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Induced-charge electro-osmotic (ICEO) flow caused by an alternating electric field
applied around an infinitely long, ideally polarizable, uncharged circular cylinder in
a binary electrolyte with unequal cation and anion diffusion coefficients is analysed.
The thin-Debye-layer and weak-field approximations are invoked to compute the
time-averaged, or rectified, quadrupolar ICEO flow around the cylinder. The inequality of
ionic diffusion coefficients leads to transient ion concentration gradients, or concentration
polarization, in the electroneutral bulk electrolyte outside the Debye layer. Consequently,
the electric potential in the bulk is non-harmonic. Further, the concentration polarization
alters the electro-osmotic slip at the surface of the cylinder and generates body forces in
the bulk, both of which affect the rectified ICEO flow. Predictions for the strength of the
rectified flow for varying ratio of ionic diffusion coefficients are in reasonable agreement
with available experimental data. Our work highlights that an inequality in ionic diffusion
coefficients – which all electrolytes possess to some extent – is an important factor in
modelling ICEO flows.

Key words: microfluidics

1. Introduction

Induced-charge electro-osmosis (ICEO) refers to the fluid flow around a polarizable
surface (e.g. a metal) in an electrolyte solution under an external electric field (Squires
& Bazant 2010). The basic mechanism in ICEO is that the applied field induces an
inhomogeneous distribution of polarization charges on the surface, resulting in the
formation of a volumetric distribution of ionic charge density adjacent to it. The ions in
this ‘Debye layer’ screen the polarization charge, such that the fluid elements at a distance
of several Debye lengths from the surface are essentially uncharged, or electro-neutral. In
most practical situations the Debye length is much smaller than the characteristic length
scale of the surface, a scenario known as the ‘thin-Debye-layer’ limit. The applied field
exerts an electric stress on (charged) fluid elements in the Debye layer, the component of
which tangent to the local surface is compensated by a hydrodynamic stress to maintain
mechanical equilibrium; thus, a (electro-osmotic) fluid flow occurs. This flow appears as
a ‘slip velocity’ boundary condition at the length scale of the particle, which animates
flow throughout the electroneutral ‘bulk’ electrolyte. Since the external field induces the
Debye layer and then promotes the electric stress within it, the flow is nonlinear in the
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applied field strength, scaling as the square of the field strength for sufficiently weak fields.
Importantly, this means that time-averaged, or rectified, flows can be driven by alternating
(ac) external fields, which is attractive for pumping and mixing in microfluidic devices
(Squires & Bazant 2004a). ICEO is related to ac electro-osmosis (ACEO), in which flows
are also generated around polarizable surfaces, the prototypical scenario there being a pair
of co-planar electrodes addressed by an ac voltage (Ramos et al. 1999). In ACEO flow
is animated atop the driving electrodes, whereas in ICEO flow can be driven around an
electrically isolated object, such as a metal post.

Interest in ICEO in the West was sparked just over 15 years ago by the work of Squires
& Bazant (2004a,b). Those authors noted, however, that similar flows had previously
been studied, theoretically and experimentally, in the Russian literature (Gamayunov,
Murtsovkin & Dukhin 1986; Gamayunov, Mantrov & Murtsovkin 1992). Squires & Bazant
(2004b) analysed in detail the ICEO flow around an infinitely long, ideally polarizable
circular cylinder in a binary, symmetric electrolyte. Here, ‘ideally polarizable’ means
that the cylinder cannot support electrochemical reactions at its surface; consequently, no
current flows through it. The time-averaged ICEO flow is quadrupolar and directed from
the ‘polar’ axis of the cylinder that is parallel to the applied field to the ‘equatorial’ axis
that is perpendicular to the field. Experiments by Levitan et al. (2005) confirmed this flow
pattern around a platinum wire in a KCl solution. An oppositely directed (equator-to-pole)
flow was observed around a spherical tin particle in distilled water by Gamayunov et al.
(1992), which they attributed to current flow across the particle surface; i.e. that particle
was not ideally polarizable. Squires & Bazant (2006) predicted that ‘breaking symmetries’
in ICEO – via inhomogeneous shape or surface properties – implies net pumping of
fluid past fixed objects or motion of freely suspended particles. The former effect has
been harnessed to fabricate ICEO ‘micropumps’ (Paustian et al. 2014). The latter effect
is termed induced-charge electrophoresis (ICEP) and was observed in experiments by
Gangwal et al. (2008) on (partially) gold-coated spheres of polystyrene latex in NaCl under
ac fields.

In this article, we consider another ‘broken symmetry’ in ICEO; the symmetry of the
cations and anions in the electrolyte. Almost all theoretical works on ICEO have assumed
a binary, symmetric electrolyte, where the cations and anions have equal magnitude of
valences and equal diffusion coefficients. An exception is the recent work by Hashemi
Amrei, Miller & Ristenpart (2020), of which more will be said later. Here, we analyse
ICEO in binary electrolytes with cations and anions of equal valence but unequal diffusion
coefficients, focusing on the prototypical case of a circular cylinder in the weak-field and
thin-Debye-layer limits. All electrolytes have unequal ionic diffusion coefficients to some
extent: perhaps the closest commonplace example of a symmetric electrolyte is KCl, for
which the ratio of anion to cation diffusion coefficients, which we shall denote by γ ,
equals 1.038 (Vanýsek 2012). Feng et al. (2018) observed ICEO around a gold-coated
stainless steel cylinder in an ac field: in the weak-field regime at a frequency of 1.5 kHz
and electrolyte concentration of 1 mM, the measured flow velocity in an NaCl (γ = 1.523)
solution was around twice as strong as in NaDS (sodium dodecyl sulphate, γ = 0.479),
and approximately four times as much as in measurements on KCl by Canpolat, Qian &
Beskok (2013). Further, it has been shown that an asymmetry in ion diffusion coefficients
is a necessary ingredient, along with Faradaic reactions and the presence of a Stern
layer at the electrode surface, to predict flow reversals in ACEO over electrode arrays
addressed by a travelling-wave voltage (García-Sánchez et al. 2009; González et al. 2010).
This provides further motivation for the present study. We will find that an inequality in
ionic diffusion coefficients fundamentally changes the ‘standard model’ of ICEO outlined
by Squires & Bazant (2004b): chiefly, for γ /= 1, gradients in ion concentration, or
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Electrolyte asymmetry in ICEO 905 A20-3

concentration polarization, arises in the bulk electrolyte in the form of diffusive travelling
waves. Whilst this concentration polarization has zero time average, it alters the rectified
electro-osmotic slip velocity at the cylinder surface and drives rectified body forces in the
bulk fluid, thereby affecting the time-averaged flow around the cylinder. A similar effect of
concentration polarization was recently analysed by García-Sánchez, Loucaides & Ramos
(2017) for ACEO; specifically, see their equation (36). A key finding of our study, then, is
that for any real electrolyte one cannot predict the rectified ICEO flow by only considering
the flow due to electro-osmotic slip.

