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Ideal point estimation is a topic of central importance in political science. Published work

relying on the ideal point estimates of Poole and Rosenthal for the U.S. Congress is too

numerous to list. Recent work has applied ideal point estimation to the state legislatures,

Latin American chambers, the Supreme Court, and many other chambers. Although most

existing ideal point estimators perform well when the number of voters and the number of bills

is large, some important applications involve small chambers. We develop an estimator that

does not suffer from the incidental parameters problem and, hence, can be used to estimate

ideal points in small chambers. Our Monte Carlo experiments show that our estimator offers

an improvement over conventional estimators for small chambers. We apply our estimator to

estimate the ideal points of Supreme Court justices in a multidimensional space.

1 Introduction

Ideal point estimation is a topic of central importance in political science. Published work
relying on ideal point estimates by Poole and Rosenthal (1997) of the U.S. Congress are too
numerous to list. Recent work has applied ideal point estimation to the state legislatures
(Wright and Osborne 2002), Latin American chambers (Desposato 2004; Londregan
2000b), the Supreme Court (Martin and Quinn 2002), and many other chambers. The con-
ventional methods—the maximum likelihood and Bayesian estimators—perform well
when both the number of voters and the numbers of bills is large. Yet, many important
applications of ideal point estimation require the analysis of small chambers.

The maximum likelihood estimator (Poole and Rosenthal 1997) requires estimating
both legislator-specific and bill-specific parameters. This method is extremely effective
in estimating ideal points in the U.S. House and Senate. It is much less effective in esti-
mating ideal points in smaller chambers due to finite sample identification problems. For
example, Clinton, Jackman, and Rivers (2003) report that, when run on data from the
Supreme Court, Poole’s W-NOMINATE program places all the justices at 21 or 1.

Bayesian estimators have been proposed as solutions to this problem (Bafumi et al.
2005; Clinton, Jackman, and Rivers 2004; Martin and Quinn 2002). Bayesian estimators
are able to deal with the finite sample identification problem because informative prior
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distributions penalize extreme estimated parameter values. Bayesian estimators, however,
do not solve the incidental parameters problem (Lancaster 2000).

The incidental parameters problem occurs in small chambers because both the maxi-
mum likelihood estimator and the Bayesian estimator require estimating a very large num-
ber of parameters (the bill-specific parameters) from a small amount of data. Inconsistency
of the bill-specific parameter estimates is then translated into inconsistency of the esti-
mated ideal points.1

Ideal point models are a subclass of nonlinear panel data models, which are themselves
subject to the incidental parameters problem. A number of solutions to the incidental
parameters problem have been proposed. Neyman and Scott (1948) suggested employing
a set of estimating equations that identify the parameters of interest but do not depend on
the fixed effects. Andersen (1970, 1973) introduced conditional fixed-effects estimators,
which provide a practical way of finding estimating equations that meet the requirements of
Neyman and Scott. Unfortunately, conditional fixed-effects estimators are not universally
applicable.2 The only known conditional fixed-effects estimator for ideal point models
requires unconventional and unattractive assumptions about the disturbance term (Heckman
and Snyder 1997).

An alternative solution to the incidental parameters problem comes from random-
effects estimators, which avoid the incidental parameters problem by integrating over
the individual-specific parameters rather than estimating them (Kiefer and Wolfowitz
1956; Bock and Aiken 1981). The drawback of this approach is that one must make more
restrictive assumptions about the individual-specific parameters.3 Londregan (2000a,
2000b) develops a random-effects estimator to estimate ideal points but requires the cut-
points to be normally distributed. A second disadvantage of random-effects estimators
is that they typically require numerical integration. Although this numerical integration
can be performed using quadrature methods, the curse of dimensionality means that it
is impractical to estimate ideal point models whose dimensionality is greater than one.

Bailey (2001) and Lewis (2001) have developed alternative random-effects estimators
for the case where there are a large number of legislators but a small number of votes.
Bailey’s procedure focuses on recovering ideal point estimates, whereas Lewis’ procedure
focuses on recovering the distribution of ideal points across a number of districts. Although
both Bailey’s and Lewis’ estimators have important applications, they will not be effective
for the small chamber problem.

Bayesian and random-effects estimators provide the two most important approaches to
estimating ideal points in small chambers. Each has a significant drawback—whereas the
Bayesian estimator suffers from the incidental parameters problem, the random-effects
estimator requires potentially restrictive assumptions about the distribution of bill-specific
estimators, and current implementations require numerical integration. Londregan’s
random-effects estimator does not easily extend to higher dimensions.

In this paper, we will develop a more general random-effects estimator for ideal point
estimation. This estimator will have a number of advantages. First, the estimator is more
flexible (in the sense of allowing it to fit a larger class of models). Second, the estimator can

1See Lancaster (2000) for a discussion of the incidental parameters problem as it relates to Bayesian estimation.
2Conditional fixed-effects estimators are known to exist for the fixed-effects nonlinear regression model, the fixed-
effects logit model, and the fixed-effects poison model. No conditional fixed-effects estimator is known for the
fixed-effects probit model, and it is thought that one does not exist (Hsiao 1986).

