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Let p ∈ (1, ∞) and let Ω ⊆ R
N be a bounded domain with Lipschitz continuous

boundary. We characterize on L2(Ω) all order-preserving semigroups that are
generated by convex, lower semicontinuous, local functionals and are sandwiched
between the semigroups generated by the p-Laplace operator with Dirichlet and
Neumann boundary conditions. We show that every such semigroup is generated by
the p-Laplace operator with Robin-type boundary conditions.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with Lipschitz continuous boundary ∂Ω. It

is well known that for every p ∈ (1,∞) the diffusion equation governed by the
p-Laplace operator

ut − ∆pu = 0 in (0,∞) × Ω,

u(0, ·) = u0 in Ω,

}
(1.1)

with ∆pu = div(|∇u|p−2∇u), is well posed in L2(Ω) if it is complemented by
Dirichlet boundary conditions

u = 0 on (0,∞) × ∂Ω (perfectly conducting boundary)

or by Neumann boundary conditions

|∇u|p−2 ∂u

∂ν
= 0 on (0,∞) × ∂Ω (perfectly isolating boundary).

The two problems can be rewritten as abstract gradient systems of the form

u̇ + ∂ϕ(u) � 0 on R+, u(0) = u0,
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with ϕ : L2(Ω) → [0, +∞] being a convex and lower semicontinuous functional
and ∂ϕ being its subgradient; the well-posedness of such gradient systems follows
from a classical result by Minty. In the case of Dirichlet boundary conditions, this
functional is

ϕD(u) :=

⎧⎪⎨
⎪⎩

1
p

∫
Ω

|∇u|p dx if u ∈ W 1,p
0 (Ω) ∩ L2(Ω),

+∞ otherwise,
(1.2)

and in the case of Neumann boundary conditions it is

ϕN(u) :=

⎧⎪⎨
⎪⎩

1
p

∫
Ω

|∇u|p dx if u ∈ W 1,p(Ω) ∩ L2(Ω),

+∞ otherwise.
(1.3)

The associated gradient systems give rise to strongly continuous semigroups of non-
linear (linear if p = 2) contractions on L2(Ω), denoted by SD and SN, respectively. It
is well known that both semigroups are order preserving, and that SD is dominated
by the semigroup SN in the sense that

|SD(t)u| � SN(t)|u| for every t � 0 and every u ∈ L2(Ω).

In other words, the diffusion governed by the p-Laplace operator with Neumann
boundary conditions (perfectly isolating boundary; the total energy

∫
Ω

u is con-
served) dominates the diffusion governed by the p-Laplace operator with Dirichlet
boundary conditions (perfectly conducting boundary; the energy dissipates through
the boundary).

We also consider the functional ϕ on L2(Ω) defined by

ϕ(u) :=

⎧⎪⎨
⎪⎩

1
p

∫
Ω

|∇u|p dx +
∫

∂Ω

B(x, u) dµ if u ∈ D(ϕ),

+∞ otherwise,
(1.4)

with effective domain

D(ϕ) =
{

u ∈ W 1,p(Ω) ∩ L2(Ω) :
∫

∂Ω

B(x, u) dµ < ∞
}

,

where µ is a regular Borel measure on ∂Ω, and B : ∂Ω × R → [0, +∞] is a Borel
function which is measurable in the first variable and lower semicontinuous and
bi-monotone (that is, non-increasing on ]−∞, 0] and non-decreasing on [0, +∞[) in
the second variable. This functional is equal to ϕD or to ϕN if µ = σ is the surface
measure on ∂Ω and if

B(x, s) =

{
+∞ if s �= 0,

0 if s = 0,

in the case of Dirichlet boundary conditions, and

B(x, s) = 0
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in the case of Neumann boundary conditions. In any case, if ϕ is convex and lower
semicontinuous, then ∂ϕ is a realization of the p-Laplace operator with generalized
Robin-type boundary conditions formally given by

|∇u|p−2 ∂u

∂ν
dσ + β(x, u) dµ � 0 on ∂Ω. (1.5)

If µ = σ or, more generally, if µ is absolutely continuous with respect to σ (hence,
dµ = α(x) dσ), then (1.5) reduces to the classical Robin boundary conditions. For
more details on this formulation of the boundary conditions, we refer the reader
to [1, 2, 6–8, 17, 18] and the references therein, and to § 3.1. The subgradient ∂ϕ
generates a nonlinear semigroup S of contractions on L2(Ω). Under appropriate
further conditions on µ and B (see theorem 2.1 for the precise conditions), the
semigroup S is sandwiched between the semigroups SD and SN in the sense that

|SD(t)u| � S(t)|u| and |S(t)u| � SN(t)|u| for every t � 0 and u ∈ L2(Ω).
(1.6)

In this sense, the diffusion governed by the p-Laplace operator with Robin-type
boundary conditions is intermediate between the diffusions governed by the p-
Laplace operator with Dirichlet and Neumann boundary conditions.

The aim of this paper is to prove the converse of (1.6). More precisely, we show
that if S is a semigroup on L2(Ω) generated by the subgradient of a convex and
lower semicontinuous functional ϕ on L2(Ω), if S is sandwiched between SD and
SN in the sense of (1.6) and if ϕ satisfies a natural locality condition (so that its
subgradient is a local operator), then ϕ is necessarily of the form (1.4) for some µ
and some B (theorem 2.1). This is a possible answer to the question ‘Dirichlet and
Neumann boundary conditions: what is in between?’, which was asked in the title
of [2]. Arendt and Warma [2] gave an answer to this question in the linear case,
that is, in the case of the diffusion governed by the Laplace operator and when all
semigroups are C0-semigroups of linear, self-adjoint operators. Our paper (and the
title of our paper) is clearly motivated by the question considered in [2], and by
the question of whether or not a similar characterization of sandwiched semigroups
holds in the context of a nonlinear diffusion equation.

We outline the plan of the paper. In § 2 we give some preliminaries and state the
main result of this paper (theorem 2.1). Concerning the proof of the main result,
we follow in some sense the idea of proof of the corresponding result in the linear
case [2, theorem 4.1]. Our proof thus depends heavily on a characterization of domi-
nation and order preservation of semigroups in terms of properties of the generating
functionals and on a Riesz-type representation theorem for convex, lower semicon-
tinuous functionals. These two results are also stated in § 2. Characterizations of
domination and order preservation of nonlinear semigroups generated by subdiffer-
entials go back to Brézis and Pazy [9], but the formulation which is appropriate for
our purposes (theorem 2.2) is taken from [3]. There also exist several Riesz-type
representation theorems for nonlinear functionals (see, for example, [14–16,22]), but
no appropriate result is stated for lower semicontinuous functionals on the Sobolev
space W 1,p(Ω). Therefore, we state and prove such a result (theorem 2.3), which
seems, to the best of our knowledge, to be new and may have its own independent
interest. Sections 4 and 5 are devoted to the proofs of theorems 2.1 and 2.3, while
in § 3 we include a discussion to clarify the conditions from the main theorem.
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2. Main result

Let H be a real Hilbert space with inner product (·, ·)H , and let ϕ : H → (−∞, +∞]
be a convex and lower semicontinuous (l.s.c.) functional with effective domain

D(ϕ) := {u ∈ H : ϕ(u) < ∞}.

By a classical result of Minty [24] (see also [9, 19, 25, 28]), every convex, l.s.c. func-
tional ϕ on H generates a strongly continuous semigroup S = (S(t))t�0 of (in gen-
eral nonlinear) contractions on D(ϕ). This means that there exists a unique family
S = (S(t)) of contractions on D(ϕ) such that for every u0 ∈ D(ϕ) the trajectory
u := S(·)u0 is the unique strong solution of the following abstract gradient system:

u ∈ C(R+; H) ∩ W 1,∞
loc ((0,∞); H),

u̇ + ∂ϕ(u) � 0 almost everywhere on R+,

u(0) = u0.

Here, the subgradient ∂ϕ at a point u ∈ D(ϕ) is defined by

∂ϕ(u) := {f ∈ H : ϕ(u + w) − ϕ(u) � (f, w)H for every w ∈ H}.

In fact, throughout the following, H = L2(Ω) for some bounded domain Ω ⊆ R
N

with Lipschitz continuous boundary, and all functionals on L2(Ω) have dense effec-
tive domain, unless otherwise stated. The space L2(Ω) is a real Hilbert lattice for
the natural ordering. It thus makes sense to consider the following properties of
a semigroup or a pair of semigroups. We say that a semigroup S = (S(t))t�0 on
L2(Ω) is order preserving, if

S(t)u � S(t)v for all t � 0 whenever u, v ∈ L2(Ω) and u � v. (2.1)

Moreover, if S1 = (S1(t))t�0 and S2 = (S2(t))t�0 are two semigroups on L2(Ω),
then we say that S1 is dominated by S2 and we write S1 � S2 if

|S1(t)u| � S2(t)|u| for all u ∈ L2(Ω) and t � 0.

