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The evolution of a horizontal shear layer in the presence of a horizontal density
gradient is explored by three-dimensional numerical simulations. These flows exhibit
characteristics of both free shear flows and gravity currents, but have complex
dynamics due to strong interactions between the turbulent features of each. Vertical
vortices produced by horizontal shear are tilted and stretched by the gravitational
adjustment, rapidly enhancing vorticity. Shear intensification at frontal convergences
produces high-wavenumber vertical vorticity and the slumping of the density interface
produces horizontal Kelvin–Helmholtz vortices typical of a gravity current. The
interaction between these instabilities promotes a rapid transition to three-dimensional
turbulence. The flow development depends on the relative time scales of shear
instability and gravitational adjustment, described by a parameter γ (where the
limits γ →∞ and γ → 0 represent a pure gravity current and a pure mixing layer,
respectively). The growth rate of three-dimensional instability and the mixing increase
for smaller γ . When γ is sufficiently small, there are two distinct regimes: an early
period of during which the interface grows rapidly, followed by horizontal diffusive
growth. Numerical results are consistent with field observations of tidal separation
flows in the Haro Strait (Farmer, Pawlowicz & Jiang, Dyn. Atmos. Oceans., vol. 36,
2002, pp. 43–58), including the magnitude of downwelling vertical currents, horizontal
scales of surface vortex features and mixing rate.
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1. Introduction
The dynamics of stratified shear flows have received considerable attention due to

their importance for ocean mixing and energy fluxes. Most work to date has focused
on vertically sheared, vertically stratified flow, often with continuous stratification and
shear (Shih et al. 2005; Ivey, Winters & Koseff 2008). In these cases, mixing is due to
Kelvin–Helmholtz or Holmboe instabilities (Carpenter, Balmforth & Lawrence 2010),
which are strongly damped by the stratification. The mixing depends on the strength of
the stratification through the square of the buoyancy frequency, N2 = −(g/ρo) dρ/dz,
and strength of the vertical shear, du/dz. Here u is the horizontal velocity, ρ is the
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density, ρo is a reference density, g is the acceleration due to gravity and z is the
vertical coordinate. Shear instability and mixing occur when the Richardson number,
Ri = N2/ (du/dz)2, is below a critical value, generally Ric = 0.25. In contrast, the case
in which horizontal shear couples with horizontal density stratification has been less
studied, in part because it is unconditionally unstable: the horizontal density gradient
leads to gravitational collapse, while horizontal shear is unstable to a Rayleigh shear
instability. This configuration is common in the coastal ocean, and can be found in
estuarine outflows, coastal fronts with along-front shear, island wakes and at the lateral
edges of river plumes. The coupling between horizontal shear and density stratification
has the potential to create mixing much more intense than that which occurs in a
stably stratified vertical shear flow.

This work is motivated in part by observations of Farmer, Pawlowicz & Jiang
(2002) of intense mixing in the flow downstream of Stuart Island in Haro Strait. The
horizontal shear, that originates at the separation point between the stagnant lee of
the island and the faster tidal flow, leads to the growth of vortices with vertically
oriented axes through a classic Rayleigh shear instability. At the same time, because
the water in the lee of Stuart Island is less dense than the tidal flow, there is a
transverse baroclinic adjustment which, ignoring for the moment horizontal shear, is
essentially a lock exchange, with time replaced by downstream distance using the
mean velocity. As a result, the density front tilts under gravity downstream of the
separation point. Observations suggest a particularly strong interaction between shear
and baroclinic adjustment. Farmer et al. (2002) observed intense surface whirlpools
and bubble plumes being pulled down from the surface to depths of over 100 m. They
hypothesized that the baroclinic tilting stretches initially vertical Rayleigh vortices,
intensifying their circulation while also converting vertical to horizontal vorticity.

The combination of enhanced vertical shear, lateral and vertical advection of density
by the tilted vortices, and subsequent breakdown of the vortices was hypothesized to
lead to the observed intense mixing. The shear layer evolution develops over only
about 4 km in water of approximately 200 m depth, and over time scales of a few
minutes for vortex roll-up, to less than an hour for the downstream advection and
stretching phase. These are much shorter than the tidal or inertial periods, so the flow
is essentially steady and unaffected by rotation. This problem bears some dynamical
similarity to the horizontal baroclinic relaxation in the ocean mixed layer (Young 1994;
Boccaletti, Ferrari & Fox-Kemper 2007), but in that problem the influence of rotation
is much greater because time scales are much longer.

Basak & Sarkar (2006) studied the evolution of a horizontal shear layer
superimposed upon a vertical density gradient. Although initially uniform in the
horizontal, the density field develops horizontal gradients as a consequence of the
shear instability. The vertical vortex cores associated with the horizontal shear became
dislocated in the vertical by lateral density intrusions, creating a lattice of vortex cores
connected by intrusions. This complexity lead to very thin sheets of high vertical
shear and density gradient, and ultimately to enhanced mixing. Note that in this case
the horizontal density adjustment is second-order compared with the horizontal shear,
whereas in the situation considered here, the fluid is initially strongly stratified in the
horizontal direction and the baroclinic collapse creates a transient flow with a highly
non-equilibrium, secular evolution. Finally, we note that Boulanger, Meunier & Dizès
(2008) studied the tilting of a stratified vortex and identified a shear-induced instability
that occurred at a critical radius of the tilted vortex. The instability creates a zig-zag
pattern of vortices, whose evolution is local and confined to a region of critical shear.
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FIGURE 1. Schematic illustration of the shear flow problem. For all results presented here,
U1 = −U2 > 0, Uo = 0 and ρ1 > ρ2. The displacement of the density interface shown in the
figure is for illustrative purposes only.

For simplicity, we conceptualize the horizontal shear flow problem as a mixing layer
that separates water masses of two different densities (see figure 1). Two vertically
uniform, coflowing streams, one with speed U1 and density ρ1 and the other with
speed U2 and density ρ2, are joined at a central transition zone. The resulting shear
flow is modelled using a hyperbolic tangent,

u(y)= Uo + 1
2
1U tanh

(
y

lu

)
, (1.1)

where Uo = (U1 +U2)/2 is the mean velocity, 1U = U2 −U1 is the velocity difference
and lu is the length scale for the horizontal shear. Similarly, the horizontal density
profile is given by

ρ(y)= ρ2 + 1
2
1ρ

[
1− tanh

(
y

lρ

)]
, (1.2)

where 1ρ = ρ1 − ρ2 and lρ is the length scale for the density transition. Here we
assume ρ1 > ρ2 and take the reference density ρo = ρ2.

It is well known that an inviscid, homogeneous (1ρ = 0), parallel shear flow is
unstable, producing vortices that grow downstream, entraining irrotational fluid into
the mixing layer and enhancing lateral mixing. The initial growth is by an inviscid
instability and linear theory predicts the unstable modes and their growth rates.
Michalke (1964) analysed the temporal growth of spatially periodic disturbances with
the profile (1.1) and found that the most unstable wave was klu = 0.445, where k
is the real wavenumber. The corresponding growth rate kci = 0.095|1U|/lu, where
c= cr + ici is the complex phase speed and cr = Uo.

Numerous theoretical, numerical and experimental studies have shown the nonlinear
evolution consists first of the two-dimensional vortex formation, followed by vortex
pairing by a subharmonic instability (Pierrehumbert & Widnall 1982), and finally
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the development of a three-dimensional instability which causes the two-dimensional
vortex tubes to break up into three-dimensional turbulence (Corcos & Lin 1984;
Lasheras & Choi 1988). Even in the turbulent regime, vortices with coherent vertical
vorticity are still observed (Brown & Roshko 1974), and lateral growth continues,
predominantly by vortex pairing (Winant & Browand 1974).

The transverse gravitational collapse can be interpreted to first order as a lock-
exchange gravity current (Simpson 1999). In the initial phase of collapse (without
influence from boundaries), a gravity current front moves at a speed cf = (g′H)1/2/2,
where g′ = (1ρ/ρo)g is the reduced gravity (Benjamin 1968). Gravity currents are
unstable to Kelvin–Helmholtz vortices oriented horizontally along the major axis of
shear, which lead to turbulent mixing (Hartel, Meiburg & Necker 2000b). In the
coupled shear flow–gravity current problem, the large-scale horizontal shear can be
expected to modify the gravity current front speed and the development and evolution
of Kelvin–Helmholtz instabilities.

