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Abstract

A new carbon isotope record for two high-latitude sedimentary successions that span the
Jurassic–Cretaceous boundary interval in the Sverdrup Basin of Arctic Canada is presented.
This study, combined with other published Arctic data, shows a large negative isotopic
excursion of organic carbon (δ13Corg) of 4‰ (V-PDB) and to a minimum of −30.7‰ in the
probable middle Volgian Stage. This is followed by a return to less negative values of
c.−27‰. A smaller positive excursion in the Valanginian Stage of c. 2‰, reaching maximum
values of −24.6‰, is related to the Weissert Event. The Volgian isotopic trends are consistent
with other high-latitude records but do not appear in δ13Ccarb records of Tethyan Tithonian
strata. In the absence of any obvious definitive cause for the depleted δ13Corg anomaly, we sug-
gest several possible contributing factors. The Sverdrup Basin and other Arctic areas may have
experienced compositional evolution away from open-marine δ13C values during the Volgian
Age due to low global or large-scale regional sea levels, and later become effectively coupled to
global oceans by Valanginian time when sea level rose. A geologically sudden increase in vol-
canismmay have caused the large negative δ13Corg values seen in the Arctic Volgian records but
the lack of precise geochronological age control for the Jurassic–Cretaceous boundary precludes
direct comparison with potentially coincident events, such as the Shatsky Rise. This study offers
improved correlation constraints and a refined C-isotope curve for the Boreal region through-
out latest Jurassic and earliest Cretaceous time.

1. Introduction

The Jurassic–Cretaceous boundary interval was characterized by significant fluctuations in
Earth system processes (Hallam, 1986; Ogg & Lowrie, 1986; Sager et al. 2013; Price et al.
2016) that resulted in the extinction of many marine invertebrates (Hallam, 1986; Alroy,
2010; Tennant et al. 2017). Despite its importance in Earth history, the precise radiometric
age and correlations of the Jurassic–Cretaceous boundary interval are poorly understood com-
pared with those of other Phanerozoic environmental crises. This is partly because of the pre-
vious lack of a robust, global chronostratigraphic framework for the boundary (Zakharov et al.
1996; Wimbledon et al. 2011). After long debate, the Berriasian Working Group of the
International Subcommission on Cretaceous Stratigraphy has voted to adopt the base of
the Calpionella alpina Subzone as the primary marker for the base of the Berriasian Stage in
the Tethyan faunal realm (Wimbledon, 2017). At this time, a stratotype section has not
been formally designated. This potential Global Boundary Stratotype Section and Point
(GSSP) level cannot be traced biostratigraphically into Arctic areas (e.g. Wimbledon, 2017,
fig. 1). Palaeomagnetic reversal data may provide direct Boreal–Tethyan correlation for the
Tithonian–Berriasian boundary eventually, but data from the Boreal Nordvik section (Houša
et al. 2007; Bragin et al. 2013; Schnabl et al. 2015) remain to be confirmed in other Arctic
sections. Alternative options for the placement of the Jurassic–Cretaceous boundary continue
to find support.

Although the international chronostratigraphic terminology for the Jurassic–Cretaceous
boundary interval (Tithonian and Berriasian stages) is increasingly being used in Canadian
Arctic studies, interpretations of the correlations of the substages and fossil zones entailed in
these Tethys-based stages into the Arctic vary among global workers. Particularly contentious
and significant is how much of the upper Volgian Stage is time-equivalent with the lower
Berriasian Stage. Our usage in this report of the roughly equivalent Boreal (Volgian, Ryazanian)
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and Tethyan nomenclature follows that of the relevant original lit-
erature cited. Our data do not contribute to, or require, discussion
of their detailed correlations or about the common but potentially
misleading use of the term Boreal for some NW European
Sub-boreal sequences.

The numerical age of the Jurassic–Cretaceous boundary is
also under debate. The International Commission of
Stratigraphy (Cohen et al. 2013, updated 2018/08) places the
Jurassic–Cretaceous boundary at c. 145Ma following Mahoney
et al. (2005), who suggest a minimum age for the boundary based
on mean 40Ar–39Ar ages of 144.6 ± 0.8 Ma, although recent U–Pb
studies by Aguirre-Urreta et al. (2019) and Lena et al. (2019)
provide new U–Pb ages that suggest that the numerical age of
the boundary is more likely as young as 140–141Ma.

A small change to lower δ13C values occurs within
Magnetozones M18–M17, and within the B/C Calpionellid Zone
(Weissert & Channell, 1989), that contrast with more positive
values obtained from the Valanginian Stage (Lini et al. 1992;
Price et al. 2016). Such variation suggests that carbon isotope
anomalies may be useful to characterize the Jurassic–Cretaceous
boundary interval (e.g. Michalík et al. 2009; Dzyuba et al. 2013).
A recent global stack compiled by Price et al. (2016) that included
data from many sites spanning a range of mainly southerly lati-
tudes, and was therefore considered representative of the global
carbon isotopic signal, showed that the composite δ13Ccarb curve
from the base of the Kimmeridgian stage to the base of the
Valanginian stage has no major perturbations. However, there is
a paucity of published δ13C data from Arctic regions and, in those
that do exist, there is notably greater variation in high-northern-
latitude δ13Corg (e.g. Hammer et al. 2012) than in better-studied
middle- to low-latitude carbonate records (δ13Ccarb) (Price et al.
2016) or in δ13Ccarb records from belemnites in Arctic successions
(Žák et al. 2011).

