theorem (Leal 1980) to calculate the lift
force associated with u(1) without needing to directly solve (4.3). We define the test
fluid flow (û, p̂) representing Stokes flow around a sphere moving with unit velocity in
the y-direction: viz. satisfying (4.2) with the velocity condition on the sphere replaced
by û= ey. If σ (1) and σ̂ are the viscous stress tensors associated with the flow fields
(u(1), p(1)) and (û, p̂) respectively, σ (1) = ∇u(1) + (∇u(1))T − p(1)1, etc., and ê and
e(1) the respective rate-of-strain tensors, e(1) = [∇u(1) + (∇u(1))T]/2, etc., then by the
divergence theorem, the following relation is valid for any volume V enclosed by a
surface S:∫

S
(n · σ̂ · u(1) − n · σ (1) · û) ds=

∫
V
[∇ · (σ̂ · u(1))−∇ · (σ (1) · û)]dv. (4.4)

By setting V equal to the fluid-filled domain and substituting boundary conditions
from (2.4), we deduce that

U(1)
p ·

∫
S
(σ̂ · n) ds+

∫
S
(Ω (1)

p × r) · σ̂ · n ds− ey ·

∫
S
σ (1) · n ds

=
∫

V
[(∇ · σ (1)) · û+ σ (1) : ê− (∇ · σ̂ ) · u(1) − σ̂ : e(1)] dv. (4.5)

On the left-hand side of the equation, the first term is zero by symmetry. Similarly,
the integrand of the second term can be rearranged to

(Ω (1)
p × r) · σ̂ · n=Ω (1)

p · (r × σ̂ · n), (4.6)

which also integrates to zero. On the right-hand side of (4.5), the third term is zero
by definition (since û solves the Stokes equations). Furthermore, we can rearrange the
second and fourth terms to

σ (1) : ê− σ̂ : e(1) = 2e(1) : ê− p(1)∇ · û− 2ê : e(1) + p̂∇ · u(1) = 0, (4.7)

since both flows are incompressible. So, on the right-hand side of (4.5), only the first
term of the volume integral remains. Using the definitions of σ (1) and σ̂ , we obtain
the following formula, which we refer to as the reciprocal theorem:

ey · FL =
∫

V
û · (ū · ∇u(0) + u(0) · ∇ū+ u(0) · ∇u(0)) dv. (4.8)

We have now reduced our calculation of the lift force to that of solving two
homogeneous Stokes equations and performing a volume integral. Numerically, we
let V be the truncated numerical domain modelled by our FEM. Next we solve
numerically for u(0) from (4.2) and û. Again, we choose U(0)

p and Ω (0)
p so that

the particle travels force-free and torque-free. We compute the lift force using the
reciprocal theorem in (4.8) for particles at two different channel positions (figure 5a,b).
We see close quantitative agreement between the lift force computed from the full
NSEs and the lift force computed from the reciprocal theorem using the two-term
expansion in Rep. The comparison is accurate even when, as for y0 = 0.15/α, there
is no simple scaling law for the dependence of FL upon a (figure 5a). In the next
section, we develop a model that nevertheless allows analytic evaluation of the
lift force.
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FIGURE 5. (Colour online) Numerical computation of the scaled lift force FL/ρU2
m`

2 using
the NSEs in (2.4) as a function of particle size α for various channel Reynolds numbers:
Re = 10 (triangles), Re = 50 (circles) and Re = 80 (crosses). The dashed (black) line
represents a scaling law with exponent 4, i.e. FL ∼ ρU2

mα
2a2 as in Ho & Leal (1974),

while the dotted (blue) line represents a scaling law with exponent 3, i.e. FL ∼ ρU2
mαa2,

which is the line of best fit computed in Di Carlo et al. (2009). The solid line represents
the regular perturbation expansion computed numerically using the reciprocal theorem in
(4.8). We compare all of these force predictions at two locations in the channel: (a) a
particle near the channel centre (y0 = 0.15/α and α = 0.11); and (b) a particle near the
channel walls (y0 = 0.35/α and α = 0.06).

4.1. Approximation of u(0) and û by method of images
In the previous section we showed that a single regular perturbation in Rep of Stokes
equations agrees excellently with the numerically computed lift force. We calculated
the terms in this perturbation series numerically; but to rationally design inertial
microfluidic devices, we need an asymptotic theory for how the lift force and the
inertial focusing points depend on the size of the particle and its position within the
channel. We derive this theory from asymptotic expansion of u(0) and û in powers
of α, the dimensionless particle size. We follow Ho & Leal (1974) and use the
method of reflections to generate expansions in powers of α for the Stokes flow
fields appearing in (4.8) (Happel & Brenner 1982),

u(0) = u(0)1 + u(0)2 + u(0)3 + u(0)4 + · · ·, (4.9)

with similar expansions for p, û and p̂. Here, u(0)1 is the Stokes solution for a particle
in unbounded flow, u(0)2 is the Stokes solution with boundary condition u(0)2 =−u(0)1 on
the channel walls, and u(0)3 is the Stokes solution with boundary condition u(0)3 =−u(0)2
on the particle surface, etc. Odd terms impose the global boundary conditions on the
particle, whereas even terms impose the global boundary conditions on the channel
walls. We will show below that the terms in this series constitute a power series in α.