3The analyst must typically restrict the functional form of the distribution of random effects, as well as the type of
dependence between the random effects and other variables in the model.
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be viewed as a first-order approximation based on matching the first two moments of the
vector of latent variables defining the model. As a consequence, our estimator will be ro-
bust to misspecification of the distribution of random effects. Third, the estimator easily
extends to the multidimensional case. Finally, the estimator can be implemented in a way
that does not suffer from the curse of dimensionality since the relevant integrals in the
likelihood function can be computed using simulation methods.

Choosing between the Bayesian estimator and our small chamber estimator requires
evaluating the relative costs of the incidental parameters problem and misspecification
of the bill-specific parameters. We will show, through Monte Carlo experiments, that
our estimator is more effective in recovering ideal points in small chambers than the
Bayesian estimator.4 Our small chamber estimator is quite effective even when the distri-
bution of bill-specific parameters deviates significantly from normality. We find that our
estimator is much more robust to misspecification than the Bayesian estimator is to the
incidental parameters problem.

An application to voting in the U.S. Supreme Court will demonstrate the robustness,
stability, and broad applicability of our estimator. The application shows that our estimator
performs well, and we can corroborate many of the findings from our Monte Carlo sim-
ulations. Our results indicate that the U.S. Supreme Court exhibits at least two important
dimensionsofconflict. In the two-dimensionalcase,ourresults suggesta liberal-conservative
dimension and a ‘‘judicial activism’’ dimension.

2 Small Chamber Estimation

The quadratic-normal ideal point model can be described as follows. Let yn;t 5 1 denote
a yea by individual n on bill t and let yn;t 5 0 denote a nay. There exist parameters an and dt
such that y�n;t 5 dt;01dt;1an;11dt;2an;21 . . . dt;Dan;D1en;t; where en;t �Nð0; 1Þ: Further-
more, yn;t 5 1 if y�n;t> 0 and yn;t 5 0 otherwise. The equation for y�n;t can be derived
as a reduced-form representation of a random utility model with a quadratic utility func-
tion, where voting decisions depend on the positions of the bill and the status quo (Clinton,
Jackman, and Rivers 2004; Martin and Quinn 2002; Poole and Rosenthal 1997).

Now, let us consider a slightly different representation of the same model. Once
again suppose that yn;t 5 1 if y�n;t > 0 and yn;t 5 0 otherwise but suppose that
ðy�n;1; y�n;2; . . . ; y�n;TÞ� f ðx; h0Þ: The probability of observing the vector ðyn;1; yn;2; . . . ; yn;TÞ
is then given by

Prðyt; hÞ5
Z
x2At

f ðx; h0Þdx: ð1Þ

where At 5
�
x 2 R

N : xn < 0 if yn;t 5 1; xn > 0 if yn;t 5 0
�
:

We can thus form the maximum likelihood estimator for this model using

ĥ5 argmaxh

(
1

T

XT
t5 1

logPrðyt; hÞ
)
: ð2Þ

4Some may argue that it is inappropriate to evaluate a Bayesian estimator based on the property of consistency
or based on its ability to recover the ‘‘true’’ parameter value in a Monte Carlo experiment. We will provide
a justification for this approach in Section 3.
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Notice that h can be estimated consistently even when N is fixed and T goes to infinity,
providedthath isafinitedimensionalparameter.Clearly,ðy�n;1; y�n;2; . . . ; y�n;TÞ� f ðx; h0Þholds
for an ideal point model, so estimating a0 simply involves finding the correct transformation
from ĥ to â.

In general, the transformation from ĥ to â depends on the distribution of dt. Suppose that
dt �Nðld;XdÞ. In this case, we have that ðy�n;1; y�n;2; . . . ; y�n;TÞ�Nðl;XÞ since a linear
transformation of normal random variables has a normal distribution.

We can determine the correct transformation by matching the first two moments of
ðy�n;1; y�n;2; . . . ; y�n;TÞ to (l;X). For convenience, we will parameterize Xd in terms of its’
Cholesky factorization, Xd 5 LdLd#, where Ld is a lower triangular matrix. We can deter-
mine that

E
�
y�n
�
5 lnða; ldÞ5 ð1; anÞ#ld; ð3aÞ

Covðy�n; y�mÞ5Xn;mða; ld; LdÞ5 1
�
n5m

�
1an#LdLd#am: ð3bÞ

This step is crucial to our analysis since it allows us to write the likelihood function in
a way that does not depend on a large number of nuisance parameters. We can estimate the
parameters of this model using maximum likelihood. We choose