The related problem of a gravity current subjected to strong mixing was considered
by Linden & Simpson (1986). They artificially induced mixing by introducing bubbles
into a lock exchange flow. They found that the flow initially evolves as an ideal gravity
current, with a sharp front moving at constant speed and a balance between baroclinic
pressure gradient and inertia. However, once the vertical mixing becomes significant,
the fronts and interface between the layers become diffuse, reducing the horizontal
pressure gradient and slowing the propagation speed.

The objective of this paper is to describe the dynamics of horizontal shear
flows with a horizontal density gradient, using three-dimensional, variable-density,
Navier–Stokes simulations. Particular attention is devoted to the front propagation,
energetics, and mixing. The structure of the paper is as follows. In § 2, scaling
arguments are used to derive a governing parameter that characterizes the two
competing dynamical processes, horizontal shear and lateral gravitational adjustment.
The numerical model and set-up of the problem are introduced in § 3. In § 4 we show
results from the simulations for different values of the scaling parameter and describe
the development and interaction of instabilities that develop and lead to intense mixing.
In § 5 evolution of mean velocity and density fields are studied. Energy budgets are
considered in § 6 and the mixing characteristics of these flows are discussed in § 7.

2. Scaling for shear layers with a horizontal density gradient

The interaction between a vortex arising from the instability of horizontal velocity
shear and gravitational adjustment from the horizontal density difference results in a
highly three-dimensional flow. In contrast to a homogeneous or vertically stratified
shear flow, a linear instability analysis in the traditional sense is not appropriate
because the base flow, u(y), ρ(y), results in an unbalanced horizontal pressure gradient,
which produces a secular term in the linearized normal mode decomposition. Instead,
some guidance about the development can found from the ratio of time scales for
shear and gravitational adjustment. Recall that time and space scales of interest are
such that rotation is generally not important. Neither are variations in the basic shear
flow due to the tidal cycle, so that the free stream velocities U1,2 and densities ρ1,2 can
be considered constant.

For the idealized parallel shear flow the most unstable wavenumber is k ≈ 0.45/lu

(Michalke 1964). The corresponding growth rate kci ≈ 0.1|1U|/lu gives a time scale
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for the emergence of vertical vortices from the shear instability,

τs = (kci)
−1 ≈ 10lu

|1U| . (2.1)

In the absence of shear, the horizontal density difference illustrated in figure 1
will produce a lock-exchange flow. After some initial adjustment, gravity currents will
propagate at a speed cf ≈ (g′H)1/2/2 in both directions away from the initial position
of the front (Benjamin 1968). The time for the nose of the gravity current to move a
distance L from the lock gives the gravity current time scale

τgc = 2L

(g′H)1/2
. (2.2)

If the length scale L is taken to be the water depth H, then this time scale corresponds
roughly to a factor of two stretching of the interface between the two fluids.

The competition between the shear instability and the gravitational adjustment (with
L= H) is characterized by the ratio

γ = τs

τgc
= 5

lu

H

(g′H)1/2

|1U| . (2.3)

In the limit γ →∞, the flow is dominated by the gravity current which spreads
horizontally before the shear instability has a chance to grow. The ensuing evolution
will probably be only weakly affected by the horizontal shear and it seems
unlikely that the classic horizontal shear instability will emerge since the basic state
flow changes so rapidly. When γ → 0, the shear instability can grow before the
gravitational adjustment has time to occur and, at least initially, the density field
should behave as a passive tracer. Gravitational adjustment will occur on a longer
time scale and probably modify the vertical vortex. When γ = O(1) both the shear
instability and the gravitational instability evolve on the same time scale.

The parameter γ is also related to a horizontal Richardson number, which could be
defined as

Rih = g

ρo

∂ρ/∂x

(∂u/∂x)2
∼ g′H
1U2

(
lu

H

)2(H

lρ

)
=
(
γ 2

25

)(
H

lρ

)
. (2.4)

This is similar to the horizontal Richardson number defined for estuaries (Monismith
et al. 2002) that compares the ratio of horizontal baroclinic forcing to vertical
turbulent shear generated by bottom friction.

3. Numerical simulations
We have performed numerical simulations of the three-dimensional Boussinesq

equations,

Du
Dt
=−∇Φ − sk̂, ∇ ·u= 0,

Ds

Dt
= 0, (3.1)

where Φ = p/ρo + gz is a potential given by the difference between the pressure, p,
and its mean hydrostatic component and scaled by ρo, a constant reference density,
s = g(ρ − ρo)/ρo is the buoyancy and k̂ is the unit vector in the positive z-direction.
The numerical domain for all calculations was a box of depth H, length Lx in the
direction of the initial flow and width 2Ly. The domain is periodic in the x-direction
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with free-slip boundaries in y and z. The velocity was initialized with a hyperbolic
tangent profile (1.1) with U1 > 0, U2 =−U1 < 0, so that Uo = 0,

u(y)= 1
2
1U tanh

(
y− yp(x)

lu

)
, (3.2)

and v = w = 0. Here yp(x) = 0.02 sin(2πx/Lx) is a small perturbation to the interface
position with a wavelength equal to Lx, close to the most unstable wavelength. The
initial density field is given by (1.2) with the perturbation yp(x),

ρ(y)= ρ2 + 1ρ2
[

1− tanh
(

y− yp(x)

lρ

)]
. (3.3)

Thus, both the initial velocity and density fields are independent of z. In addition to γ ,
the ratio lρ/lu may influence the dynamics, particularly for lρ/lu� 1, but we expect its
effects to be secondary when lρ/lu 6 O(1). All simulations reported here use lu = lρ .

In all simulations, we take ρo ≡ ρ2, and scale all velocities by (g′H)1/2, all lengths
by H and time by (H/g′)1/2. From here forward, all variables are non-dimensional
unless specifically stated. In non-dimensional variables γ = 5lu|1U |−1.

For most simulations we use lu = lρ = 1/6 (in addition to some runs with
lu = lρ = 1/12, which we discuss separately in §§ 6.1 and 7). The velocity and
density transition thicknesses are small compared with the water depth, in qualitative
agreement with the observations of Farmer et al. (2002). The domain has length
Lx = 2.6 in x. The most unstable wavelength for the Rayleigh instability is Lx = 2.33.
However, the growth rate for a disturbance with wavelength Lx = 2.6 is only 1 %
smaller than the maximum. The transverse, y, length, 2Ly = 10.4, is sufficient to keep
the end walls from influencing either the shear instability (Huerre 1983) or the early
stages of the gravity current propagation. The scaled total depth H = 1.

The evolution of the flow was followed with the three-dimensional, non-hydrostatic,
adaptive-mesh model IAMR (Almgren et al. 1998) (see Lawrence Berkeley Laboratory
CCSE software suite, http://seesar.lbl.gov/ccse). The model solves the Navier–Stokes
equations on a Cartesian grid via a time-centred, second-order projection method
with a Godunov scheme for the advective terms. It is well suited for these flows
with large density and velocity gradients. Most simulations used a fixed resolution of
256 × 1024 × 128 in x, y and z, respectively (adaptive-mesh refinement was turned
off). Simulations were also performed with a lower resolution of 192 × 768 × 96.
The large-scale behaviour and energetics were very similar between the resolutions,
but finer details were observed in the higher-resolution results, so only these results
are discussed here. The code was run in a Boussinesq mode with viscosity and
buoyancy diffusion coefficients set to zero. It has been demonstrated that high-order,
non-oscillatory, finite-volume codes such as IAMR can accurately capture the energy
cascade from the resolved dynamical scales to the dissipation range because the flux-
conservative form casts the subgrid stress in the same form as a viscous stress tensor
(Margolin, Smolarkiewicz & Wyszogradzki 2006; Aspden et al. 2008). This is known
as implicit large eddy simulation (ILES). In a viscous flow, the dissipation scale is set
by the Kolmogorov microscale, η = ν3/4/ε1/4

v where ν is the kinematic viscosity and
εv is the kinetic energy dissipation rate. In ILES, energy is dissipated instead at the
grid scale, 1x. For a viscous fluid the total dissipation in a closed volume is given
by εv = νD where D = ∫V u · ∇2u dV , so that the Kolmogorov scale can be recast
as η = ε1/2

v /D3/4. Analogously, one can define for ILES an effective Kolmogorov
scale, ηe = ε1/2

v /D3/4, where the numerical dissipation, εν , is calculated from the
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γ U lρ lu Reye Scheme

1.67 0.5 1/6 1/6 16 828 ILES
0.83 1 1/6 1/6 9849 ILES
0.42 2 1/6 1/6 7015 ILES
0.21 4 1/6 1/6 3608 ILES
0.10 8 1/6 1/6 2306 ILES
1.67 0.25 1/12 1/12 14 251 ILES
0.83 0.5 1/12 1/12 10 978 ILES
0.42 1 1/12 1/12 8430 ILES
0.21 2 1/12 1/12 6298 ILES
0.10 4 1/12 1/12 7673 ILES
0.05 8 1/12 1/12 5856 ILES
0.42 2 1/6 1/6 4000 DNS

TABLE 1. Summary of numerical simulations.

residual of the kinetic energy budget. Similarly, an effective viscosity, νe = εv/D ,
and an effective Reynolds number, Ree = 1/νe, can also be defined. Note that the
interpretation of effective viscosity does not imply that an ILES and direct numerical
simulation (DNS) at the same effective Reynolds number will be identical, but the
energetic cascades should behave very similarly.