Since the odd terms in the expansion, u(0)2i−1, are prescribed on the sphere’s surface,
they can be calculated using Lamb’s method for solving the flow external to a sphere
(Lamb 1945; Happel & Brenner 1982). This method expands the velocity field as a
sum of multipoles located at the sphere centre, namely,

u(0)2i−1 =
∞∑

n=0

1
rn+1

f i
n

(
x− x0

r
,

y− y0

r
,

z
r

)
, (4.10)
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where each term f i
n/r

n+1 is a combination of the stokeslet n-pole and the source
(n− 1)-pole. We can similarly expand the odd terms of û as:

û2i−1 =
∞∑

n=0

1
rn+1

gi
n

(
x− x0

r
,

y− y0

r
,

z
r

)
. (4.11)

The full analytic forms for the f 1
n and g1

n are listed in appendix C. From the analytic
form of u(0)1 , we can find u(0)2 by solving the associated Stokes problem numerically.
Given −u(0)2 on the particle surface, we can appeal to Lamb’s solution to find u(0)3 ,
and so on. The same sequence of reflections can be used to expand the reference
velocity û.

4.2. Approximation to the reciprocal theorem integral

Given the Stokes velocities u(0) and û, we can compute the inertial lift force FL up
to terms of O(Rep) using the reciprocal theorem (4.8). As in Ho & Leal (1974), it
is advantageous to divide the fluid-filled domain V into two subdomains, V1 and V2,
where

V1 = {r ∈ V : r 6 ξ} and V2 = {r ∈ V : r > ξ}. (4.12a,b)

The intermediate radius ξ is any parameter satisfying 1 � ξ � 1/α. Call the
corresponding integrals the inner integral and the outer integral, and identify their
contributions to the lift force as FL1 and FL2 , respectively ( FL = FL1 + FL2). The
division of the integral into inner and outer regions allows one to incorporate varying
length scales (α for the inner region and ` for the outer region) into our model.
Note that, distinct from Schonberg & Hinch (1989), inertia remains subdominant
even in the outer region V2. In the next two sections, we will separately consider the
contributions from the inner and outer integrals.

4.3. The inner integral

For the inner integral, we continue to scale lengths by a, so that 16 r6 ξ�α−1. The
inner integral can be expressed as the following expansion in α:

FL1 = ρU2
ma2(h4α

2 + h5α
3 + · · ·). (4.13)

In order to calculate the terms h4 and h5, we sort the terms of the Stokes velocities
by leading order in α. The terms contributing at O(α2) in the inner region are

u(0)1 ∼ α
(

1
r2

f 1
1 +

1
r4

f 1
3

)
, û1 ∼ 1

r
g1

0 +
1
r3

g1
2, ū∼ γαr. (4.14a−c)

All of these terms are known analytically (see appendix C), and it can be shown that
their contribution to the inner integral evaluates to zero, i.e. h4 = 0.

At O(α3) the velocity terms contributing to calculation of h5 are

u(0)1 ∼ α
(

1
r2

f 1
1 +

1
r4

f 1
3

)
+ α2

(
1
r3

f 1
2 +

1
r5

f 1
4

)
, ū∼ γαr+ δα2r2,

û1 ∼ 1
r

g1
0 +

1
r3

g1
2, û2 ∼ αS

[
1
r

g1
0

]
0

, û3 ∼ α
(

1
r

g3
0 +

1
r3

g3
2

)
,

 (4.15)
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where we define v≡S [u] as the image of the function u, and we define v0≡S [u]0
as the velocity v evaluated at the particle centre. That is, v solves the Stokes equations
with boundary condition v = −u on the channel walls, and v0 = v(x0, y0, 0). We
determine S [(1/r)g1

0] numerically, by discretizing Stokes equations as an FEM, with
quadratic elements for the velocity field and linear elements for the pressure field, and
solving the FEM in Comsol Multiphysics.

The O(α3) contribution to the inner integral is

h5 =
∫
R3
(û1 + û2 + û3) · (ū · ∇u(0)1 + u(0)1 · ∇ū+ u(0)1 · ∇u(0)1 )dv

=
∫
R3

û1 · (ū · ∇u(0)1 + u(0)1 · ∇ū+ u(0)1 · ∇u(0)1 ) dv (4.16)

where we have made use of the fact that the contributions to the integral from û2 and
û3 evaluate to zero. Since all of the terms in the integrand are O(r3) as r→∞, we
can take ξ →∞; viz., replace integration over V1 by integration over R3. In doing
so, we pick up an error that is O(1/ξ). We neglect this contribution, since ξ � 1; in
fact the error terms can be shown to cancel with corresponding contributions from the
outer integral if expansions are continued to higher-order powers of α. Evaluating the
final integral, we obtain

FL1 =
ρU2

mh5a5

`3
+O(a6), (4.17)

where

h5 =−
26 171πγ 2

y

277 200
− 53πγyδxx

1728
− 283πγyδyy

3150
(4.18)

is O(1), and depends only on the location of the particle. Recall that the constants γy,
δxx and δyy were defined in the expansion of ū in (2.2), and depend on the particle
position.