In § 2 the equations governing ICEO in an electrolyte with unequal diffusion coefficients
are formulated and then specialized to the weak-field and thin-Debye-layer limits. In § 3 the
system is solved and our results are compared against experimental studies. A conclusion
is offered in § 4.

2. Problem formulation

An infinitely long circular cylinder of cross-sectional radius a∗ is immersed in an
unbounded binary electrolyte solution containing fully dissociated ions. Above, and
henceforth, dimensional variables will be decorated with an asterisk superscript. The
cations have valence +Z and diffusion coefficient D∗

+, and the anions have valence −Z
and diffusion coefficient D∗

−. The cylinder is an ideally polarizable conductor that is
initially uncharged. A spatially uniform, alternating electric field E∗ cos(ω∗t∗) is applied
normal to the axis of cylinder. Here, t∗ denotes time; ω∗ is angular frequency; and E∗ is a
constant vector whose magnitude, E∗, specifies the field strength. The applied field induces
polarization charges on the surface of the cylinder, which, in turn, are enveloped by a
Debye layer of ions. The spatial extent of this layer is characterized (for dilute electrolytes)
by the Debye length

κ∗−1 =
√

ε∗k∗T∗

2Z2e∗2n∗ , (2.1)

where ε∗ is the solution permittivity; k∗ is Boltzmann’s constant; T∗ is the absolute
temperature; e∗ is charge on a proton; and n∗ is the equilibrium number concentration of
cations and anions. We adopt the standard electrokinetic equations for dilute electrolytes
(Saville 1977). The ion concentrations satisfy the conservation law

∂n∗
±

∂t∗
+ ∇∗ · j∗± = 0, (2.2)

where n∗
± is the ion concentration, with the plus sign taken for cations, and the minus sign

for anions. The ionic flux density

j∗± = ∓D∗
±Ze∗

k∗T∗ n∗
±∇∗φ∗ − D∗

±∇∗n∗
± + u∗n∗

±, (2.3)

which is a combination of electro-migration in a gradient of electric potential φ∗ (the first
term); diffusion (the second term); and advection with the fluid velocity u∗. The potential
satisfies the Poisson equation

− ε∗∇∗2φ∗ = Ze∗(n∗
+ − n∗

−). (2.4)

The fluid flow is governed by the Stokes equations,

μ∗∇∗2u∗ − ∇∗p∗ + ε∗(∇∗2φ∗)∇∗φ∗ = 0 and ∇∗ · u∗ = 0, (2.5a,b)
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where p∗ is the dynamic pressure and μ∗ is the viscosity. In (2.5a,b), the first equation is
a momentum balance on an inertialess fluid element accounting for an electric (Coulomb)
body force, and the second equation stipulates that the fluid is incompressible.

We introduce polar coordinates (r∗, θ, z∗), where r∗ is the distance from the axis of the
cylinder; z∗ is the distance along the axis; and θ is the angle from the direction of the
applied field, measured anti-clockwise. Thus, far from the cylinder

u∗ → 0, p∗ → 0, n∗
± → n∗ and φ∗ → −E∗r∗ cos θ cos(ω∗t∗) as r∗ → ∞.

(2.6)

The first condition states that the velocity disturbance due to the (freely suspended)
cylinder decays at large distances. We are at liberty to assert that the pressure approaches
zero since it is defined up to an additive constant for an incompressible fluid. The
remaining conditions state that the ion concentrations approach their equilibrium value
and the electric field approaches the applied field. At the surface of the cylinder, r∗ = a∗,
we impose

u∗ = 0, φ∗ = 0 and er · j∗± = 0, (2.7a–c)

where er is the unit normal vector along the r∗ direction. The first condition in (2.7a–c)
imposes no slip and no fluid penetration at the cylinder surface. The second condition
represents continuity of potential, where the conducting cylinder is an equipotential
surface whose potential is chosen as zero. The third condition asserts an ideally polarizable
surface that cannot admit an ionic flux. Finally, Gauss’s law requires q∗ = −ε∗er · ∇∗φ∗

at r∗ = 1, where q∗ is the surface charge density. As noted by Schnitzer & Yariv (2012),
Gauss’s law does not represent an additional boundary condition; rather, it enables
calculation of q∗ from knowledge of φ∗. Since the cylinder has no net charge the integral
of q∗ over its cross-section is zero at all times.