We say that a functional ϕ : L2(Ω) → (−∞, +∞] is local1 if, for every u, v ∈ L2(Ω),

|u| ∧ |v| = 0 =⇒ ϕ(u + v) = ϕ(u) + ϕ(v). (2.2)

Here, u ∧ v denotes the (pointwise) infimum of the functions u and v. Note that
every local functional necessarily vanishes in 0. By abuse of language, we call a
semigroup local if it is generated by a local functional.

The functionals ϕD and ϕN : L2(Ω) → [0, +∞] defined in (1.2) and (1.3) are
convex, l.s.c. and local. Their effective domains D(ϕD) = W 1,p

0 (Ω) ∩ L2(Ω) and
D(ϕN) = W 1,p(Ω) ∩ L2(Ω) are both dense in L2(Ω). Hence, the semigroups SD
and SN generated by the two functionals ϕD and ϕN are both defined on the whole
space L2(Ω). The subgradients ∂ϕD and ∂ϕN are realizations of the p-Laplace
operator with Dirichlet and Neumann boundary conditions, respectively. It is well
known that the semigroups SD and SN are both order preserving and that SD is
dominated by SN (see [26] for p = 2 and [3] for general p).

1In the literature, one can also find the term additive.
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The p-capacity of a set A ⊆ R
N is given by

Capp(A) := inf{‖u‖p
W 1,p(RN ) : u ∈ W 1,p(RN ) and there exists O ⊆ R

N open,

such that A ⊆ O and u � 1 a.e. on O}.
(2.3)

A set A ⊆ R
N is called p-polar if Capp(A) = 0. A statement P (x) is said to hold

p-quasi-everywhere on B ⊆ R
N if there exists a p-polar set A ⊆ R

N such that the
statement P (x) holds for every x ∈ B \ A. A function u : B → R (B ⊆ R

N ) is said
to be p-quasi-continuous if, for every ε > 0, there exists an open set O ⊆ R

N such
that Capp(O) < ε and u restricted to B \ O is continuous. It is well known that
every u ∈ W 1,p(Ω) admits a p-quasi-continuous representative ũ : Ω̄ → R. This
p-quasi-continuous representative is unique up to a p-polar set, that is, every two
p-quasi-continuous representatives coincide p-quasi-everywhere on Ω̄. Throughout
the following, we identify each function u ∈ W 1,p(Ω) with a p-quasi-continuous
representative. A subset G of R

N is said to be p-quasi-open if for every ε > 0, there
exists an open set O ⊆ R

N such that Capp(O) < ε and G ∪ O is open.
Despite the fact that the p-capacity is not a Borel measure (the p-capacity is not

σ-additive), we say that the measure µ is absolutely continuous with respect to the
p-capacity if for every p-polar Borel set A ⊆ Ω̄, one has µ(A) = 0.

Finally, a function B : R → ]−∞, +∞] is called bi-monotone if it is non-increasing
on ]−∞, 0] and non-decreasing on [0, +∞[.

The following is the main theorem of this paper.

Theorem 2.1. Let Ω ⊆ R
N be a bounded domain with Lipschitz continuous bound-

ary ∂Ω, and let p ∈ (1,∞). Let S be the semigroup generated by a convex, l.s.c.
functional ϕ : L2(Ω) → [0, +∞], and let SD and SN be the semigroups generated by
the Dirichlet p-Laplace operator and the Neumann p-Laplace operator, respectively.
Then the following assertions are equivalent.

(i) The semigroup S is local, order preserving and SD � S � SN.

(ii) There exist a finite, regular Borel measure µ on ∂Ω, which is absolutely contin-
uous with respect to the p-capacity, and a Borel function B : ∂Ω×R → [0, +∞]
satisfying

B(·, s) is measurable for every s ∈ R,

B(x, 0) = 0 for µ-a.e. x ∈ ∂Ω,

B(x, ·) is lower semicontinuous for µ-a.e. x ∈ ∂Ω,

B(x, ·) is bi-monotone for µ-a.e. x ∈ ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(H)

such that

ϕ(u) =
1
p

∫
Ω

|∇u|p dx +
∫

∂Ω

B(x, u) dµ for all u ∈ D(ϕ).

The proof of theorem 2.1 is carried out in § 5, while § 3 is reserved for a discussion
of theorem 2.1. The proof of the implication (ii) ⇒ (i) is based on the following theo-
rem and is relatively straightforward. The following theorem, due to Barthélemy [3],

https://doi.org/10.1017/S030821051100028X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051100028X


980 R. Chill and M. Warma

is an application, also using clever convexity arguments, of the characterization that
a semigroup generated by a convex, l.s.c. functional ϕ : L2(Ω) → [0, +∞] leaves a
closed, convex set invariant. This characterization goes back to Brézis and Pazy [10]
(see also [9, § IV.4], [13] and the references therein). We state the theorem for densely
defined functionals only.

Theorem 2.2 (Barthélemy). Let ϕ, ϕ1, ϕ2 : L2(Ω) → (−∞, +∞] be three convex
and l.s.c. functionals with dense effective domains. Let S, S1 and S2 be the semi-
groups generated by ϕ, ϕ1 and ϕ2, respectively.

(a) If the functional ϕ is non-negative, then the semigroup S is order preserving
if and only if for all u, v ∈ L2(Ω) one has

ϕ(u ∧ v) + ϕ(u ∨ v) � ϕ(u) + ϕ(v) (2.4)

(see théorème 2.1 of [3]).

(b) If the semigroup S2 is order preserving, then the semigroup S1 is dominated
by the semigroup S2, that is, S1 � S2, if and only if for every u, v ∈ L2(Ω),
v � 0,

ϕ1((|u| ∧ v) sgn(u)) + ϕ2(|u| ∨ v) � ϕ1(u) + ϕ2(v) (2.5)

(see théorème 3.3 of [3]).

The difficult part in theorem 2.1 is the implication (i) ⇒ (ii). Its proof uses
the above characterization of order preservation and domination, but, in addition,
it uses the following Riesz-type representation theorem which may have interest
independent of the application given in this paper. Similar representation theorems
for various classes of functionals on various functions spaces are included in [11,12,
14–16,20–22,27,30] and the references therein.

Let p ∈ (1,∞). We denote by W 1,p(Ω)+ the positive cone in W 1,p(Ω). Given a
functional ψ : W 1,p(Ω)+ → [0, +∞], we call D(ψ) = {u ∈ W 1,p(Ω)+ : ψ(u) < +∞}
its effective domain. The effective support of the functional ψ is the set

supp[ψ] := Ω̄ \ {x ∈ Ω̄ : there exists a neighbourhood U of x such that for every
u ∈ D(ψ) with supp[u] ⊆ U one has ψ(u) = 0}.

We say that the functional ψ is monotone if, for every u, v ∈ W 1,p(Ω)+,

u � v =⇒ ψ(u) � ψ(v). (2.6)

Analogously to functionals defined on L2(Ω), we say that ψ is local if, for every
u, v ∈ W 1,p(Ω)+,

u ∧ v = 0 =⇒ ψ(u + v) = ψ(u) + ψ(v). (2.7)

Theorem 2.3. Let Ω ⊆ R
N be a bounded domain with Lipschitz continuous bound-

ary. For every functional ψ : W 1,p(Ω)+ → [0, +∞], the following assertions are
equivalent.

(i) The functional ψ is lower semicontinuous, monotone, local and, for every
u, v ∈ D(ψ), one has u ∨ v, u ∧ v ∈ D(ψ) and

ψ(u ∨ u) + ψ(u ∧ v) � ψ(u) + ψ(v). (2.8)
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(ii) There exist a finite, regular Borel measure µ with supp[µ] ⊆ supp[ψ], which
is absolutely continuous with respect to the p-capacity, and a Borel function
B : Ω̄ × R+ → [0, +∞] satisfying

B(·, s) is measurable for every s ∈ R,

B(x, 0) = 0 for µ-a.e. x ∈ Ω̄,

B(x, ·) is lower semicontinuous for µ-a.e. x ∈ Ω̄,

B(x, ·) is monotone for µ-a.e. x ∈ Ω̄,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(H+)

such that
ψ(u) =

∫
Ω̄

B(x, u) dµ for all u ∈ D(ψ).

Section 4 is devoted to the proof of this theorem.

Remark 2.4.

(a) Note that the representing measure µ and function B are not unique. For
example, given a representing measure µ and a representing function B, and
given any Borel measurable weight w : Ω̄ → R+ which is bounded from above
and from below (away from zero), the weighted measure w dµ and the function
B/w also represent ψ.

(b) On the other hand, the proof of theorem 2.3 shows that for any pair ψ1, ψ2
of lower semicontinuous, monotone, local functionals satisfying the inequal-
ity (2.8) one can find a common representing measure µ with supp[µ] ⊆
supp[ψ1]∪ supp[ψ2] and two representing functions B1 and B2 satisfying con-
dition (H+) such that

ψi(u) =
∫

Ω̄

Bi(x, u) dµ for every u ∈ D(ψi), i = 1, 2.