4.4. The outer integral
For the outer integral, we will consider alternative dimensionless variables, by using
the rescaled distance R = αr. This corresponds to using ` to non-dimensionalize
lengths, rather than a. We call these variables the outer variables, and we will denote
them with upper-case roman letters. A detailed comparison of the dimensionless
variables is given in appendix A.

In the outer region V2, we must express our functions in terms of R and rearrange
our functions by order of magnitude in α. These expansions are listed in full in
appendix D. In the outer region, the reciprocal theorem integral takes the dimensional
form

FL2 = ρU2
m`

2
∫

VC

Û · (Ū · ∇U(0) +U(0)
· ∇Ū +U(0)

· ∇U(0)) dv, (4.19)

where we have expanded our domain of integration from V2 = {R ∈ V : R > ξ} to
the entire empty channel VC. This expansion of the domain is justified since the
contribution from the region that we add to the integral {R : 0 6 R 6 αξ} is O(α4ξ),
and ξ� 1/α. In fact, this residue (which would show up in the O(α3) inner integral)
is exactly zero.

As we did for the inner integral, we can write the outer integral as an expansion
in α:

FL2 = ρU2
m`

2(k4α
4 + k5α

5 + · · ·). (4.20)
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The velocity terms that contribute to k4 are the following:

U(0)
1 ∼ α3 1

R2
f 1

1, U(0)
2 ∼ α3S

[
1
R2

f 1
1

]
,

Û1 ∼ α 1
R

g1
0, Û2 ∼ αS

[
1
R

g1
0

]
, Ū ∼ γR+ δR2 + · · · .

 (4.21)

Again, we define V = S [U] as the image of the function U, and we compute
S [(1/R2) f 1

1] and S [(1/R)g1
0] numerically. Furthermore, we can approximate the

term f 1
1 by the stresslet terms, since the rotlet terms have coefficients that are order

O(α2) higher than the coefficients of the stresslet terms. The O(a4) contribution to
the reciprocal theorem integral takes the following form:

k4 =
∫

VC

(Û1 + Û2) · [Ū · ∇(U(0)
1 +U(0)

2 )+ (U(0)
1 +U(0)

2 ) · ∇Ū] dv. (4.22)

We run into a problem numerically evaluating the integral in (4.22) when
considering only the first terms in the series expansions, U(0)

1 and Û1. The problem
arises because U(0)

1 and Û1 have singularities of the form

U(0)
1 ≈−

5γy

2
(Y − Y0)Z R

R5
, Û1 ≈ 3

4

(
eY + (Y − Y0)R

R2

)
1
R
, (4.23a,b)

which are respectively the stresslet and stokeslet components of the two velocity fields.
When the singularities are integrated against the shear term of Ū, that is Ūγ ≈ γyYeZ,
the result is an integral that is undefined near R= 0:∫

R<ε
Û1 · [Ūγ · ∇U(0)

1 +U(0)
1 · ∇Ūγ ] dv. (4.24)

However, converting to spherical coordinates, we find that the angular dependence
forces the integral in (4.24) to be zero:∫ π

0

∫ 2π

0

∫ ε

0

(
15γ 2

y (1+ 2 cos 2θ) sin4 θ sin3 φ

4R

)
dR dφ dθ = 0. (4.25)

This angular behaviour is difficult to capture numerically, especially if the mesh
is not symmetric. Instead, we propose a regularization of the outer integral, where
we integrate the problematic terms analytically in a small region near R = 0. Now
considering the full expansion of ū, we derive the following analytic form for the
integral in the region near the origin:∫

R<ε
Û1 · [Ū · ∇U(0)

1 +U(0)
1 · ∇Ū] dv =−πγy(δxx + 3δyy)ε. (4.26)

Recall that the constants γy, δxx and δyy were defined in the expansion of ū in (2.2).
Using this analytic expression, we split up the rest of the reciprocal theorem integral
(4.22) into the following parts:
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k4 =
∫

VC

Û2 · [Ū · ∇(U(0)
1 +U(0)

2 )+ (U(0)
1 +U(0)

2 ) · ∇Ū] dv

+
∫

VC

Û1 · [Ū · ∇U(0)
2 +U(0)

2 · ∇Ū] dv

+
∫
{r∈VC :R>ε}

Û1 · [Ū · ∇U(0)
1 +U(0)

1 · ∇Ū] dv
−πγy(δxx + 3δyy)ε. (4.27)

The first three lines in (4.27) are evaluated numerically using the FEM. Evaluating
the integral in (4.27), we arrive at the scaling law

FL2 =
ρU2

mk4a4

`2
+O(a5), (4.28)

where k4 = O(1) is a constant that depends on the location of the particle in the
channel, and is computed numerically.