The problem is now made dimensionless. We normalize distance with a∗; time by 1/ω∗;
ion concentration by n∗; and electrical potential by the ‘thermal voltage’ φ∗

T = k∗T∗/Ze∗,
which is approximately 26 mV at T∗ = 298 K for a univalent electrolyte. Balancing
electric and viscous stresses in (2.5a,b) yields the velocity and pressure scales ε∗φ∗2

T /μ
∗a∗

and ε∗φ∗2
T /a

∗2, respectively. Therefore, the conservation laws (2.2) along with ionic fluxes
(2.3) give the dimensionless equations

a∗2ω∗

D∗±

∂n±
∂t

∓ ∇ · (n±∇φ)− ∇2n± + m±u · ∇n± = 0. (2.8)

Note, to derive (2.8) we have used the continuity condition. In (2.8), and henceforth,
the lack of an asterisk superscript on a variable indicates that it is the dimensionless
counterpart of the appropriate dimensional variable: for instance, the dimensionless time
t = ω∗t∗. The quantities m± = ε∗φ∗2

T /μ
∗D∗

± are dimensionless ionic drag coefficients with
a value of around 0.5 for univalent aqueous electrolytes at room temperature (Dukhin 1993;
Schnitzer & Yariv 2012). The dimensionless version of Poisson’s equation reads

δ2∇2φ = − 1
2(n+ − n−), (2.9)

in which δ = 1/(κ∗a∗) is the (small) ratio of the Debye length to cylinder radius. The
dimensionless Stokes equations are

∇2u − ∇p + (∇2φ)∇φ = 0 and ∇ · u = 0. (2.10a,b)
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Electrolyte asymmetry in ICEO 905 A20-5

At large distances the dimensionless boundary conditions read

u → 0, p → 0, n± → 1 and φ → −βr cos θ cos t as r → ∞, (2.11)

where β = E∗a∗/φ∗
T is the ratio of the applied voltage across the cylinder relative to the

thermal voltage. Using (2.3), the dimensionless boundary conditions at the surface of the
cylinder are

u = 0, φ = 0 and er · (∓n±∇φ − ∇n±) = 0 at r = 1. (2.12)

The dimensionless version of Gauss’s law is q = −δer · ∇φ at r = 1, where the surface
charge density has been normalized with ε∗κ∗φ∗

T .
The dimensionless groups a∗2ω∗/D∗

± naturally emerge from the normalization process:
these are ratios of the ion diffusion times over the cross-sectional radius, a∗2/D∗

±, to the
time scale on which the field oscillates, 1/ω∗. We define γ = D∗

−/D
∗
+ as the ratio of the

anion to cation diffusion coefficients and α = a∗2ω∗/D∗
−. Hence, a∗2ω∗/D∗

+ = γα. Thus,
the Debye-layer charging under the alternating field and, consequently, the time-averaged
ICEO flow, are governed by four dimensionless groups: α, β, γ and δ.

It is useful to work with the dimensionless mean ‘salt’ concentration c = 1
2(n+ + n−)

and dimensionless mean charge density ρ = 1
2(n+ − n−). From (2.8) these quantities

satisfy

α(γ + 1)
2

∂c
∂t

+ α(γ − 1)
2

∂ρ

∂t
− ∇ · (ρ∇φ)− ∇2c + m+ + m−

2
u · ∇c

+ m+ − m−
2

u · ∇ρ = 0, (2.13a)

α(γ + 1)
2

∂ρ

∂t
+ α(γ − 1)

2
∂c
∂t

− ∇ · (c∇φ)− ∇2ρ + m+ + m−
2

u · ∇ρ

+ m+ − m−
2

u · ∇c = 0. (2.13b)

In the far field we require from (2.11)

c → 1 and ρ → 0 as r → ∞, (2.14)

and at the surface of the cylinder from (2.12) we have

er · (ρ∇φ + ∇c) = 0 and er · (c∇φ + ∇ρ) = 0 at r = 1. (2.15)

Additionally, we define the dimensionless salt flux j = j+ + j−, where j+ and j− are the
dimensionless flux of cations and anions normalized on n∗D+/a∗. It is readily shown from
(2.8) that

j = (γ − 1)c∇φ − (γ + 1)ρ∇φ − (γ + 1)∇c + (γ − 1)∇ρ + 2m+uc. (2.16)

Similarly, let i = j+ − j− denote the dimensionless current density, normalized by
Ze∗D∗

+n∗/a∗. From (2.8) we have

i = −(γ + 1)c∇φ + (γ − 1)ρ∇φ + (γ − 1)∇c − (γ + 1)∇ρ + 2m+uρ. (2.17)

The discussion in this section has furnished a mathematical model for ICEO around
a cylinder for a binary electrolyte with unequal ionic diffusivities. The governing
equations are coupled and nonlinear; a numerical solution must be sought in general.
Moving forward we make assumptions to enable analytical progress; importantly, these
assumptions are experimentally relevant.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.754
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2.1. Thin-Debye-layer limit
Experiments are typically conducted with micron-scale posts or particles in electrolytes
at milli-molar concentration, for which the thin-Debye-layer limit, δ � 1, is pertinent.
In this situation, the electrolyte can be conceptually partitioned into two regions: (i) a
bulk region corresponding to r = O(1); and a thin Debye layer with r − 1 = O(δ). From
(2.9), the charge density ρ in the bulk electrolyte is zero to leading-order in δ; the bulk
is electroneutral. Thus, from (2.13a) and (2.13b) the leading-order bulk ion transport
equations are

α(γ + 1)
2

∂c
∂t

+ m+ + m−
2

u · ∇c = ∇2c, (2.18a)

α(γ − 1)
2

∂c
∂t

+ m+ − m−
2

u · ∇c = ∇ · (c∇φ). (2.18b)

The bulk salt flux and current are from (2.16) and (2.17), respectively,

j = (γ − 1)c∇φ − (γ + 1)∇c + 2m+uc, (2.19a)

i = −(γ + 1)c∇φ + (γ − 1)∇c. (2.19b)

Evidently, in an electroneutral electrolyte with unequal ionic diffusion coefficients: (i) a
gradient in salt concentration drives bulk current; and (ii) an electric field drives a bulk
salt flux. This does not happen in a symmetric electrolyte.