Hammer et al. (2012) present δ13Corg data for the Upper
Jurassic – lowermost Cretaceous systems of central Spitsbergen.
This record shows a middle Volgian excursion of c. 5‰ that they
term the Volgian Isotopic Carbon Excursion (VOICE). Koevoets
et al. (2016) documented a middle Volgian negative excursion
in δ13Corg of c. 3‰ in the Agardhfjellet Formation of central
Spitsbergen. Records from northern Siberia also document a
δ13Corg excursion to isotopically lighter values in the upper middle
Volgian (Exoticus Zone; Zakharov et al. 2014), but with no parallel
trend in δ13Ccarb measured in belemnite rostra from the same
section (Žák et al. 2011); this is possibly because carbon isotopes
preserved in belemnite rostra may not be in equilibrium with
ambient seawater (Wierzbowski & Joachimski, 2009). Turner
et al. (2019) report a δ13Corg curve from the 6406/12-2 drill core
from the Norwegian Sea that spans the interval from the base of
the Pallasioides Zone to the top of the Rotunda Zone. A negative
isotopic excursion occurs in the Pallasioides Zone that the authors
relate to VOICE. Further south, Morgans-Bell et al. (2001) exam-
ined the carbon isotope stratigraphy of organic matter preserved in
the Wessex Basin. Their record extends into the Upper Jurassic
System but does not continue through to the lowest Berriasian
Stage. This curve shows a trend of declining δ13Corg of much
greater magnitude than the time-equivalent carbonate curve.

Alternative correlation tools, such as geochemical anomalies
in marine strata, may therefore aid with future correlations of
Jurassic–Cretaceous strata, particularly in high northern
latitudes. A new δ13Corg record from Upper Jurassic – Lower
Cretaceous argillaceous strata from two stratigraphic sections

in the Sverdrup Basin, Arctic Canada, is presented here.
Geochemical trends are compared with data from other high-
latitude successions as well as with Tethyan sections to evaluate
their palaeoceanographic and palaeoclimatic importance and
potential for stratigraphic correlation. In the absence of any
obvious definitive cause for VOICE, several possible contributing
factors, both regional and distant, are considered and discussed.

2. Study area

The Sverdrup Basin is a 1300 × 350 km palaeo-depocentre in the
Canadian Arctic Archipelago that contains up to 13 km of nearly
continuous Carboniferous–Palaeogene strata (Figs 1, 2; Balkwill,
1978; Embry & Beauchamp, 2019).

Basin subsidence began following rift collapse of the Ellesmerian
Orogenic Belt during early Carboniferous time (Embry &
Beauchamp, 2019). Rifting of the Sverdrup Basin continued
during the late Carboniferous Period and led to widespread
flooding of the rift basin and increasingly open-marine connections
with Panthalassa and North Greenland and the Barents Sea (Embry
& Beauchamp, 2019). After the first rift phase, marine deposition
persisted through the Permian and Triassic periods. A second
phase of rifting began in the Early Jurassic, continued through
the Late Jurassic – earliest Cretaceous interval, and then ceased
in the Sverdrup Basin when seafloor spreading began in the adja-
cent proto-Amerasia Basin to form the Arctic Ocean (Hadlari et al.
2016). Deposition in the Sverdrup Basin ended in the
Palaeogene Period due to regional compression and widespread
uplift associated with the Eurekan Orogeny (Embry &
Beauchamp, 2019).

In the Late Jurassic, the Sverdrup Basin was one of many rift
basins that formed during the break-up of Pangea and affected
palaeoceanographic connections between the western Tethys
and Panthalassa in northern latitudes. Deposition of the Deer
Bay Formation during latest Jurassic – earliest Cretaceous time
marked a rift climax in the Sverdrup Basin prior to the break-
up of the adjacent proto-Amerasia Basin, manifested as a sub-
Hauterivian break-up unconformity in the Sverdrup Basin
(Galloway et al. 2013; Hadlari et al. 2016; Fig. 2). The Deer Bay
Formation is therefore a lithostratigraphic unit of interest from
both a tectonostratigraphic and palaeoceanographic perspective;
its study may provide insight into both regional and global changes
at this dynamic time in Earth’s history.

The Deer Bay Formation is a succession of mudstone with
interbeds of siltstone and very-fine-grained sandstone deposited
in pro-delta to offshore shelf environments across the Sverdrup
Basin during the Volgian to Valanginian ages (Heywood, 1957;
Balkwill, 1983; Embry, 1985). The Deer Bay Formation reaches
a maximum thickness of 1375 m on eastern Ellef Ringnes Island
and 920 m on Axel Heiberg Island (Balkwill, 1983). Offshore shelf
mudstones of the Deer Bay Formation conformably overlie either
the shallow-shelf sandstones of the Awingak Formation or the
Ringnes Formation, its offshore-shelf mudstone equivalent
(Fig. 2). Deer Bay mudstones grade conformably into delta-front
and fluvial-deltaic sands of the overlying Isachsen Formation along
the axis of Sverdrup Basin (Fig. 2; Balkwill, 1983; Embry, 1985), but
these formational contacts are disconformable on basin margins
(Hadlari et al. 2016; Embry & Beauchamp, 2019). The Deer Bay
Formation is undivided except for the designation of the c. 40 m
sandstone-dominated Glacier Fiord Member in its upper part
on southern Axel Heiberg Island, south of the study area
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(Embry, 1985). In other localities, this member is absent from shale
facies or because of truncation below an intra- or sub-Isachsen
unconformity (Embry, 1985). Concretions of various composi-
tions, size and shape occur throughout the Deer Bay Formation,
with large (up to 5 m long) calcitic and sideritic mudstone concre-
tions common in its lower portion. Glendonites occur in multiple
horizons that range in thickness from 2 to 20m throughout
the Deer Bay Formation and are most common in its upper
Valanginian portion (Kemper, 1975, 1983, 1987; Kemper &
Jeletzky, 1979; Selmeier & Grosser, 2011; Grasby et al. 2017). This
upper interval is further characterized by finely laminated siltstones
and fissile shales that host rare thin rusty-weathering calcareous
layers and irregularly distributed intervals of calcareous concre-
tions (Heywood, 1957; Kemper, 1975; Balkwill, 1983). The biostra-
tigraphic framework of the glendonite-bearing Valanginian
succession was described by Kemper (1975, 1977, 1987) based
on ammonites in successions exposed on Amund Ringnes
(lower Valanginian) and Ellef Ringnes (upper Valanginian)
islands. These strata also contain age-diagnostic marine
bivalves, including Buchia keyserlingi (Lahusen) and belemnites
(Jeletzky, 1973; Kemper, 1977).