�
â; l̂d; L̂d

�
to maximize

the objective function,

Qða; ld; LdÞ

5
1

T

XT
t5 1

log

(
1

ð2pÞK=2ðdetXða; ld; LdÞÞ1=2

�
Z
At

exp

�
2
1

2

�
x2l

�
a; ld

		
#Xða; ld; LdÞ

21

�
x2l

�
a; ld

		

dx

)
:

ð4Þ
We impose restrictions on a for identification purposes (e.g., a1 521 and aN 5 1, if

D5 1). The resulting estimator will be consistent even when N is fixed and T goes to infinity.
The only difficulty here is that evaluating the likelihood involves computing rectangle

probabilities of the multivariate normal distribution. We evaluate these integrals using the
GHK simulator.5 The GHK simulator is an importance sampler that is an alternative to
a raw frequency sampler for computing rectangles of the normal distribution. It has two ad-
vantages over the raw frequency sampler. First, it will not generate probabilities of zero and
oneinfinitesamples.Second, it leads toanobjectivefunctionthatvariescontinuouslywith the
model parameters. We describe the implementation details of this estimator in the Appendix.

The approach we mention here will generate consistent estimates as long as
ðy�n;1; y�n;2; . . . ; y�n;TÞ has the multivariate normal distribution. This assumption is met when
both dt and en;t are normally distributed but will hold more generally. Even
when ðy�n;1; y�n;2; . . . ; y�n;TÞ are not normally distributed, our approach can be viewed as
a first-order approximation based on matching the first two moments of

5An alternative approach is to evaluate these integrals using quadrature methods (as Londregan 2001a does). This
method suffers from the curse of dimensionality, as we need to compute a D11-dimensional integral to evaluate
the likelihood function. We experimented with quadrature methods in our Monte Carlo experiments and
found that even when D 5 1 the quadrature approach was slower and less accurate. The dominance of the
GHK approach would be even more dramatic when estimating larger dimensional models.
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ðy�n;1; y�n;2; . . . ; y�n;TÞ to the first two moments of the normal distribution. The normal
distribution can in turn be viewed as a quadratic approximation to the log of the charac-
teristic function.6 In principle, we can take a third-order expansion of the log of the
characteristic function and match the first three moments of ðy�n;1; y�n;2; . . . ; y�n;TÞ to the first
three moments of the distribution that has a cubic characteristic function.7 Higher
order expansions can yield more precise approximations, but common sample sizes will
limit the applicability of even a third-order approximation. Given the relative success of
our estimator, we chose not to explore these higher order expansions further.

Our approach can easily allow for the distribution of dt to depend on some independent
variables.8 For example, we could have dt �NðbdXt;XdÞ in which case

E
�
y�n
�
5

�
1;an

�
#bdXt; ð5aÞ

Cov
�
y�n; y

�
m

�
5 1

�
n5m

�
1an#Xdam: ð5bÞ

The likelihood can be formed in a similar way as suggested above. The inclusion of in-
dividual-specific covariates is essential in Bailey (2001) and Lewis (2001) but is not es-
sential here. If good covariates are available, then including them may improve efficiency.

As we show later, the Bayesian estimator is particularly vulnerable to the problem of
determining the dimensionality of the data. Since the small chamber estimator is a (stan-
dard) maximum likelihood estimator, we can rely on the theory of likelihood ratio tests. It
is useful, however, to have different measures of model fit, comparable to the percent of
votes correctly predicted and the geometric mean probability, that are available for the
large chamber estimators (Poole and Rosenthal 1997). Such measures are not directly
available because the small chamber estimator does not produce estimates of the bill-
specific parameters. To remedy this problem, after the ideal points are estimated, we es-
timate an individual probit for each vote, producing pseudoestimates of the bill-specific
parameters.9 Based on these pseudoestimates, we can determine the percentage of votes
that are correctly predicted and determine the geometric mean probability. These measures
will allow us to investigate the dimensionality of the data.

3 Monte Carlo Evidence

Theory tells us that the small chamber estimator will be consistent when N is held fixed and
T goes to infinity, provided that the vector y�t is normally distributed. The Bayesian esti-
mator requires that both N and T go to infinity.10 In this section, we will evaluate the small
chamber estimator in comparison to the Bayesian estimator. In particular, we will argue

6This partially explains our later finding of robustness to misspecification.
7This approach follows the same logic employed when performing an Edgeworth expansion (Hall 1997).
8Londregan (2001a, 2001b) includes covariates in his random-effects model. Quinn, Park, and Martin (2007)
include covariates in a Bayesian ideal point estimator in order to obtain more precise estimates.

9We deal with finite sample identification problems by using penalized maximum likelihood (Firth 1993; Zorn
2005). An alternative approach would be to select the bill-specific parameters to maximize the classification
success on each vote, given the estimated ideal points. It is, in fact, possible to solve this problem by formulating
it as a mixed-integer programming problem (Liittschwager and Wang 1978), but using individual probits yields
classification rates that are more comparable with those produced by conventional ideal point estimators (which
do not maximize classification success).