It suffices to take, for example, µ = µ1+µ2, where µ1 and µ2 are two represent-
ing measures for ψ1 and ψ2, respectively, the existence of which is guaranteed
by theorem 2.3.

(c) Theorem 2.3 remains true if the space W 1,p(Ω) is replaced by the a priori
smaller space W 1,p(Ω)∩L2(Ω). This is trivially true for p � 2, since then the
two spaces actually coincide. If p < 2, essentially the same proof works. At
first glance, it seems necessary to replace everywhere the p-capacity by the
following (p, 2)-capacity, which is for subsets A ⊆ R

N defined by

Cap(p,2)(A) = inf{‖u‖p
W 1,p(RN ) + ‖u‖2

L2(RN ) : u ∈ W 1,p(RN ) ∩ L2(RN )

and there exists O ⊆ R
N open, such that A ⊆ O

and u � 1 a.e. on O}.

However, it is actually not necessary to do this since for p � 2 the p-capacity
and the (p, 2)-capacity are equivalent in the sense that, for every subset A ⊆
R

N ,
Capp(A) � Cap(p,2)(A) � 2 Capp(A).
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Here, the first inequality is obvious from the respective definitions of the
two capacities, while for the second inequality one has to notice that the
definition of the (p, 2)-capacity does not change if one takes the infimum over
functions satisfying 0 � u � 1 everywhere (and u = 1 a.e. on O) and that
‖u‖2

L2(RN ) � ‖u‖p
Lp(RN ) whenever 0 � u � 1 and p � 2.

3. Discussion of the conditions in theorem 2.1

3.1. Interpretation of the generalized Robin-type boundary conditions

Let B and µ be as in theorem 2.1(ii). Assume, for simplicity, that B(x, ·) is convex
for µ-a.e. x ∈ ∂Ω. Denote by β(x, ·) = ∂B(x, ·) the subgradient of the functional
B(x, ·), that is, for s ∈ D(B(x, ·)),

β(x, s) = {τ ∈ R : B(x, s + ξ) − B(x, s) � τξ for every ξ ∈ R}.

Let f ∈ L2(Ω). We say that a function u ∈ W 1,p(Ω) ∩ L2(Ω) is a weak solution of
the elliptic problem

−∆pu = f in Ω,

|∇u|p−2 ∂u

∂ν
dσ + β(x, u) dµ � 0 on ∂Ω,

⎫⎬
⎭ (3.1)

if −∆pu = f in the sense of distributions, if∫
∂Ω

B(x, u) dµ < +∞

and if, for every w ∈ W 1,p(Ω) ∩ L2(Ω),∫
∂Ω

(B(x, u + w) − B(x, u)) dµ �
∫

Ω

fw dx −
∫

Ω

|∇u|p−2∇u∇w dx. (3.2)

The relation between this inequality and the boundary condition in (3.1) becomes
clear if one replaces f by −∆pu, recalls Green’s formula,∫

Ω

∆puw dx +
∫

Ω

|∇u|p−2∇u∇w dx =
∫

∂Ω

|∇u|p−2 ∂u

∂ν
w dσ, w ∈ W 1,p(Ω)

(which holds for sufficiently smooth functions u) and uses the definition of the
subgradient.

Let ϕ be as in theorem 2.1(ii), that is,

ϕ(u) =

⎧⎪⎨
⎪⎩

1
p

∫
Ω

|∇u|p dx +
∫

∂Ω

B(x, u) dµ if u ∈ D(ϕ),

+∞ otherwise,

where the effective domain is given by

D(ϕ) =
{

u ∈ W 1,p(Ω) ∩ L2(Ω);
∫

∂Ω

B(x, u) dµ < ∞
}

.
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Proposition 3.1. Let f ∈ L2(Ω). Then u ∈ W 1,p(Ω) ∩ L2(Ω) is a weak solution
of (3.1) if and only if u ∈ D(ϕ) and f ∈ ∂ϕ(u).

Proof. Assume that u ∈ D(ϕ) and f ∈ ∂ϕ(u). Then, by the definition of D(ϕ),
u ∈ W 1,p(Ω) ∩ L2(Ω), ∫

∂Ω

B(x, u) dµ < +∞

and, as a consequence of the definition of the subgradient ∂ϕ, for every w ∈
W 1,p(Ω) ∩ L2(Ω),

1
p

∫
Ω

(|∇(u + w)|p − |∇u|p) dx +
∫

∂Ω

(B(x, u + w) − B(x, u)) dµ �
∫

Ω

fw dx.

In particular, when we replace w by tw (t > 0), divide the inequality by t and let t
tend to 0, we obtain that, for every w ∈ W 1,p(Ω) ∩ L2(Ω),∫

Ω

|∇u|p−2∇u∇w dx + lim inf
t→0+

∫
∂Ω

B(x, u + tw) − B(x, u)
t

dµ �
∫

Ω

fw dx. (3.3)

In particular, for every test function w ∈ D(Ω),∫
Ω

|∇u|p−2∇u∇w dx �
∫

Ω

fw dx.

Since this inequality is true for w and −w (w ∈ D(Ω)), one actually has equality,
and therefore −∆pu = f in the sense of distributions. Finally, by convexity of
B(x, ·), the inequality (3.3) holds for every w ∈ W 1,p(Ω) ∩ L2(Ω) if and only if the
inequality (3.2) holds for every w ∈ W 1,p(Ω) ∩ L2(Ω). Hence, u is a weak solution
of (3.1).

Conversely, let u ∈ W 1,p(Ω) ∩ L2(Ω) be a weak solution of (3.1). Then, by
definition of the weak solution and by definition of D(ϕ), u ∈ D(ϕ). Moreover, the
inequality (3.2) holds for every w ∈ W 1,p(Ω) ∩ L2(Ω), that is

ϕ(u + w) − ϕ(u) �
∫

Ω

fw dx for every w ∈ W 1,p(Ω) ∩ L2(Ω).

Clearly, this inequality also holds trivially for w ∈ L2(Ω) \ W 1,p(Ω). Hence, f ∈
∂ϕ(u).

3.2. Regularity of Ω

Theorems 2.1 and 2.3 remain true if Ω is a bounded domain with the W 1,p-
extension property (for more details on the extension property we refer the reader
to [23,29]). This means that there exists a bounded, linear extension operator

W 1,p(Ω) → W 1,p(RN ).

We note that the W 1,p-extension property depends on p. If Ω has Lipschitz con-
tinuous boundary ∂Ω, as we assumed in theorems 2.1 and 2.3, then Ω has the
W 1,p-extension property for every p ∈ (1,∞) [29, ch. VI, theorem 5, p. 181]. The
Lipschitz continuity of the boundary (or the W 1,p-extension property) is important
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in several places in which we deal with the p-capacity. Note that the p-capacity is
defined by means of W 1,p(RN ) functions.

If Ω does not have a Lipschitz continuous boundary but is just an arbitrary
bounded, open set, one may replace the p-capacity by the relative p-capacity and
replace the Sobolev space W 1,p(Ω) by the space

W̃ 1,p(Ω) = W 1,p(Ω) ∩ C(Ω̄)
W 1,p(Ω)

.

The relative p-capacity Capp,Ω is for subsets A ⊆ Ω̄ defined by

Capp,Ω(A) := inf{‖u‖p
W 1,p(Ω) : u ∈ W̃ 1,p(Ω) and there exists O ⊆ R

N open,

such that A ⊆ O and u � 1 a.e. on O ∩ Ω̄};

see [1] for the case p = 2 and [5, 7] for general p ∈ [1,∞[. Up to these changes,
and up to replacing the functional ϕN (and the associated semigroup SN) by the
functional

ϕ̃N(u) :=

⎧⎪⎨
⎪⎩

1
p

∫
Ω

|∇u|p dx if u ∈ W̃ 1,p(Ω) ∩ L2(Ω),

+∞ otherwise

(and the associated semigroup S̃N), the main results in this paper (theorems 2.1
and 2.3) hold with essentially the same proofs.

3.3. The special case of quadratic forms (p = 2 and B quadratic)

A particular situation occurs when all the functionals in theorem 2.1 are assumed
to be quadratic. A functional ϕ : L2(Ω) → (−∞, +∞] is quadratic if there exists a
symmetric, bilinear form (a, D(a)) such that

ϕ(u) =

{
1
2a(u, u) if u ∈ D(a),
+∞ otherwise.