Aspden et al. (2008) found for a homogenous turbulent flow that ηe ∼ 1x with
a nearly constant proportionality constant, demonstrating an explicit link between
the grid dissipation and viscosity. However, the translation to stratified fluids is
less certain, as ILES models appear to be less studied for such flows. Small-scale
behaviour, such as anisotropy in the dissipation, may create differences when ILES is
applied to stratified fluids and the method implies that the Prandtl, or Schmidt, number
is one. However, ILES was used successfully in several studies of turbulent, stratified
flows. Lawrie & Dalziel (2011a,b) modelled the development of a Rayleigh–Taylor
instability and found good agreement between experiments and their ILES simulations.
Waite & Smolarkiewicz (2008) studied the breakdown and subsequent turbulent
evolution of counter-rotating vertical vortices in a stratified system and found good
agreement between ILES simulations and those from both a spectral-transform model
with hyperviscosity and an explicit large eddy simulation (LES) model. In a study
of thermal convection Piotrowski et al. (2009) found that ILES performed better than
similarly resolved LES. So while there are certainly caveats to using an ILES model,
there is evidence that reliable results can be obtained for stratified flows under a
variety of conditions.

As a baseline, we have compared ILES with a DNS for the γ = 0.42 case and these
results are discussed in § 8. We find that the turbulent spectra for each method agree
very closely well into the dissipation range. This gives us confidence in the reliability
of ILES for these flows and we use the method for the remainder of the runs. In all,
six high-resolution runs were made spanning γ = 0.1 to ∞ (1U = 8 to 0) and six
additional runs were performed with the same 1U, but with lu = 1/12. A summary of
all runs is given in table 1. Note that for the DNS run, the Reynolds number (4000)
is based on explicit viscosity and the Prandtl number, Pr = ν/κ = 1, where κ is the
scalar diffusivity. For ILES runs, the Reynolds number is the average of the effective
value, Ree over the duration of the run.
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FIGURE 2. Vorticity structure for γ = 0.42 at the indicated times. (a,b) Isosurface of the
vorticity magnitude, |ω|: (a) |ω| = 15; (b) |ω| = 30. (c,d) Surface (z = 1) and mid-plane
(z = 0.5) sections of |ω| = 30. The s = 0.5 isocontour is shown in heavy black for reference:
(a) t = 2.75; (b) t = 3.25; (c) t = 4; and (d) t = 5.

4. Flow development
4.1. Evolution of the shear flow

The numerical solutions for γ = 0.42 is presented in figure 2. The figures shows
a three-dimensional isosurface and x–y plan view of the surface (z = 1) and mid-
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plane (z = 0.5) magnitude of the vorticity, |ω|, at four times during evolution. The
z = 0 plane (not shown) is a mirror image of the surface, due to the vertical
symmetry properties of the Boussinesq solution. The initial maximum magnitude of
the (non-dimensional) vertical vorticity in the horizontal shear layer ωo =1U/2lu = 6.
Almost immediately, the vortex sheet begins to tilt due to gravitational adjustment.
Simultaneously, the tilting sheet rolls up into a vertical vortex that by t = 2.75 has
separated into two distinct cores. One is at the top, z= 1, and one at the bottom, z= 0.
They are dislocated in y and slightly in x.

The propagation of the gravity current flow in the y-direction produces convergence
along the surface and bottom fronts that thins the density interface and intensifies
across-front shear. By t = 2.75 and 3.25, the vorticity magnitude |ω| ≈ 60 at z = 1,
nearly 10 times the initial vorticity. This shear enhancement leads to a secondary shear
instability and small vertical vortices along the both the z = 0 and z = 1 fronts. At
least 12 of these secondary vortex cores are evident at z = 1 at t = 2.75. The velocity
jump 1U remains approximately constant across front, thus the increased vorticity
is due to a thinning of the interface, or a decrease in lu by roughly a factor of 10.
From the classical shear layer results discussed earlier, the most unstable wavelength
of the secondary shear instability should scale as k−1 ∼ lu, which explains the order of
magnitude increase in the number of vertical vortices along the front. These secondary
vortices appear as ripples in the vortex sheet along the top and bottom fronts. They are
similar in appearance to the lobe-and-cleft instability seen in gravity currents along a
no-slip boundary (Hartel, Carlsson & Thunblom 2000a). However, we emphasize that
the boundaries in our simulations are free-slip, and the secondary instability is caused
by a very different mechanism.

A third instability begins to form by t = 3.25 as Kelvin–Helmholtz rolls associated
with the lateral gravity current appear. These are initially oriented in the horizontal
plane (streamwise vorticity), approximately perpendicular to the primary vertical
vortex cores. This orientation is evident from the mid-plane, z = 0.5, vorticity field
at t = 3.25 (figure 2b). The rolls are aligned with the primary axes of strain
associated with the horizontal shear. The secondary shear vortices associated with
the frontal convergence are distributed along the Kelvin–Helmholtz rolls. The two
dislocated primary vortex cores and the initial vortex sheet are still identifiable. The
Kelvin–Helmholtz rolls parallel to the vorticity sheet form very sharp alternating
fronts, separating high- and low-vorticity fluid.

The vorticity isosurface at t = 3.25 illustrates the skeleton of the emerging flow.
The central region is formed by the two primarily dislocated and tilted vertical cores,
around which are wrapped the Kelvin–Helmholtz vortices. Near the top and bottom,
ribs have developed from the secondary shear instability on the converging fronts and
are wound around the Kelvin–Helmholtz vortices. The development and interaction
of the three instabilities leads to rapid breakdown of the flow into turbulence by
t = 4 (figure 2c). The primary vertical vortices and the Kelvin–Helmholtz vortices
are still apparent, but the vorticity has become highly convoluted and the ribbed
structure has begun to disappear as the turbulence intensifies. Very large velocity
gradients produce regions of very high vorticity, as seen in the surface and mid-plane
vorticity contour plots (figure 2c). The alignment of the primary axes of shear and the
Kelvin–Helmholtz billows are still evident in the mid-plane buoyancy plot. By t = 5
(figure 2d) the vorticity field has lost most of its structure, but the lateral adjustment
continues as a highly turbulent gravity current.

The evolution for γ = 0.21, with twice the initial shear (ωo = 12), is shown in
figure 3. The development is similar to γ = 0.42, but the primary horizontal shear
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FIGURE 3. The same as figure 2 except γ = 0.21: (a) t = 1.5; (b) t = 2; (c) t = 2.5; and (d)
t = 3.5. Isosurface |ω| = 18 in (a) and (b) and |ω| = 42 in (c) and (d).

instability develops more rapidly compared with the gravitational adjustment. While
the primary shear roll-up occurs first, the Kelvin–Helmholtz vortices develop on a
similar time scale as shown in figure 3(b). The secondary shear instability again
emerges along the fronts. By t = 2.5 (figure 3c) a vorticity skeleton of ribs formed
by the secondary shear vortices is wound around the Kelvin–Helmholtz billows. The
primary vertical vortex is more concentrated along y = 0 and shows less evidence of
dislocation in y. Coherent Kelvin–Helmholtz billows are wound around the central
core. By t = 3.5 the flow becomes highly turbulent and nearly all structure breaks

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.41


96 B. L. White and K. R. Helfrich

x

(a) (b)

(c) (d )

0.5z

1.0

0

1

0

–1

2

1

0

0.5

1.0

0

2

1

0

y1
0

–1

2

–2

x

z

2

1

0

0.5
1.0

0

3

1
0

–1

2

–2
–3

2

1

0

y

0.5
1.0

0

3
4

1
0

–1

2

–2
–3

–4

FIGURE 4. Isosurfaces of |ω| for other γ : (a) γ = 0.1, t = 1.5, |ω| = 15; (b) γ = 0.83,
t = 4.25, |ω| = 18; (c) γ = 1.67, t = 5.25, |ω| = 15; (d) γ →∞, t = 8, |ω| = 12. Note that
the y-axis limits are different for each case.

down. However, the mid-plane vorticity fields show the alignment of the vorticity
fields along the primary axes of strain and a banded structure marking the central
vortex core and the remnants of the Kelvin–Helmholtz billows.