10More specifically, the Bayesian estimator will be consistent only when both N and T go to infinity (Lewis 2001).
Some may argue that consistency is not a relevant property for evaluating Bayesian estimators, but we ultimately
base our conclusions on the finite sample properties of the estimators.
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that when the chamber size is small, the Bayesian estimator will perform poorly, partic-
ularly with respect to the quality of inferences. Hence, the incidental parameters problem
for the Bayesian estimator is more severe than the misspecification problem is for the small
chamber estimator.

Although Monte Carlo experiments have not been widely applied to the evaluation
of Bayesian estimators in the political science literature, this approach is widely accepted,
even among some ‘‘hard-core’’ Bayesians. For example, Geweke, Keane, and Runkle
(1994, 1997) compare Bayesian, Simulated Maximum Likelihood, and Simulated Method
of Moments estimators for the multinomial probit and panel probit models. Applications in
political science include Bailey (2001) and Carroll et al. (forthcoming).

Selecting a distribution for dt that deviates from normality allows us to assess the ro-
bustness of the small chamber estimator to deviations form idealized assumptions. Our
experience with estimated bill-specific parameters in other applications leads us to expect
that, in most cases, the distribution will be relatively symmetric but may be unimodal, flat,
or bimodal. We consider two choices for the bill-specific parameters. In the ‘‘easier’’ ex-
ample, we select the bill specific parameters to be uniformly distributed. In the ‘‘harder’’
example, we select the bill-specific parameters to have a skewed distribution and exhibit
nonlinear dependence.

We evaluate the estimators using four criteria. We computed the median bias, the root
median squared error, the standard error accuracy (overconfidence), and the coverage of
a 95% confidence interval. The median bias is the median difference between the estimate
and the true parameter value. The root median squared error is the square root of the me-
dian squared distance between the estimate and the true parameter value. Overconfidence is
the median estimated standard error, divided by the root mean squared error in the sample.
The coverage of a 95% confidence interval is the percentage of times the true parameter
value falls within the estimated confidence interval.

We choose to use robust measures (the median bias and root median squared error)
rather than the more common mean bias and root mean squared error because both esti-
mators occasionally produce estimates that are widely off.11 One or two extreme obser-
vations tend to dominate the mean bias and root mean squared error, so these measures may
not accurately reflect the typical behavior of these estimators.

In the first experiment, we consider N 5 4 and vary T 5 201,501,1001. We use the true
values a0 5 ð21;20:25; 0:5; 1Þ. We assume that dt;0 5 t21

T21
and dt;1 �Uniform

�
21; 1

�
for

t 5 1,. . .,T. Results are given in Table 1. For low values of T, the Bayesian estimator has
lower bias than the small chamber estimator. When T becomes larger, the bias of the small
chamber estimator improves, whereas the bias of the Bayesian estimator does not. The
Bayesian estimator has lower root median squared error for low values of T, but the small
chamber estimator begins to outperform the Bayesian estimator when T becomes larger.
Overall, the point estimates produced by these estimators are of comparable quality for
typical values of T.

The inferential properties of the Bayesian estimator are quite poor and do not improve
when T alone is increased. The Bayesian estimator is very overconfident, although this
improves somewhat as T increases. Consistent with this, 95% confidence intervals had
coverage around 60% for all the sample sizes we considered. The inferential properties
of the small chamber estimator are substantially better. Although the estimator is overcon-
fident when T 5 201, the standard errors become more accurate as T increases. The

11This is due to the fragile identification of these models when N is small.
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coverage of a 95% confidence interval is around 75% when T 5 201 but becomes sub-
stantially better as T increases. Both estimators are quite successful in recovering the or-
dering of the legislators.

Next, consider dt;0 5211et and dt;1 5 d2t;0ðut2ctÞ, where et, ut, and ct are independent
draws from the exponential distribution, the standard uniform distribution, and the chi-
squared distribution with three degrees of freedom. This presents a higher degree of mis-
specification for the small chamber estimator. The results are presented in Table 2. We find
here that the performance of both estimators deteriorates, but the small chamber estimator
clearly dominates here. The small chamber estimator has lower median bias and root me-
dian squared error. Although the inferences produced by the small chamber estimator are
not spectacular, they are clearly an improvement over the Bayesian estimator. The median
bias, standard error accuracy, and coverage for the small chamber estimator do not improve
as the sample size increases because the estimator is so heavily misspecified here. Fortu-
nately, both estimators are relatively successful in recovering the ordering of the candi-
dates, though the small chamber estimator is more successful.