Note that D(ϕ) = D(a) is a linear space in this case. A quadratic functional ϕ
is convex and l.s.c. if and only if the associated form (a, D(a)) is positive and
closed. In this case, A := ∂ϕ is a linear, self-adjoint, non-negative operator and
the associated semigroup S is a C0-semigroup of linear, self-adjoint contractions.
The functionals ϕD and ϕN are quadratic if and only if p = 2, and then ∂ϕD
and ∂ϕN are the realizations of the Laplace operator with Dirichlet and Neumann
boundary conditions, respectively. In the case when all functionals are quadratic,
our theorem 2.1 should be compared with [2, theorem 4.1], at least in the situation
when Ω is a bounded domain with Lipschitz continuous boundary ∂Ω (in [2], Ω
is an arbitrary open set). Theorem 4.1 in [2] characterizes all the symmetric local
semigroups that are sandwiched between the semigroups SD and S̃N. However,
there, the generating bilinear form (a, D(a)) and the measure µ are both assumed
to satisfy an additional regularity condition, namely that D(a) ∩ C(Ω̄) is dense in
(D(a), ‖ · ‖a) and that µ is admissible [2, definition 2.3]. Our theorem 2.1 shows
that these regularity conditions may be dropped.
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In the general situation of theorem 2.1, we are not actually able to show that
D(ϕ) ∩ C(Ω̄) is dense in D(ϕ) (in the W 1,p(Ω) topology, for example). We are
not even sure whether D(ϕ) contains non-trivial continuous functions at all. This
problem is also the reason why we cannot use a Riesz-type representation theorem
for functionals defined on C(Ω̄)+, such as the representation theorems in [12, 30].
Instead, we are forced to use a Riesz-type representation theorem on W 1,p(Ω)+

(that is, theorem 2.3).
If in the situation of theorem 2.1 one assumes in addition that the functional ϕ is

continuous on W 1,p(Ω), then in theorem 2.3 one obtains that B(x, ·) is continuous.
In this situation, it is possible to show that the functional ϕ is also regular in
the sense that for every u ∈ D(ϕ) there exists a sequence (un) ⊆ D(ϕ) ∩ C(Ω̄)
converging to u in W 1,p(Ω) and satisfying limn→∞ ϕ(un) = ϕ(u).

Finally, we note that if p = 2 in theorem 2.1, i.e. the case of the Laplace operator,
even if SD and SN are linear semigroups, theorem 2.1 shows that there are nonlinear
sandwiched semigroups generated by the Laplace operator with nonlinear boundary
conditions of the form

∂u

∂ν
dσ + β(x, u) dµ � 0.

3.4. Non-negativity of the functional ϕ

While the generation theorem by Minty applies for general convex, l.s.c. func-
tionals ϕ : L2(Ω) → ]−∞, +∞], the functional in theorem 2.1 is assumed to be
convex, l.s.c. and non-negative. However, assuming condition (i) in theorem 2.1, ϕ
is automatically non-negative. In fact, the domination S � SN implies that 0 is an
equilibrium point of the semigroup S (that is, S(t)0 = 0 for every t � 0). This is
equivalent to 0 ∈ ∂ϕ(0). Since ϕ is convex, this in turn is equivalent to the fact that
ϕ attains its minimum in 0. Now, the further assumption that ϕ is local implies
ϕ(0) = 0. Hence, ϕ is necessarily non-negative.

3.5. Locality of ϕ

The assumption that the functional ϕ is local is also necessary. In fact, there are
semigroups S generated by convex, l.s.c. and non-local functionals ϕ such that
SD � S � SN. Clearly, such functionals cannot be of the integral form as in
theorem 2.1(ii). Examples of such non-local functionals exist even in the quadratic
case, that is, when all semigroups are linear [2, example 4.5].

3.6. Relation between the lower semicontinuity of ϕ and properties of
B and µ

Let Ω ⊆ R
N be a bounded domain with Lipschitz continuous boundary ∂Ω. Let

µ be a finite, regular Borel measure on ∂Ω (no further assumption on µ) and let
B : ∂Ω×R → [0, +∞] be a Borel function satisfying hypothesis (H). Fix p ∈ (1,∞),
and consider the functional ϕ : L2(Ω) → [0, +∞] given by

ϕ(u) =

⎧⎪⎨
⎪⎩

1
p

∫
Ω

|∇u|p dx +
∫

∂Ω

B(x, u) dµ if u ∈ D(ϕ),

+∞ otherwise,
(3.4)
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where the effective domain

D(ϕ) :=
{

u ∈ W 1,p(Ω) ∩ L2(Ω) :
∫

∂Ω

B(x, u) dµ < ∞
}

.

Theorem 3.2. If the functional ϕ defined above is lower semicontinuous on L2(Ω),
then for every p-polar set K ⊆ ∂Ω and every u ∈ D(ϕ) one has∫

K

B(x, u) dµ = 0. (3.5)

Proof. Let K ⊆ ∂Ω be a p-polar set, and let u ∈ D(ϕ). We first assume that K is
compact and that u is non-negative and essentially bounded. Since K is p-polar,
there exists a sequence (vn) ⊆ W 1,p(RN ) such that

0 � vn � ‖u‖L∞(Ω) everywhere on Ω̄, vn = ‖u‖L∞(Ω) on K

and

lim
n→∞

‖vn‖W 1,p(RN ) = 0.

Now let un := vn ∧ u. Then

0 � u − un � u everywhere on Ω̄, u − un = 0 on K

and

lim
n→∞

‖un‖W 1,p(Ω) = 0.

By the bounded convergence theorem, we also have

lim
n→∞

‖u − un‖L2(Ω) = 0.

Since ϕ is lower semicontinuous on L2(Ω), we obtain

1
p

∫
Ω

|∇u|p +
∫

∂Ω

B(x, u) dµ � lim inf
n→∞

(
1
p

∫
Ω

|∇(u − un)|p +
∫

∂Ω

B(x, u − un) dµ

)
.

The inequality u − un � u (everywhere on Ω̄), the equality u − un = 0 on K, the
assumption B(x, 0) = 0 and the bi-monotonicity of B imply that, for every n,∫

∂Ω

B(x, u − un) dµ �
∫

∂Ω\K

B(x, u) dµ.

The two preceding inequalities and the convergence ‖un‖W 1,p(Ω) → 0 together imply∫
K

B(x, u) dµ � 0.

Since B � 0, we thus obtain (3.5).
The equality (3.5) for arbitrary non-negative u ∈ D(ϕ) (but compact K) follows

by an approximation with the sequence (u∧n), using also the lower semi-continuity
of ϕ and the monotonicity of B. If K is not compact (but p-polar) and if u ∈ D(ϕ)
is non-negative, then we obtain (3.5) from the inner regularity of the measure
B(x, u) dµ.
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Similarly, using the bi-monotonicity of B, one shows that (3.5) holds for every
p-polar set K ⊆ ∂Ω and every nonpositive u ∈ D(ϕ). Finally, if K is an arbitrary
p-polar set and u ∈ D(ϕ) is arbitrary, too, then the previous steps imply∫

K

B(x, u) dµ =
∫

K

B(x, u+ − u−) dµ

=
∫

K

B(x, u+) dµ +
∫

K

B(x,−u−) dµ

= 0,

where we have also used the fact that if u ∈ D(ϕ), then u+ ∈ D(ϕ).

With a slight abuse of language, theorem 3.2 says that if the functional ϕ given
by (3.4) is lower semicontinuous, then the weighted measure B dµ is necessarily
absolutely continuous with respect to the p-capacity (in the sense made precise in
theorem 3.2). We point out that the stronger property that the unweighted measure
µ is absolutely continuous with respect to the p-capacity cannot be expected in the
general situation of theorem 3.2 (take, for example, B = 0 and µ a measure which
is not absolutely continuous with respect to the p-capacity). At the same time,
we point out that our main theorem (theorem 2.1) does state the existence of a
representing measure µ that is absolutely continuous with respect to the p-capacity.

In the literature (see, for example, [6–8, 18] for the nonlinear case and [1, 2, 17]
for the linear case) parabolic and elliptic equations associated with the functional
ϕ defined in (3.4) have been investigated. It has been assumed in the literature
cited here that B(x, ·) is convex for µ-a.e. x ∈ ∂Ω, and that the measure µ is
absolutely continuous with respect to the p-capacity. Theorem 3.2 shows that this
is a natural assumption (for obtaining not only well-posedness of the associated
evolution problem, for example, but also existence and regularity of weak solutions
to associated elliptic problems).

The following result is a partial converse of theorem 3.2.

Theorem 3.3. Assume that B dµ is absolutely continuous with respect to the p-
capacity in the sense that, for every p-polar set K ⊆ ∂Ω and every u ∈ D(ϕ), one
has ∫

K

B(x, u) dµ = 0. (3.6)

If the functional ϕ given by (3.4) is convex, ϕ is lower semicontinuous on L2(Ω).

Proof. We have to show that for every c ∈ R the set {ϕ � c} is closed in L2(Ω).
So, fix c ∈ R. Let A be a closed (bounded) ball in L2(Ω) and let C := {ϕ � c} ∩ A.
Let (un) ⊆ C and u ∈ W 1,p(Ω) ∩ L2(Ω) be such that

lim
n→∞

‖un − u‖W 1,p(Ω)∩L2(Ω) = 0.

The convergence in L2(Ω) implies that u ∈ A. The convergence in W 1,p(Ω) implies,
after passing to a subsequence, that un → u p-quasi-everywhere, i.e. un → u every-
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where except possibly on a p-polar set K ⊆ ∂Ω. Hence, by assumption on B and µ,

ϕ(u) =
1
p

∫
Ω

|∇u|p +
∫

∂Ω

B(x, u) dµ

=
1
p

∫
Ω

|∇u|p +
∫

∂Ω\K

B(x, u) dµ (by (3.6))

� 1
p

∫
Ω

|∇u|p +
∫

∂Ω\K

lim inf
n→∞

B(x, un) dµ (B is l.s.c.)