Similarly, the O(α5) correction to the outer integral comes from terms

U(0)
1 ∼ α3 1

R2
f 1

1, U(0)
2 ∼ α3S

[
1
R2

f 1
1

]
,

Û3 ∼ α2 1
R

g3
0, Û4 ∼ α2S

[
1
R

g3
0

]
, Ū ∼ γR+ δR2 + · · · .

 (4.29)

Again, we must regularize the outer integral, since Û3 also has a stokeslet singularity.
We use the same regularization as before, replacing Û1 and Û2 with Û3 and Û4,
respectively.

Finally, combining terms at O(a4) and O(a5), we obtain

fL2 =
ρU2

mk4a4

`2
+ ρU2

mk5a5

`3
+O(a6), (4.30)

where k5 = O(1) is a constant that depends on the location of the particle in the
channel. We have now calculated the V2 contribution to the reciprocal theorem integral
up to order O(a5).

4.5. Results
In the last section, we described our method of computing the correction to the scaling
law made by Ho & Leal (1974). Combining the inner and outer integrals, the result
is a new approximation of the form

FL = ρU2
mc4a4

`2
+ ρU2

mc5a5

`3
+O(a6), (4.31)

where c4 = k4 from (4.27), and c5 = h5 + k5 from (4.18) and (4.30). The prefactors
c4 and c5 are O(1) in α, and depend only on the location of the particle in the
channel. The extended series agrees well with numerical data for particle sizes
up to α = 0.2–0.3 (figure 6). This calculation could in principle be extended by
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FIGURE 6. (Colour online) Numerical computation of the lift force FL using the NSEs in
(2.4) and plotted as a function of particle radius a for channel Reynolds numbers Re= 10
(triangles), Re = 50 (circles) and Re = 80 (crosses). The dashed (blue) line represents
a scaling law of particle radius to the fourth power, FL = ρU2

mc4α
2a2, the solid (black)

line represents the sum of the fourth and fifth power terms in (4.31), and the dotted
(green) line represents the completion of series in (4.32), with (a) particle displacement
y0 = 0.15/α and (b) particle displacement y0 = 0.4/α.

computing the contributions from higher-order terms. Completing the series (Hinch
1991), i.e. approximating

FL ≈ ρU2
mc4a4

`2

(
1− c5a

c4`

) , (4.32)

produces a modest increase in the accuracy of the asymptotic approximation (figure 6).
By including two terms in our asymptotic expansion, we can describe how the

particle equilibrium position depends on its size – a key prediction for rationally
designing devices that use inertial lift forces to fractionate particles, or to transfer
them between fluid streams (Di Carlo et al. 2009; Hur et al. 2010; Mach et al.
2011; Chung et al. 2013; Sollier et al. 2014) (figure 8). We compare our asymptotic
calculation predictions directly with experiments of Di Carlo et al. (2009), finding
good agreement in focusing positions up to a= 0.3 (figure 8b).

5. Three-dimensional asymptotic expansion
Previous asymptotic studies have considered inertial migration in 2D flows (Ho &

Leal 1974; Schonberg & Hinch 1989; Hogg 1994; Asmolov 1999). At sufficiently
small values of a, there is qualitative agreement between the 2D theories and our
theory, but only when the particle is located on a symmetry plane, e.g. x0 = 0 or
y0= 0. However, real inertial microfluidic devices focus in x- and y-directions, taking
initially uniformly dispersed particles to four focusing positions. Our asymptotic
approach allows us to compute the focusing forces for particles placed at arbitrary
positions in the channel.

The calculation is very similar to the one outlined in § 4; we only need to add
similar terms driven by the shear in the x-direction, and allow for a reciprocal
velocity û associated with moving the particle in this direction. The full Lamb’s
solution for u(0)1 has additional terms from the shear in the x-direction (i.e. the terms
with coefficients γx), shown in appendix C. The only additional components of u(0)1
that contribute to the 3D calculation are the stresslet and source quadrupole.
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FIGURE 7. (Colour online) Numerical computation of the lift force FL from (2.4) as a
function of particle radius for channel Reynolds numbers Re = 10 (triangles), Re = 50
(circles) and Re= 80 (crosses). The dashed (blue) line represents a scaling law of particle
radius to the fourth power, FL = ρU2

mc4α
2a2, the solid (black) line represents the fifth

power correction term in (5.4), and the dotted (green) line represents the completion of
series in (4.32), with particle displacement x0= 0.2/α and y0= 0.15/α for lift force (a) in
the x-direction and (b) in the y-direction.

The inner integral in 3D evaluates to

F(3D)
L1
= ρU2

mh(3D)
5 a5

`3
+O(a6), (5.1)

where

h(3D)
5 = 4381πγxγy

554 400
− 26 171πγ 2

y

277 200
+ 527πψyγxγy

116 424
− 53πγyδxx

1728
+ 19πγxδyy

3150
− 283πγyδyy

3150
.

(5.2)

We define ψy to be the value of the y-component of the image of the stokeslet
evaluated at the location of the particle:

ψy =
[
S

[
1
r

g1
0

]
· ey

]∣∣∣∣
(x,y,z)=(x0,y0,0)

, (5.3)

where g1
0 is the stokeslet and the leading term of û1 defined in (C 8) in appendix C.