Table 2 Monte Carlo results for difficult specification (D 5 1, N 5 4)

T

Median bias
Root median
squared error Overconfidence Coverage (95%)

Correctly
ordered

(%)Alpha2 Alpha3 Alpha2 Alpha3
Alpha2

(%)
Alpha3

(%)
Alpha2

(%)
Alpha3

(%)

Bayesian estimator
201 20.099 0.351 0.145 0.351 163 286 79.3 26.5 83.5
501 20.112 0.351 0.121 0.351 191 419 67.8 3.2 94.9

1001 20.114 0.355 0.114 0.355 221 611 55.6 0.0 98.5
Small chamber estimator

201 20.142 0.127 0.175 0.189 124 115 85.3 91.8 93.4
501 20.122 0.133 0.128 0.144 138 131 82.3 86.2 99.1

1001 20.126 0.131 0.127 0.134 175 157 69.6 76.4 100.0

Note. Reported results are averages over R 5 1000 replications.

Table 1 Monte Carlo results (D 5 1, N 5 4)

T

Median bias
Root median
squared error Overconfidence

Coverage
(95%)

Correctly
ordered

(%)Alpha2 Alpha3 Alpha2 Alpha3
Alpha2

(%)
Alpha3

(%)
Alpha2

(%)
Alpha3

(%)

Bayesian estimator
201 20.009 0.077 0.383 0.337 490 347 63.9 67.0 70.0
501 0.051 0.161 0.274 0.245 244 276 60.1 61.1 89.0

1001 0.105 0.140 0.246 0.197 261 250 53.2 53.7 97.7
Small chamber estimator

201 20.006 0.137 0.543 0.464 490 347 73.7 77.8 69.4
501 20.077 0.008 0.365 0.346 244 152 83.4 82.2 90.0

1001 20.029 -0.023 0.232 0.240 112 119 90.0 90.1 97.1

Note. Reported results are averages over R 5 1000 replications.
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Theresults for the highly misspecifiedmodelmay initiallybesurprisingbecause thevalidity
of the Bayesian estimator does not rely on normality of the bill-specific parameters. However,
a skewed distribution for the bill-specific parameters serves to exacerbate the incidental param-
eters problem. The prior distributions compensate for the fact that a minimal amount of data is
available to estimate each bill-specific parameters, but when the distribution of the bill-specific
parametersdeviatesfromnormality,normalpriordistributionsprovidemisleadinginformation.

We next consider a similar experiment with N 5 9. In this case, we set a0 5
ð21;20:75;20:5;20:25; 0:0; 0:25; 0:5; 0:75; 1Þ, using dt;0 5 t21

T21
and dt;1 �Uniform�

21; 1
�

for t 5 1,. . .,T. The simulation results are presented in Table 3. Both estimators
perform quite well in terms of bias and result in comparable root median squared error. The
point estimates produced by either estimator are therefore of comparable quality. The small
chamber estimator once again leads to improved inferences. The Bayesian estimator is
overconfident and confidence intervals undercover. The small chamber estimator performs
better here, with accurate standard errors and near-perfect coverage when T 5 501.

Finally, we consider an experiment where N 5 9 and D 5 2. We set

a0#5

�
21 21 21 0 0 0 1 1 1

21 0 1 21 0 1 21 0 1

�
: ð6Þ

and we consider T 5 201,501. We use dt;0 5 t21
T21

, dt;1 �Uniformð21; 1Þ, and
dt;2 �Uniformð21; 1Þ for t 5 1,. . .,T. These results are presented in Table 4. Once again,
the estimators are comparable in the quality of their point estimates. The small chamber
estimator has superior inferential properties. Although the Bayesian estimator is overcon-
fident and undercovers, the small chamber estimator provides quality standard errors and
near-perfect coverage.

Table 3 Monte Carlo results (D 5 1, N 5 9)

T

Median bias
(average absolute

value)

Root median
squared error

(average)
Overconfidence
(average) (%)

Coverage (95%)
(average) (%)

Bayesian estimator
201 0.016 0.310 230.3 81.0
501 0.018 0.196 160.0 79.7

Small chamber estimator
201 0.021 0.327 175.1 93.1
501 0.016 0.186 100.5 96.1

Note. Reported results are averages over R51000 replications.

Table 4 Monte Carlo results (D 5 2, N 5 9)

T
Median bias

(average absolute value)
Root median

squared error (average)
Overconfidence
(average) (%)

Coverage (95%)
(average) (%)

Bayesian estimator
201 0.046 0.327 245.4 85.8
501 0.029 0.209 142.1 84

Small chamber estimator
201 0.038 0.380 117.2 96
501 0.026 0.232 94.4 95.7

Note. Reported results are averages over R 5 1000 replications.
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Our results indicate that we should, indeed, worry about the incidental parameters prob-
lem. The point estimates of the Bayesian estimator are surprisingly good even in relatively
small chambers, provided that the information provided by the prior distributions of the
bill-specific parameters is not too misleading. The incidental parameters problem affects
the Bayesian estimator most dramatically in the quality of inferences. We found that the
problems were severe when N 5 4, while the performance of Bayesian inferences was less
than stellar when N 5 9. These problems do not go away when T alone is increased.