� lim inf
n→∞

(
1
p

∫
Ω

|∇un|p +
∫

∂Ω\K

B(x, un) dµ

)
(by Fatou’s lemma)

= lim inf
n→∞

(
1
p

∫
Ω

|∇un|p +
∫

∂Ω

B(x, un) dµ

) (
as

∫
K

B(x, un) dµ = 0
)

= lim inf
n→∞

ϕ(un).

This shows u ∈ {ϕ � c}. In particular, we have shown that C is closed in W 1,p(Ω)∩
L2(Ω). By convexity of ϕ, the set C is, in addition, convex. Hence, by Mazur’s
theorem, C is weakly closed in W 1,p(Ω)∩L2(Ω). Next, since B is non-negative, the
norm u �→ ‖∇u‖Lp(Ω) + ‖u‖L2(Ω) is bounded on C. This norm is equivalent to the
canonical norm on W 1,p(Ω) ∩ L2(Ω): for p � 2, this is always true, while for p > 2
we may use that Ω has a Lipschitz boundary and apply the theorem in [23, § 1.1].
Since the embedding W 1,p(Ω) ∩ L2(Ω) ↪→ L2(Ω) is continuous, we obtain that C is
bounded and weakly closed, and hence closed, in L2(Ω). Since A was an arbitrary
closed ball in L2(Ω), this shows that {ϕ � c} is closed in L2(Ω).

4. Proof of theorem 2.3

In this section, we prove theorem 2.3. We start by proving the implication in theo-
rem 2.3, which is relatively straightforward.

Proof of theorem 2.3, (ii) ⇒ (i). Assume that assertion (ii) holds. The monotonic-
ity of the function B(x, ·) (for µ-almost every x ∈ Ω̄, assumption (H+)) and the
monotonicity of the integral imply that the functional ψ is monotone.

We show that ψ is lower semicontinuous. Let (un) ⊆ W 1,p(Ω)+ be a sequence
which converges to u ∈ W 1,p(Ω)+. By considering a subsequence, if necessary, we
may assume that (un) converges to u p-quasi-everywhere, that is, there exists a p-
polar set A ⊆ Ω̄ such that (un) converges to u everywhere on Ω̄ \A (where possibly
A is a larger p-polar set). Since, for µ-almost every x ∈ Ω̄, the function B(x, ·)
is lower semicontinuous, we obtain B(x, u(x)) � lim infn→∞ B(x, un(x)) for every
x ∈ Ω̄ \A. Using Fatou’s lemma and the fact that, by assumption, the measure µ is
absolutely continuous with respect to Capp (this implies that (3.5) holds for every
p-polar set K ⊆ Ω̄ and every u ∈ D(ψ)), we therefore obtain that

ψ(u) =
∫

Ω̄

B(x, u) dµ =
∫

Ω̄\A

B(x, u) dµ

�
∫

Ω̄\A

lim inf
n→∞

B(x, un(x)) dµ
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� lim inf
n→∞

∫
Ω̄\A

B(x, un(x)) dµ

= lim inf
n→∞

∫
Ω̄

B(x, un(x)) dµ = lim inf
n→∞

ψ(un).

Hence, ψ is lower semicontinuous.
Let u, v ∈ D(ψ) ⊆ W 1,p(Ω)+. Clearly, u∨v, u∧v ∈ W 1,p(Ω)+. From the equality

ψ(u ∨ v) + ψ(u ∧ v) =
∫

Ω̄

B(x, u ∨ v) dµ +
∫

Ω̄

B(x, u ∧ v) dµ

=
∫

{u�v}
B(x, v) dµ +

∫
{u�v}

B(x, u) dµ

+
∫

{u>v}
B(x, u) dµ +

∫
{u>v}

B(x, v) dµ

=
∫

Ω̄

B(x, u) dµ +
∫

Ω̄

B(x, v) dµ

= ψ(u) + ψ(v)

we obtain that u ∨ v, u ∧ v ∈ D(ψ) and that (2.8) holds (even with equality).
Finally, let u, v ∈ W 1,p(Ω)+ be such that u ∧ v = 0. Then u = v = 0 on

supp[u] ∩ supp[v]. Since B(x, 0) = 0, we obtain that

ψ(u + v) =
∫

Ω̄

B(x, u + v) dµ

=
∫

supp[u]
B(x, u) dµ +

∫
supp[v]

B(x, v) dµ −
∫

supp[u]∩supp[v]
B(x, u + v) dµ

=
∫

supp[u]
B(x, u) dµ +

∫
supp[v]

B(x, v) dµ

=
∫

Ω̄

B(x, u) dµ +
∫

Ω̄

B(x, v) dµ

= ψ(u) + ψ(v).

Hence, ψ is local.

To prove the converse implication (i) ⇒ (ii), we proceed stepwise, in the form of
several lemmas.

Throughout the following, we denote by B the Borel σ-algebra of Ω̄. The set of
all compact subsets of Ω̄ is denoted by K. We assume also that the functional ψ
satisfies theorem 2.3(i).

For δ > 0 and every subset K ⊆ Ω̄ we define

Kδ := {x ∈ Ω̄ : d(x, K) � δ}.

With this definition, for every compact subset K ∈ K we define

R(K) := {� ∈ W 1,∞(RN ) : there exists δ > 0 such that � � 1 on Kδ}.
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Note that every function � ∈ W 1,∞(RN ) admits a Lipschitz continuous representa-
tive; the condition � � 1 is to be understood as a pointwise inequality everywhere
for this unique representative.

Definition 4.1. For each u ∈ D(ψ) we define a non-negative set function µu(·) on
K by setting

µu(K) = inf
�∈R(K)

ψ(u�), K ∈ K. (4.1)

We remark that for every � ∈ R(K) one has � ∧ 1 ∈ R(K). Therefore, in the
definition of µu(K) it suffices to take the infimum over all functions � ∈ R(K)
satisfying 0 � � � 1 everywhere and � = 1 on some Kδ. In particular, by the
monotonicity of ψ, µu(K) is finite for every compact K ⊆ Ω̄.

Lemma 4.2 (finite additivity). Let u ∈ D(ψ), and let K1, K2 ⊆ Ω̄ be two compact
sets such that K1 ∩ K2 = ∅. Then

µu(K1 ∪ K2) = µu(K1) + µu(K2).

Proof. Let K1, K2 ⊆ Ω̄ be two compact sets such that K1 ∩ K2 = ∅. Then
d(K1, K2) > 0. We can therefore find two functions �i ∈ R(Ki), i = 1, 2, such
that 0 � �i � 1 and �1 ∧ �2 = 0; such a pair of functions �1, �2 can easily be
constructed by taking appropriate convolutions of characteristic functions and test
functions.

Let � ∈ R(K1 ∪ K2). The monotonicity and locality of ψ implies

ψ(u�) � ψ(u�(�1 + �2))
= ψ(u��1) + ψ(u��2)
� µu(K1) + µu(K2).

Since � ∈ R(K1 ∪K2) was arbitrary, this implies µu(K1 ∪K2) � µu(K1)+µu(K2).
Now let �′

i ∈ R(Ki), i = 1, 2. Then, again, by monotonicity and locality,

ψ(u�′
1) + ψ(u�′

2) � ψ(u�′
1�1) + ψ(u�′

2�2)
= ψ(u(�′

1�1 + �′
2�2))

� µu(K1 ∪ K2).

Since �′
i ∈ R(Ki), i = 1, 2, were arbitrary, this implies

µu(K1) + µu(K2) � µu(K1 ∪ K2).

Lemma 4.3 (monotonicity). Let u ∈ D(ψ) and let K1, K2 ⊆ Ω̄ be two compact sets
such that K1 ⊆ K2. Then

µu(K1) � µu(K2).

Proof. This follows immediately from the definition of µu and the inclusion

R(K1) ⊇ R(K2).

https://doi.org/10.1017/S030821051100028X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051100028X


Dirichlet and Neumann boundary conditions: what is in between? 991

Lemma 4.4. Let u ∈ D(ψ) and let K1, K2 ⊆ Ω̄ be two compact sets. Then

µu(K1 ∪ K2) + µu(K1 ∩ K2) � µu(K1) + µu(K2).

Proof. Let �i ∈ R(Ki) (i = 1, 2). Then, by assumption (2.8),

ψ(u�1) + ψ(u�2) � ψ(u(�1 ∨ �2)) + ψ(u(�1 ∧ �2))
� µu(K1 ∪ K2) + µu(K1 ∩ K2).

Since �i ∈ R(Ki), i = 1, 2, were arbitrary, this implies

µu(K1) + µu(K2) � µu(K1 ∪ K2) + µu(K1 ∩ K2).