3. Materials and methods

A total of 154 samples were collected every c. 1.5–2 m throughout
a 255 m exposure of the Deer Bay Formation at Buchanan Lake
(79° 22 0 0.47″N, 87° 46 0 9.03″W), and 92 samples were collected
every c. 3–4m from a 388m exposure of the Deer Bay Formation
at Geodetics Hills (79° 48 0 57.20″N, 89° 48 0 20.41″W), Axel
Heiberg Island (Fig. 1). Bivalves, belemnites and ammonites were
collected from the Buchanan Lake section; macrofossils were not
observed at the Geodetic Hills section. All samples are stored in
permanent collections of the Geological Survey of Canada.

Mudstone samples were pre-treated with 10% HCl to remove
carbonates, and then δ13C analysis of organic carbon was
performed using a Elemental VarioEL Cube Elemental Analyser fol-
lowed by a trap-and-purge separation and online analysis by continu-
ous flow with a DeltaPlus Advantage isotope ratio mass spectrometer
coupled with a ConFlo III interface at the GG Hatch Stable Isotope
Laboratory, University of Ottawa. Results are reported as ‰ relative
to Vienna Peedee belemnite (V-PDB) and normalized to internal
standards calibrated to the international standards IAEA-CH-6
(–10.4‰), NBS-22 (−29.91‰), USGS-40 (−26.24‰) and USGS-
41 (37.76‰). Long-term analytical precision is based on blind analy-
sis of the internal standard C-55 (glutamine; −28.53‰) not used for
calibration, and is routinely better than 0.2‰. For the Buchanan Lake
dataset (n= 154), 14 quality control duplicate analyses were run (rep-
resenting 9%of the samples). For the Geodetic Hills dataset (n= 92),
12 quality control duplicate analyses were run (12%) (online
Supplementary Material available at http://journals.cambridge.
org/geo). Average relative percent difference (RPD) was
0.13 ± 0.10‰ SD (n= 14) for the Buchanan Lake samples and
0.55 ± 0.42‰ SD (n= 12) for the Geodetic Hills material. The
blind standard C-55 was run in triplicate for each of the three
batches to assess accuracy. The average RPD between themeasured
and expected value of the standard was 0.18 ± 0.13‰ SD (n= 9).

Organic carbon isotopic composition can be influenced by the type
and maturity of organic matter; Rock-Eval pyrolysis was therefore
conducted on all samples. Total organic carbon (TOC, wt%) was
determined by Rock-Eval 6 (Vinci Technologies, France) pyrolysis
as the sum of organic matter during pyrolysis (pyrolysable carbon,
100–650°C) and oxidation (residual carbon, 400–850°C) on all sam-
ples. Analyses of standard reference materials (IFP 160000, Institut
Français du Pétrole; internal 9107 shale standard, Geological
Survey of Canada, Calgary; Ardakani et al. 2016) was run every fifth
sample demonstrating a < 1% relative standard deviation (RSD) for
TOC,< 3% RSD for S1 and S2, and 11% RSD for S3. The lower accu-
racy for S3 in bulk samples was expected due to poor peak integration
and distinction between S3 organicmatter and S3 carbonates thatmay
occur because of the presence of siderite in standards (Ardakani et al.
2016). Duplicate analyses were conducted for assessment of analytical
precision. In the Buchanan Lake dataset 22 duplicate samples were
run, and in the Geodetic Hills dataset two duplicate samples were
run (online Supplementary Material available at http://journals.
cambridge.org/geo). Samples from both sections comprised the ana-
lytical batch from which quality control duplicate samples were ran-
domly selected. Average RPD for TOC (wt%) was 16.75± 26.93, S1
is 13.21± 15.34, S2 is 9.56± 13.67 and S3 is 11.02± 14.30 (n= 24).

4. Results

4.a. Macrofossils and age of strata

Macrofossils were found during this study in the middle and upper
parts of the Deer Bay Formation in the Buchanan Lake section and
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Fig. 2. Mesozoic lithostratigraphy of Sverdrup Basin (after Hadlari et al. 2016). The
International Chronostratigraphic Chart (ICS) v 2018/08 (Cohen et al. 2013; updated)
is used for absolute ages. Note that intrusive ages should be younger than the intruded
strata, and that detrital zircon ages can be older.
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were not seen in the Geodetic Hills section. The Buchanan Lake
macrofossils are, from top of the section to the base: (1) small
impressions of Buchia sp., 76 m below the base of the Isachsen
Formation (GSC loc. C-626162); age, undeterminable within the
late Oxfordian – Valanginian interval; (2) several fragments of
ammonite Nikitinoceras kemperi (Jeletzky) (Fig. 3a, b), bivalve
Buchia sp. cf. inflata (Toula) (Fig. 3c) and belemnites Acroteuthis?
and Cylindroteuthis? (C-626163) occur 75.5m below the base of
the Isachsen Formation; age, early Valanginian; (3) numerous
impressions of Buchia okensis (Pavlow) or B. sp. aff. okensis (sensu
Jeletzky 1964, 1984) occur 77 m below the base of the Isachsen
Formation (C-626165; Fig. 3d); age, early Ryazanian (i.e.
Berriasian, but probably not earliest Berriasian equivalent);
(4) fragments of bivalves 125 m below the base of the Isachsen
Formation including Buchia sp. aff. okensis, Mclearnia?, Oxytoma?
and Meleagrinella?, with unidentified gastropods and the belemnite
Acroteuthis (C-626172); of probable early Ryazanian age; and (5) sev-
eral fragments of relatively large Borealites (Pseudocraspedites)
(Fig. 3e-g) and of Borealites s.l. (Fig. 3h, i) occur 143 m below

the Isachsen Formation (C-626176) and are of early
Ryazanian age. Poorly preserved, unidentifiable fossil frag-
ments occur in still lower beds and above the carbon isotope
anomaly. Mikhail Rogov (pers. comm., 2019) has assisted us
with our identification of the specimens we have assigned to
Nikitinoceras and Borealites.