The outer integral remains the same; however, u(0)1 and u(0)3 each now include a
stresslet contribution associated with shear in the x-direction. Computing this integral
gives a scaling law of the form

F(3D)
L = ρU2

mc(3D)
4 a4

`2
+ ρU2

mc(3D)
5 a5

`3
+O(a6). (5.4)

It remains true that, for particles located arbitrarily in the square channel, the lift
force scales like a4 in the asymptotic limit α→ 0. Additionally, our O(a5) correction
to the scaling law remains accurate for moderately large α, shown in figure 7(a,b)
for the forces in the x- and y-direction, respectively. We provide the calculated values
of the 3D lift force in a square channel in a Matlab code in the supplementary
data available at http://dx.doi.org/10.1017/jfm.2014.739. In particular, we find that
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FIGURE 8. (Colour online) (a) Lift force calculated using (5.4) for locations in the lower
right quadrant of the channel for a particle of radius α = 0.11 and Re = 80. The solid
(black) circles mark stable equilibrium points, while the open (white) circles mark unstable
equilibrium points. (b) Trajectories of particles calculated using (5.5) for particle size α=
0.11 and Re= 80. The solid (black) circles mark stable equilibrium points, while the open
(white) circles mark unstable equilibrium points.

lift forces vanish only at eight symmetrically placed points around the channel, with
four points being stable and four unstable, in good agreement with experimental
observations (figure 8a).

We can compute particle streamlines using the lift force prediction, and confirm
that there are four stable focusing positions in the channel (figure 8b). Particles are
advected using a forward Euler time stepping scheme. We find the particle velocity
by equating the O(a5) lift force (5.4) with the O(a) drag force (Happel & Brenner
1982). That is, vL, the y-component of velocity v, satisfies the equation

6πµa(vL +ψy)=
[
ρU2

mc(3D)
4 a4

`2
+ ρU2

mc(3D)
5 a5

`3

]∣∣∣∣∣
(x0,y0,0)

, (5.5)

where ψy is the image velocity of the stokeslet defined in (5.3). The velocity uL, the
x-component of velocity u, is computed in the same way by substituting ψx from the
x-stokeslet for ψy.

In addition, the distance of the focusing positions from the channel centre-line
can be predicted by solving the implicit equation F(3D)

L = 0. Recall that the lift
force coefficients depend on the location of the particle, i.e. c(3D)

4 = c(3D)
4 (x0, y0) and

c(3D)
5 = c(3D)

5 (x0, y0). Since the lift force formula has both O(a4) and O(a5) terms,
the focusing position will have a functional dependence on the particle size a. This
prediction of the focusing position compares well with experimental data by Di Carlo
et al. (2009), especially for particle sizes up to α 6 0.3 (figure 9b).

6. Discussion
Our findings resolve confusion about the size dependence of inertial lift forces

experienced by particles travelling through microchannels. Many asymptotic and
numerical studies have been employed to determine how the lateral force scales
with particle radius, and have found power laws with exponents 2, 3, 4 and 5. By
numerically dissecting the equations of fluid flow around the particle, we find that
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FIGURE 9. (Colour online) (a) Inertial focusing position as a function of particle size
predicted by our theory. The markers are data collected by Di Carlo et al. (2009), the
dashed (blue) line is the theory predicted by the first term of O(a4) in (4.31), and the solid
(red) line is the theory predicted by (4.31). (b) Schematic diagram plotting the outlines of
particles at their predicted focusing position along the positive x-axis. The particle sizes
range between α = 0.03 and α = 0.29.

viscous stresses dominate over inertial stresses even at moderate channel Reynolds
numbers. We rationalize this finding by showing that this ordering of fluxes is
inherited from the stresslet flow field approximation to the far field of a particle,
provided that the contribution from channel walls is included. We make use of this
fact to develop a perturbation series expansion for the lift force, extending the theory
of Ho & Leal (1974) both to three dimensions and to include O(a5) sized terms.
We find that the scaling is a power law with exponent 4 for asymptotically small
particle radius, but that additional terms must be included to predict lift forces for the
range of particle sizes and flow speeds accessed in real inertial microfluidic devices.
By including these additional terms, we are also able to predict asymptotically how
focusing position depends on particle size.

Somewhat surprisingly, the regular perturbation expansion accurately predicts the
particle lift force even at channel Reynolds numbers and particle sizes where the
parameters in our expansion are not small (e.g. up to Rep≈10). This is consistent with
our determination that inertial stress fluxes scale simply with U2 even outside of the
regime of velocities and channel sizes at which viscous stresses are numerically larger
than momentum fluxes. Thus, although assuming a viscous stress–pressure dominant
balance is not justified based on simple comparison of the order of magnitude of
terms, the perturbation expansion continues to give good results.