Vorticity isosurface plots for γ = 0.1, 0.83, 1.67 and ∞ are shown in figure 4. Each
case is shown at a different time since the flows evolve over different time scales.
The smaller γ , the more rapid the turbulent breakdown. There is a transition from a
flow dominated by the horizontal shear layer as γ → 0 to a pure gravity current as
γ →∞. The γ = 0.83 and 1.67 cases, like the γ = 0.42 and 0.21 runs in figures 2
and 3, show strong interactions between the shear instability and gravitational collapse,
and the appearance of the secondary shear instability vortices along the surface and
bottom fronts. As γ increases from 0.21 to 1.67 the secondary frontal instabilities
progressively emerge sooner than the Kelvin–Helmholtz instability associated with
the transverse gravitational adjustment. In contrast, the pure gravity current (γ →∞,
figure 4d) only develops Kelvin–Helmholtz instabilities along the central, horizontal
portion of the interface, while the fronts remain smooth. This is an important point
because it illustrates that the secondary instabilities do not occur in the absence of
along-front shear. However, based on the γ = 1.67 case, it appears that only a small
amount shear is required for instabilities to develop. It is also important to note
that these secondary instabilities begin at the fronts and move toward the centre, in
contrast to the Kelvin–Helmholtz instabilities seen in the pure gravity current, which
are confined to the centre, away from the fronts.
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FIGURE 5. Surface (z= 1) and mid-plane (z= 0.5) buoyancy, s, fields at the indicated times:
(a) γ = 0.83; (b) γ = 0.42; (c) γ = 0.10.

4.2. Evolution of the buoyancy field
Surface and mid-depth buoyancy fields at four evenly spaced times are shown in
figure 5(a–c) for γ = 0.83, 0.42 and 0.1, respectively. The surface plots show that
the front propagation resembles a gravity current for weak shear. The primary shear
instability and the mixing increase as γ is decreased (increasing shear). For γ = 0.1
(figure 5c), the surface buoyancy field is so highly convoluted by t = 3 that the
primary shear vortex is no longer recognizable. The intense convective overturning
associated with the instabilities has brought dense fluid to the surface. Similar vigorous
overturning occurs at γ = 0.42 for t > 3 (figure 5b).

To illustrate the source of the convective overturning, a sequence of buoyancy fields
in a y–z section at x = 0.96 are shown in figure 6 for γ = 0.21. The figures also
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FIGURE 6. Temporal evolution of the buoyancy field in a vertical section at x= 0.97 for
γ = 0.21. In-plane velocity vectors shown for reference.

show the in-plane velocity vectors. At t = 1.5 there is a patch of dense fluid near the
surface near (y, z) = (−0.2, 1) that extends toward the bottom. This feature is formed
by the horizontal roll-up of the primary shear vortex (e.g. figure 3a). By t = 2 the
vortex core has developed a distinct overturning circulation through the conversion
of vertical vorticity into horizontal vorticity with the tilting of the primary vortex.
The patch of dense fluid in the circulation forms a secondary surface front near
y = 0 where a large vertical current plunges below the surface. There is a returning
positive vertical current on the opposite side of the dense feature, within the primary
vortex core. Two emerging Kelvin–Helmholtz vortices are also evident. By t = 2.5
the vertical overturning circulation in the primary vortex has begun to interact with
upper Kelvin–Helmholtz vortex. At t = 3 twin, counter-rotating horizontal vortices,
one originating from a Kelvin–Helmholtz vortex and the other from the horizontal
overturning circulation, produce a large flow between them that pulls dense fluid all of
the way to the surface.

4.3. Evolution of the vorticity
More insight into the flow can be gained by examining the vorticity dynamics. The
production of enstrophy, Ω = ωiωi/2, in a Boussinesq, stratified fluid is given (in
non-dimensional form using index notation) by

∂Ω

∂t
+ uj

∂Ω

∂xj
= ωiωj

∂ui

∂xj
+
(
ω2
∂s

∂x1
− ω1

∂s

∂x2

)
+ ν ∂

2Ωi

∂xj∂xj
− ν ∂ωi

∂xj

∂ωi

∂xj
. (4.1)

The three terms on the right-hand side are, respectively, production due to stretching
and tilting, production due to baroclinic torque, PB, and viscous diffusion of
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FIGURE 7. Enstrophy production terms for γ = 0.42: baroclinic, PB; stretching, PS; tilting,
PT ; and total production at z= 0.5 and z= 1 for t = 2.5 and t = 3.

enstrophy and viscous dissipation. The first term on the right-hand side can be
decomposed into contributions from stretching and tilting, ωiωj∂ui/∂xj = PS + PT ,
where PS = ωiωi∂ui/∂xi.

The contributions of each production term to the growth of the enstrophy for
γ = 0.42 are shown in figure 7. During the initial stage of gravitational adjustment
there is vortex compression (negative stretching) in the mid-plane. Compression is
evident at the surface (z = 1) in the centre region of the shear vortex. However,
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strong stretching occurs away from the vortex centre. This stretching is a consequence
of the frontal convergence and drives the secondary shear-layer roll-up that is just
beginning at t = 2.5. The rate of enstrophy production is close to 1000 at the surface.
A vorticity field with initial magnitude of O(1) can be enhanced by a factor of 10
over a time interval as short as dt ∼ 0.1, consistent with the rapid development of
the secondary shear vortices. There is considerable vorticity production due to tilting
throughout the water column. The total enstrophy production at z = 0.5 is positive, as
tilting dominates compression. Conversely, the total production at z = 1 is dominated
by the stretching of the central vortex. This trend was generally observed for all γ
in the early stages of flow development. In all cases, the baroclinic production, PB, is
considerably smaller than stretching and tilting (even for large values of γ ).

The initial vortex sheet continues to undergo compression in the mid-plane at later
times, but there is stretching of the two dislocated primary vortex cores and in the
Kelvin–Helmholtz rolls that have emerged by t = 3 (figure 7). Tilting production
continues along the vortex sheet away from the cores. Overall, tilting exceeds
compression, as the total enstrophy grows rapidly throughout the midplane with the
exception of a few localized regions. At the surface, stretching dominates tilting,
with vortex production maximized near the central core. At later times (not shown)
stretching and compression both contribute approximately equally at the mid-plane
and surface, as regions of positive and negative vortex production become highly
convoluted.

For cases with higher shear (not shown), there can be considerable stretching in
the primary vertical vortex. While the relative importance of tilting and stretching
vary somewhat for different γ , both processes intensify the vorticity field and lead to
turbulence at small scales.

4.4. Surface expression of the vertical velocity and vorticity
The observations of Farmer et al. (2002) documented very strong near-surface vertical
flows (cf. their figure 6) and whirlpools at the surface. The numerical solutions
illustrate the mechanisms behind their observations. Vertical vorticity, ωz, and velocity,
w, in y–z cross-sections, are shown for γ = 0.21 and γ = 0.42 in figure 8. The
sections are located at the x-location of the surface expression of the tilted vortex,
x = 0.97 and 1.21, respectively. The figures also show the in-plane velocity vectors.
In both examples there is a coherent, tilted vortex tube that intersects the surface,
ranging between approximately −0.4 < y < 0 for γ = 0.21 and −1.2 < y < −0.8 for
γ = 0.21. In each case, the vortex tube is bounded by regions of strong downwelling,
near y = 0 (−0.8) for γ = 0.21 (0.42), and strong upwelling, near y = −0.4 (−1.2)
for γ = 0.21 (0.42). The vorticity and vertical velocities are particularly strong for
γ = 0.21, with w ≈ −1.5, which is an order of magnitude larger than the vertical
flows at the gravity current surface front (y ≈ −1). In both cases the downwelling
zone reaches from the surface to near mid-depth, in qualitative agreement with the
deep bubble plumes observed by Farmer et al. (2002). The upwelling and downwelling
regions result from the tilting of the primary shear vortex, which converts vertical
vorticity to horizontal, with an accompanying overturning (also seen in figure 3(b),
for example). An alternative interpretation is that upwelling is associated with buoyant
fluid moving toward the gravity current surface front with positive w. In the process,
it drags upward the dense fluid trapped in the tilted vortex core. Upon reaching the
surface the dense fluid is negatively buoyant, and a downwelling flow develops on
the opposite side of the vortex core, essentially forming a convection cell. Again
figure 3(b) is helpful in visualizing this process.
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FIGURE 8. Vertical vorticity (a,b) and vertical velocity (c,d) in the y–z plane: (a,c) γ = 0.21,
x = 0.97 and t = 1.75; (b,d) γ = 0.42, x = 1.21, and t = 2.75. In-plane velocity vectors are
also shown.