The Borealites specimens are the lowest in our collections and
provide a youngest age limit for the lower negative δ13C anomaly
at Buchanan Lake. A previous fossil collection from perhaps the
same level as our Borealites fauna and in a similarly prolific horizon
(GSC loc. 26171, 316 feet= 96.3 m above the base of the Deer Bay
Formation according to Souther, 1963, p. 438) contains ammonites
closely similar to ours. They were initially reported as Valanginian
(Frebold, in Souther, 1963) but were figured, together with associ-
ated Buchia okensis, as lower Berriasian Tollia (Subcraspedites)
aff. suprasubditus (Bogoslovsky) by Jeletzky (1964, plate I–III),
as Craspedites (Subcraspedites) by Jeletzky (1973, plate 6, from
“136.6—140 metres above base” of the formation, which we take
to be mistaken) and as Tollia (Subcraspedites) aff. suprasubditus by

Fig. 3. All fossils are stored in the National Type Invertebrate
Collection of the Geological Survey of Canada. The size of all
figures can be judged by the 1 cm scale bar, except (f) which is
half the scale of the others and of the scale bar. (a, b)
Nikitinoceras kemperi (Jeletzky). GSC 140515 (figured specimen
number) from GSC locality C-626163 (GSC curation number), lat-
eral and ventral views. (c) Buchia sp. cf. inflata (Toula). GSC
140516 from GSC locality C-626163. (d) Buchia okensis (Pavlow).
GSC 140517 from GSC locality C-626165. (e–g) Borealites
(Pseudocraspedites) sp. (e, f) GSC 140518 from GSC locality
C-626176, macroconch phragmocone fragment, lateral view
and cross-section (at adoral preserved end; size reduced ×1/2)
views of septate inner cast; and (g) ventral view of part of inner
whorl. Another larger phragmocone fragment, with outer shell
surface, is septate to a whorl height of at least 7 cm. (h, i)
Borealites sp. GSC 140519 from GSC locality C-626176, lateral
and ventral views, outer shell surface.
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Jeletzky (1984, p. 223, at the “95 m level”). Jeletzky (1973, 1984) also
reported similar faunas at higher levels, but acknowledged confusion
about their stratigraphic levels and noted re-assignment of the
ammonites to Praetollia (Pseudocraspedites) and P. (Praetollia),
now included in Borealites (Wright et al. 1996), and thought
Craspedites (Taimyroceras?) canadensis Jeletzky to occur below them.

We did not find fossils to control the older age limit for the neg-
ative δ13C anomaly in the sections studied. However, Jeletzky
(1984, p. 221, GSC loc. 26156) reported generically indeterminate
dorsoplanitid ammonites and large Buchia fischeriana (d’Orbigny)
from “an 8 m bed commencing 31 m” above the base of the Deer
Bay Formation along the Awingak River, that is, near or within
our Buchanan Lake section. The collection has not been relocated
but, if the fossils are correctly determined, they imply a middle,
perhaps early middle, Volgian age for this interval, which would
fall at about the maximum depletion point of the δ13C curve.
Dorsoplanitid ammonites and various associated Buchia species
including B. fischeriana (d’Orbigny) are widespread on nearby
Ellesmere Island (Jeletzky, 1984; Schneider et al. 2019) and indicate
a middle Volgian age for the lower Deer Bay Formation and its
initial transgression event throughout eastern Sverdrup Basin.
Jeletzky (1984, p. 223) also reported other unidentifiable ammon-
ites and bivalves in lower parts of the Buchanan Lake succession.
Two reports of Buchia mosquensis (von Buch) from Amund
Ringnes Island (Jeletzky, in Balkwill et al. 1977, p. 1136) may be
early Volgian, rare indicators of this interval in the more axial por-
tion of the basin, or they may be late Kimmeridgian in age.

Stratigraphically close juxtaposition of early Ryazanian and early
Valanginian fossils supports the interpretation of a strongly con-
densed interval or basinal disconformity at the Buchanan Lake local-
ity near the depocentre of the Sverdrup Basin. The apparent absence
of diagnostic fossils of late Berriasian age across the Sverdrup Basin
has been used previously to suggest a widespread sub-Valanginian
disconformity (Jeletzky, 1973; Kemper, 1975; Embry, 2011).

The Valanginian strata in the northern and eastern parts of
Sverdrup Basin, as across the Arctic, are replete with glendonites
(Kemper & Schmitz, 1975; Grasby et al. 2017; Rogov et al.
2017), but minor occurrences of ‘stellate nodules’ or ‘carbonate
crystal rosettes’ have been reported in upper Oxfordian or lower
Kimmeridgian strata to Berriasian strata in the western Sverdrup
Basin (Poulton, 1994, p. 183), northern Yukon (Poulton, 1996,
p. 285), and the Northwest Territories (Mountjoy & Procter, 1969).
While their appearance in only the upper 104m of the Buchanan
Lake section of the Deer Bay Formation at Buchanan Lake might
suggest pre-Valanginian ages for the underlying strata, the interval
with glendonites overlap with strata containing Buchia okensis, or
B. cf. and aff. okensis, collected in this study and reported by
Jeletzky (1984, p. 221, 223). They may indicate an age for the asso-
ciated glendonites as old as early Ryazanian, although it is possible
that they developed within the lower Ryazanian strata exposed on
the sea floor during Valanginian time.