We hope that the results in this paper will provide a first step towards predictive
theory for the design of inertial microfluidic devices. The biggest unmet challenge here
is to determine whether unsteady effects scale like momentum fluxes for determining
dominant balances. If the unsteady scaling can be established, then it will be possible
to model time-varying problems, including the migration of particles in non-rectilinear
geometries, such as the microcentrifuge, or the interactions of particles, such as the
recently discovered phenomena of self-organization by inertially focused particles into
stably ordered chains (Humphry et al. 2010; Lee et al. 2010). We have shown that
the viscous–pressure stress dominant balance leads to a particularly simple far-field
form to the flow disturbance, potentially allowing simplified modelling of particle
interactions. Additionally we provide a Matlab code with the calculated values of the
lift force in the supplementary data.
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Variables Dimensional Inner Outer

Distance r ′ = (x′, y′, z′) r = (x, y, z) R= (X, Y, Z)
Velocity u′ u U
Pressure p′ p P

Particle location (x′0, y′0) (x0, y0) (X0, Y0)

Particle velocity U ′p Up Up

Particle angular velocity Ω ′p Ωp Ωp

Poiseuille flow ū′ ū Ū
Asymptotic expansion of velocity — u(0) U(0)

Reference velocity — û Û

Conversion from dimensional variables r ′ r = r ′/a R= r ′/`
Conversion from inner variables r ′ = ar r R= αr
Conversion from outer variables r ′ = `R r = R/α R

TABLE 3. Comparison of dimensional and dimensionless scalings of the variables.
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Appendix A. Notation
Throughout the main paper, we need to change the scaling of variables in order

to capture the dynamics either near the particle or near the channel walls. In this
appendix, we create a reference for the notation for three scalings: dimensional
scalings, dimensionless inner variables and dimensionless outer variables. To be
consistent with previous literature, we denote the dimensionless inner variables with
lower-case roman letters, and the dimensionless outer variables with upper-case roman
letters. We use primes to distinguish dimensional variables. A reference is presented
in table 3.

We must draw attention to the notation for the particle velocity and particle angular
velocity. Since both the inner and outer variables are scaled by the same velocity,
αUm, the scaled particle velocity is the same in both cases. We choose to represent
the dimensionless particle velocity by Up to be consistent with notation in previous
studies (Ho & Leal 1974; Schonberg & Hinch 1989).

However, the scaling for the particle angular velocity differs between the inner and
outer coordinates. We continue to use Ωp in both the inner and outer variables, despite
this abuse of notation. We keep Ωp in order to be consistent with previous studies (Ho
& Leal 1974; Schonberg & Hinch 1989). We feel justified in our decision since Ωp
does not arise in the computation of our asymptotic model, so the reader wishing to
apply our results need not worry over the discrepancy. Nevertheless, we remind the
reader that the particle angular velocity for the inner variables satisfies ωp = αΩp.
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FIGURE 10. (a) The relative error E of the drag force is less than 1 % for Lz > 1, and
in particular for our choice of Lz= 5 the relative error is less than 0.5 %. (b) The relative
lift force error EL from solving the NSEs increases exponentially as α decreases.

Appendix B. Accuracy of the numerical model
B.1. Accuracy of the domain size

We subjected the FEM discretization of (2.4) to convergence tests based on varying
the size of the numerical domain and on changing the mesh size. Maximum element
size was decreased, and the length of the domain was increased until the computed
drag and lift forces had converged to within 0.5 %.

To test the length of the domain, we varied the variable Lz, defined so that the
channel domain became `/a× `/a× Lz(`/a). We solved the NSEs where the particle
surface and channel walls have no-slip boundary conditions. The particle is assumed to
have no velocity or angular velocity. Comsol’s standard meshing algorithms are used,
and the particle size is chosen to be α = 0.11.

We see that the drag force F quickly converges to its final value, at approximately
Lz= 2–3 (figure 10a). Averaging the data for Lz > 3 to obtain a force estimate F̄, we
also present a relative error as E = 100(F − F̄)/F̄. A small fluctuating error persists
as Lz is increased up to Lz = 10. This error probably reflects mesh noise, rather than
geometry. Similar data are seen when simulations are performed on different grades
of mesh.

B.2. Accuracy of the particle size
We also discuss the range of α values that were computed in this paper. The upper
range of α is limited by the position of the particle relative to the walls and to the
equilibrium positions. Since the lift force FL is a function not only of α, but also of
x0 and y0, for any given α, there are four coordinates (x0, y0) where the lift force is
zero, and we call these points ‘equilibrium positions’. In the first part of our paper, we
constrain our locations to those on the positive y-axis, that is, coordinates of the form
(0, y0), for y0 > 0. The equilibrium position (0, y∗0), which is a function of α, divides
this domain into two sections: (i) the domain between the equilibrium position and
the centre of the channel, and (ii) the domain between the equilibrium position and
the wall. We must be careful in these regions, when we are examining the scaling
law for fixed y0 and varied α, to choose α so that fL remains positive and does not
pass through zero. The same principle extends to the choice of α for all locations
throughout the channel.
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The lower range of α, however, is limited by the accuracy of the root finder in the
Navier–Stokes solver. As discussed in § 2, the values of Up and Ωp are chosen so that
the particle is drag-free and force-free. Therefore, the drag force FD can be used as
a measure of the precision of the numerical solver. We define the relative lift force
error as EL= 100(FD/FL). The relative lift force error as a function of α for a particle
located at (x0= 0, y0= 0.15/α) and with Re= 1 increases exponentially as α decreases
to zero (figure 10b). We limit α > 0.03, or relative error EL < 10 %.