Lemma 4.5 (outer regularity). Let u ∈ D(ψ), let (Km) be a decreasing sequence of
compact subsets of Ω̄, and let K :=

⋂
m Km. Then

lim
m→∞

µu(Km) = µu(K). (4.2)

Proof. First, the monotonicity of the set function µu (lemma 4.3) implies that
limm→∞ µu(Km) exists and limm→∞ µu(Km) � µu(K). In order to prove the con-
verse inequality, observe that for every δ, δ′ > 0 with δ > δ′ there exists m0 ∈ N

such that for every m � m0 one has Kδ′

m ⊆ Kδ (here we use that (Km) is decreasing
and K =

⋂
m Km). In particular, for every � ∈ R(K) there exists m0 ∈ N such that

for every m � m0 one has � ∈ R(Km). As a consequence

ψ(u�) � µu(Km) for every m � m0

or

ψ(u�) � lim
m→∞

µu(Km).

Since this inequality holds for every � ∈ R(K), this proves

µu(K) � lim
m→∞

µu(Km).

Lemma 4.6. For every u ∈ D(ψ) the set function µu can be extended uniquely to a
finite, regular Borel measure on Ω̄ (again denoted by µu in the following). Moreover,
µu(Ω̄) = ψ(u) and supp[µu] ⊆ supp[ψ].

Proof. By lemmas 4.2–4.5, µu is a regular content on K. The fact that µu extends
to a regular Borel measure (which we again denote by µu) follows from standard
measure theory, including the theory of measures on topological spaces (see, for
example, [4, Kapitel I, § 3; Kapitel IV]). The set Ω̄ is compact and every function
in R(Ω̄) is greater than or equal to 1 on Ω̄. From here and the definition of µu

it follows easily that µu(Ω̄) = ψ(u) < +∞ for every u ∈ D(ψ). The inclusion
supp[µu] ⊆ supp[ψ] is a straightforward consequence of the definition of µu and the
definition of the effective support of ψ.
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Lemma 4.7 (monotonicity of µu). Let u, v ∈ D(ψ) be such that u � v. Then µu �
µv.

Proof. The monotonicity of ψ and the definition of the measures µu and µv imply
µu(K) � µv(K) for every compact subset K ⊆ Ω̄. The claim then follows from the
inner regularity of µu and µv.

Lemma 4.8. Let (un) ⊆ D(ψ) and u ∈ D(ψ) be such that un � u and limn→∞ un =
u in W 1,p(Ω). Then

lim
n→∞

µun
(G) = µu(G) for every G ∈ B. (4.3)

Proof. By lemma 4.7, the domination un � u implies µu(G)−µun(G) � 0 for every
G ∈ B. Hence, for every G ∈ B,

0 � lim sup
n→∞

(µu(G) − µun(G))

� lim sup
n→∞

(µu(G) − µun(G) + µu(Gc) − µun(Gc))

= lim sup
n→∞

(µu(Ω̄) − µun(Ω̄))

= lim sup
n→∞

(ψ(u) − ψ(un))

� 0,

where in the last inequality we have used the lower semi-continuity of ψ. The
preceding chain of inequalities implies the claim.

Lemma 4.9. For every u ∈ D(ψ) the measure µu is absolutely continuous with
respect to the p-capacity.

Proof. Let K ⊆ Ω̄ be a p-polar set, that is, Capp(K) = 0. We have to show that
µu(K) = 0. By inner regularity of µu, we may assume K to be compact. Moreover,
by replacing u by u∧n ∈ D(ψ) (with n ∈ N large enough), and by using lemma 4.8,
we see that we may in addition assume that u is essentially bounded. We assume
both in the following.

Since Capp(K) = 0, there exists a sequence (On) of open sets in R
N and a

sequence (wn) ⊆ W 1,p(RN ) ∩ Cc(RN ) such that

0 � wn � 1, wn = 1 on On ⊇ K and lim
n→∞

‖wn‖W 1,p(RN ) = 0.

We claim that we can choose (On) and (wn) such that

K ⊆ On+1 ⊆ Ōn+1 ⊆ On, K =
⋂
n

On and supp[wn+1] ⊆ On.

First, observe that by replacing On by the smaller set O1 ∩ · · · ∩ On, we may
assume that the sequence (On) is decreasing. Clearly, K ⊆

⋂
n On. If there exists

x ∈ (
⋂

n On) \ K, then we may replace On by the smaller open set On \ B(x, r),
where r > 0 is sufficiently small so that one still has K ⊆ On \ B(x, r) (recall that
K is compact and that x has positive distance to K). In this way we can eliminate
every x ∈ (

⋂
n On) \ K and finally obtain K =

⋂
n On. By using the facts that
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K is compact and that the sets On are open, it is straightforward to construct a
subsequence of (On) (which we still denote by On) such that K ⊆ On+1 ⊆ Ōn+1 ⊆
On. Now let (zk) ⊆ W 1,∞(RN ) be a sequence of functions satisfying 0 � zk � 1,
zk = 1 on Ok+1 and supp[zk] ⊆ Ok. For every k we can find mk � k + 1 such that,
for every m � mk,

‖zkwm‖W 1,p(RN ) � 1
k

.

Note that, for every m � mk, 0 � zkwm � 1, zkwm = 1 on Om and supp[zkwm] ⊆
Ok. Now, by replacing wn by zknwmn for some appropriate sequences (kn), (mn)
(so that kn+1 � mn), we obtain the desired claim.

By passing to a further subsequence, if necessary, we may finally assume that (wn)
and (∇wn) converge pointwise almost everywhere to 0. Then it is straightforward
to check that

lim
n→∞

‖uwn‖W 1,p(Ω) = 0.

Moreover, for every n ∈ N,

ψ(u) � ψ(u − uwn + uvn+1) (by monotonicity of ψ)
= ψ(u − uwn) + ψ(uvn+1) (by locality of ψ)
� ψ(u − uwn) + µu(K) (by definition of µu). (4.4)

Since limn→∞(u − uwn) = u and u − uwn � u, the monotonicity and the lower
semi-continuity of ψ imply

lim
n→∞

ψ(u − uwn) = ψ(u).

Hence, by passing to the limit in the inequality (4.4), we obtain ψ(u) � ψ(u) +
µu(K), that is, µu(K) = 0. Since K was an arbitrary p-polar set, this shows that
µu is absolutely continuous with respect to the p-capacity.

Lemma 4.10. For every u ∈ D(ψ) one has µu({u = 0}) = 0 (here {u = 0} denotes
the null-set of a p-quasi-continuous representative of u; it is unique up to a p-polar
set).

Proof. Let u ∈ D(ψ). By replacing u by u ∧ n ∈ D(ψ) (for n ∈ N sufficiently large)
and by using lemma 4.8, we see that we may assume that u is essentially bounded.
This will be done in the following.

We show that we can find a sequence (un) ⊆ D(ψ) such that un � u,

lim
n→∞

un = u in W 1,p(Ω)

and un = 0 in a neighbourhood of {u = 0}. In fact, for every n ∈ N the set
Un := {u < 1/n} is p-quasi-open, that is, there exists a sequence (Oj) of open sets
such that Un ∪ Oj is open and limj→∞ Capp(Oj) = 0. Associated with (Oj) there
exists a sequence (wj) ⊆ W 1,p(RN ) such that 0 � wj � 1, wj = 1 on Oj and

lim
j→∞

‖wj‖W 1,p(RN ) = 0.
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Note that limj→∞ ‖(u − 1/n)+wj‖W 1,p(RN ) = 0 for every n ∈ N. Now, for n ∈ N,
one may take un = (u − 1/n)+(1 − wjn) with jn ∈ N large enough and one obtains
the desired sequence.

Let K ⊆ {u = 0} be a compact set. Since un = 0 in a neighbourhood of {u = 0},
it follows that K ⊆ Ω̄\supp[un]. By definition of µun , since Ω̄\supp[un] is relatively
open (i.e. open with respect to the relative topology), and since ψ(0) = 0, one has
µun

(K) = 0. By lemma 4.8, µu(K) = limn→∞ µun
(K) = 0. The claim then follows

from the inner regularity of µu.

Lemma 4.11. Let u, v ∈ D(ψ). Then µu(G) � µv(G) for every Borel set

G ⊆ {u � v}.

Proof. The proof is given in three steps.

Step 1. We first prove the inequality µu(G) � µv(G) for every Borel set G ⊆ {u <
v}. By p-quasi-continuity of u and v, the set U := {u < v} is quasi-open. For
every n ∈ N, let On be an open set with Capp(On) < 1/n, and Un := U ∪ On is
open. Associated with (On) there exists a sequence (wn) ⊆ W 1,p(RN ) such that
0 � wn � 1, wn = 1 p-quasi-everywhere on On and

lim
n→∞

‖wn‖W 1,p(RN ) = 0.