4.b. Carbon isotopes

Measured δ13Corg values fall within a range of −30.7 to −24.6‰
(V-PDB) for both sections (n= 92 Geodetic Hills section; n= 154
Buchanan Lake section; see online SupplementaryMaterial available
at http://journals.cambridge.org/geo). Two outliers (A124, A21) in
the Buchanan Lake dataset were removed. Without further evi-
dence, we disregard these values as outliers due to contamination.
A negative δ13Corg excursion, with a magnitude of c. 4‰ and
reaching minimum values of −29.8‰ at Buchanan Lake and

−30.7‰ at Geodetic Hills, is observed within the lower Deer Bay
Formation. All of the recovered macrofossils from the Buchanan
Lake section occur stratigraphically above the negative carbon
isotope excursion, dating the overlying strata as late Volgian or
Ryazanian in age and younger in the Buchanan Lake section.
This negative δ13Corg excursion is followed by a return to less
negative values of c.−27‰. A small negative shift of c. 1.5‰ occurs
in strata that are likely late middle Volgian or early late Volgian in
age, and this is followed by an interval of generally increasing
values across the interpreted Jurassic–Cretaceous boundary until
the upper Valanginian part of the Deer Bay Formation. A positive
carbon isotope excursion is evident in its upper part in both
sections, with a magnitude of c. 1.5‰ (interpreted here as the
Weissert Event; Erba et al. 2004). Carbon-13 isotope ratios reach
maximum values of −24.6‰ at Buchanan Lake and −24.9‰ at
Geodetic Hills during this event (Fig. 4).

4.c. Rock-Eval 6 pyrolysis

TOC measured by Rock-Eval 6 pyrolysis on samples of the
Buchanan Lake section (median TOC 1.16 wt%; range 0.09–
4.36 wt%; n= 154) and Geodetic Hills section (median TOC
1.48 wt%; range 0.48–5.87 wt%, n= 92) are typical for high-
latitude Upper Jurassic and Lower Cretaceous mudrock succes-
sions (cf. Hammer et al. 2011). The TOC range indicates poor
to excellent source rock (see online Supplementary Material avail-
able at http://journals.cambridge.org/geo). Thermal alteration of
material indicated by Tmax (the temperature corresponding to
maximum S2 during pyrolysis) ranges from 427 to 499°C in sam-
ples collected from the Buchanan Lake section and from 436 to
448°C in samples collected from the Geodetic Hills section; the
majority of samples from both sections are in the oil window.
The S2 values (amount of hydrocarbons generated by thermal
cracking of organic matter) and S3 (the amount of CO2 released
during thermal breakdown of kerogen) range from 0.15 to
2.42 mg HC/g and 0.27–2.41 mg HC/g at Buchanan Lake, respec-
tively (n= 154). S2 and S3 range from 0.22 to 6.13 mg HC/g TOC
and 0.13–1.27 mg HG/g TOC, respectively, at Geodetic Hills
(n= 92). The hydrogen index (HI= S2/g TOC) and oxygen index
(OI= S3/g TOC) suggest that organic matter is predominantly
Type III kerogen at Buchanan Lake and a mixture of Type II
and III kerogen in the Geodetic Hills samples (Fig. 5). The
Geodetic Hills locality was more distal and in a deeper part of
the basin during latest Jurassic – earliest Cretaceous times than
the Buchanan Lake locality, and this is reflected in the higher pro-
portion of Type III kerogen at Buchanan Lake. Samples with very
low TOC resulted in HI or OI values > 200 (Buchanan Lake A22,
A43, A56, A65, A76, A82, A121 and A124) and are not plotted on
the Van Krevelen diagram (Fig. 5) or stratigraphically (Fig. 6).
Stratigraphic trends in TOC, HI and OI are shown in Figure 6.
In both the Buchanan Lake and Geodetic Hills sections, TOC
increases near the top of the Deer Bay Formation. Trends in HI
and OI are also similar between the two sections, with marginally
higher HI values near the base of the Deer Bay Formation.

Spearman’s rank correlation was conducted to evaluate rela-
tionships between δ13Corg and organic matter source and maturity.
In both sections, δ13Corg is significantly related to TOC (Buchanan
Lake δ13Corg:TOC rs= 0.3, P< 0.001, n= 146 with outliers A22,
A43, A56, A65, A76, A82, A121 and A124 removed; Geodetic
Hills δ13Corg:TOC rs= 0.43, P <0.001, n= 92). In the Buchanan
Lake samples, δ13Corg is also significantly (P < 0.001) correlated
with S1 (rs=−0.34), S3 (rs= 0.33) and HI (rs=−0.3), but these
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relationships are insignificant in the Geodetic Hills samples. In
both sections the relationships between δ13Corg, Tmax and S2 are
insignificant (P> 0.05). While statistically significant, the relation-
ships between δ13Corg and organic matter parameters (TOC in
both sections, S1 and S3 for Buchanan Lake) are weak as shown
by the low values of rs, suggesting that the influence of organicmat-
ter source, diagenesis and thermal maturation on the δ13Corg values
is limited. The high thermal maturity (Tmax, 427–499°C Buchanan
Lake and 436–448°C in Geodetic Hills) of the material could com-
plicate interpretations of the Rock Eval pyrolysis data. Thermal
degradation may disguise a change in organic matter source as
heating pushes kerogen types to lowHI (Hunt, 1996).Degraded, oxi-
dized, residual ‘dry-gas-type’ kerogen (Type IV) falls into the same
category as Type III on a van Krevelen-type plot (Tyson, 1995); a

change in organic matter source from dominantly terrestrial
(Type III) to marine (Type II) may therefore not be recognizable
in an HI–OI cross-plot/van Krevelen-type diagram if the organic
matter became highly thermally degraded. However, the reproduc-
tion of the carbon isotope curve in two stratigraphic sections, and
consistency with curves from other Arctic areas, lends confidence
to the hypothesis that the signals are not overly influenced by
changes in organic matter source.