The computational burden of the small chamber estimator is lower in small sample sizes.
The small chamber estimator does not scale as well as the Bayesian estimator (or the maxi-
mum likelihood estimator), however. Moreover, although the small chamber estimator is
superior at small chamber sizes, eventually the Bayesian estimator will achieve better per-
formance. This suggests a cutoff from switching between the small chamber and Bayesian
estimators. We think that somewhere between N 5 15 and N 5 30 serves as a reasonable
cutoff for abandoning the small chamber estimator in favor of alternative methods. The
cutoff depends on how ‘‘wild’’ the distribution of cutpoints is. For very wild distributions,
our results suggest a higher cutoff before switching to large chamber estimators.

4 Voting in the U.S. Supreme Court

In this section, we will apply our estimator to Spaeth’s (1999) Supreme Court Database and
compare our estimator to the Bayesian estimator. We consider a data set including nine
justices and 344 votes from the last 5 years of the final Rehnquist Court (2001–05). We
estimate models both with and without covariates. Following the suggestion of Quinn,
Park, and Martin (2007), we create dummy variables by dividing the country into 13 re-
gions. A court is assigned to region X if the case originated from the Xth circuit court or
from a state court within a state served by the Xth circuit. We also create dummy variables
for the DC circuit court and federal courts.

The estimates of the one-dimensional model are reported in Table 5. We present results
for the small chamber estimator, the small chamber estimator with covariates, and the
Bayesian estimator.12 The Bayesian estimator and both small chamber estimators agree
on the ordering of the justices, after accounting for uncertainty. The estimates generally
conform to conventional wisdom about the ordering of the justices as well as estimates of
Martin and Quinn (2002), which were obtained for a different time period. In particular,
O’Connor is viewed as the median member of the last Rehnquist Court, with Kennedy
having a somewhat more conservative voting record.

Our Monte Carlo results indicated that there was no strong reason to favor the point
estimates of either estimator at these sample sizes. Our Monte Carlo results, however, sug-
gested that the standard errors produced by the small chamber estimator are generally accu-
rate and the standard errors produced by the Bayesian estimator are generally overconfident.
Indeed, we find that the standard errors of the small chamber estimator are substantially
larger, suggesting that the Bayesian estimator is not adequately accounting for uncertainty.

For the small chamber estimator with covariates, we found that about half of the cova-
riates were statistically significant at the 5% level. This indicates that there are differences
in the mean bill-specific parameters across jurisdictions. Consistent with, Quinn, Park, and
Martin (2007), the inclusion of covariates allows for more precise estimates.

12Since the Bayesian estimator is a fixed-effects estimator, the inclusion of covariates would have only a limited
effect on the ideal point estimates. Hence, we did not consider the Bayesian estimator with covariates here.
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Poole (2005) suggests that Justice Stevens’ ideal point is hard to pin down because he
makes so few voting errors. To further assess the robustness of our estimator, we reesti-
mated a one-dimensional model on all the justices excluding Stevens. The ideal point es-
timates were nearly identical and result in a correlation of 99.4%. As a general rule, we
found that both ideal points and estimated standard errors were robust to the deletion of
individual voters, provided that the normalization remained constant.

We next estimated a two-dimensional model. The results for the two-dimensional model
are given in Figs 1 and 2. We normalized Stevens at (21,1), Breyer at (21,21), and Scalia
at (1,0). The normalization was chosen such that, for the small chamber estimator, the
modal cutting line was perpendicular to the first dimension.13 Thus, a1 denotes the primary
dimension of conflict and a2 denotes the secondary dimension of conflict. The two esti-
mators agree over the relative placement of all justices except Stevens and Breyer. Stevens
and Breyer are placed at more extreme positions relative to the other justices by the small
chamber estimator. Following Poole’s (2005) argument, however, the positions of these
justices are the most difficult to pin down. In the two-dimensional case, justice Stevens
makes only two voting errors and Justice Breyer makes no voting errors. The relative
positions of the remaining justices are common across both estimators.