The ion transport within the Debye layer can be analysed by defining an inner radial
coordinate R = (r − 1)/δ with R = O(1) as δ → 0. Introducing this rescaling into (2.13a)
and (2.13b), it is readily shown that the ion concentrations vary in R, at leading order,
according to a quasi-equilibrium Boltzmann distribution provided that δ2α � 1. The
restriction that δ2α � 1 suffices for anions and cations since γ is typically O(1) for
aqueous electrolytes. Since δ2α = ω∗/D∗

−κ
∗2, this means that the Debye layer charges

quasi-steadily provided that the time period for variations in the field (1/ω∗) is much
smaller than the Debye relaxation time (1/D∗

−κ
∗2). Again, this is indeed the case for ICEO

experiments. The variation of ion concentrations, electric potential, and fluid flow in a
quasi-equilibrium Debye layer have been analysed thoroughly in several works: see e.g.
Khair & Squires (2008), Olesen, Bazant & Bruus (2010) and Schnitzer & Yariv (2012).
Thus, we need not repeat such a discussion here. However, to proceed we recall that the
effect of the flow in the Debye layer on the bulk velocity field can be represented as
a ‘slip velocity’ boundary condition. Let u = uer + veθ denote the fluid velocity vector
in cylindrical coordinates, where eθ is a unit vector in the θ direction. For ICEO the
dimensionless slip velocity is (Schnitzer & Yariv 2012)

u = 0 and v = −φ ∂φ
∂θ

+ 2 ln
[

1 − tanh2
(
φ

4

)]
∂ ln c
∂θ

at r = 1. (2.20)

In (2.20) the location r = 1 should be interpreted as at the outer edge of the Debye
layer, which is, of course, indistinguishable from the actual surface of the cylinder on
lengths r = O(1). Further, −φ represents the (spatially non-uniform) dimensionless zeta
potential; hence, the first term in v is identified as electro-osmosis and the second as
diffusio-osmosis. Additionally, the Debye-layer analysis employed in the above-mentioned
works yields effective boundary conditions on the bulk salt and potential fields, to be
applied at r = 1. A discussion of these conditions is postponed until after the limit of a
weak applied field is invoked, which is done next.
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2.2. Weak-field expansion
The bulk ion transport and flow equations are now considered in the weak-field regime,
β � 1. The limit β → 0 is regular, as opposed to the singular limit δ → 0; hence, there is
no issue with taking the former limit after the latter. We pose the expansions c = 1 + βc1,
φ = βφ1, u = β2u1 and p = β2p1, where the quadratic leading-order scaling of velocity
and pressure is obtained from the electro-osmotic contribution to the slip velocity (2.20).
Therefore, the linearized ion transport equations become from (2.18a) and (2.18b)

∂c1

∂t
= 2
α(1 + γ )

∇2c1, (2.21a)

∇2φ1 = α(γ − 1)
2

∂c1

∂t
. (2.21b)

From (2.10a,b), the leading-order bulk flow satisfies

∇2u1 − ∇p1 + α(γ − 1)
2

∂c1

∂t
∇φ1 = 0 and ∇ · u1 = 0, (2.22a,b)

where we have used (2.21b) in rewriting the Coulomb body force. The linearized equations
are subject to

u1 → 0, p1 → 0, c1 → 0 and φ1 → −r cos θ cos t as r → ∞. (2.23)

Using (2.20), the fluid velocity satisfies the slip condition

u1 = 0 and v1 = −φ1
∂φ1

∂θ
at r = 1. (2.24)

Evidently, the leading-order, i.e. O(β2), slip is solely due to electro-osmosis; a
diffusio-osmotic contribution arises first at O(β3).

To complete the linearized bulk equations we need boundary conditions for (2.21a) and
(2.21b) at r = 1. This requires an analysis of ion accumulation within the Debye layer,
driven by transport from (or to) the bulk and transport along the layer. The latter effect,
known as ‘surface conduction’, is negligible for ICEO provided δeβ � 1 (Schnitzer &
Yariv 2012); this inequality is obviously satisfied in the weak-field limit. Further, to first
order in β the Debye layer behaves as a linear capacitor, i.e. with a capacitance that is
independent of the (local) zeta potential, for which the (local) dimensional surface charge
density q∗ = −ε∗κ∗φ∗

Tβφ1 (Squires & Bazant 2004b). The time variation of q∗ arises due
to the current supplied by the bulk electrolyte; hence, we have from charge conservation
∂q∗/∂t∗ = i∗ · er, where i∗ is the dimensional bulk current density. From (2.19b),

i∗ = Ze∗D∗
+n∗

a∗ ([(γ − 1)∇c1 − (γ + 1)∇φ1]β + O(β2)). (2.25)

Hence, the linearized, dimensionless charge conservation condition yields

2γαδ
∂φ1

∂t
= (γ + 1)

∂φ1

∂r
− (γ − 1)

∂c1

∂r
at r = 1. (2.26)

A second consequence of the Debye layer acting as a linear capacitor is that it does not
uptake a net amount of ‘salt’ from the bulk. Said differently, at every station in θ the Debye
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905 A20-8 A. S. Khair and B. Balu

layer expels as many co-ions as it takes up counter-ions. Therefore, the linearized mean
salt flux j must vanish at r = 1. Now, from (2.19a) we have

j = [
(γ − 1)∇φ1 − (γ + 1)∇c1

]
β + O(β2), (2.27)

and requiring j to vanish at O(β) yields the boundary condition

∂c1

∂r
= γ − 1
γ + 1

∂φ1

∂r
at r = 1. (2.28)

In summary, (2.21a), (2.21b) and (2.22a,b), along with boundary conditions (2.23), (2.24),
(2.26) and (2.28), govern the weak-field ICEO around a cylinder in an electrolyte with
unequal ionic diffusivities. The fact that γ /= 1 has two important consequences. First,
the bulk ion concentration is non-uniform in an alternating field, or any unsteady field
for that matter. This transient ‘concentration polarization’ occurs to ensure there is no net
salt uptake in the Debye layer during its charging. Second, the concentration polarization
results in a body force density in the bulk fluid; consequently, the bulk flow around the
cylinder is not solely animated by electro-osmotic slip (as it would be for a symmetric
electrolyte).