5. Discussion

The δ13Corg and TOC curves across Upper Jurassic – Lower
Cretaceous strata from the Buchanan Lake and Geodetic Hills
sections show similar trends, and this permits confidence in

Fig. 4. Buchanan Lake and Geodetic Hills stratigraphy and δ13Corg. The datum for measurement of the Buchanan Lake section was the Isachsen – Deer Bay formational contact;
the datum for measurement of the Geodetic Hills section was the Awingak – Deer Bay formation contact. The International Chronostratigraphic Chart (ICS) v 2018/08 (Cohen et al.
2013; updated) and Boreal Stage and Sub-stage (after Shurygin & Dzyuba et al. 2015) are shown.
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extrapolating fossil age control from the Buchanan Lake section
to the Geodetic Hills section. A marked negative excursion of up
to −4‰, reaching to −30‰ (Fig. 4), occurs in probable middle
Volgian strata of the lower Deer Bay Formation. This is followed
by a return to less negative values near −27‰, a brief negative
excursion of an additional c. 1.0–1.5‰ that may be late
Volgian in age, an interval of generally increasing values and then
a relatively positive carbon isotope excursion in strata of
Valanginian age of the upper part of the Deer Bay Formation.

5.a. VOICE

Trends in δ13Corg from the Buchanan Lake and Geodetic Hills
sections of the Deer Bay Formation are consistent with other
δ13Corg curves spanning the Jurassic–Cretaceous boundary
interval in the High Arctic (Hammer et al. 2012; Zakharov
et al. 2014; Koevoets et al. 2016; Fig. 7). In those records, rela-
tively positive carbon isotope values of c. −28‰ are observed in
the Kimmeridgian and lowest Volgian strata and are followed by
an up to 4–6‰ more negative excursion in the middle Volgian
strata. This event is followed by a return to relatively more
positive values during late Volgian and Ryazanian time.
Hammer et al. (2012) term the negative excursion they document
in lower middle Volgian strata of the Slottsmøya Member
(Agardhfjellet Formation) the Volgian Isotopic Carbon Excursion
(VOICE). Hammer et al. (2012) correlate the VOICE with a lower
middle Volgian broadminimum in the δ13Ccarb record frombelemn-
ite rostra of Žák et al. (2011) that spans the Oxfordian–Ryazanian
interval at the Nordvik Peninsula, Siberia. Hammer et al. (2012) also
relate the VOICE to a negative excursion in δ13Ccarb fromHelmsdale,
Scotland in the Sub-boreal lower middle Volgian Rotunda–Fittoni
ammonite zone (Nunn & Price, 2010) and a negative δ13Ccarb

excursion in DSDP site 534A in the ?Tithonian strata (western cen-
tral Atlantic; Katz et al. 2005). Hammer et al. (2012) conclude that
the lower middle Volgian negative excursion seen in their δ13Corg

record from Spitsbergen is consistent with carbonate records from
elsewhere in the Boreal and High Boreal realms, the central
Atlantic and, ‘to a lesser degree’ with the western Tethys.
Koevoets et al. (2016) also examined the organic carbon isotope
record preserved in the Upper Jurassic – Lower Cretaceous
Agardhfjellet Formation of central Spitsbergen. Amarked negative
excursion of c. 4‰ is measured and dated as middle Volgian.
Koevoets et al. (2016) argue that the VOICE is also recognized
in δ13Ccarb curves from the Russian Platform (Price & Rogov,
2009). Zakharov et al. (2014) document an irregular but overall
decline in δ13Ccarb (as determined in belemnite rostra; Žák et al.
2011) throughout Upper Jurassic strata from the Nordvik section
that they relate to a gradual increase in CO2 in the atmosphere–
ocean system, and that may have led to warming based on coeval
changes in a belemnite oxygen isotope record. They also present a
δ13Corg record that shows a negative excursion of c. 3‰ within the
Exoticus Zone and extending into the basal part of the [Craspedites]
Okensis Zone (late middle Volgian – early late Volgian). Trends
observed in the δ13Corg at this locality are not observed in the
δ13Ccarb of belemnite rostra from the same section (Žák et al.
2011; Zakharov et al. 2014). Morgans-Bell et al. (2001) examined
the Kimmeridgian–Berriasian interval of the Wessex Basin from
Dorset, UK. A prominent middle Tithonian negative excursion of
δ13Corg is not apparent in their record, although a short-lived excur-
sion may be related to the VOICE (Turner et al. 2019). Turner et al.
(2019) also interpret a short-lived decline in δ13Corg values in the
Pallasioides Zone in Core 6406/12-2 from the Norwegian Sea as
the VOICE. The composite δ13Ccarb curve from the base of the
Kimmeridgian to the base of the Valanginian sections, based mostly
on Tethyan data, shows no major negative carbon isotope events
(Fig. 7; Price et al. 2016).