5. Evolution of the mean velocity and buoyancy profiles
The rapid breakdown of the flow into complex three-dimensional motions leads to

rapid mixing of the buoyancy and momentum fields, particularly for small values of
γ . Figure 9 shows y–z buoyancy sections at x = 1.28 and t = 4, and the streamwise-
averaged sections at t = 8, for γ = 0.1 to 0.83. The γ = 0.83 case resembles a pure
gravity current with distinct and sharp surface and bottom fronts. However, increasing
the shear, γ = 0.42, 0.21 and 0.10, produces strong turbulent mixing. The x-averaged
sections at t = 8 show that the buoyancy field becomes mixed over the full depth and
the gravity current fronts more diffuse as γ decreases, with an increase in the mean
isopycnal slope.

The surface buoyancy front position, yf , as a function of time is shown in figure 10.
Here yf is the location, for any x, at which the surface buoyancy first decreases below
s = 0.999. Following an initial transient, the front speeds are close to the ideal gravity
current speed, cf = 0.5, for γ > 0.42. However, when γ 6 0.21 the front advance
is more rapid. Advection from the strong shear instability and associated mixing
make the interface more diffuse, initially increasing the front propagation speed. For
γ > 0.42 the front eventually adjusts so that for t > 4 the speed is close to the ideal
gravity current speed. When γ = 0.1, the front speed for 2 < t < 4 is c ≈ 1.5, a factor
of three larger than the ideal gravity current. However, the front eventually slows and
reaches the domain boundary at t ≈ 6.

The temporal evolution of the horizontal buoyancy and velocity distributions are
shown in figure 11. The x- and z-averaged buoyancy, 〈s〉xz, and streamwise velocity,
〈u〉xz, distributions are shown for γ = 0.1 and 0.83 in figure 11(a,b), respectively. The
angled brackets indicate spatial averaging over the subscript dimensions. The y-profiles
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FIGURE 9. Buoyancy sections in the y–z plane. (a) Vertical sections at x= 1.28 and t = 4 for
γ = 0.1 to 0.83. (b) Streamwise-averaged buoyancy, 〈s〉x (= ∫ L

0 s dx) at t = 8 for the same γ
values.
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FIGURE 10. Surface front position, yf , versus time for all γ . The solid line shows the ideal
gravity current (cf = 1/2) front position.

of 〈s〉xz and 〈u〉xz can be compared with a homogenous mixing layer. The latter would
evolve as an error function, or similar smooth profile, with characteristic integral width
for velocity of δu(t). Here the flow is assessed using an integral width δu based on the
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FIGURE 11. Lateral evolution of the mixing layer. Profiles of x and z-averaged streamwise
velocity,

(〈u〉xz − U1

)
/1U (solid), and buoyancy, 〈s〉xz (dashed), for (a) γ = 0.1 and (b)

γ = 0.83 at t =1, 2, 4, 8 (bottom and top fronts advance monotonically). (c) Evolution of the
mixing layer thickness for velocity, δu (closed symbols), and buoyancy, δs (open symbols), for
all γ . Matching open and closed symbols correspond to the same values of γ . The symbols
are the same as in figure 10. (d) Log–log plots of δs for γ = 0.1 (◦) and γ = 0.83 (�). Solid
lines show the δs ∼ t behaviour for γ = 0.83 and γ ∼ t1/2 behaviour for γ = 0.1.

momentum thickness for 〈u〉xz,

δu =
∫ Ly

−Ly

1
4

(〈u〉xz + 1
) (

1− 〈u〉xz

)
dy, (5.1)

and an analogous integral width, δs, for buoyancy 〈s〉xz,

δs =
∫ Ly

−Ly

〈s〉xz(1− 〈s〉xz) dy. (5.2)

At γ = 0.1, for which there is strong vertical mixing, the lateral profiles of buoyancy
and velocity (figure 11a) do resemble an error function, with some fluctuations. The
buoyancy field spreads slightly faster than the velocity, which can be seen from
the plots of 〈u〉xz and 〈s〉xz in figure 11(a) and from the evolution of δu and δs in
figure 11(c). The γ = 0.83 case is different. The signature of a gravity current is
evident in the profiles of 〈u〉xz and 〈s〉xz (figure 11b), a consequence of the weaker
mixing and greater vertical and horizontal stratification.

The distinction between strong and weak shear is evident in the evolution of δu(t)
and δs(t) shown in figure 11(c). For large γ (weak shear), δu and δs both increase
linearly with time (cf. figure 10), whereas for γ = 0.1 and 0.21 the growth of δu and δs
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decreases with time. Figure 11(d) compares the growth of δs for γ = 0.1 and 0.83. For
both, there is an initial period of rapid increase for t . 3. The behaviour then crosses
over to δs ∼ t for γ = 0.83, indicative of steady gravity current propagation. However,
for γ = 0.21, the scaling transitions to a diffusive-like regime δs ∼ t1/2. This difference
in behaviour is related to the degree of vertical mixing, discussed in greater detail
in § 7.

6. Energetics
Further insight into this complex flow can be gained from the evolution of the

energy budgets. When averaged over the computational domain, the (non-dimensional)
kinetic energy budget is governed by

dEk

dt
=−〈sw〉 − εv (6.1)

where the volume-averaged kinetic energy is

Ek =
〈

1
2
u ·u

〉
= 1

V

∫
V

1
2

(
u2 + v2 + w2

)
dV, (6.2)

〈sw〉 is the volume-averaged buoyancy flux. The dissipation of kinetic energy is given
by

εv = 1
Re

〈
∂ui

∂xj

∂ui

∂xj

〉
. (6.3)

However, in the ILES simulations the explicit viscosity is set to zero (Re→∞), so εv
is calculated as the residual from (6.1).

The evolution of volume-averaged potential energy,

Ep = 1
V

∫
V

sz dV = 〈sz〉, (6.4)

is governed by

dEp

dt
= 〈sw〉 + Dp. (6.5)

Here Dp denotes the conversion of internal to potential energy, independent of
macroscopic fluid motion (Peltier & Caulfield 2003). Winters et al. (1995) showed
that for a fixed domain this term is given by

Dp = κ
∮

S
z∇s · n dS− κ

∫
A
(stop − sbottom) dA. (6.6)

Here κ is the (non-dimensional) molecular scalar diffusivity, S is the bounding surface
of the domain, n is the surface normal and A is the horizontal area of the domain. As
with viscosity, κ is set to zero in the ILES simulations, so Dp is found as the residual
of (6.5).

Because the buoyancy flux contains both reversible motions (stirring) and
irreversible conversion (mixing) it is useful to separate the potential energy into an
available component, Ea, and a background component, Eb, so that Ep = Ea + Eb.
Winters et al. (1995) introduced the concept of a background potential energy, which
is the minimum potential energy attainable through an adiabatic redistribution of the
buoyancy field. The redistributed buoyancy field, s∗(z∗), is obtained from vertically
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FIGURE 12. Schematic illustration of (a) ideal gravity current, (b) ideal mixing layer and (c)
transitional behaviour.

stacking all buoyancy elements and stretching each one to fill the entire horizontal
domain. The resorting is a mapping, z∗(x, y, z), which gives the vertical position in
the re-sorted state of the fluid element at position (x, y, z). The background potential
energy is thus given by

Eb = 1
V

∫
V

s∗(z∗)z∗ dV =
∫ 1

0
z∗s∗(z∗) dz∗, (6.7)

where the second equality derives from the fact that dz∗ = dz/A (where A is the
horizontal area).

The temporal evolution of Ea, i.e. the stirring rate, is given by

dEa

dt
= 〈sw〉 −M, (6.8)

where M is the rate of irreversible mixing due to fluid motion. The background
potential energy gain, i.e. the total irreversible mixing rate, is given by

dEb

dt
=M + Dp. (6.9)

For the tilting horizontal shear flow, these energy budgets can be viewed in light of
two end-member cases: an ideal, non-mixing gravity current and an ideal mixing layer
(figure 12a,b). First consider the ideal gravity current without horizontal shear, for
which there is a perfect conversion of initial potential energy to kinetic energy as the
gravity current propagates. Without mixing, Ep = Ea and dEk/dt = −dEp/dt = −〈sw〉.
Available potential energy is released at a rate that depends on the front speed, cf .