We do not strive to test smaller particle sizes α because the theoretical results of
Schonberg & Hinch (1989) and Asmolov (1999) are generally accepted to be true
for asymptotically small particles. Our goal in this paper is to produce theory for
particles at the sizes used in experimental systems. Smaller values of α are not used
in experiments, because lift forces become too weak to compete with other forces,
such as Brownian motion.

B.3. Accuracy of the Navier–Stokes solver
To further account for artifacts associated with, for example, regularization of the
convective (inertial) terms in (2.4), we also solved a model problem of computing the
drag force on a sphere moving through a quiescent fluid, for which a considerable
body of well-validated experimental and numerical data exists (Veysey & Goldenfeld
2007).

Let a be the particle radius, Uez be the flow velocity, ρ the fluid density and ν be
the kinematic viscosity of the fluid surrounding a particle. The Reynolds number in
this scenario is Rep=Ua/ν. The drag FD on the sphere is the force in the z-direction.
We define the drag coefficient to be

CD = FD

ρU2a2
. (B 1)

In our simulation, we consider the domain of fluid to be a cube of length 50a, with
the particle of radius a centred at the origin. We choose the minimum element size
at the sphere surface to be comparable to those of the simulations described in § 2.

We compute the drag force using the Lagrange multipliers used within the FEM
to enforce the velocity boundary condition on the particle surface. We consider
Reynolds numbers between Rep= 0.1 and Rep= 100, by varying the fluid velocity U.
Our computation of the drag coefficient CD compares favourably to those of various
experimental and numerical studies (figure 11). In particular, Maxworthy (1965)
accurately measures the drag on a sphere in experiments, using a container diameter
that is 700 times the sphere diameter. Maxworthy estimates his experimental error
to be better than 2 %. We also include experimental data catalogued in Perry (1950)
for larger Reynolds numbers and numerical studies by Dennis & Walker (1971) and
LeClair et al. (1972).

Appendix C. Analytic velocities

This appendix contains the full equations for the velocities, u(0)1 and û1, described
in § 4. Since the odd terms of the expansion of u(0) are exact on the particle, they
can be computed analytically using Lamb’s solution for the flow external to a sphere
(Lamb 1945; Ho & Leal 1974). The multipole expansion of u(0)1 takes the form

u(0)1 =
∞∑

n=0

1
rn+1

f 1
n

(
x− x0

r
,

y− y0

r
,

z
r

)
. (C 1)
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FIGURE 11. (Colour online) Our calculation of the drag coefficient, CD, for a sphere
in a uniform flow (black line) compares well to numerical data (blue circles, Dennis &
Walker (1971); green squares, LeClair et al. (1972)) and experimental data (red triangles,
Maxworthy (1965); black asterisks, Perry (1950)) across a large range of Reynolds
numbers, Re.

The components of each f 1
n are defined as follows:

f 1
0

(x
r
,

y
r
,

z
r

)
= −(A1 + I1)

2

(
ez + zr

r2

)
, (C 2)

f 1
1

(x
r
,

y
r
,

z
r

)
= −5γy

2
yzr
r3
+C1

(zey

r
− yez

r

)
+ −5γx

2
xzr
r3
+K1

(zex

r
− xez

r

)
, (C 3)

f 1
2

(x
r
,

y
r
,

z
r

)
= −(δyy + δxx)

15

(
ez − 3zr

r2

)
+ (−δyy + δxx)

3

(
zr
r2
− (r

2 − 2y2)ez

r2

)
+ 7δyy

120

[(
13− 75y2

r2

)
zr
r2
+ 10yzey

r2
−
(

1− 5y2

r2

)
ez

]
+ 7δxx

120

[(
13− 75x2

r2

)
zr
r2
+ 10xzex

r2
−
(

1− 5x2

r2

)
ez

]
, (C 4)

f 1
3

(x
r
,

y
r
,

z
r

)
= −γy

2

(
zey

r
+ yez

r
− 5yzr

r3

)
+ −γx

2

(
zex

r
+ xez

r
− 5xzr

r3

)
, (C 5)

f 1
4

(x
r
,

y
r
,

z
r

)
= δyy

8

[
−5
(

1− 7y2

r2

)
zr
r2
+ 2yzey

r2
+
(

1− 5y2

r2

)
ez

]
+ δxx

8

[
−5
(

1− 7x2

r2

)
zr
r2
+ 2xzex

r2
+
(

1− 5x2

r2

)
ez

]
, (C 6)

and f 1
n= 0 for n> 5. Here the constants A1, C1, I1 and K1 are all of order O(α3), and

so do not participate in determining the force on the particle at the order computed
in this study. Note that when we are on the symmetry plane x= 0, then also γx = 0,
and likewise with y and γy.