Decoupling of high-latitude δ13Corg records and Tethyan
records, the latter based mostly on carbonates, suggests either that
pools of organic carbon and dissolved inorganic carbon were effec-
tively decoupled during this time, or that there was latitudinal
decoupling between the Arctic and Tethyan seas. Typically, covari-
ant marine δ13Ccarb and δ13Corg are seen and interpreted as evidence
that both carbonate and organic matter were originally produced in
the surface waters of the ocean and retained their original δ13C com-
position (e.g. Kump&Arthur, 1999;Meyer et al. 2013). Coupled ter-
restrial organic (e.g. derived from fossil wood or charcoal) and
carbonate records suggest strong coupling of the ocean–atmosphere
system (e.g. Gröcke et al. 2005; Vickers et al. 2016), whereas
decoupled δ13Ccarb and δ13Corg records have been interpreted as
evidence for diagenetic alteration (Meyer et al. 2013; Han et al.
2018). In these latter examples, a large negative excursion in
δ13Ccarb is typically not accompanied by a large response in the
δ13Corg record (e.g. Fike et al. 2006). Alternatively, Bodin et al.
(2016) have recently suggested lithological control on decoupling
between δ13Ccarb and δ13Corg records during Early Jurassic time,
whereby δ13Ccarb signatures were affected by regional variation in
carbonate composition. As the Arctic middle Volgian negative event
is observed in organic carbon records from Canada (this study),
Spitsbergen and Siberia (Fig. 7), it is unlikely that diagenesis or
regional differences in the composition of bulk organic carbon are
significant factors in explaining its absence from lower-latitude
areas. Instead, the absence of the negative excursion from lower-
latitude carbonate records may be explained by decoupling of
high-northern-latitude regions from the global carbon pool.
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Fig. 6. Stratigraphic trends in Rock Eval parameters TOC, HI and OI from the Buchanan Lake and Geodetic Hills sections. Events recognized in δ13Corg curves are shown in yellow. The International Chronostratigraphic Chart (ICS)
v 2018/08 (Cohen et al. 2013; updated) and Boreal Stage and Sub-stage (after Shurygin & Dzyuba et al. 2015) are shown.
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Fig. 7. Summary of published data for Late Jurassic – Early Cretaceous organic carbon isotope data from Atlantic and Tethyan sections, the global stack of Tethyan carbonate records and the new Arctic curves. Sub-boreal ammonite
zones from Mutterlose et al. (2014) and Turner et al. (2019). Boreal (Siberian) ammonite zones after Zakharov et al. (1997), Baraboshkin (2004) and Shurygin & Dzyuba (2015). The International Chronostratigraphic Chart (ICS)
v. 2018/08 (Cohen et al. 2013; updated) and Boreal Stage and Sub-stage (after Shurygin & Dzyuba et al. 2015) are shown. Red stars indicate levels interpreted as VOICE by Turner et al. (2019).
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The organic carbon isotope record is influenced by a number of
environmental factors (Kump &Arthur, 1999) and, as such, can be
difficult to interpret (Jenkyns et al. 2002). Organic carbon isotope
composition is strongly controlled by the type of organic matter
(marine v. terrestrial) and, therefore, by both local and regional
variables such as sea level, productivity and climate. Burial rate
of organic matter enriched in 12C is also important, as more heavy
carbon would remain in the global carbon pool. This process leads
to a positive isotopic shift in both carbonates and organic matter.
A decline in the δ13C value involves a relative increase in 12C in the
oceanic carbon reservoir (Price & Gröcke, 2002). This could occur
through a combination of mechanisms, including decreased car-
bon burial rate as a result of decreased preservation (e.g. deep basin
ventilation), decreased sea-surface productivity (Weissert &
Channell, 1989; Weissert & Erba, 2004), increased flux of 12C into
surface waters by upwelling of 12C-rich bottom waters (Küspert,
1982) or intensified weathering and riverine input of dissolved
inorganic carbon (Weissert & Mohr, 1996). A geological rapid
release of 12C into the atmosphere associated with volcanism,
methane release from dissociation of gas hydrates or combustion
of organic matter associated with emplacement of large igneous
bodies are other mechanisms that can cause a negative excursion
in δ13C (Dickens et al. 1995; Hesselbo et al. 2000; Padden et al.
2001; Schröder-Adams et al. 2019).

A geologically sudden increase in volcanism could potentially
explain the large negative δ13Corg values seen in the middle
Volgian Arctic records and an absence from δ13Ccarb records
(Price et al. 2016). As modelled by Kump & Arthur (1999), an
increase in volcanism sufficient to perturb atmospheric pCO2

levels could drive down the carbon isotopic value in the ocean–
atmosphere system. However, any trend in δ13Ccarb could be rela-
tively quickly countered as burial of anomalously depleted organic
matter may overcompensate for additional input of depleted
volcanic CO2 (Kump & Arthur, 1999). Notwithstanding this, the
Shatsky Rise, a vast shield volcano with a surface area of
c. 480 000 km2, formed in the NW Pacific Ocean at about the
Jurassic–Cretaceous boundary (Sager et al. 2013). Recent 40Ar/
39Ar age determinations of basaltic lava samples from Tamu
Massif, the oldest and largest edifice of the submarine Shatsky
Rise, provide an age of c. 144Ma (Geldmacher et al. 2014), similar
to the widely used c. 145 Ma 40Ar/39Ar minimum age for the
Jurassic–Cretaceous boundary proposed by Mahoney et al. (2005).
However, new U–Pb ages from Argentina and Mexico suggest that
the numerical age of the Jurassic–Cretaceous boundary may lie
between 140.7 and 140.9Ma; this evidence would place an age of
c. 145Ma (the current ICS age for the base of the Berriasian stage)
into the middle of the Tithonian age (Lena et al. 2019), whether the
base of the Tithonian is 152.1Ma (Cohen et al. 2013; updated
2018/08) or 148Ma (Lena et al. 2019) or somewhere between.
Sub-aerial volcanism and summit weathering and/or erosion of the
emergent phase of the Shatsky Rise is thought to have occurred as
early as during theValanginian age (Yasuhara et al. 2017), suggesting
possible further complications in the interpretation of significance of
the age of the sills associated with the Shatsky Rise. The ages of the
base of the Tithonian and Berriasian stages are yet to be con-
firmed (e.g. Ogg & Hinnov, 2012; Aguirre-Urreta et al. 2015).

Hydrocarbon seeps are widely distributed in Upper Jurassic
and Jurassic–Cretaceous boundary beds in Spitsbergen. Seeps
characterized by authigenic carbonates in the uppermost
Jurassic Slottsmøya Member of the Agardhfjellet Formation in
the Sassenfjorden area of central Spitsbergen (Hammer et al.
2011) may be related to the release of gas hydrates (Kiel, 2009),

early thermal steepening of the geothermal gradient and/or
tectonic activity associated with the initial phases of High Arctic
Large Igneous Province (HALIP) activity (Maher, 2001; Hammer
et al. 2011). HALIP, a major magmatic event, may therefore be
relevant to the VOICE carbon isotope record, although the currently
known ages of the HALIP intrusives are younger than those of the
VOICE, ranging from 95–91Ma to c. 127Ma (Omma et al. 2011;
Evenchick et al. 2015; Dockman et al. 2018; Kingsbury et al. 2018;
Fig. 2). Seep carbonates are also found in the Janusfjellet section
of Spitsbergen; these are of late Volgian – earliest Valanginian age
(Wierzbowski et al. 2011), and are therefore younger than the carbon
isotope excursion documented in Sverdrup Basin.