The factor αδ = (a∗/D∗
−κ

∗)/(1/ω∗) appearing in (2.26) represents the ratio of an
‘RC’ time, a∗/D∗

−κ
∗, to the time period of the alternating field. It is over this RC scale

that the Debye layer charges. Consequently, the concentration polarization varies on
the RC time also, as opposed to the much longer bulk diffusion time a∗2/D∗

−. Indeed,
for slow oscillations ω∗ ∼ 1/(a∗2/D∗

−) we have αδ ∼ δ, implying that the left-hand
side of (2.26) is negligibly small. On dropping this term, the resulting system of
equations admits a solution with a uniform salt concentration, c1 = 0. Hence, there is
negligible concentration polarization under sufficiently slow oscillations and, therefore,
zero concentration polarization in a steady (direct current) field. Finally, our assumption
of quasi-steady Stokes flow (2.5a,b) requires that the momentum diffusion time a∗2/ν∗,
where ν∗ is the kinematic viscosity of the fluid, is much smaller than the RC time. This can
be invalidated in experiments on ICEO in ac fields (Canpolat et al. 2013); hence, a proper
description of the time-dependent flow would require the unsteady Stokes equations.
However, our focus is on the rectified flow for which (2.5a,b) suffices, since the time
average of a periodic, unsteady Stokes flow solves the quasi-steady Stokes equations under
the time-averaged body force density.

3. Results and comparison to experiments

The system of equations developed in the preceding section is now solved. We first
demonstrate that our analysis recovers the standard picture of ICEO in a symmetric
electrolyte (Squires & Bazant 2004b), before moving to asymmetric electrolytes. Our
interest is in describing the long-time ion transport and fluid flow under ac forcing; we
do not consider how this state is attained upon initiation of the field.

3.1. Symmetric electrolyte, γ = 1
For a symmetric electrolyte (2.28) reduces to ∂c1/∂r = 0 at r = 1. Thus, the trivial
solution c1 = 0 is obtained; the salt concentration is not perturbed from its equilibrium
value. Physically, for a symmetric electrolyte the applied field does not generate a bulk
salt flux, since the ions have equal mobilities; consequently, a compensating salt gradient
is not required to ensure that the Debye layer has no net salt uptake. Since c1 = 0, the
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Electrolyte asymmetry in ICEO 905 A20-9

potential φ1 is a harmonic function. Prompted by the far-field boundary condition on φ1
(2.23), we seek a solution of the form

φ1 =
[
−r cos t + 1

r
Re(Deit)

]
cos θ, (3.1)

where Re denotes the real part, and i = √−1. The applied field represents an oscillating
dipole ‘at infinity,’ and the disturbance due to the cylinder is a dipole at the origin.
Application of (2.26) yields the dipole strength

D = αδi − 1
αδi + 1

. (3.2)

Hence, from (2.24) the slip velocity is

v1 = 2 sin(2θ)
[

Re
(

eit

1 + αδi

)]2

at r = 1, (3.3)

which consists of frequency-doubled (relative to the ac forcing) and rectified components.
The latter is readily found as

〈v1〉 = sin(2θ)
1 + (αδ)2

at r = 1, (3.4)

where 〈· · · 〉 denotes a time average over one period of the field oscillation. The magnitude
of the slip velocity decreases with increasing frequency due to the insufficient time for the
Debye layer to charge up during the time period of the field oscillation. The rectified slip
velocity animates a steady bulk flow that is conveniently represented by a streamfunction
〈ψ〉, which is related to the velocity field components via

〈u1〉 = 1
r
∂〈ψ〉
∂θ

and 〈v1〉 = −∂〈ψ〉
∂r

. (3.5a,b)

The streamfunction satisfies the biharmonic equation ∇4〈ψ〉 = 0. A straightforward
calculation using (3.4) yields

〈ψ〉 = 1
2[1 + (αδ)2]

(
1
r2

− 1
)

sin(2θ). (3.6)

Equation (3.6) describes a quadrupolar flow, where the fluid velocity is directed toward
the cylinder along the polar axis (θ = 0) and away from the cylinder along the equatorial
axis (θ = π/2). At large distances, the flow appears as a (two-dimensional) stresslet, with
a radial velocity decaying like 〈u1〉 ∼ 1/r. We reiterate that the results in this subsection
were derived by Squires & Bazant (2004b); the purpose of this presentation is to serve as
a contrast to the case of an asymmetric electrolyte, discussed next.

3.2. Asymmetric electrolyte, γ /= 1
The linearized salt perturbation satisfies the diffusion equation (2.21a), to which a
solution c1 = Re[ f (r) eit] cos θ is sought, corresponding to a dipolar salt distribution.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.754


905 A20-10 A. S. Khair and B. Balu

Substituting this ansatz into (2.21a) yields

d2f
dr2

+ 1
r

df
dr

−
[

1
r2

+ m2

]
f = 0, (3.7)

where m = √
α(1 + γ )i/2. The solutions of this equation are the first-order modified

Bessel functions I1(mr) and K1(mr). The function I1(mr) diverges exponentially at large r
and is thus discarded, whereas K1(mr) decays exponentially. Thus, we have

c1 = Re[AK1(mr) eit] cos θ, (3.8)

where A is a complex-valued constant. At distances |m|r � 1 (3.8) has the asymptotic
form

c1 ∼ Re
[ A

m1/2
ei(t−r/L)

]
e−r/L

( π

2r1/2

)
cos θ, (3.9)

which describes damped travelling waves of concentration polarization that propagate
from the cylinder with wavelength and attenuation distance L = √

4/[α(1 + γ )]. The
amplitude factor r−1/2 arises due to the curvature of the cylinder. The equivalent
dimensional length scale is L∗ = a∗L = (2D∗

a/ω
∗)1/2, where D∗

a = 2D∗
+D∗

−/(D
∗
+ + D∗

−) is
the ambipolar diffusion coefficient of the electrolyte. The frequency scaling L∗ ∼ ω∗−1/2

has been identified in several studies of Debye layers under ac forcing (Shilov & Dukhin
1970; Chew & Sen 1982; DeLacey & White 1982; González et al. 2010; García-Sánchez
et al. 2017; Hashemi Amrei et al. 2018). For oscillations at the ‘ambipolar RC’ frequency,
ω∗ = O(κ∗D∗

a/a
∗), we have L∗/a∗ = O(δ1/2); this is a distinguished limit in which the

concentration polarization is confined to a ‘diffusion layer’ atop the Debye layer. The
one-dimensional transport between planar, parallel electrodes under strong ac forcing at
such frequencies was analysed by Olesen et al. (2010) for a symmetric electrolyte.