In a time dt, a volume, dV = HLxcf dt/2, of initially motionless dense (s = 1) fluid
in the upper half of the domain is replaced by an equivalent volume of light (s = 0)
fluid moving with the gravity current front speed, cf . At the same time the same
volume of light fluid is replace by dense fluid moving along the bottom half of the
domain. The associated change in potential energy is −LxHcf dt/4. Using the ideal
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gravity current speed cf = 1/2 and averaging over the domain volume 2LyLxH, gives

dEp

dt
= dEa

dt
= 〈sw〉 = − 1

16Ly
. (6.10)

Conservation of total energy gives

dEk

dt
=−dEp

dt
=−〈sw〉 = 1

16Ly
. (6.11)

The other limit is an ideal, completely mixed region between the two propagating
fronts (figure 12b). A volume V = HLxcf dt of dense (s = 1) fluid has an initial
potential energy szoV = cf dtLxH/2, where zo = 0.5 is the centre of mass. After it
has completely mixed with an equivalent volume of light (s = 0) fluid, the buoyancy
s = 0.5 and the potential energy is szo2V = cf dtLxH/2, since zo = 0.5. There is no
change in potential energy, no net buoyancy flux (〈sw〉 = 0) and no net exchange
between the kinetic and potential energy reservoirs. There is, however, a complete
conversion of available to background potential energy. Initially, in the volume
2HLxcf dt, the available potential energy is cf dtLxH/4. Therefore, after dividing by
the total domain volume and again taking cf = 1/2,

dEb

dt
=−dEa

dt
= 1

16Ly
. (6.12)

A summary of the volume-averaged energetics for all of the numerical runs are
shown in figure 13. The total kinetic and potential energies, the buoyancy flux, the
viscous (ILES) dissipation and the evolution of available and background potential
energies shed light on the dominant energy transfers, which vary considerably
across the parameter space. The γ = 1.67 case is consistent with an ideal gravity
current. Energy is transferred from kinetic to potential energy by the buoyancy flux,
dEk/dt ≈ −dEp/dt ≈ −〈sw〉, very close to 〈sw〉 = −0.0120 from (6.11) with Ly = 5.2.
There is little increase in background potential energy since there is little turbulent
mixing. With increasing shear (smaller γ ) there is more irreversible mixing and
dissipation of kinetic energy. For γ = 0.83, 0.42 and 0.21, there is an initial, primarily
inviscid adjustment period during which the behaviour is close to an ideal gravity
current, as potential energy is transferred to kinetic energy and the buoyancy flux is
close to the ideal limit. The duration of this period decreases with increasing shear.
The subsequent onset of the horizontal shear and Kelvin–Helmholtz instabilities and
resulting turbulent breakdown causes a rapid decay of the kinetic energy, a decrease of
the buoyancy flux and a reduction in the rate of potential energy loss.

The highest shear case, γ = 0.1, shows an even greater effect of the shear instability.
The potential energy decreases with a corresponding increase in Ek during the
initial slumping. After t ≈ 3, the potential energy becomes approximately constant,
resembling the mixing layer model in figure 12(b). The buoyancy flux reaches large
negative values, 〈sw〉 ≈ −0.02 (t ≈ 1), that exceed all other cases. The shear instability
dominates the buoyancy adjustment even at early times. Shortly thereafter, 〈sw〉 rapidly
becomes positive (t ≈ 2–3) as turbulent mixing causes an upward flux of dense
fluid. The buoyancy flux also becomes positive for t ≈ 3–4 at γ = 0.21. For both
of these cases the buoyancy flux becomes negative again as the implicit numerical
dissipation of kinetic energy dominates the energetics, and mixing of the buoyancy
field decreases (see § 6). Only with large shear, γ 6 0.21, does the buoyancy flux
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FIGURE 13. Energy budgets for: (◦) γ = 0.1; (4) γ = 0.21; (�) γ = 0.42; (�) γ = 0.83; (B)
γ = 1.67; and (O) γ →∞. (a) Kinetic energy. (b) Potential energy. (c) Buoyancy flux. (d)
Viscous dissipation of kinetic energy. (e) Available potential energy. (f ) Background potential
energy. The ideal gravity current and mixing layer models are indicated.

become significantly positive. For the other cases, the negative buoyancy flux from the
gravitational adjustment overcomes any positive contribution from turbulent mixing.

The two highest shear cases exhibit an initial rapid increase in the implicit viscous
dissipation, corresponding to the initial period when potential energy is released and
kinetic energy grows. The kinetic energy and viscous dissipation peak at t ≈ 2 (3) for
γ = 0.1 (0.21). It is around the time of this peak that the rate of growth of Eb is
the largest and the rate of decrease of Ea is greatest. Subsequently, a rough balance
develops between the decrease of Ea and the slower growth of Eb. At the same time,
εv and Ek decrease, indicative of decaying turbulence. This period, when the drop in
Ea and rise in Eb are in approximate balance, corresponds to the period of diffusive
mixing discussed in § 7.
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FIGURE 14. Energy and mixing characteristics of lu = 1/12 simulations: (◦) 1U = 8,
γ = 0.05; (4) 1U = 4, γ = 0.1; (�) 1U = 2, γ = 0.21; (�) 1U = 1, γ = 0.42; (B)
1U = 0.5, γ = 0.83. (a) Buoyancy flux. (b) Viscous dissipation. (c) Background potential
energy. (d) Mixing layer thickness for velocity, δu (closed symbols), and buoyancy, δs (open
symbols).

6.1. Effects of initial interface thickness
A small number of simulations were run with a thinner initial interface, lu = 1/12,
to assess the importance of this parameter, independent of γ . Results for selected
terms in the energy budget and the mixing layer thicknesses, δu and δs, are shown
in figure 14. The results are qualitatively similar to the lu = 1/6 cases. Comparison
of the viscous dissipation, for example, suggests that the thinner interface cases are
developing faster, as would be expected by the faster shear time scale, lu/1U. The
increase in background potential energy is in general less for each γ than for the
lu = 1/6 cases, an issue we address in the next section on mixing.

7. Mixing
Because the buoyancy flux remains negative, except during brief periods for γ = 0.1

and 0.21, 〈sw〉 is not a good mixing diagnostic. A better measure is the rate of
increase of background potential energy, which measures irreversible mixing and
whose growth rate is positive definite.

As the flow develops, mixing results in a re-sorted buoyancy profile, s∗(z∗, t), with
an increasingly thick interface separating bottom (s∗ = 1) and top (s∗ = 0) fluid,
which grows monotonically (figure 15a). The function 1 − s∗(z∗) can be interpreted
as a cumulative distribution function for the arrangement of fluid parcels (sorted
by buoyancy from s = [0, 1] with z∗ playing the role of the random variable).
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FIGURE 15. Evolution of the background buoyancy profile and the growth of the mixed
region. (a) Sorted background buoyancy field s∗(z∗) for γ = 0.1 at t = 1:1:8 (with
monotonically increasing z∗-intercept). (b) Mixed layer thickness σ̂ for the indicated γ .

The corresponding probability density function (p.d.f.) f = −∂s∗/∂z∗ describes the
distribution of mixed fluid around the centre of mass, z∗ = 0.5. The standard deviation
of this p.d.f. can be used as a measure of interface thickness. For a general distribution
s∗(z∗), for which s∗(0)→ 0, s∗(1)→ 1 and ∂s∗/∂z∗→ 0 for z∗ = 0 and 1, the variance
of the corresponding p.d.f. is

σ 2 =
∫ 1

0
−∂s∗
∂z∗

z2
∗ dz′∗ −

[∫ 1

0
−∂s∗
∂z∗

z∗ dz′∗

]2

= 2
∫ 1

0
s∗z∗ dz′∗ −

(
1
2

)2

= 2Eb − 1
4
. (7.1)

Hence, the background potential energy is an integral measure of the thickness of
mixed fluid. For example, if s∗(z∗, t) follows an error function profile,

s∗(z∗, t)= 1
2

[
1− erf

(
z∗ − 0.5√

2σ(t)

)]
, (7.2)

then the p.d.f. is a Gaussian function with variance σ 2. Of course, s∗(z∗, t) from the
numerical runs do not behave as error functions. Figure 15(a) shows that s∗(z∗, t) for
γ = 0.1 is closer to a piecewise linear function. Regardless of the profile details, σ(t)
from (7.1) gives a well-defined integral thickness and a measure of the mixing.