Eustatic sea-level fall was invoked by Nunn & Price (2010) to
explain a general trend towards more negative δ13Ccarb values in
their belemnite record from Helmsdale, Scotland, in the
Tithonian Stage. A sea-level fall could result in enhanced release
of 12C from weathering, erosion and oxidation of organic-rich
sub-aerially exposed rock (Voigt & Hilbrecht, 1997; Price &
Gröcke, 2002) as well as compositional deviation away from
open-marine δ13C values in relatively isolated epeiric seas (e.g.
Holmden et al. 1998; Immenhauser et al. 2003). ‘Local’ depletion
in 13C is caused by isotopically light CO2 input from respiration of
marine organisms, as well as oxidation of terrestrial organic matter
and input of isotopically light riverine dissolved inorganic carbon
(Patterson & Walter, 1994; Holmden et al. 1998). Progressive
oxidation of organic matter to CO2 (‘sea water aging’, Holmden
et al. 1998), which then forms dominantly bicarbonate in sea water,
is greatest during a long residence time of water masses in shallow,
poorly circulated settings (Patterson & Walter, 1994). The uptake
of this bicarbonate in carbonates or marine organic matter in
isotopic equilibrium with dissolved inorganic carbon results in
carbonate or organic materials with depleted δ13C values.

The Deer Bay Formation is the result of regional marine trans-
gression that was preceded by a sea-level lowstand in Sverdrup
Basin (Embry & Beauchamp, 2019), with restricted marine con-
nections and a large number of restricted environments (e.g.
Ziegler, 1988; Hardenbol et al. 1998). The Deer Bay rift climax
of the Sverdrup Basin occurred during this time and basin sub-
sidence was associated with contemporaneous rift margin uplift
(Hadlari et al. 2016). Due to low global sea-level during the
Tithonian Age, the only direct connection between the North
Atlantic and the Sverdrup Basin was the narrow and shallow
Norwegian–Greenland Seaway, which was more than 1500 km long
and only 200–300 km wide (Ziegler, 1988; Dore, 1991). Connections
between the western Sverdrup Basin and Panthalassa were
similarly constricted prior to rift-opening of the Canada Basin in
the Hauterivian Age (e.g. Embry & Beauchamp, 2019). The
Sverdrup Basin and other high-latitude Boreal basins (e.g. Dypvik
& Zakharov, 2012) could have experienced compositional evolu-
tion away from global marine δ13C values during middle
Volgian time, but effectively became re-coupled by Valanginian
time due to global sea-level rise. The hypothesis of restriction of
Sverdrup Basin water masses during Volgian time, followed by
more open circulation during Valanginian time, is consistent with
global sea-level fluctuations (Haq et al. 2017), and may be sup-
ported by the greater number of known ammonite occurrences
in the Valanginian part of the Deer Bay Formation, and the greater
similarity of faunas between the Arctic and Europe at this time rel-
ative to the Late Jurassic. Embry (1991, p. 408, 414) noted three
transgressive–regressive cycles during the Kimmeridgian – late
Berriasian interval in the Sverdrup Basin, a gradual decline in sedi-
ment supply and a shift of the basin axis to the west, with
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sandstones occupying the basin margins. Sea-level rise during
Early Cretaceous time would have increased ventilation of the
incipient Arctic Ocean and thus coupled the carbon dynamics
of the Sverdrup Basin to the open-marine system. This interpreta-
tion would imply a similar oceanographic restriction to explain the
middle Volgian negative δ13C events in Svalbard and Siberia. It
might also partly explain and support the ongoing difficulties with
correlating Tethyan and Boreal marine faunas, especially if
exacerbated by concurrent climate-influenced biogeographic
differentiation.

5.b. Weissert Event

A particularly prominent feature of Early Cretaceous global carbon
isotope records is the Valanginian (Weissert) δ13C positive excur-
sion (Lini et al. 1992; Price et al. 2016). This isotope event is widely
documented in marine carbonates, fossil shell material, terrestrial
plants andmarine organic matter (e.g. Lini et al. 1992; Gröcke et al.
2005; Aguirre-Urreta et al. 2008; Price et al. 2016). Marine organic
matter (Lini et al. 1992; Wortmann & Weissert, 2000) typically
shows a c. 2‰ excursion. Despite the noisy pattern seen in these
published records, which possibly relate to changes in the compo-
sition of the bulk organic carbon, the shape of the δ13C curve is
characterized by a rapid rise from the pre-excursion background,
a plateau and a less steep decline to a new steady state that is slightly
more positive than prior to the event. Only in the record from
Greenland is the Valanginian (Weissert) δ13C positive excursion
less clear, possibly due to condensation of the strata and related
sample density, or a hiatus in the sedimentary record (Pauly et al.
2013). Given the overall pattern and magnitude of the excursions
in the marine records, the positive carbon isotope excursion of up
to 1.5‰ in the upper part of the Deer Bay Formation is interpreted
to represent the Valanginian (Weissert) event in Arctic Canada.

6. Conclusions

Carbon isotope stratigraphy from two sections in the Canadian
High Arctic that span the Jurassic–Cretaceous boundary documents
a marked middle Volgian negative excursion with a magnitude of
c. 4‰ followed by a return to less negative values. A positive excur-
sion is evident with amagnitude of c. 1.5‰ in the Valanginian Stage.
The Volgian isotopic trends are consistent with other high-latitude
records but are decoupled from Tethyan δ13Ccarb records. The
globally recognized isotopically positive Weissert Event in the
Valanginian Stage is also recognized in the Canadian Arctic
sections. The Sverdrup Basin and other Arctic basins may have
experienced compositional evolution away from open-marine
δ13C values during the middle Volgian Age in relatively isolated
basins due to low global sea levels, and became effectively
re-coupled by Valanginian time when global sea level rose. As well
as providing another correlation tool in a time interval with chal-
lenging inter-provincial biostratigraphic correlations, C isotope
excursions such as those presented here offer further insight into
the causes of major global ocean–atmosphere perturbations
beyond the conventional volcanic interpretation.
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