We can clearly identify the first dimension of conflict as a liberal-conservative dimen-
sion based on the ordering the justices along this dimension. Identifying the remaining
dimension is a difficult task, but there is some evidence to suggest that the second dimen-
sion captures ‘‘judicial activism.’’14 We use a variable from the Supreme Court Database
that indicates whether the majority opinion declares a federal or state law unconstitutional.
In Fig. 3, we plot the distribution of cutting line angles for cases that featured no declaration
of unconstitutionality. We can see that this distribution has a mode near zero degrees. In
Fig. 4, we plot the distribution of cutting line angles for cases that featured a declaration of

Table 5 One-dimensional ideal point estimates for the Supreme Court

Justice

Small
chamber
estimator

Small chamber
estimator

(with covariates)
Bayesian
estimator

Alpha (SE) Rank Alpha (SE) Rank Alpha (SE) Rank

Rehnquist 0.341 (0.293) 7 0.434 (0.207) 7 0.677 (0.072) 7
Stevens 21.000 (0.000) 1 21.000 (0.000) 1 21.000 (0.000) 1
O’Connor 20.120 (0.321) 5 0.007 (0.226) 5 20.270 (0.060) 5
Scalia 0.876 (0.341) 8 0.870 (0.224) 8 0.977 (0.067) 8
Kennedy 0.256 (0.292) 6 0.344 (0.206) 6 0.524 (0.067) 6
Souter 20.487 (0.359) 4 20.311 (0.243) 4 20.785 (0.072) 4
Thomas 1.000 (0.000) 9 1.000 (0.000) 9 1.000 (0.000) 9
Ginsburg 20.560 (0.386) 2 20.381 (0.252) 2 20.822 (0.070) 3
Breyer 20.539 (0.409) 3 20.365 (0.269) 3 20.826 (0.071) 2

Note. Justices in bold were constrained for identification purposes.

13Cutting line angles are computed using the formula, ht 5 180
p tan21ðdt;1



dt;2Þ1 90. An angle of 0 degrees

indicates a vote that divides the justices along the first dimension. An angle of 90 degrees indicates a vote that
divides the justices along the second dimension.

14Judicial activism is a loaded word with a strong negative connotation, but we use it here to signify an increased
willingness to overturn laws that may conflict with constitutional provisions or a decreased deference to leg-
islative bodies.
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unconstitutionality. This distribution has a mode near 90 degrees. Our results therefore
suggest that the second dimension may relate to deference to legislative bodies. Some cau-
tion is warranted, however, because although the patterns in Figs 3 and 4 are strong, few
cases featured a declaration of unconstitutionality and, hence, the patterns we observe may
not be representative.

To assess the dimensionality of voting in the Supreme Court, we estimate a number of
higher dimensional models. To asses the relative fit of each model, we consider measures
based on the objective function (the log-likelihood), the percent of correct predictions, the
geometric mean probability, and the Bayesian information criterion. For the small chamber
estimator, we also consider likelihood ratio tests. We estimate the models with between
1 and 4 dimensions. These results are reported in Table 6. Consider first the small chamber
estimator. The objective function levels off after the second dimension. The percent
correctly predicted and the geometric mean probability level off after the third dimension.
The likelihood ratio test suggests at least four dimensions, whereas the Bayesian informa-
tion criterion selects two dimensions. Although the different methods do not agree on di-
mensionality, they agree that more than one dimension of conflict is necessary to explain
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Fig. 1 Two-dimensional small chamber ideal point estimates for the Supreme Court.
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Fig. 2 Two-dimensional Bayesian ideal point estimates for the Supreme Court.
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voting in the Supreme Court. This is consistent with our finding that the second dimension
is important in explaining voting behavior in cases where a law conflicts with a state or
federal constitution.

Assessing dimensionality is particularly problematic when employing the Bayesian es-
timator. None of the measures of model fit are monotonic in the dimensionality of the model
and the Bayesian information criterion exhibits at least two local minima. The Bayesian
estimator deals with finite sample identification problems via the prior. The prior essentially
penalizes parameter values that deviate from 0 (the prior mean). This penalty is particularly
strong when the chamber size is small because the data will not overwhelm the prior. Leaving
the prior variance fixed and increasing the estimated dimension will lead the prior to be more
constraining on the ideal point estimates, often leading to a poorer fit.15 Here, we again see
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Fig. 3 Two-dimensional cutting line angles for Supreme Court cases with no declaration of
unconstitutionality.
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Fig. 4 Two-dimensional cutting line angles for Supreme Court cases with a declaration of
unconstitutionality.

15We reiterate that this result is specific to small chamber ideal point estimation. The Bayesian estimator will not
suffer from this problem in large chambers because the data will dominate the prior.
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the consequences of the incidental parameters problem for the Bayesian estimator in small
chambers. The small chamber estimator provides a solution to this problem, and we are
able to obtain useful information about the underlying dimensionality of the data.16

5 Discussion

In this paper, we have developed an estimator for ideal point models that is consistent when
N is fixed and T goes to infinity. This type of estimator is uniquely suited for estimating
ideal points in small chambers. The Bayesian estimator suffers from the incidental param-
eters problem and is not consistent if N is held fixed. In practice, the Bayesian estimator
produces surprisingly good point estimates under reasonably favorable conditions, but the
quality of the inferences is quite poor if N is small. The drawbacks of the Bayesian es-
timator are more apparent in higher dimensional models.