The potential is written as φ1 = φH
1 + φP

1 , where the harmonic homogenous solution,
φH

1 , is again (3.1), although now the value of the dipole strength D is different, by virtue of
the salt perturbation. Hence, even though there is no diffusio-osmotic contribution to the
slip velocity, the salt field still influences the slip through its effect on D, which, in turn,
affects the electro-osmotic slip. The particular solution satisfies from (2.21b)

∇2φP
1 = α(γ − 1)

2
Re[iAK1(mr) eit] cos θ. (3.10)

Hence, we pose φP
1 = 1

2α(γ − 1)Re[iAg(r) eit] cos θ . Substituting this ansatz into (3.10)
yields

d2g
dr2

+ 1
r

dg
dr

− g
r2

= K1(mr). (3.11)

The solution to this equation is found by variation of parameters as g = K1(mr)/m2.
Therefore, the potential is

φ1 =
[
−r cos t + 1

r
Re(Deit)+ γ − 1

γ + 1
Re[AK1(mr) eit]

]
cos θ. (3.12)
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Electrolyte asymmetry in ICEO 905 A20-11

The constants A and D are found from the boundary conditions (2.26) and (2.28). Some
straightforward, but tedious, working returns

D =
iαδ(1 − Q)− γ + 1

2γ

iαδ(1 + Q)+ γ + 1
2γ

, (3.13)

where

Q = (γ − 1)2

2γ
K1(m)

m[K0(m)+ K2(m)]
, (3.14)

and K0(m) and K2(m) are zeroth- and second-order modified Bessel functions. Notice that
D reduces to (3.2) for γ = 1. The real and imaginary parts of D are plotted in figure 1
versus the rescaled frequency δαa for KCl (δ = 1.038), NaOH (δ = 3.953) and HCl (δ =
0.218). The values of δ are obtained from measurements of ionic diffusion coefficients
at infinite dilution (Vanýsek 2012). Here αa = ω∗2a∗2/D∗

a = (1 + γ )α/2 is the oscillation
frequency normalized on the ambipolar diffusion coefficient. This is the most appropriate
dimensionless frequency to use, since the value of D at fixed αa does not change under
the transformation γ → 1/γ ; that is, it does not matter if the cations are more mobile
than the anions, or vice versa, as long as the ratio of the mobilities is constant. At high
frequency (δαa � 1) the double layer does not have time to charge and the bulk field
lines look like those around a conducting cylinder, for which Re(D) = 1. In contrast, at
low frequency the double layer almost completely charges; hence, the bulk field does not
penetrate the Debye layer and the field lines resemble those around an insulating cylinder,
for which Re(D) = −1. The imaginary part of D decays at both extremes of frequency,
like 1/(δαa)

2, where the Debye-layer charging is essentially in phase with the applied
field. The maximal out-of-phase response is at δαa = O(1). The influence of a difference
in diffusion coefficients is noticeable: for instance, at δαa = 1 the sign of Re(D) is positive
for KCl but negative for NaOH and HCl. Finally, the constant A is then

A = (γ + 1)(γ − 1)
2γ

1 + D
m[K0(m)+ K2(m)]

. (3.15)

Having determined the linearized potential and salt concentration, we now turn to the
resulting fluid flow. The rectified streamfunction is split as 〈ψ〉 = 〈ψH〉 + 〈ψP〉 Here,
from (2.22a,b), the ‘homogenous streamfunction’ satisfies the unforced Stokes equations
with the slip condition (2.24), whereas the ‘particular streamfunction’ satisfies the Stokes
equations with a body force density arising from transient concentration polarization, and
a zero velocity boundary condition at r = 1. We consider 〈ψH〉 first. To that end, using
(3.12), the slip velocity is

vH
1 = 1

2 sin(2θ)
[
Re(Φ0 eit)

]2
at r = 1, (3.16)

in which

Φ0 = −
γ + 1
γ

iαδ(1 + Q)+ γ + 1
2γ

. (3.17)
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905 A20-12 A. S. Khair and B. Balu

The rectified slip velocity

〈vH
1 〉 = 1

4

[
(Re[Φ0])2 + (Im[Φ0])2

]
sin(2θ) at r = 1, (3.18)

where Im denotes the imaginary part. The variation of the magnitude of the slip velocity
with frequency δαa for KCl, NaOH and HCl is shown in figure 2. The magnitude
monotonically decreases with increasing δαa, due to a diminished tangential component
of the field with increasing δαa, since field lines are instead drawn into the Debye layer to
charge it. The decay in slip velocity is like 1/(δαa)

2 at δαa � 1 for all three electrolytes.
The slip animates a rectified flow represented by the streamfunction

〈ψH〉 = 1
8

[
(Re[Φ0])2 + (Im[Φ0])2

] (
1
r2

− 1
)

sin(2θ). (3.19)

Evidently, this flow is always directed from the pole to equator, regardless of the value
of γ .

To determine 〈ψP〉 we take the curl of (2.22a,b) to obtain

∇2ωP
1 = −α(γ − 1)

2
∂∇c1

∂t
∧ ∇φ1, (3.20)

where ωP
1 = ∇ ∧ uP

1 is the vorticity of the velocity field, uP
1 , generated by the body force

density in (2.22a,b). This vorticity can also be written ωP
1 = −∇2ψPez, where ψP is the

streamfunction associated with uP
1 , whose time average equals 〈ψP〉. Here, ez is a unit

vector along the axis of the cylinder. Therefore, from (3.20), ψP satisfies the forced
biharmonic equation

∇4ψP = α(γ − 1)
2r

(
∂φ1

∂θ

∂2c1

∂t∂r
− ∂φ1

∂r
∂2c1

∂t∂θ

)
. (3.21)

From (3.8) we define ∂2c1/∂θ∂t = Re[Φ1(r) eit] sin θ and ∂2c1/∂r∂t = Re[Φ2(r) eit] cos θ ,
where

Φ1 = −iAK1(mr) and Φ2 = −m
2

iA[K0(mr)+ K2(mr)]. (3.22a,b)

From (3.12) we define ∂φ1/∂θ = Re[Φ3(r) eit] sin θ and ∂φ1/∂r = Re[Φ4(r) eit] cos θ ,
where

Φ3 = r − D
r

− Aγ − 1
γ + 1

K1(mr) and Φ4 = −1 − D
r2

− m
2
Aγ − 1
γ + 1

[K0(mr)+ K2(mr)].