An effective ‘vertical’ diffusivity, Kz∗ , can be defined from the mean-square growth
of variance according to the standard definition,

Kz∗ =
1
2

dσ 2

dt
= dEb

dt
. (7.3)

A drawback of σ from (7.1) as a metric for mixing is that it is domain-averaged
and therefore depends on Ly. To illustrate, the total volume of mixed fluid at time
t is 2LyLxσ(t). The rate at which this volume grows (measured by dσ/dt or by K)
increases with the tilting and stretching of the interface, i.e. the length of the s = 0.5
contour. This interface grows from its initial area of LxH to approximately 2Lxyf (t)
(see figure 12c). If the physical thickness of the mixed region is θ(t), then the total
mixed fluid volume should grow as 2yf Lxθ(t) and, hence, σ(t) ∼ θ(t)yf (t)/Ly, i.e. σ
depends on domain size and grows with yf as the front advances.

Ideally, a measure for mixing should be independent of the undisturbed fluid
region beyond the surface and bottom fronts. To remove the dependence on Ly, we
normalize the mixing rate by the vertical cross-sectional area, LxH = Lx (H = 1)
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FIGURE 16. Mixed layer thickness versus rescaled time t/Tm: (a) lu = 1/6 runs, symbols as
in figure 13; (b) lu = 1/12 runs, symbols as in figure 14. The regression σ̂ = 0.1 (t/Tm)

5/2 is
shown in (a) and (b). The t1/2 regressions are shown for the 1U = 8 cases, σ̂ = αt1/2 with
α = 0.77 for (a) and α = 0.43 for (b). (c) Mixing time scale Tm versus γ for: (◦) lu = 1/6 runs
and (�) lu = 1/12 runs.

rather than the horizontal area 2LyLx, and define a new mixing layer thickness
σ̂ = 2LyLxσ/Lx = 2Lyσ ∼ θyf . Here σ̂ represents the width in the y-direction over
which the fluid is completely mixed in the x–z plane. If σ̂ = 2Ly then the fluid is fully
mixed. We can interpret the corresponding mixing rate, K̂ = (1/2)dσ̂ 2/dt = 4L2

yKz∗
as a horizontal diffusivity. This approach is consistent with the conceptual picture in
figure 12(c), as it assesses the rate at which mixed fluid is formed between the two
evolving fronts.

Figure 15 shows the evolution of the mixed region for lu = 1/6. The evolving
s∗(z∗) profiles are shown for γ = 0.1 in figure 15(a). The growth of σ̂ is shown in
figure 15(b) for a range of γ . The total mixing, i.e. the total increase in σ̂ , is largest
for small γ . The mixing is also initiated earlier for small γ . There appears to be a
time scale, which we call Tm, that determines the time of onset of significant mixing.
Once mixing sets in, the slopes of σ̂ versus t are similar in log–log space, and follow
approximately a t5/2 initial scaling. This exponent, and the time scale, Tm, are found
for each case by regression. Specifically, Tm is defined as the time at which σ̂ first
exceeds 0.1, and can be viewed as an x-intercept of the initial σ̂ ∼ t5/2 curve. The
reason for this specific scaling is still unclear, but some discussion follows below.

We find that the growth of the mixed region in the initial period collapse very
well when time is renormalized as t/Tm and follow closely the σ̂ = (t/Tm)

5/2 curve
(figure 16a,b) for both the lu = 1/6 and lu = 1/12 simulations. Recall from the
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discussion above that σ̂ ∼ yf θ . A simple assumption for mixing would be that
the interface thickness, i.e. θ , grows diffusively, θ ∼ t1/2 as the interface spreads
horizontally. With the front propagation yf ∼ t, this would give a total mixed layer
thickness of σ̂ ∼ t3/2. However, the σ̂ ∼ t5/2 for early times implies that the interface
thickens much faster than diffusively. This is consistent with the rapid development
of three-dimensional turbulent structures that quickly span the full depth. Interestingly,
the σ̂ ∼ t5/2 behaviour is seen for all γ . However, it sets in later (greater Tm) for larger
γ , suggesting that the shear instability must reach a critical stage of development
before the scaling is observed, since the time scale for shear instability increases
with γ .

The time scale, Tm is shown in figure 16(c) for all cases. There is a strong trend
of increasing Tm with increasing γ that is similar for the lu = 1/6 and lu = 1/12
cases. This trend, together with the collapse with the t5/2 scaling, suggests the early
development of mixing is strongly correlated to γ , and the competition between shear
layer development and gravity current propagation time scales that this time scale
represents.

In figure 16(a,b) there is a change in scaling for σ̂ at later times. For the lu = 1/6
simulations, the curves collapse and crossover to σ̂ ∼ t1/2 scaling. However, note that
only the γ = 0.1 and 0.21 cases extend into this regime (higher γ cases end while
still in the t5/2 regime). This t1/2 scaling could be interpreted as a transition to a
horizontally diffusive mixing regime. For these γ = 0.1 and 0.21 cases, the fluid is
rapidly mixed in the vertical (see figure 9), consistent with a picture of horizontal
diffusive spreading. The diffusive scaling is also consistent with the horizontal
mixing layer growth, δs ∼ t1/2 growth (figure 11c). On the other hand, the lu = 1/12
simulations do not collapse at longer times, even though the 1U = 8 (γ = 0.05) and
1U = 4 (γ = 0.1) cases do begin to show a t1/2, diffusive scaling. Based on the
comparison between the two sets of simulations, there appears to be an additional
dependence on lu during later times that is not accounted for in the parameter γ . It
is this later dependence that would determine the eventual mixing rate. For example,

the horizontal diffusivity, K̂, can be calculated from the diffusive scaling, σ̂ = (2K̂t)
1/2

,
and for the γ = 0.1, lu = 1/6 case K̂ ≈ 0.30 while for both the 1U = 4, γ = 0.1 and
the 1U = 8, γ = 0.05, lu = 1/12 cases, K̂ ≈ 0.10. This suggests a clear dependence
on lu, which is reasonable to expect since lu establishes the size of the primary shear
vortices, which are increasingly important for small γ .

In contrast to the classic situation with both vertical shear and stratification,
horizontal shear layers with horizontal stratification develop rapidly as the interfacial
area grows to fill the domain. If the rate of shear is large enough (small γ ) the
mixing appears to cross over to a regime characterized by horizontal diffusion. It
is unclear whether flows with large γ will produce this cross-over. Presumably as
the flow approaches the gravity current limit, the front propagation is faster than the
vertical mixing rate. Simulations with longer times and larger domain sizes would
be necessary in order to assess whether cases with intermediate values of γ ever
exhibit the diffusive behaviour and whether a critical value of γ separates the two
behaviours. Linden & Simpson (1986), in their study of gravity currents subjected to
strong mixing, found a similar cross-over from a slumping-dominated to a vertically
mixed horizontal diffusive regime, over a time scale (or length of frontal propagation)
that decreased with stronger mixing. Together with that study, the present results,
and particularly the common initial scaling, suggest that the dynamics of the initial
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FIGURE 17. Vorticity structure for γ = 0.42 from DNS. All scales are as in figure 2.

mixing phase and transition to turbulence are complex in gravity currents with external
sources of mixing.

8. Comparison between ILES and DNS
It is useful to provide some comparison between the ILES results and a DNS

approach. As discussed in § 3, we conducted DNS for the γ = 0.42 case with fixed
viscosity, ν = 0.00025, and Prandtl number, Pr = ν/κ = 1, to give a Reynolds number
of 4000. The resolution of the DNS run was 384 × 1536 × 192 (Lx × Ly × Lz) and
with slope limiting turned off in the Godunov advection scheme. The results of the
comparison with the ILES for the γ = 0.42 case are shown in figures 17 and 18. This
case would be expected to pose the greatest challenge in terms of resolution because
the gravitational and shear effects are comparable and the full range of instabilities
are present. By comparing the vorticity structure in figure 17 with the ILES results in
figure 2, it is clear that the main features of the flow, e.g. the primary shear vortex, the
secondary instabilities along the front, and the Kelvin–Helmholtz billows associated
with the gravity current, are captured by each approach. The total rate of irreversible
mixing, M + Dp, and viscous dissipation, εv, are compared in figure 18(a,b). The ILES
and DNS agree very closely both in the overall evolution and the peak values. These
two metrics in particular are the most sensitive to differences between the ILES/DNS
approach because they depend on gradients at the grid resolution scale. In figure 18(c),
the dissipation for the DNS is calculated in two ways: the first as the residual of
the resolved kinetic energy budget, the second as the explicit viscous dissipation
based on the resolved velocity gradient tensor, ε = νD , where D = ∫V u · ∇2u dV .
The two estimates agree very closely (at worst the resolved dissipation is ≈85 % of
the residual), support that the DNS is well resolved and not simply a viscous ILES
(Aspden et al. 2008).