Our small chamber estimator has reasonably good properties even when N is quite small
and improves substantially as T increases. Our estimator outperformed the Bayesian es-
timator in our Monte Carlo experiments and is quite robust to misspecification. In fact, in
harder applications, the benefit of the small chamber estimator was even larger. Finally, we
applied our estimator to decision making in the U.S. Supreme Court. The application
showed that the estimator performs well.

Our results should not be read as a general statement against W-NOMINATE or the Bayes-
ian estimator. We simply argue that these estimators are not appropriate for small chambers.
Nor should our results be read as a general criticism of Bayesian estimation. Rather, our results
compare one random-effects estimator (our small chamber estimator) to one fixed-effects es-
timator (the Bayesian estimator). Just as a Bayesian analog of the W-NOMINATE estimator
by Poole and Rosenthal (1997) has been developed, one could develop a Bayesian analog
of our small chamber estimator. Moreover, this paper experimented with one possible

Table 6 Model fit statistics for the small chamber and Bayesian estimators

D K

Correctly
predicted

(%)

Geometric mean
probability

(%) Log-likelihood

Bayesian
information

criterion

Likelihood
ratio

statistics
Degrees of

freedom p Value

Small chamber estimator (no covariates)
1 12 90.9 81.8 21185.9 2441.9
2 21 93 83.7 21131.5 2385.6 108.8 9 0
3 29 97.2 92.5 21109.7 2388.8 43.5 8 0
4 36 99.2 95.5 21101.2 2412.7 17 7 0.017

Bayesian estimator
1 12 89.9 85.4 271.5 213.1
2 21 91.9 88.1 256.6 235.8 29.8 9 0
3 29 82.3 79.8 2613 1395.4 21112.9 8 1
4 36 95.5 91.6 238.1 286.4 1149.9 7 0

16We note that exactly how to evaluate model fit remains controversial and one may still argue for the one-
dimensional model on the basis of parsimony. Our point is simply that the conventional measures are not useful
for assessing dimensionality when the Bayesian estimator is applied to small chambers.
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implementation of a random-effects estimator for small chamber ideal point estimation.
We encourage future work to experiment with alternative implementations (including
Bayesian implementations) of random-effects estimators applied to small chambers.

Appendix: Computational Details

In this section, we detail the implementation of the Bayesian and small chamber estimators
used in this paper.

Bayesian Estimator

Our implementation of the Bayesian estimator is quite standard, closely following the ap-
proach of Martin and Quinn (2002) and Clinton, Jackman, and Rivers (2004). We use in-
dependent diffuse normal priors for all models parameters with mean zero and variance
1000. In the Monte Carlo experiments, we used 3000 burn-in iterations and 3000 Gibbs
iterations, and we do not thin the output. In the results reported in section 4, we used 10,000
burn-in iterations and 20,000 Gibbs iterations.

We only differ from Clinton, Jackman, and Rivers in how we deal with identification.
After our Markov chain has run, we transform each draw so that it conforms with the para-
meter constraints we are imposing. This corresponds to the postprocessing option Simon
Jackman recommends when using the ‘‘ideal’’ software package. We then use the posterior
mean to compute estimates of the ideal points17 and we use the 2.5% and 97.5% quantiles
to form 95% confidence intervals. We tested our code on a number of data sets, finding that
the results correlated with previous results at extremely high levels (thus indicating that our
code is functioning correctly).

To provide one final test that our code is working properly, we preformed a Monte Carlo
simulation with N 5 100 legislators and T 5 500 bills. The large sample properties of the
estimator suggest that under these conditions, the estimator should have (1) negligible bias,
(2) no under or overconfidence, and (3) near-perfect coverage. We found that this was,
indeed, the case, indicating that we have correctly implemented the estimator and that
3000 burn-in and Gibbs iterations (which might otherwise be considered stingy) are suf-
ficient to properly explore the posterior distribution.

Small Chamber Estimator

To implement the small chamber estimator, we need to be able to compute rectangles of the
multivariate normal distribution. We can compute these integrals through simulation using
the GHK method (Geweke, Keane, and Runkle 1994). This method has already been suc-
cessfully applied to estimate the multinomial probit model and related models (Peress
2007). We use S 5 10 simulations in our Monte Carlo simulations and S 5 50 simulations
in our application to the U.S. Supreme Court.18

To provide one final test that our code is working properly, we preformed a Monte Carlo
simulation with N 5 4 legislators, T 5 2000 votes, and normally distributed bill-specific
parameters. The large sample properties of the estimator suggest that under these condi-
tions, the estimator should have (1) negligible bias, (2) no under- or overconfidence, and (3)

17We found that our results were not sensitive to the choice of the posterior mean over the posterior median as our
point estimator.

18S 5 10 has been found to be sufficient in other work (Geweke, Keane, and Runkle 1994).
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near-perfect coverage. We found that this was, indeed, the case indicating that we have
correctly implemented the estimator and that S 510 simulations are sufficient to accurately
compute the likelihood function.
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