(3.23a,b)
Therefore, we have

∂φ1

∂θ

∂2c1

∂t∂r
− ∂φ1

∂r
∂2c1

∂t∂θ

= sin(2θ)
2

[(Re[Φ3] cos t − Im[Φ3] sin t) (Re[Φ2] cos t − Im[Φ2] sin t)]

− (Re[Φ4] cos t − Im[Φ4] sin t) (Re[Φ1] cos t − Im[Φ1] sin t) , (3.24)
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Electrolyte asymmetry in ICEO 905 A20-13
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FIGURE 1. (a) Real and (b) imaginary parts of the dipole strength D for three electrolytes
versus δαa. The number in parentheses gives the value of δ for each electrolyte.

which is expanded out as

∂φ1

∂θ

∂2c1

∂t∂r
− ∂φ1

∂r
∂2c1

∂t∂θ
= sin(2θ)

4
(Re[Φ3]Re[Φ2] + Im[Φ3]Im[Φ2]

−Re[Φ4]Re[Φ1] − Im[Φ4]Im[Φ1])+ · · · , (3.25)

where · · · indicates terms that average to zero over an oscillation cycle. Therefore, using
(3.25) in (3.21) yields

∇4〈ψP〉 = α(γ − 1)
8r

[Re(Φ3)Re(Φ2)+ Im(Φ3)Im(Φ2)− Re(Φ4)Re(Φ1)

−Im(Φ4)Im(Φ1)] sin(2θ). (3.26)
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FIGURE 2. Variation of the magnitude of the slip velocity versus rescaled frequency δαa for
three electrolytes.

To proceed we let 〈ψP〉 = 1
8α(γ − 1)Q(r) sin(2θ), and from (3.26) the function Q(r)

satisfies

d4Q
dr4

+ 2
r

d3Q
dr3

− 9
r2

d2Q
dr2

+ 9
r3

dQ
dr

= 1
r

[Re(Φ3)Re(Φ2)

+ Im(Φ3)Im(Φ2)− Re(Φ4)Re(Φ1)− Im(Φ4)Im(Φ1)], (3.27)

subject to

Q = 0,
dQ
dr

= 0 at r = 1, and
Q
r

→ 0,
dQ
dr

→ 0 as r → ∞. (3.28)

The boundary conditions at r = 1 specify zero fluid velocity at the surface of the cylinder,
and the conditions as r → ∞ specify attenuation of the velocity at large distances. The
appropriate homogenous solutions to (3.27) are 1/r2 and r0. Thus, we write Q(r) = c1 +
c2/r2 + QP(r), where c1 and c2 are constants, and QP(r) is the particular solution to (3.27).
Equation (3.27) is then solved numerically by integrating back from a distance rout to
r = 1 and choosing c1 and c2 to enforce the boundary conditions there. The value of rout
is chosen to be a distance of several L from r = 1. This gives c2 = 1

2(dQP/dr)|r=1 and
c1 = −c2 − QP|r=1, where the values of QP|r=1 and dQP/dr|r=1 are determined from the
numerical integration.

The forcing in (3.27) is exponentially small at |m|r � 1; hence, the far-field flow is
dominated by the homogenous solution and asymptotes to the stresslet field

〈uP
1 〉 = c1α(γ − 1)

4
cos(2θ)

r
er + O(r−3) as r → ∞. (3.29)

Likewise, the far-field flow due to the slip velocity is readily calculated from (3.19). Thus,
the total far-field flow takes the form 〈u1〉 ∼ S cos(2θ)/r, where the stresslet strength

S = 1
4

(
c1α(γ − 1)− [

(Re[Φ0])2 + (Im[Φ0])2
])

(3.30)

provides a convenient measure of the flow magnitude and direction. A flow directed from
the pole to equator requires S < 0. This is not evident from (3.30), as the sign of c1 is
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FIGURE 3. Variation of the stresslet strength S versus rescaled frequency δαa for three
electrolytes.

unknown a priori; however, it is observed that S < 0 from our numerical calculations
(figure 3). That is, we do not find that unequal ionic diffusion coefficients alone lead
to large-scale flow reversal, i.e. equator-to-pole flow. This is consistent with analysis of
ACEO in the weak-field regime, for which flow reversal requires Faradaic reactions and a
Stern layer at the electrodes in addition to unequal diffusion coefficients (González et al.
2010).

3.3. Comparison to experiments
Feng et al. (2018) measured the ICEO flow around a gold-coated stainless steel cylinder
with a cross-sectional radius of a = 175 μm. Figure 5 in their paper reports the maximum
flow velocity along the polar axis of the cylinder as a function of field strength in NaCl
(γ = 1.523), NaDS (γ = 0.479), KCl (γ = 1.038) and CaCl2 at a frequency of 1.5 kHz
and electrolyte concentration of 1 mM. Note, CaCl2 is an electrolyte with unequal cationic
and anionic valences and therefore outside the scope of the present work. The flow
velocity is observed to increase with the square of the field strength, as predicted in the
weak-field limit. Under these conditions, δ = 5.6 × 10−5 and α = 1.42 × 105 for NaCl
and α = 4.51 × 105 for NaDS; hence, δαa = 10.0 for NaCl and δαa = 18.7 for NaDS.
The inset to their figure 5 shows that the ratio of maximum flow velocity to the field
strength squared in NaCl is approximately 9 × 103 μm s−1/V2 cm−2 and approximately
4.5 × 103 μm s−1/V2 cm−2 in NaDS. That is, the maximum flow speed is approximately
twice as much in NaCl as compared to NaDS. In comparison, our theory predicts a
stresslet coefficient of S = −0.011 for NaCl and S = −0.004 for NaDS; suggesting
the far-field flow in NaCl is approximately 2.8 times larger than in NaDS. The ratio of
maximum flow velocity to the field strength squared in KCl is reported as approximately
2.5 × 103 μm s−1/V2 cm−2. This value is taken from experiments by Canpolat et al.
(2013) who measured ICEO around a gold-coated stainless steel cylinder of a = 335 μm
(see figure 6 in that paper). Thus, for KCl we have δ = 2.9 × 10−5, α = 5.20 × 105 and
δαa = 15.4, for which we predict S = −0.004, i.e. the same value as in NaDS, whereas
the experiments suggest a slower flow in KCl than in NaDS. As noted by Feng et al. (2018),
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905 A20-16 A. S. Khair and B. Balu