We can also use Lamb’s solution to calculate the odd terms in the expansion of û.
In particular, we represent û1 in the following multipole expansion:

û1 =
∞∑

n=0

1
rn+1

g1
n

(
x− x0

r
,

y− y0

r
,

z
r

)
. (C 7)
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The full analytic solutions for the g1
n are below:

g1
0

(x
r
,

y
r
,

z
r

)
= 3

4

(
ey + yr

r2

)
, (C 8)

g1
2

(x
r
,

y
r
,

z
r

)
= 1

4

(
ey − 3yr

r2

)
, (C 9)

and g1
n = 0 for n= 1, and n > 3.

Appendix D. Determining the reciprocal theorem integrands
In this appendix, we rationalize the choice of integrands for the reciprocal theorem

(4.8) in §§ 4.3 and 4.4. For each domain, we scale by the characteristic length, and
then sort terms by magnitude in α. Finally, we choose terms of the velocities that
combine to give the desired power of α.

D.1. Inner integral
For the inner integral, we continue to scale lengths by the particle radius a, and collect
terms by order of magnitude in α. For the O(a4) contribution, we need to choose
combinations of u(0)i , ûi and ū that combine to give O(α2) in the integrand of (4.8).
Similarly, for O(a5), terms need to combine to give O(α3) in the integrand.

The leading terms in magnitude α of the u(0)i are

u(0)1 ∼ α
(

1
r2

f 1
1 +

1
r4

f 1
3

)
+ α2

(
1
r3

f 1
2 +

1
r5

f 1
4

)
+O(α4), (D 1a)

u(0)2 ∼ α3S

[
1
r2

f 1
1

]
+O(α4), (D 1b)

and all higher-order u(0)i are O(α4) or smaller. We define v=S [u] as the image of the
function u, that is, v solves the Stokes equations with −u as the boundary condition
on the walls. The leading terms in magnitude α of the ûi are

û1 ∼ 1
r

g1
0 +

1
r3

g1
2, (D 2a)

û2 ∼ αS

[
1
r

g1
0

]
+O(α3), (D 2b)

û3 ∼ α
(

1
r

g3
0 +

1
r3

g3
2

)
, (D 2c)

and higher-order ûi are O(α2) or smaller. The leading terms in magnitude α of ū are

ū∼ [αγ r+ α2δr2 +O(α)]ez. (D 3)

Recall that the inner integral has the α expansion:

FL1 = ρU2
ma2(h4α

2 + h5α
5 + · · ·). (D 4)

It is evident that only u(0)1 , û1 and the shear term of ū (call it ūγ ) contribute to the
O(a4) term of the inner integral, that is,

h4 =
∫
R3

û1 · (ūγ · ∇u(0)1 + u(0)1 · ∇ūγ ) dv, (D 5)
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whereas u(0)1 , û1, û2, û3 and both the shear and curvature terms of ū (call them ūγ
and ūδ respectively) contribute to the O(a5) term:

h5 =
∫
R3
(û1 + û2 + û3) · [(ūγ + ūδ) · ∇u(0)1 + u(0)1 · ∇(ūγ + ūδ)] dv. (D 6)

These integrals are evaluated in § 4.3.

D.2. Outer integral
The outer integral is expressed in terms of R=αr. We arrange our functions in order
of magnitude in α as shown below. For the O(a4) term in the outer integral, we need
to collect terms of U(0)

i , Û i and Ū that combine to give O(α4) in the integrand of
(4.8). For the O(a5) term, we need an O(α5) integrand in (4.8).

The leading terms in magnitude α of the U(0)
i are

U(0)
1 ∼ α3

(
1
R2

f 1
1 +

1
R4

f 1
3

)
+O(α4), (D 7a)

U(0)
2 ∼ α3S

[
1
R2

f 1
1

]
+O(α4), (D 7b)

and U(0)
3 and U(0)

4 are O(α4). The leading terms in magnitude α of the Û i are

Û1 ∼ α 1
R

g1
0 + α3 1

R3
g1

2, (D 8a)

Û2 ∼ αS

[
1
R

g1
0

]
+O(α3), (D 8b)

Û3 ∼ α2 1
R

g3
0 + α4 1

R3
g3

2 +O(α4), (D 8c)

Û4 ∼ α2S

[
1
R

g3
0

]
+O(α4), (D 8d)

while all the terms of Ū are O(1). Recall that the outer integral has the α expansion:

FL2 = ρU2
m`

2(k4α
4 + k5α

5 + · · ·). (D 9)

Only U(0)
1 , U(0)

2 , Û1, Û2 and Ū contribute to the O(a4) term in the outer integral,
namely,

k4 =
∫

VC

(Û1 + Û2) · [Ū · ∇(U(0)
1 +U(0)

2 )+ (U(0)
1 +U(0)

2 ) · ∇Ū] dv, (D 10)

whereas U(0)
1 , U(0)

2 , Û3, Û4 and Ū contribute to the O(a5) term:

k5 =
∫

VC

(Û3 + Û4) · [Ū · ∇(U(0)
1 +U(0)

2 )+ (U(0)
1 +U(0)

2 ) · ∇Ū] dv. (D 11)

These integrals are evaluated in § 4.4.
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