The Kolmogorov microscale is shown in figure 18(c) for both DNS and ILES. For
the DNS η is calculated both explicitly, as η = ν3/4/ε1/4, and based on the resolved
velocity gradient tensor, i.e. η = ε1/2/D3/4 (as discussed in § 3), while for ILES η is
calculated with the latter. For later times (after t ≈ 4) the effective value of η is very
similar for the ILES and DNS, suggesting the Reynolds number range for the DNS is
appropriate for comparison with the ILES (as also illustrated by the similarity in the
dissipation shown in figure 18b). The Kolmogorov scales can be compared with the
horizontal grid resolutions, 0.0068 for DNS and 0.0102 for ILES. For the DNS, the
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FIGURE 18. Comparison between ILES and DNS (Re = 4000) for γ = 042. (a) Irreversible
mixing for ILES (circles) and DNS (squares). (b) Viscous dissipation for ILES (open circles)
and DNS (open squares, KE residual; closed squares, explicit dissipation). (c) Kolmogorov
microscale for ILES (dashed) and DNS (solid, based on explicit dissipation; chain-dotted,
based on residual dissipation). (d) One-dimensional (x−) energy spectrum for the u velocity
component for ILES (dashed) and DNS (solid), t = 6.

grid resolution is ∼1.5η for the minimum value of η, a higher resolution than accepted
standards for accurate DNS (Moin & Mahesh 1998, §2.1). In addition, it can be seen
that in the DNS the two estimates for η, based on the resolved and residual dissipation,
agree very well, lending further support that the dissipation scales are resolved. As a
final point, note that in the ILES, η is initially smaller than for the DNS. Because
the Kolmogorov scale is set by the grid resolution, the effective Reynolds number
for ILES is initially higher, then decreases as turbulence develops. This permits the
development of smaller scales earlier in the flow, which can be seen by comparing the
ILES in figure 2(c) with the DNS in figure 17.

Figure 18(d) compares turbulent energy spectra for ILES and DNS. These are
calculated from the 1− D streamwise (x−) spectrum of the x− component of velocity,
averaged in the middle part of the domain, from −1 < y < 1 to 0.35 < z < 0.65 at
t = 6 (wavenumber is normalized by η at the corresponding time). While there are
some differences at large wavenumber, presumably due to subtle differences in the
temporal evolution, the high-wavenumber behaviour is almost identical. The DNS is
resolved well into the dissipation range kη & 0.1, and is tracked almost identically by
the ILES spectrum up until its Nyquist cutoff at κη ≈ 0.33. This suggests the energy

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.41


114 B. L. White and K. R. Helfrich

transfer to the dissipation range is well-captured by ILES (for a Re equivalent to
the DNS). We emphasize that this particular value of γ represents perhaps the most
stringent test of the dissipation-range behaviour of ILES.

9. Discussion: comparison with the Haro Strait observations of Farmer et al.
The original motivation for this investigation was Farmer et al. (2002) who observed

shear flows behind Stuart Island in the Haro Strait with 1U ≈ 2 m s−1, lu ≈ 50 m and
a horizontal 1ρ/ρo ≈ 5×10−4 in water approximately 200 m deep. These give γ ≈ 0.6
and is in the regime where shear instability and lateral buoyancy adjustment evolve on
similar time scales. Based on the numerical results presented here (cf. figure 8), we
would expect a surface vortex with a width of the order of the depth. Farmer et al.
(2002) observed an eddy with radius of order 100 m, consistent with the numerical
results. For similar γ , we found vertical currents of order (g′H)1/2, which for the Haro
Strait parameters would correspond to w ≈ 1 m s−1. This estimate from the model is
consistent with the observed vertical currents up to 0.5 m s−1.

Farmer et al. did not make direct measurements of the density field within the
tilted interfacial zone, but their observations of the velocity field showed that the
shear layer had broadened from lu ≈ 50 m at the separation point to lu ≈ 300–500 m
at the second observation section 4.5 km downstream. The mean velocity of the
shear layer Uo ≈ 1 m s−1, giving a time scale τ = 4500 s for the advection between
the observation sections. This advection time and interface thickness growth imply
a horizontal diffusivity Kobs ∼ l2

u/τ = 20–55 m2 s−1. For the γ ≈ 0.6 range of the
field experiments, the numerical results do not show a diffusive behaviour. However,
using our numerical result from the γ = 0.21 case as a rough estimate, would
give K̂ ≈ 60 m2 s−1 in dimensional units based on the time scale (H/g′)1/2 and
H = 200 m. This estimate is of the same order as the observational estimate and
certainly encouraging, but some caution is warranted because of the dependence of
mixing on γ and also, as we find, on lu (although the field value of lu/H ≈ 1/4 is
comparable to our lu = 1/6 runs).

The numerical results are broadly consistent with the Farmer et al. observations and
their explanation of shear-layer evolution by vortex stretching and tilting. However,
we have also identified a secondary shear-layer instability at the surface caused by
frontal convergence and shear intensification, which Farmer et al. did not report. Their
qualitative model of the vorticity generation envisioned a continuous stretching of the
primary shear vortex by the gravitational adjustment as it was swept downstream. The
present numerical results suggest that both stretching and tilting of the primary vortex
intensify the vorticity, but this process is later interrupted by rapid dislocation of the
primary cores. Vortex tilting then generates a vertical overturning circulation, which
is strengthened through the interaction with Kelvin–Helmholtz vortices associated with
the gravity current collapse and the conversion of the vertical vorticity to horizontal
vorticity. This overturning is responsible for the mixing observed in the simulations,
and likely also in the field observations.

There are two important differences between our simulations and the field
observations. First, we study the temporal growth in a spatially periodic shear
layer, whereas the Haro Strait flow is a spatially growing mixing layer. This could
introduce subtle differences in the development, such as coupling between adjacent
Rayleigh vortices. Second, in the Haro Strait, the slow- and fast-moving streams have
vertical stable stratification in addition to the horizontal density gradient. This vertical
stratification could partially restrict overturning and vertical mixing.
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10. Conclusions

We have presented results on flows with horizontal shear and horizontal density
gradients. These share common features with pure shear flows and gravity currents,
but are more complex due to interactions between the turbulent features of
each. The tilting of vertical vorticity produced by the horizontal shear results in
vertical overturning circulation. Shear intensification at frontal convergences produces
high-wavenumber, intensified vertical vorticity. Transverse Kelvin–Helmholtz vortices
associated with the gravitational adjustment interact with the tilted vortices to produce
vertical mixing. The details of these interactions, and the rate at which turbulence
develops, depend upon the relative time scales of shear instability and gravitational
adjustment, described by the parameter γ .

For γ ≈ 1, in the gravity-current-dominated regime a secondary instability associated
with frontal convergence was identified. The convergence enhances the cross-front
shear, producing high-wavenumber vertical vorticity that leads to three-dimensional
turbulence. The three-dimensional instability is similar in appearance to the lobe–cleft
instability observed in classical gravity currents over no-slip boundaries, but has a very
different generation mechanism. Through this secondary instability, a relatively small
amount of horizontal shear is sufficient to promote a transition to three-dimensional
turbulence and increase mixing. However, for γ & 0.83 the gravity current front
propagates with constant speed, as in a traditional gravity current.

For γ . 0.6, the influence of horizontal shear becomes even more significant.
The initial development of the horizontal shear instability is rapid, producing well-
developed vertical vortex cores. By analysing the vorticity production, we find
that both stretching and tilting of these vortices is important to subsequent flow
development. Near the surface and bottom fronts, vortex stretching concentrates
vertical vorticity, enhancing it by an order of magnitude. The tilting of these primary
vortices converts vertical to horizontal vorticity and produces vertical overturning. The
overturning results in strong downwelling vertical currents at the surface front. The
combination of gravitational collapse, vortex tilting and stretching, and the secondary
shear instabilities results in rapid breakdown of the flow and turbulent mixing.

An analysis of the energy budgets shows the transition from gravity current to
mixing layer behaviour as γ is reduced. For large γ , potential energy is converted
into kinetic energy through the buoyancy flux. There is relatively little irreversible
mixing. In the shear-dominated regime, the dominant energy exchange is between the
available and background potential energy reservoirs, as mixing increases the latter
at the expense of the former. In this strong-mixing regime, the total potential energy
remains relatively constant and the kinetic energy is rapidly reduced by dissipation.

Mixing was investigated through the background potential energy, from which we
defined an effective turbulent scalar diffusivity, proportional to the mean square growth
rate of the mixed fluid thickness, σ̂ . For early times the mixed interface grows as
σ̂ ∼ t5/2 for all γ . For smaller values of γ , there is a transition to diffusive scaling,
σ̂ ∼ t1/2 as mixing slows the gravity current frontal propagation.
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