however, their measurements were conducted in a microfluidic device with different
dimensions to that of Canpolat et al. (2013), which could contribute to the discrepancy
with our theory, which, additionally, assumes an unbounded electrolyte. In summary, we
view our predictions as being in fair agreement with these measurements.

4. Conclusion

We considered ICEO around a cylinder subject to an ac electric field in a binary
electrolyte with unequal ionic diffusion coefficients. Our analysis was conducted in the
limits of a weak applied field and thin Debye layer. The inequality of the diffusion
coefficients results in concentration polarization waves in the bulk electrolyte, which alter
the time-averaged fluid flow around the cylinder. The appropriate time scale on which
the Debye layer charges, and hence the flow develops, was identified as the ambipolar
RC time a∗/κ∗D∗

a. The ambipolar diffusivity D∗
a is weighted toward the ion with the

lower diffusion coefficient; hence, it is the slow ion that is the rate-limiting species
for Debye-layer charging, as expected. The ‘standard model’ of ICEO in the weak-field
and thin-Debye-layer limits assumes an ohmic bulk electrolyte with no concentration
gradients, wherein the potential is a harmonic function, and the fluid flow is solely
animated by electro-osmotic slip (Squires & Bazant 2004b). These assumptions do not
hold for an electrolyte with unequal diffusion coefficients: concentration polarization
results in a non-ohmic bulk in which Coulomb body forces contribute to the time-averaged
flow. The standard model is valid under a steady field, since the concentration polarization
we predict is transient. However, note that most experiments use ac fields and, of course, all
experiments use electrolytes with unequal diffusion coefficients. Therefore, it may prove
useful to summarize our findings in terms of an ‘extended standard model’ for ICEO, valid
for an arbitrary (fixed) geometry in the weak field and thin-Debye-layer limits. To that end,
recall that φ = βφ1 and c = 1 + βc1 are the dimensionless potential and salt concentration
to first order in field strength β. From (2.21a) and (2.21b) these quantities satisfy

αa
∂c1

∂t
= ∇2c1 and ∇2φ1 = αa

γ − 1
γ + 1

∂c1

∂t
, (4.1a,b)

where, recall, αa = ω∗a∗2/D∗
a. The leading-order velocity and pressure, u = β2u1 and p =

β2p1, respectively, satisfy, from (2.22a,b),

∇2u1 − ∇p1 + αa
γ − 1
γ + 1

∂c1

∂t
∇φ1 = 0 and ∇ · u1 = 0. (4.2a,b)

At large distances c1, u1, and p1 all vanish, while φ1 approaches the imposed field. Let n
denote the outward unit normal vector to the surface. Then the Debye-layer charging and
zero salt flux conditions, (2.26) and (2.28), respectively, generalize to

4γαaδ

1 + γ

∂φ1

∂t
= (γ + 1)n · ∇φ1 − (γ − 1)n · ∇c1, (4.3a)

n · ∇c1 = γ − 1
γ + 1

n · ∇φ1. (4.3b)

Finally, the fluid velocity is subject to the electro-osmotic slip condition u = −φ1∇sφ1,
where ∇s = (I − nn) · ∇ is the surface gradient operator, in which I is the identity tensor.

Recently, Hashemi Amrei et al. (2020) analysed how unequal ionic diffusivities (and
valences) affect ICEO around a charged, conducting cylinder. They considered a scenario
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where the (electrically isolated and hence fixed charge) cylinder is located between two
planar, parallel electrodes subject to an oscillatory potential difference. The cylinder is
assumed small enough that the ion transport between the electrodes is not affected by its
presence. As predicted in earlier numerical work from this group (Hashemi Amrei et al.
2018), an inequality in the ionic diffusion coefficients results in a steady component to the
electric potential in the electrolyte, which persists to a distance from each electrode that
varies with the inverse square root of the field frequency (cf. our discussion of the diffusion
layer in § 2). This was termed as an ‘asymmetric rectified electric field’ or ‘AREF’ for
short. The magnitude of the AREF affects the time-averaged flow around the cylinder;
notably, a flow reversal is seen under the transformation γ → 1/γ . Hashemi Amrei et al.
(2020) used the standard model for ICEO, thereby neglecting concentration polarization,
which we have shown is inexorable in an electrolyte with unequal diffusion coefficients.
It would be interesting to see how concentration polarization affects the ICEO flow due to
an AREF.

Finally, our work points to other interesting questions: for instance, how does a
difference in diffusion coefficients affect ICEP or ‘dipolophoresis’ (i.e. the combination
of ICEP and dielectrophoresis) in ac fields? What about multicomponent electrolytes with
unequal valences, or other time varying fields (e.g. a suddenly applied field)? It would also
be interesting to relax the weak-field constraint. Experiments by Peng et al. (2014) have
observed a time-averaged concentration polarization in ICEO flow around an immobilized
metal cylinder. Our calculations predict zero time-averaged concentration polarization;
thus, we expect that those observations are due to processes (e.g. surface conduction) that
are operative at larger field strengths. However, as noted by Schnitzer & Yariv (2012),
going beyond the weak-field limit would entail a complicated mathematical analysis,
arising in part from the now nonlinear capacitance of the Debye layer. For instance, this
implies that the concentration polarization occurs at multiple frequency overtones of the
ac forcing, where the amplitude of each overtone is a nonlinear function of field strength.
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