Let un := (u ∧ n)(1 − wn) and vn := (v ∧ n)(1 − wn). Then un � vn on the open
set Un with un = vn = 0 p-quasi-everywhere on On. Moreover, un � u and vn � v.
Since Un is open, for every compact set K ⊆ U ⊆ Un there exists δ > 0 such that
Kδ ⊆ Un. It follows from the monotonicity of ψ and the definition of the measures
µun

and µvn
that µun

(K) � µvn
(K) for every compact subset K ⊆ U . Passing to

the limit and using lemma 4.8, we obtain that µu(K) � µv(K) for every compact
set K ⊆ {u < v}. The inequality µu(G) � µv(G) for Borel sets G ⊆ {u < v} then
follows from the inner regularity of µu and µv.

Step 2. Now let G be a Borel set in {u � v and 0 < v}. Let (λn) ⊆ R+ be a
sequence such that λn < 1 and limn→∞ λn = 1. Then, for every n one has

{u � v and 0 < v} ⊆ {λnu < v}.

Hence, by step 1, for every n,

µλnu(G) � µv(G).

Clearly, λnu � u and limn→∞ λnu = u in W 1,p(Ω). Hence, by lemma 4.8,

µu(G) = lim
n→∞

µλnu(G) � µv(G).

Step 3. Finally, let G be an arbitrary Borel set in {u � v}. Then, by step 2 and
lemma 4.10,

µu(G) = µu(G ∩ {0 < v}) + µu(G ∩ {0 = v})
� µv(G ∩ {0 < v}) + µv(G ∩ {0 = v})
= µv(G),

which is the claim.
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In the remainder of this section, fix a sequence (wn) ⊆ D(ψ) such that {wn : n} is
dense in D(ψ) (such a sequence exists since the space W 1,p(Ω) is separable). Then
we define a measure µ on B by

µ(G) =
∞∑

n=1

1
2n

µwn(G)
1 + µwn(Ω̄)

, G ∈ B. (4.5)

It is clear that µ is a finite, regular Borel measure on Ω̄.

Lemma 4.12. The measure µ is absolutely continuous with respect to the p-capacity.

Proof. This follows directly from lemma 4.9 and the definition of the measure µ.

Lemma 4.13. Every measure µu, u ∈ D(ψ), is absolutely continuous with respect
to µ.

Proof. Let G ∈ B be such that µ(G) = 0. It follows from the definition of µ and
the positivity of µwn that µwn(G) = 0 for every n ∈ N.

Now let u ∈ D(ψ). There exists a subsequence (wnk
) such that limk→∞ wnk

= u
in W 1,p(Ω). Define uk := wnk

∧ u. Then uk � wnk
and lemma 4.7 implies that

µuk
(G) = 0. Moreover, uk � u and limk→∞ uk = u in W 1,p(Ω). From this and

lemma 4.8 we obtain
µu(G) = lim

k→∞
µuk

(G) = 0.

Hence, µu is absolutely continuous with respect to µ.

By the preceding lemma and by the Radon–Nikodým theorem, for every u ∈ D(ψ)
there exists a non-negative Borel measurable function Bu = Bu(x) such that

µu(G) =
∫

G

Bu(x) dµ(x), G ∈ B.

Lemma 4.14. Let un, u, v ∈ D(ψ). Then

(a) if un � u and limn→∞ un = u in W 1,p(Ω), then limn→∞ Bun
= Bu µ-almost

everywhere,

(b) Bu = 0 µ-almost everywhere on {u = 0},

(c) Bu � Bv µ-almost everywhere on {u � v}.

Proof. This lemma is an immediate consequence of lemmas 4.8, 4.10 and 4.11.

Recall that we identify each function wn ∈ D(ϕ) with a p-quasi-continuous repre-
sentative; note that we may assume that this representative is non-negative every-
where. For every x ∈ Ω̄ we define the set W (x) := {wn(x) : n ∈ N}. Let I(x) be
the closed convex hull of W (x), that is, the smallest, closed interval which contains
W (x). Then, for every x ∈ Ω̄ and every s ∈ R+ we define

B(x, s) =

⎧⎨
⎩

sup
n

Bwn(x)1{wn<s}(x) if s ∈ I(x),

+∞ if s �∈ I(x).

https://doi.org/10.1017/S030821051100028X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051100028X


996 R. Chill and M. Warma

Lemma 4.15. The function B : Ω̄ × R+ → [0, +∞] defined above satisfies hypoth-
esis (H+). Moreover, for every u ∈ D(ψ) one has B(·, u(·)) = Bu(·) µ-almost
everywhere on Ω̄.

Proof. For every s ∈ R+ the set

{x ∈ Ω̄ : s ∈ I(x)} =
{

x ∈ Ω̄ : s � sup
n

wn(x)
}

is a Borel set. From this and from the definition of B one obtains that for every
s ∈ R+ the function B(·, s) is measurable.

It follows readily from the definition of B that B(x, 0) = 0 for every x ∈ Ω̄ (since
the sets {wn < 0} are empty and therefore 1{wn<0} = 0 for every n). Moreover,
since the sets {wn < s} are increasing with s ∈ R+, the function B(x, ·) is monotone
for every x ∈ Ω̄. Finally, for every x ∈ Ω̄, every s ∈ I(x) \ {0} and every ε > 0
there exists, by definition of the supremum, n such that wn(x) < s and B(x, s) −
ε � Bwn(x) � B(x, s). This implies B(x, s) − ε � B(x, s′) � B(x, s) for every
wn(x) < s′ � s. As a consequence, B(x, ·) is lower semicontinuous for every x ∈ Ω̄.
Thus, B satisfies hypothesis (H+).

Next, we show the second part of the statement. Let u ∈ D(ψ). By lemma 4.14(c),
there exists a set Au of µ-measure zero such that for every n and every x ∈ {wn �
u} \ Au one has Bwn(x) � Bu(x). As a consequence, B(·, u(·)) � Bu(·) µ-almost
everywhere on Ω̄. In order to show the converse inequality, we first note that, by
lemma 4.14(b), Bu(·) = 0 = B(x, 0) µ-almost everywhere on {u = 0}. Hence, it
remains to show that the inequality B(·, u(·)) � Bu(·) holds almost everywhere on
{u > 0}.

Let (λm) ⊆ [0, 1[ be a strictly increasing sequence such that limm→∞ λm = 1.
Recall that the sequence (wn) is dense in the effective domain D(ψ) (with respect
to the W 1,p(Ω) topology) and that every sequence converging in W 1,p(Ω) admits
a subsequence that converges p-quasi-everywhere. Hence, for every m there exists
a subsequence (wαm(n))n such that limn→∞ wαm(n) = λmu p-quasi-everywhere. In
particular,

u(x) > lim
n→∞

wαm+1(n) = λm+1u > λmu p-quasi-everywhere on {u > 0}.

Since µ is absolutely continuous with respect to the p-capacity, the above conver-
gence holds µ-almost everywhere. As a consequence, by lemma 4.14(c), for every m,

B(x, u(x)) = sup
wn(x)<u(x)

Bwn(x)

� lim sup
n→∞

Bwαm+1(n)(x)

� Bλmu(x) µ-almost everywhere on {u > 0}.

Since Bλmu → Bu µ-almost everywhere on Ω̄ by lemma 4.14(a), we thus obtain the
remaining inequality Bu(·) � B(·, u(·)) µ-almost everywhere on {u > 0}.

Proof of theorem 2.3, (i) ⇒ (ii). Let (wn) ⊆ D(ψ) be dense in D(ψ), let µ be the
Borel measure and let B : Ω̄ × R → [0, +∞] be the function defined above. It
follows from lemma 4.6, that supp[µ] ⊆ supp[ψ]. By lemma 4.12, µ is absolutely
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continuous with respect to the p-capacity. By lemma 4.15, the function B satisfies
hypothesis (H+). Now, by lemma 4.15, for every u ∈ D(ψ) we have B(·, u(·)) =
Bu(·) µ-almost everywhere on Ω̄. By the definition of Bu this means

ψ(u) =
∫

Ω̄

Bu(x) dµ(x) =
∫

Ω̄

B(x, u(x)) dµ(x) for every u ∈ D(ψ).

The proof of Theorem 2.3 is now complete.

5. Proof of theorem 2.1

In this section we give the proof of theorem 2.1. We call a functional ψ : W 1,p(Ω) →
]−∞,∞] bi-monotone if, for every u, v ∈ D(ψ),

0 � u � v =⇒ ψ(u) � ψ(v),
u � v � 0 =⇒ ψ(u) � ψ(v).

}
(5.1)

Proof of theorem 2.1, (ii) ⇒ (i). Let ϕ, µ and B be as in (ii).
Since B(x, 0) = 0 for µ-a.e. x ∈ ∂Ω, then it is clear that the functional ϕ is local

and hence, S is a local semigroup.
We show that S is order preserving. Since the functional ϕ is non-negative, by

theorem 2.2(b), it suffices to show that ϕ satisfies (2.4) for every u, v ∈ L2(Ω).
Since the inequality (2.4) trivially holds if u or v does not belong to D(ϕ), we may
assume that u, v ∈ D(ϕ). Then, by Stampacchia’s lemma,∫

Ω

|∇(u ∨ v)|p dx +
∫

Ω

|∇(u ∧ v)|p dx

=
∫

{u<v}
(|∇v|p + |∇u|p) dx +

∫
{u>v}

(|∇u|p + |∇v|p) dx

+
∫

{u=v}
(|∇v|p + |∇u|p) dx

=
∫

Ω

(|∇u|p + |∇v|p) dx (5.2)

and∫
∂Ω

B(x, u ∨ v) dµ +
∫

∂Ω

B(x, u ∧ v) dµ

=
∫

{u<v}
(B(x, v) + B(x, u)) dµ +

∫
{u>v}

(B(x, u) + B(x, v)) dµ

+
∫

{u=v}
(B(x, u) + B(x, v)) dµ

=
∫

∂Ω

(B(x, u) + B(x, v)) dµ. (5.3)
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Combining (5.2) and (5.3) we get that

ϕ(u ∧ v) + ϕ(u ∨ v) = ϕ(u) + ϕ(v).

Hence, by theorem 2.2(b), S is order preserving.
We show that SD � S. Since the semigroup S is order preserving, it suffices

to show that ϕD and ϕ satisfy (2.5). Let u, v ∈ L2(Ω), v � 0. If u �∈ W 1,p
0 (Ω)

or v �∈ D(ϕ), then the inequality (2.5) is trivially satisfied. So assume that u ∈
W 1,p

0 (Ω) ∩ L2(Ω) and v ∈ D(ϕ). Note that u = 0 p-quasi-everywhere on ∂Ω.
Proceeding in a manner similar to that above, we thus obtain that

ϕD((|u| ∧ v) sgn(u)) + ϕ(|u| ∨ v)

=
1
p

∫
{|u|<v}

(|∇u|p + |∇v|p) dx +
∫

∂Ω∩{|u|<v}
B(x, v) dµ

+
1
p

∫
{|u|�v}

(|∇(v sgn(u))|p + |∇(|u|)|p) dx

+
∫

∂Ω∩{|u|�v}
B(x, |u|) dµ

� ϕD(u) + ϕ(v).

Hence, SD � S.
Finally, we show that S � SN. Since SN is order preserving, it suffices to show

that ϕ and ϕN satisfy (2.5). Indeed, let u ∈ D(ϕ), v ∈ W 1,p(Ω) ∩ L2(Ω), v � 0.
Then it is clear that (|u| ∧ v) sgn(u), |u| ∨ v ∈ W 1,p(Ω) ∩ L2(Ω). Since∫

∂Ω

B(x, (|u| ∧ v) sgn(u)) dµ =
∫

{|u|�v}
B(x, u) dµ +

∫
{|u|>v}

B(x, v sgn(u)) dµ

�
∫

{|u|�v}
B(x, u) dµ +

∫
{|u|>v}

B(x, u) dµ

=
∫

∂Ω

B(x, u) dµ < ∞

(where we have used the fact that B is bi-monotone), we have that (|u|∧v) sgn(u) ∈
D(ϕ). Now, calculating, we get that

ϕ((|u| ∧ v) sgn(u)) + ϕN(|u| ∨ v)

=
1
p

∫
{|u|<v}

(|∇u|p + |∇v|p) dx

+
∫

∂Ω∩{|u|<v}
B(x, u) dµ

+
1
p

∫
{|u|�v}

(|∇(v sgn(u))|p + |∇(|u|)|p) dx

+
∫

∂Ω∩{|u|�v}
B(x, v sgn(u)) dµ
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� ϕN(v)
1
p

∫
Ω

|∇u|p dx +
∫

∂Ω∩{|u|<v}
B(x, u) dµ

+
∫

∂Ω∩{|u|�v}
B(x, v sgn(u)) dµ

� ϕ(u) + ϕN(v),

where we have again used the fact that B is bi-monotone. Hence, S is dominated
by SN.

The implication (ii)⇒(i) of theorem 2.1 is completely proved.

Proof of theorem 2.1, (i) ⇒ (ii). Let S be the semigroup on L2(Ω) generated by a
convex and lower semicontinuous functional ϕ : L2(Ω) → [0, +∞]. Assume that S
is local, order preserving and SD � S � SN.

Define the functional ψ : W 1,p(Ω) ∩ L2(Ω) → [0, +∞] by

ψ(u) =

{
ϕ(u) − ϕN(u) if u ∈ D(ϕ),

+∞ otherwise.
(5.4)

Step 1. We claim ψ is lower semicontinuous, local, bi-monotone and, for every
u, v ∈ W 1,p(Ω) ∩ L2(Ω), one has

ψ(u ∨ u) + ψ(u ∧ v) � ψ(u) + ψ(v). (5.5)

First, since ϕ is lower semicontinuous on W 1,p(Ω) ∩ L2(Ω) and since ϕN is con-
tinuous on that same space, it follows that ψ is lower semicontinuous on W 1,p(Ω)∩
L2(Ω).

Second, since ϕN is local and since, by assumption, ϕ is local, it follows that ψ
is local, too.

Third, it follows from the domination S � SN and theorem 2.2(b) that

D(ϕ) ⊆ D(ϕN) = W 1,p(Ω) ∩ L2(Ω)

and

(ϕ − ϕN)(u) � (ϕ − ϕN )(v) for all u, v ∈ D(ϕ) with 0 � u � v. (5.6)

The domination S � SN and theorem 2.2(b) imply in addition that

(ϕ − ϕN)(v) � (ϕ − ϕN )(u) for all u, v ∈ D(ϕ) with u � v � 0. (5.7)

Hence, the functional ψ is bi-monotone.
Finally, let u, v ∈ W 1,p(Ω) ∩ L2(Ω). By Stampacchia’s lemma,

ϕN(u ∨ v) + ϕN(u ∧ v) = ϕN(u) + ϕN(v).

Since S is order preserving, we also have

ϕ(u ∨ v) + ϕ(u ∧ v) � ϕ(u) + ϕ(v).

The last two relations yield (5.5).
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Step 2. Let ψ1, ψ2 : (W 1,p(Ω) ∩ L2(Ω))+ → [0, +∞] be defined by ψ1(u) := ψ(u)
and ψ2(u) := ψ(−u) (u ∈ (W 1,p(Ω) ∩ L2(Ω))+). By step 1, the functionals ψ1 and
ψ2 both satisfy the hypotheses in theorem 2.3(i) (with the space W 1,p(Ω) replaced
by the space W 1,p(Ω) ∩ L2(Ω)). It follows from theorem 2.3 together with parts
(b) and (c) of remark 2.4 that there exist a finite, regular Borel measure µ on
Ω̄ that is absolutely continuous with respect to the p-capacity, and two functions
B1, B2 : Ω̄ × R+ → [0, +∞] satisfying hypothesis (H+) such that

ψi(u) =
∫

Ω̄

Bi(x, u(x)) dµ for every u ∈ D(ψi), i = 1, 2. (5.8)

For every x ∈ Ω̄ and every s ∈ R we set

B(x, s) :=

{
B1(x, s) if s � 0,

B2(x,−s) if s < 0.
(5.9)

It is readily seen that B satisfies hypothesis (H). Since ψ is local, we obtain, for
every u ∈ D(ψ) = D(ϕ),

ψ(u) = ψ(u+ − u−) = ψ(u+) + ψ(−u−) = ψ1(u+) + ψ2(u−),

and hence, by (5.8) and (5.9),

ψ(u) =
∫

Ω̄

B1(x, u+(x)) dµ +
∫

Ω̄

B2(x, u−(x)) dµ

=
∫

Ω̄

B(x, u) dµ for every u ∈ D(ϕ).

We have just shown that

ϕ(u) = ϕN(u) + ψ(u) =
1
p

∫
Ω

|∇u|p dx +
∫

Ω̄

B(x, u) dµ for every u ∈ D(ϕ).

Step 3. It follows from the domination SD � S and theorem 2.2(b) that

W 1,p
0 (Ω) ∩ L2(Ω) = D(ϕD) ⊆ D(ϕ)

and

(ϕD − ϕ)(u) � (ϕD − ϕ)(v) for all u, v ∈ W 1,p
0 (Ω) ∩ L2(Ω) with 0 � u � v.

The domination SD � S and theorem 2.2(b) imply in addition that

(ϕD − ϕ)(v) � (ϕD − ϕ)(u) for all u, v ∈ W 1,p
0 (Ω) ∩ L2(Ω) with u � v � 0.

These two inequalities, together with the inequalities (5.6) and (5.7), imply that
the functionals ϕD, ϕ and ϕN coincide on D(ϕD) = W 1,p

0 (Ω) ∩ L2(Ω), that is,

ϕD(u) = ϕ(u) = ϕN(u)

=
1
p

∫
Ω

|∇u|p dx for every u ∈ D(ϕD) = W 1,p
0 (Ω) ∩ L2(Ω).
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It follows that the effective support of the functional ψ is a subset of ∂Ω. In par-
ticular, by theorem 2.3, supp[µ] ⊆ ∂Ω. Hence,

ϕ(u) =
1
p

∫
Ω

|∇u|p dx +
∫

∂Ω

B(x, u) dµ for every u ∈ D(ϕ). (5.10)

This completes the proof of Theorem 2.1.
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